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A B S T R A C T

The origin of COVID-19 remains unclear despite extensive research. Theoretical models can 
simplify complex epigenetic landscapes by reducing vast methylation sites into manageable sets, 
revealing fundamental pathogen interactions that leap medical advances for the first time in 
tracing virus origin in the literature and practices. In our study, a max-logistic intelligence 
classifier analyzed 865,859 Infinium MethylationEPIC sites (CpGs), identifying eight CpGs that 
achieved 100 % accuracy in distinguishing COVID-19 patients from other respiratory disease 
patients and healthy controls. One CpG, cg07126281, linked to the SAMM50 gene, shares genetic 
ties with rare infectious diseases like Sennetsu fever and glanders, suggesting a potential 
connection between COVID-19 and these diseases, possibly transmitted through contaminated 
seafood or glanders-infected individuals. Identifying such links among 865,859 CpG sites is 
challenging, with a random correlation probability of less than one in ten million. However, the 
likelihood of finding meaningful associations with rare diseases lowers this probability to one in 
one hundred million, reinforcing the credibility of our findings. These results highlight the 
importance of investigating seafood markets and global supply chains in tracing COVID-19’s 
origins and emphasize the need for ongoing biosafety and biosecurity measures to prevent future 
outbreaks.

The resurgence of COVID-19 has become a growing concern, with the World Health Organization (WHO) warning of a summertime 
surge (UN News, August 06, 2024). While ongoing studies on the current state of COVID-19 are crucial, understanding the origins of 
the pandemic is equally important. Despite extensive research, the origin of COVID-19 remains elusive, with unknown factors behind 
its emergence contributing to trillions in economic losses and millions of deaths. This underscores the need for new scientific ap-
proaches to uncover the genomic and DNA methylation drivers of SARS-CoV-2 replication.2–14

Our previous work achieved the highest accuracy in the literature by revealing significant deviations in Omicron’s gene-gene 
interactions compared to earlier variants. We hypothesized that Omicron might have been transmitted from COVID-19-infected an-
imals back to humans, providing a new method for calculating the reproduction number (R0) and explaining Omicron’s high trans-
missibility.13 Moreover, we discovered significant genomic differences between SARS-CoV-2 (NP/OP PCR swabs) and COVID-19 
(blood samples).11 By using optimal interactive genomic biomarkers, we identified adverse effects on gene expression from the 
BNT162b2 vaccine in COVID-19-convalescent octogenarians12 and from inactivated vaccines using data from GSE189263.15

Reliable biomarkers are essential for scientific progress, as they must exhibit consistent properties across various trials and cohorts, 
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achieving an overall accuracy of 95 % or higher. However, identifying such biomarkers is challenging. Many gene biomarkers 
identified in single trials fail to apply to other cohorts, resulting in low or zero commonality across different groups. This limitation has 
hindered medical advancements, wasted resources, and cost lives. For instance, well-known genes like BRCA1 and BRCA2 have shown 
low efficiency in breast cancer diagnosis at RNA level, as noted in published research.16 These issues raise concerns about the validity 
of many published gene biomarkers, which may mislead research and obscure the truth. The limitations of current analysis methods 
and tools, particularly the reliance on fold-changes without considering gene interactions (synergy), further restrict their usefulness.

Methylation’s role in gene expression has become central in disease studies.14,17 Errors in methylation could cause diseases, 
prompting research into COVID-19 at the DNA methylation level. The origin of SARS-CoV-2 (COVID-19) has puzzled the scientific 
community since its identification in December 2019. Initially considered an RNA virus,2–13 our research14 suggested it may be better 
understood as a virus transcribing viral DNA into RNA, due to the long incubation period associated with MX1-related diseases. This 
discovery could significantly alter our understanding of viruses but does not resolve the fundamental question of SARS-CoV-2’s origin. 
Our research aims to identify optimal interactive DNA methylation markers for COVID-19 and investigate the origins of the virus, 
whether from humans, animals, or both. Our findings suggest that COVID-19 likely originated in humans rather than animals like bats 
or pangolins, which might have led previous research into a non-informative direction.

