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Abstract
The Northern Hemisphere mid-latitudes, with large human populations and terrestrial carbon
sinks, have a high demand for and dependence on water resources. Despite the growing interest in
vegetation responses to drought under climate change in this region, our understanding of changes
in the relationship between vegetation growth and water availability (referred to as Rvw) remains
limited. Here, we aim to explore the Rvw and its drivers in the Northern Hemisphere mid-latitudes
between 1982 and 2015. We used the satellite-derived normalized difference vegetation index
(NDVI) and the fine-resolution Palmer drought severity index (PDSI) as proxies for vegetation
growth and water availability, respectively. The trend analysis results showed that changes in NDVI
and PDSI were asynchronous over the past three decades. Moreover, we analyzed the
spatiotemporal patterns of the correlation coefficient between NDVI and PDSI. The results
indicated that the Rvw was getting closer in more areas over the period, but there were differences
across ecosystems. Specifically, most croplands and grasslands were primarily constrained by water
deficit, which was getting stronger; however, most forests were primarily constrained by water
surplus, which was getting weaker. Furthermore, our random forest regression models indicated
that the dominant driver of changes in the NDVI-PDSI correlation was atmospheric carbon
dioxide (CO2) in more than 45% of grid cells. In addition, the partial correlation analysis results
demonstrated that elevated CO2 concentrations not only boosted vegetation growth through the
fertilizer effect but also indirectly enhanced water availability by improving water use efficiency.
Overall, this study highlights the important role of atmospheric CO2 in mediating the Rvw under
climate change, implying a potential link between vegetation greening and drought risk.

1. Introduction

The relationship between vegetation growth and
water availability (referred to as Rvw), represent-
ing vegetation responses to water availability, is a
key metric for understanding vegetation responses
to drought under climate change (Shi et al 2021,

Zhao et al 2021b, Chen et al 2022, Smith and Boers
2023). Over the past few decades, global vegetation
growth has been observed to increase, a phenomenon
known as ‘greening’ (Myneni et al 1997, Zhu et al
2016, Huang et al 2018, Piao et al 2020). The veget-
ation greening trend, attributed to factors such as
the carbon dioxide (CO2) fertilization effect, climate
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warming, and human activities, has beenwidely stud-
ied (Piao et al 2015, 2020, Lu et al 2016, Zhu et al
2016). However, changes in vegetation growth are
also associated with water availability, representing a
potential threat to the recent greening trend (Jiao et al
2021, Chen et al 2022, Wei et al 2023). For cropland,
grassland, and forest ecosystems, too much or too
little water can undermine normal vegetation growth.
At the same time, the sharp boost in vegetation pro-
ductivity will also enhance vegetation water demand
in these ecosystems to some extent (Chen et al 2022,
Denissen et al 2022, Abel et al 2023). Therefore, it is
essential to understand changes in the Rvw to effect-
ively evaluate current and future drought risk.

The Northern Hemisphere mid-latitudes are a
hotspot for study. Previous studies have expressed a
strong interest in its vegetation response to drought
(Wu et al 2017, Peng et al 2019, Jiao et al 2021,
Zhao et al 2021a). Multiple lines of observed evid-
ence suggest that water deficit areas were significantly
expanding while water surplus areas were signific-
antly shrinking (Jiao et al 2021). Climate factors and
atmospheric CO2 are considered to have significant
impacts on both vegetation growth and water avail-
ability. Climate warming can increase vegetation pro-
ductivity by lengthening the active growth season and
improving the maximum photosynthetic rate, but it
can also result in greater water loss (Myneni et al 1997,
Nemani et al 2003, Bastos et al 2019). Rising vapor
pressure deficit (VPD) can reduce stomatal conduct-
ance and limit the actual photosynthetic rate, but can
also decrease plant transpiration and thereby mit-
igate drought stress (Jung et al 2010, Novick et al
2016, Yuan et al 2019). TheCO2 fertilization effect has
benefits for both vegetation growth andwater use effi-
ciency (WUE) (Lu et al 2016, Humphrey et al 2018,
Wang et al 2020, Hsu and Dirmeyer 2023). Although
human activities such as land use/land cover change
and cropping intensity also influence both (Chen et al
2019b), their role remains limited compared to cli-
mate change at a global scale (Bastos et al 2019).
However, the dominant driver of changes in the Rvw
needs to contribute to both at the same time, that
is, it should not only enhance (or reduce) vegeta-
tion growth but also be able to increase (or decrease)
water availability. Therefore, it remains a challenge to
determine which one factor plays a dominant role.

Here, we aim to investigate the Rvw and its drivers
in the Northern Hemisphere mid-latitudes during
1982–2015. We used the normalized difference veget-
ation index (NDVI) as a proxy for vegetation growth
and the Palmer drought severity index (PDSI) as a
proxy for water availability (Pinzon and Tucker 2014,
Abatzoglou et al 2018). We explored the long-term
trends in NDVI and PDSI to determine whether there
was a strong coupling between them. The Spearman’s
rank correlation between NDVI and PDSI (hereafter
referred to as the NDVI-PDSI correlation) was used

to characterize the Rvw for each grid cell (Jiao et al
2021). We evaluated the NDVI-PDSI correlation for
the entire study period and then used 25 10 yearmov-
ing windows spanning from 1982 to 2015 to estim-
ate the trend in the NDVI-PDSI correlation coeffi-
cient (Schwalm et al 2017, Vicente-Serrano et al 2013,
Doughty et al 2015, Peters et al 2018, Jiao et al 2021).
Moreover, we examined the different spatiotemporal
patterns of the NDVI-PDSI correlation for croplands,
grasslands, and forests. Finally, we employed random
forest regressionmodels to reveal the dominant driver
of changes in the NDVI-PDSI correlation for each
grid cell by ranking the feature importance (Yuan
et al 2019, Chang et al 2023, Dong et al 2023, Yang
et al 2024). To further reveal how the dominant driver
affected changes in the Rvw, we conducted the par-
tial correlation analysis to evaluate its roles on NDVI
and PDSI individually (Yuan et al 2019, Song et al
2022). By introducing WUE, we explored the indir-
ect effect of the dominant driver on water availability
(Tian et al 2021). In this study, our findings are expec-
ted to advance an in-depth understanding of changes
in the Rvw under climate change, thereby highlight-
ing a potential link between vegetation greening and
drought risk.

2. Materials andmethods

2.1. Data
The third-generation Global Inventory Monitoring
and Modeling System (GIMMS) NDVI dataset
(GIMMS NDVI3g) was used as a proxy for vegeta-
tion growth during the 1982–2015 period (Pinzon
and Tucker 2014). The long-term monthly gridded
NDVI data offer the potential to monitor vegeta-
tion responses to climate change (Yuan et al 2019,
Chen et al 2019a, Ma et al 2021, Su et al 2023). The
monthly gridded PDSI data were obtained from the
TerraClimate high-spatial-resolution climate dataset
(Abatzoglou et al 2018). We used PDSI as a proxy
for water availability to estimate relative dryness. For
example, a PDSI value > 4 represents very wet con-
ditions, while a PDSI < −4 represents an extreme
drought.

The land use and land change data were obtained
from the HIstoric Land Dynamics Assessment+
(HILDA+) project to determine those vegetated
regions in the Northern Hemisphere mid-latitudes
for each growing season (Winkler et al 2021). To focus
on our goals, we ignored the interannual transforma-
tion between vegetated and non-vegetated areas. That
is, we used the intersection of all the vegetation layers
to ensure that each grid cell was a vegetated region
from the beginning to the end of our study period.
The aridity index (AI) was used to identify arid,
semi-arid, sub-humid, and humid zones (Zomer et al
2022).
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The monthly gridded climate data, including
air temperature (Tmp), precipitation (Pre), VPD,
downward surface shortwave radiation (Srad),
and soil moisture (SM), were also obtained from
the TerraClimate dataset (Abatzoglou et al 2018).
The monthly gridded atmospheric CO2 data were
obtained from the Copernicus atmosphere monitor-
ing service (CAMS) reanalysis dataset. The monthly
gridded evapotranspiration (ET) data were obtained
from the breathing earth system simulator (BESS)
model outputs (Li et al 2023a).

All the gridded data were aggregated to a
0.1◦ × 0.1◦ spatial resolution using the nearest neigh-
bor resampling method. We defined the active grow-
ing season as April–October in each year, and then
calculated the seven-month mean NDVI value for
each year from 1982 to 2015 as an annual indicator of
vegetation growth. The data we used in this study are
publicly available (more details can be found in the
‘Data availability statements’ section).