This research delves into the origins of COVID-19 by identifying a variant of Sennetsu fever and/or glanders, two rare diseases, as 
highly probable pathogens. This innovative approach opens new avenues for understanding how COVID-19 may have emerged and 
could guide future studies on both COVID-19 and similar diseases. It also highlights the broader implications for biosafety and bio-
security. The principle of Murphy’s law—suggesting that anything that can go wrong will—resonates with rare diseases like Sennetsu 
fever and glanders. If these diseases were to re-emerge as new viral variants, the consequences could be devastating. Our research 
leverages extreme value theory and max-logistic intelligence models to better understand these potential scenarios. For example, our 
findings on the CpG site cg07126281 (linked to the SAMM50 gene) suggest that SARS-CoV-2 may have been triggered by Sennetsu 
fever, possibly transmitted through consuming raw or undercooked gray mullet fish or other contaminated seafood. These findings 
suggest COVID-19 might have emerged through natural events, offering valuable insights into its origins and reinforcing the need for 
ongoing research into biosafety and biosecurity practices.

The complexity of uncovering such connections is immense. Each methylation site, or its corresponding gene, may be linked to one 
or multiple known or unknown pathogens. Theoretically, if we could account for all these associations, it would allow for a 
comprehensive understanding of potential pathogens. However, the probability of finding an exact correlation between a methylation 
site and a specific pathogen is incredibly low—less than one in ten million (a simple calculation using combinatorics with a total of 
865,859). By refining our hypotheses and exploring further potential interactions, this probability decreases to one in a hundred 
million, underscoring the difficulty of such research. Despite these challenges, advanced mathematical models, while idealistic, could 
reduce the vast number of methylation sites into smaller, more focused sets. These models may reveal critical pathogen relationships 
and the biological mechanisms by which they cause disease. In doing so, they not only improve our understanding of pathogens but 
also provide essential insights into the processes that allow these pathogens to impact human health. Such methods boost confidence in 
the research, suggesting that the associations between methylation sites and pathogens identified in this study are highly credible.

Furthermore, using methylation for species identification or virus tracing is indeed an innovative concept. Although research in this 
area is still relatively limited, its theoretical basis and potential applications are quite promising. If our max-logistic intelligence 
method can be fully developed and validated, it could represent a significant breakthrough in biology.

The etiology insights from our findings include: 1) pursuing animal origins of COVID-19 may be a misguided direction; 2) SARS- 
CoV-2 might have been triggered by Sennetsu fever, transmitted through infected seafood, which calls for new measures of biosafety 
and biosecurity; 3) future research should focus on the most critical DNA methylation and RNA gene markers; 4) understanding these 
biomarkers could lead to effective antiviral drugs and therapies; and 5) new research directions are essential for studying future 
unknown X-viruses.

1. Method

In this study, we do not engage in clinical trials or laboratory experiments. Instead, our data is sourced from the Gene Expression 
Omnibus (GEO) database. Detailed information about the dataset is provided in the following section.

Subsequently, we offer a concise introduction to the mathematical model employed in our research. This model is closely related to 
the widely utilized logistic regression method frequently referenced in medical literature. Readers who find the mathematical details 
overwhelming may choose to skip Equation (4) without compromising their understanding of the overall model.

We employ the newly proven max-logistic intelligence regression classifier to differentiate between confirmed COVID-19 cases, 
healthy controls, and other COVID-19-free respiratory diseases. This novel method stands apart from traditional AI algorithms, 
classical statistics, and modern machine learning approaches like random forest, deep learning, and support vector machines.9,10,16,18

Unlike other methods, max-logistic intelligence enhances interpretability, consistency, and robustness, essential for establishing causal 
relationships, as demonstrated in our prior research on COVID-19 and cancer biomarkers.9,14,16,18,19 While it can be considered an AI 
or machine learning algorithm, this approach offers an explicit formula and clear interpretability. We illustrate this innovative pro-
cedure using DNA methylation beta values from COVID-19 positive and negative patients.