2.2. Methods
The Theil–Sen estimator (Theil 1950, Sen 1968) with
the non-parametric Mann–Kendall test (Mann 1945,
Kendall 1948) was used to estimate the linear trends
in NDVI, PDSI, and their correlation coefficients for
each grid cell. This trend estimationmethod is insens-
itive to outliers and is thus more accurate and robust
for long-term satellite observations. The formula for
the Theil-Sen estimator is as follows:

φ =Median

(
xj − xi

)
( j − i)

(∀j > i) (1)

where φ is the trend of the factor x in the time series,
xj and xi represent the observed values of the factor x
corresponding to moments j and i, respectively, and
Median is the median function. The formulas for the
non-parametric Mann–Kendall test are as follows:

Z=


S−1√
var(S)

(S> 0)

0 if (S= 0)
S+1√
var(S)

(S< 0)

(2)

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
xj − xi

)
(3)

sgn
(
xj − xi

)
=


1
(
xj − xi > 0

)
0 if

(
xj − xi = 0

)
−1

(
xj − xi < 0

) (4)

where Z represents the significance statistic of the
factor x, S is the statistic of the factor x, var(S)
is the sample variance of the approximate stand-
ard normal distribution of S, xj and xi represent
the observed values of the factor x corresponding to
moments j and i, respectively, n denotes the length

of the time series, and sgn is the positive and neg-
ative sign function. In this study, the significant
level of confidence is 0.05 (p < 0.05), corresponding
to |Z|> 1.96.

The Spearman’s rank NDVI-PDSI correlation
coefficient was used to characterize the Rvw for
each grid cell (Jiao et al 2021). A significant posit-
ive NDVI-PDSI correlation coefficient implies that
NDVI increases with wetting and decreases with dry-
ing, suggesting that vegetation growth in the region is
constrained by water deficit. In contrast, a significant
negative NDVI-PDSI correlation coefficient implies
that NDVI decreases with wetting and increases with
drying, suggesting that vegetation growth is con-
strained by water surplus. The grid cells with non-
significant NDVI-PDSI correlation coefficients indic-
ate that vegetation growth is not clearly constrained
by water availability. We used the two-tailed t-test
to determine whether the NDVI-PDSI correlation
coefficient was significant at 0.05 confidence level
(p < 0.05). We also used 25 10 year moving win-
dows spanning from 1982 to 2015 (i.e. 1982–1991,
1983–1992, …, 2006–2015) to estimate the trend in
the NDVI-PDSI correlation coefficient for each grid
cell.

The random forest regression algorithm was
applied to simulate the NDVI-PDSI correlation coef-
ficient for each grid cell using Tmp, Pre, VPD, Srad,
SM, and atmospheric CO2. The random forest regres-
sionmodelswere trained pixel by pixel using the func-
tion ‘TreeBagger’ in MATLAB R2023a software (The
MathWorks, Inc., Natick, MA, USA). The ‘numTrees’
parameter was set to ‘200’ to meet our require-
ments for accuracy and robustness. The dominant
driver (i.e. one of those forcing factors) was identi-
fied by ranking the feature importance. To examine
the effect of linear trends on the models, we used the
trend estimation method described above to detrend
the time-series data, and then retrained the random
forest regressionmodels based on the detrended data.
To further reveal how the dominant driver affected
changes in the Rvw, we conducted the partial correl-
ation analysis to evaluate its roles on NDVI and PDSI
individually (Yuan et al 2019, Song et al 2022). The
effects of other drivers on the correlation between the
dominant driver and NDVI/PDSI were excluded. In
addition, we introduced WUE to explore the indir-
ect effect of the dominant driver on water availabil-
ity. We calculated WUENDVI with ET data as follows
(Tian et al 2021):

WUENDVI = NDVI / ET (5)

where WUENDVI is defined as the ratio of NDVI
to ET. The code files and corresponding outputs
for our core findings are publicly available in the
Figshare data repository (https:https://doi.org/10.
6084/m9.figshare.25140008.v3).
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Figure 1. Spatial patterns of the trends in vegetation growth and water availability in the Northern Hemisphere mid-latitudes
from 1982 to 2015. (a) Spatial distribution of the trends in normalized difference vegetation index (NDVI). (b) Spatial
distribution of the trends in Palmer drought severity index (PDSI). The black crosses in (a), (b) indicate a significant trend
(Mann–Kendall test: p< 0.05). (c), (d) are the statistical distributions of (a), (b), respectively.

3. Results

3.1. Recent trends in vegetation growth and water
availability under climate change
We used the Theil-Sen estimator combined with
the non-parametric Mann–Kendall test to estimate
changes in vegetation growth and water availability
for each grid cell in the Northern Hemisphere mid-
latitudes during 34 active growing seasons (i.e. from
April to October) from 1982 to 2015. Global vegeta-
tion growth was considered to be widespread increas-
ing and was known as ‘greening’ (Myneni et al
1997, Zhu et al 2016, Chen et al 2019b). In this
study, our results showed that NDVI has increased
in most areas (figure 1(a)). Specifically, 71.08%
of grid cells exhibited an increase in NDVI dur-
ing the period (42.88% with a significant increase,
Mann–Kendall test: p < 0.05), while only 9.02% of
grid cells had a significant decrease (Mann–Kendall
test: p < 0.05) (figure 1(c)). However, we found
that the area with a significant trend in PDSI was
much smaller than that with a significant trend
in NDVI (figure 1(b)). Specifically, 16.56% of grid
cells exhibited a significant decrease in PDSI dur-
ing the period (Mann–Kendall test: p < 0.05), while
only 5.74% of grid cells had a significant increase
(Mann–Kendall test: p< 0.05) (figure 1(d)). Overall,
we found the trends in NDVI and PDSI were
asynchronous, suggesting a weak coupling between
them.

3.2. Spatiotemporal patterns of the Rvw in the
Northern Hemisphere mid-latitudes
We evaluated spatiotemporal patterns of the Rvw
in the Northern Hemisphere mid-latitudes over the
past three decades. Our results showed a strong
NDVI-PDSI correlation for most grid cells, suggest-
ing strong water constraints on vegetation growth
(figure 2(a)). Specifically, 55.80% of grid cells had
a positive NDVI-PDSI correlation (23.02% with a
significant correlation, two-tailed t-test: p < 0.05),
and 8.93% of grid cells had a significant negative
NDVI-PDSI correlation (two-tailed t-test: p < 0.05)
(figure 2(c)). We found that vegetation growth was
constrained primarily by water deficit and second-
arily by water surplus. In addition, the differences
in NDVI-PDSI correlations were more pronounced
across different climatic zones. The NDVI-PDSI cor-
relations were 0.38± 0.25, 0.28± 0.28,−0.01± 0.25,
and −0.11 ± 0.23 in arid (AI < 0.2), semi-arid
(0.2 < AI < 0.5), sub-humid (0.5 < AI < 0.65),
and humid (AI > 0.65) zones, respectively. Moreover,
we analyzed the trend in the NDVI-PDSI correl-
ation coefficient for each grid cell across the 25
10 year moving windows during the 1982–2015
period (figure 2(b)). The results indicated that the
NDVI-PDSI correlation coefficients in 54.60%of grid
cells had an increasing trend (28.72% with a sig-
nificant correlation, Mann–Kendall test: p < 0.05),
while 21.95% of grid cells had a significant decreasing
trend (Mann–Kendall test: p < 0.05) (figure 2(d)).
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Figure 2. Spatiotemporal patterns of the relationship between vegetation growth and water availability in the Northern
Hemisphere mid-latitudes from 1982 to 2015. (a) Spatial distribution of the correlation coefficients (r) between normalized
difference vegetation index (NDVI) and Palmer drought severity index (PDSI) for the entire study period. (b) Spatial distribution
of the trends in r between NDVI and PDSI across the 25 10 year moving windows. The black crosses in (a), (b) indicate a
significant correlation (two-tailed t-test: p< 0.05) and a significant trend (Mann-Kendall test: p< 0.05), respectively. (c), (d) are
the statistical distributions of (a), (b), respectively; (e) Scatter plots of the significant r versus the significant trend in r.

Furthermore, we mapped the scatter plots of the sig-
nificantNDVI-PDSI correlation coefficient versus the
corresponding significant trend, and found thatmore
grid cells were in the first quadrant (upper right)
(figure 2(e)). The NDVI-PDSI correlation was signi-
ficantly positive in more areas (the median = 0.45,
two-tailed t-test: p < 0.05), and at the same time the
corresponding trend was also significantly increas-
ing (the median = 0.01 yr−1, Mann-Kendall test:
p< 0.05). There were also some grid cells in the third
quadrant (lower left) that exhibited a significant neg-
ative NDVI-PDSI correlation, while the correspond-
ing trend was significantly decreasing. Recent water
constraints (including water deficit and water sur-
plus) on vegetation growth were increasing in nearly
half of the region. Overall, we revealed that the Rvw
has become closer in the Northern Hemisphere mid-
latitudes over the past three decades.