Suppose Yi is the i th individual patient’s COVID-19 status (Yi = 0 for COVID-19-free, Yi = 1 for infected) and X(k)
i =

(
X(k)

i1 ,X(k)
i2 ,… 

,X(k)
ip

)
, k = 1,…,K are the CpG beta values, with p = 865,859 CpG sites in this study. Here, k stands for the k th type of beta values 
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drawn based on K different biological sampling methodologies. Note that most published works set K = 1, and hence the superscript 
(k) can be dropped from the predictors. In this research paper, K = 1, as we have one methylation dataset analyzed in Section 3, and in 
the dataset, there are other ARIs (Acute Respiratory Infections) patients. Using a logit link (or any monotone link functions), we can 
model the risk probability p(k)i of the i th person’s infection status as: 

log
(

p(k)
i

1 − p(k)
i

)

= β(k)
0 + X(k)

i β(k) (1) 

or alternatively, we write 

p(k)
i =

exp
(
β(k)

0 + X(k)
i β(k))

1 + exp
(
β(k)

0 + X(k)
i β(k))

where β(k)
0 is an intercept, X(k)

i is a 1 × p observed vector, and β(k) is a p × 1 coefficient vector which characterizes the contribution of 
each predictor (CpG site, in this study) to the risk.

Considering that there have been many variants of SARS-CoV-2 and multiple symptoms (subtypes) of COVID-19 diseases, it is 
natural to assume that the epigenetic structures of all subtypes can be different. Suppose that all subtypes of SARS-CoV-2 may be 
related to G groups of CpG sites: 

Φ(k)
ij =

(

X(k)
i,j1 ,X

(k)
i,j2 ,…,X(k)

i,jgj

)

, j= 1,…,G, gj ≥ 0, k= 1,…,K (2) 

where i is the i th individual in the sample, and gj is the number of CpG sites in j th group.
The competing (risk) factor classifier is defined as: 

log
(

p(k)
i

1 − p(k)
i

)

=max
(
β(k)

01 +Φ(k)
i1 β(k)

1 , β(k)
02 +Φ(k)

i2 β(k)
2 ,…, β(k)

0G +Φ(k)
iG β(k)

G
)

(3) 

where β(k)
0j s are intercepts, Φ(k)

ij is a 1 × gj observed vector, and β(k)
j is a gj × 1 coefficient vector which characterizes the contribution of 

each predictor in the j group to the risk. 

Remark 1. In (3), p(k)
i is mainly related to the largest component CFj = β(k)0j + Φ(k)

ij β(k)j ,j = 1,…,G, i.e., all components compete to take 
the most significant effect.

Remark 2. Taking β(k)0j = − ∞, j = 2,…,G, (3) is reduced to the classical logistic regression, i.e., the classical logistic regression is a 
special case of the new classifier. Compared to black-box machine learning methods like random forests and deep learning, the model 
in (3) offers clear, interpretable signatures with selected CpG sites, bridging linear models and advanced machine learning. It retains 
key properties like interpretability, computability, predictability, and stability, similar to Zhang’s (2021) observation.18

We have to choose a threshold probability value to decide a patient’s class label in practice. Following the general trend in the 
literature, we set the threshold to be 0.5. As such, if p(k)i ≤ 0.5, the i th individual is classified as being disease-free; otherwise, the 
individual is classified as having the disease.

With the above-established notations and the idea of a quotient correlation coefficient,20 Zhang (2021)18 introduced a new ma-
chine learning classifier (in this paper, we term it as max-logistic intelligence classifier), the smallest subset and smallest number of 
signatures (S4), for K = 1. We extended the S4 classifier from K = 1 to any K as follows: 

(β̂, Ŝ, Ĝ)= argminβ,Sj⊂S,j=1,2,…,G

⎧
⎨

⎩
(1 + λ1+|Su|)

∑K

k=1

[
∑n

i=1
(I(p(k)i ≤0.5)I(Yi=1)+I(p(k)i >0.5)I(Yi=0))

]

+ λ2

(⃒
⃒
⃒
⃒Su| −

|Su| + G − 1
(|Su| + 1) × G − 1

)}

(4) 

where I(.) is an indicative function, p(k)i is defined in Equation (3), S = {1,2,…,865859} is the index set of all CpG sites, Sj =
{

jj1,…,

jj,gj

}
, j = 1,…,G are index sets corresponding to (2), Su is the union of 

{
Sj,j = 1,…,G}, |Su| is the number of elements in Su, λ1 ≥ 0 and 

λ2 ≥ 0 are penalty parameters, and Ŝ =
{

jj1,…, jj,gj , j= 1,…, Ĝ
}

and Ĝ are the final CpG set selected in the final classifiers and the 

number of final signatures.