3.3. Different spatiotemporal patterns of the Rvw
across croplands, grasslands, and forests
We further investigated spatiotemporal patterns of
the Rvw across three ecosystems: croplands, grass-
lands, and forests in the Northern Hemisphere mid-
latitudes over the past three decades. Our results
showed the differences in the NDVI-PDSI correl-
ation for croplands, grasslands, and forests during

the entire study period (figure 3(a)). The median
of the significant NDVI-PDSI correlation coefficients
for croplands (0.46, two-tailed t-test: p < 0.05) was
weaker than that for grasslands (0.50, two-tailed t-
test: p < 0.05) (figure 3(c)). Compared to less man-
aged or unmanaged grasslands, irrigation and man-
agement practices seem to be effective against water
constraints on cultivated vegetation (Jägermeyr et al
2016). However, we found that the significant NDVI-
PDSI correlation coefficients for forests were negat-
ive in more areas (the median = −0.39, two-tailed
t-test: p < 0.05) (figure 3(c)). Tree growth in these
areas was barely limited by water deficit; conversely,
they were constrained by water surplus due to excess
precipitation-related energy shortages (Myneni et al
1997, Jiao et al 2021). The forest regions were rel-
atively wetter and cooler, and these trees with deep
root systems also appear to resist water deficit on
their growth very well (Teskey et al 2014, Brunner
et al 2015, Castagneri et al 2021). Moreover, we
analyzed the differences in the trend of the NDVI-
PDSI correlation coefficients among croplands, grass-
lands, and forests across the 25 10 year moving
windows (figure 3(b)). The results showed that the
median of the trend in the NDVI-PDSI correlation
for croplands was surprisingly consistent with that for
forests (approximately 0.0136 yr−1, Mann-Kendall
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Figure 3. Spatiotemporal patterns of the relationship between vegetation growth and water availability for croplands, grasslands,
and forests in the Northern Hemisphere mid-latitudes from 1982 to 2015. (a) Spatial distribution of the correlation coefficients
(r) between normalized difference vegetation index (NDVI) and Palmer drought severity index (PDSI) for croplands, grasslands,
and forests during the entire study period. (b) Spatial distribution of the trends in r between NDVI and PDSI for croplands,
grasslands, and forests across the 25 10 year moving windows. The black crosses in (a), (b) indicate a significant correlation
(two-tailed t-test: p< 0.05) and a significant trend (Mann–Kendall test: p< 0.05), respectively. (c) Scatter plots of the significant
r versus the significant trend in r for croplands, grasslands, and forests.

test: p < 0.05), being about 1.7 times higher than
that for grasslands (0.0078 yr−1, Mann-Kendall test:
p < 0.05) (figure 3(c)). Overall, we found that cro-
plands and grasslands were primarily and becom-
ing increasingly constrained more by water deficit,
while forests were primarily but becoming decreas-
ingly constrained by water surplus.

3.4. Dominant drivers of changes in the Rvw over
the past three decades
To evaluate the dominant driver of changes in
the Rvw, we applied the random forest regres-
sion algorithm to simulate the NDVI-PDSI cor-
relation coefficients using climate and atmospheric
CO2 data in the Northern Hemisphere mid-latitudes
from 1982 to 2015. We trained the random forest

regression models pixel by pixel and then identified
the dominant driver for each grid cell by ranking the
feature importance (figure 4(a)). Our results showed
that Tmp, Pre, VPD, Rad, SM, and atmospheric
CO2 dominated the NDVI-PDSI correlation coeffi-
cients in 10.44%, 10.62%, 11.50%, 11.37%, 10.74%,
and 45.32% of grid cells, respectively. This finding
was essentially consistent across the three ecosys-
tems: croplands, grasslands, and forests (figure 4(c)).
Surprisingly, atmospheric CO2 played a dominant
role in influencing the trend of the Rvw for nearly
half of grid cells. To examine whether the dominant
driver of changes in the Rvw were influenced by long-
term trends in the inputs, we repeated the same ana-
lysis based on the linear detrended time series. The
detrended results of both spatial patterns (figure 4(b))

6
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Figure 4. Spatial distribution of the dominant driver of the relationship between vegetation growth and water availability for
croplands, grasslands, and forests in the Northern Hemisphere mid-latitudes from 1982 to 2015. (a) Spatial distribution of the
dominant driver influencing the correlation coefficients (r) between normalized difference vegetation index (NDVI) and Palmer
drought severity index (PDSI) for croplands, grasslands, and forests. (b) Spatial distribution of the dominant driver influencing r
for croplands, grasslands, and forests based on the linear detrended time series. The drivers include air temperature (Tmp),
precipitation (Pre), vapor pressure deficit (VPD), downward surface shortwave radiation (Srad), soil moisture (SM), and
atmospheric carbon dioxide (CO2). (c), (d) are the statistical distributions of (a, b), respectively.

and area statistics (figure 4(d)) showed agreement
with our above findings. Overall, we found that atmo-
spheric CO2 has tightened the Rvw across croplands,
grasslands, and forests in the Northern Hemisphere
mid-latitudes over the past three decades.

4. Discussion

Previous studies have reported that the increases in
vegetative growth were mainly due to the CO2 fer-
tilization effect, climate change, and human activit-
ies (Myneni et al 1997, Piao et al 2015, 2020, Lu et al
2016, Zhu et al 2016, Chen et al 2019b). In this study,
we explored the long-term trends in NDVI and PDSI
to determine whether there was a strong coupling
between them. Our results showed that changes in
NDVI and PDSI were asynchronous in the Northern

Hemisphere mid-latitudes over the past three dec-
ades. Compared to the observed significant long-term
trends in NDVI, PDSI as a proxy for water availabil-
ity may exhibit cyclical short-term or non-significant
long-term trends (Feng and Fu 2013, Huang et al
2016, Berg andMcColl 2021). Themismatched trends
between vegetation growth and water availability can
minimize the effect of co-linearity on the NDVI-
PDSI correlation,which is beneficial for our following
analyses.

One of our main goals is to evaluate spati-
otemporal patterns of the Rvw in the Northern
Hemisphere mid-latitudes over the past three dec-
ades. The results indicated that the Rvw was get-
ting closer in more areas over the period, but there
were differences across ecosystems. The Rvw was
getting stronger in most croplands and grasslands;
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Figure 5. Partial correlation analyses of atmospheric carbon dioxide (CO2) with normalized difference vegetation index (NDVI),
Palmer drought severity index (PDSI), and NDVI’s water use efficiency (WUENDVI) in the Northern Hemisphere mid-latitudes
from 1982 to 2015. (a) Spatial distribution of the partial correlation coefficients (partial r) between atmospheric CO2 and NDVI.
(b) Spatial distribution of the partial r between atmospheric CO2 and PDSI. (c) Spatial distribution of the partial r between
atmospheric CO2 and WUENDVI. The black crosses indicate a significant partial correlation (two-tailed t-test: p< 0.05). We
conducted partial correlation analyses of atmospheric CO2 with NDVI, PDSI, and WUENDVI by excluding the effects of air
temperature (Tmp), precipitation (Pre), vapor pressure deficit (VPD), downward surface shortwave radiation (Srad), and soil
moisture (SM). (d)–(e) are the statistical distributions of (a)–(c) for croplands, grasslands, and forests, respectively.

however, it was getting weaker in most forests. These
findings were in line with previous studies (Madani
et al 2020, Jiao et al 2021, Denissen et al 2022, Liu
et al 2023). We also found that croplands and grass-
lands were primarily and becoming increasingly con-
strained more by water deficit, while forests were
primarily but becoming decreasingly constrained by
water surplus. Whether forests would shift to be lim-
ited by water deficit remains unknown, but it could
be projected that croplands and grasslands might face
more drought risk in the future (Ciais et al 2005,
Pokhrel et al 2021, Denissen et al 2022). This poses a
serious threat to agricultural and livestock production
in the Northern Hemisphere mid-latitudes (Sinclair
and Rufty 2012, Lesk et al 2016, Hendrawan et al
2022).

The core finding of this study is to reveal the dom-
inant driver of changes in the Rvw in the Northern
Hemisphere mid-latitudes over the past three dec-
ades. We employed random forest regression models
to conduct the attribution analysis (Yuan et al 2019,
Chang et al 2023, Dong et al 2023, Yang et al 2024).
In this study, we found that the dominant driver of
changes in the NDVI-PDSI correlation was atmo-
spheric CO2 in more than 45% of grid cells. Since the
Industrial Revolution, atmospheric CO2 as a clearly

observed factor were widely involved in the exchange
of water, carbon, and energy between the land sur-
face and the atmosphere (Sellers et al 1997, Novick
et al 2016). However, how atmospheric CO2 affected
NDVI and PDSI, and thus changes in the Rvw, was
not clear. Therefore, we conducted the partial correl-
ation analysis to evaluate its roles on NDVI and PDSI
individually (Yuan et al 2019, Song et al 2022).

Considering that atmospheric CO2 was the dom-
inant driver of changes in the Rvw for both croplands,
grasslands, and forests, we mapped the partial cor-
relation results without distinguishing the ecosystems
(figures 5(a)–(c)). Our results showed that 73.65%,
66.35%, and 65.71% of grid cells had a positive par-
tial correlation between atmospheric CO2 and NDVI
for croplands, grasslands, and forests, respectively
(37.87%, 29.47%, and 34.66% with a significant cor-
relation, two-tailed t-test: p< 0.05) (figure 5(d)). The
fertilization effect due to elevatedCO2 concentrations
can boost vegetation growth and greenness (Schimel
et al 2014, Wang et al 2020). However, the par-
tial correlation between atmospheric CO2 and PDSI
was barely significant for the three ecosystems (only
3.89%, 5.41%, and 2.43% with a significant negative
correlation, two-tailed t-test: p < 0.05) (figure 5(e)).
The results showed that elevated CO2 concentrations
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did not directly enhance water availability while
boosting vegetation growth. Notably, we found that
67.65%, 52.88%, and 75.09% of grid cells had a pos-
itive partial correlation between atmospheric CO2

and WUENDVI for croplands, grasslands, and forests,
respectively (34.16%, 25.25%, and 42.43% with a
significant correlation, two-tailed t-test: p < 0.05)
(figure 5(f)). It seems that elevated CO2 concentra-
tions played a role in improving WUENDVI, thereby
indirectly reducing vegetation water demand (equi-
valent to enhancing water availability). Our findings
were supported by previous studies (Keenan et al
2013, Lu et al 2016, Li et al 2021, 2023b).

5. Conclusion

In this study, we conducted a comprehensive eval-
uation of changes in the Rvw in the Northern
Hemisphere mid-latitudes over the past three dec-
ades. Our findings revealed a closer Rvw hidden
within their asynchronous trends. The NDVI-PDSI
correlation was significantly positive in more areas
than those with a significantly negative correlation,
showing vegetation growth was constrained primar-
ily by water deficit and secondarily by water surplus
in this region during the period. Besides, we used
25 10 year moving windows spanning from 1982 to
2015 to estimate the trend in the NDVI-PDSI correl-
ation coefficient for each grid cell. The results indic-
ated that vegetation growth has become increasingly
constrained by water deficit in most areas but also by
water surplus in a few areas. For different ecosystems,
croplands and grasslands were primarily and increas-
ingly constrained by water deficit; however, forests
were primarily but decreasingly constrained by water
surplus. Croplands and grasslands would face more
drought risk in the future, posing a serious threat
to livestock and agricultural production. Considering
the potential for forests to be more constrained by
water deficit, their future drought risk should not
be underestimated. Further analyses indicated that
atmospheric CO2 as the dominant driver explained
changes in the Rvw in most areas. This finding was
essentially consistent across croplands, grasslands,
and forests. We also found that the CO2 fertiliza-
tion effect can enhance NDVI; however, there was
no significant correlation between atmospheric CO2

and PDSI. To clarify the role of elevated CO2 con-
centrations in boosting vegetation growthwhile regu-
lating water availability, we introduced WUENDVI for
an additional analysis. The results showed that atmo-
spheric CO2 and WUENDVI were highly correlated,
suggesting that elevated CO2 concentrations could
indirectly enhance water availability by improving
WUENDVI. In summary, our findings highlight that
elevated CO2 concentrations contribute to a closer
Rvw by jointly enhancing both of them. Therefore,
further understanding of climate change impacts on
vegetation dynamics remains urgently needed for a

full assessment of drought risk in the current and
future.
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