Remark 3. When the S4 classifier achieves 100 % accuracy, it establishes bioequivalence and a unique DNA methylation geometry 
space, a feature not found in other classifiers.10 This equivalence didn’t appear in any other approaches in the literature, which 
motivate us to term it as max-logistic intelligence.

Remark 4. When K = 1, the S4 classifier corresponds to Zhang’s (2021) model18; with K = 1 and λ₂ = 0, it matches another Zhang 
(2021) classifier.9

Remark 5. Adjusting the threshold in (4) between 0 and 1 affects the intercepts in (3) but not the coefficients, leaving clustering and 
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classification results unchanged,18 which makes calculating AUC unnecessary.

Remark 6. Our earlier work demonstrated that the S4 classifier outperforms AI and other algorithms in accuracy and interpretability, 
validating the max-logistic intelligence approach.14,21

2. The start of SARS-CoV-2: data descriptions, results, and interpretations

2.1. The data

The COVID-19 dataset analyzed in this section is publicly accessible under the identifier GSE174818.22 In our previous study,14 we 
utilized this dataset and employed two well-established formulas for calculating methylation beta values: (1) M/(M + U) and (2) (M +
1)/(M + U + 2). These formulas are standard in DNA methylation analysis in addition to M/(M + U+a),23 with a being a positive value 
(100 is often used in the literature) to avoid the denominator being zero, where beta values are derived from the intensity counts of 
methylated (M) and unmethylated (U) signals. While both formulas yielded a 100 % accuracy rate, the resulting sets of CpG sites and 
the formulas themselves should be considered necessary conditions. However, they fall short of being sufficient or causal conditions 
due to the lack of evidence supporting their comprehensive applicability.

To tackle a complex problem like this, it is imperative to have two key elements: i) all necessary supporting data and information, 
and ii) an appropriate analytical approach. Unfortunately, the scarcity of comprehensive resources in the existing literature renders the 
first element incomplete, underscoring the critical importance of the second. This paper introduces a new formula for calculating beta 
values: (M + 100)/(M + U + 200), i.e., adding 100 to both the numerator and the denominator of M/(M + U+100).23 This novel 
transformation not only achieves compelling and interpretable results but also highlights a crucial point: even when all necessary 
resources and information are available, solving the problem remains unattainable without the correct analytical approach. Many 
biologists and statisticians believe that adding numbers like 1, 100, 200 to the numerator and denominator has no significant impact, 
which can be tested in routine statistical inferences. However, the effect is nonignorable regarding species identification or virus 
tracing that needs 100 % accuracy, as demonstrated in our earlier work.14 We further note in GSE174818 whose Excel table contains 
exactly 865,859 rows (CpG sites), there are some M and U values being either single digits or double digits, i.e., less than 100. Readers 
may ask why it is 100, how about 500, etc. We tried several other numbers, e.g., 50. The results didn’t lead to 100 % accuracy with a 
single digit of CpG sites. Of course, more computer experiments can be explored with our model framework. However, we found 
adding 100 leads to meaningful information.

2.2. The analysis

Solving S4 classifiers (4), we get Table 1 as follows.
In the table, the classifiers CF1, CF2 and CF3 in Equation (3) are defined as:

CF1: − 27.7252–92.8578*MFSD11 + 20.3366*CAB39 + 35.1956*SERPINB8
CF2: − 78.6488 + 55.57*SDK1 +42.3906*CAB39–60.8459*SAMM50
CF3: − 20.8835–101.445* KCNAB1 -24.2856* ZNF280D +116.8975* RANP1

Then, 0.5 is the threshold for computing risk probability in the logistic regression function. CFmax is defined as the max(CF1, CF2, 
CF3). We note that the threshold 0.5 can be changed to any other value between 0 and 1, and the conclusions won’t be changed. Such a 
unique property can hardly be found in any other approaches, making this new approach the most robust one.

In the table, SDK1 (Sidekick Cell Adhesion Molecule 1) is a Protein Coding gene. Diseases associated with SDK1 include Immu-
nodeficiency 11B With Atopic Dermatitis and Brugada Syndrome 9. Among its related pathways is Cell junction organization. 

Table 1 
Performance of individual classifiers and max-logistic intelligence classifiers using blood sampled data GSE174818 to classify hospitalized COVID-19 
patients and other types of patients (as control) into their respective groups. CF1, 2, 3 are three different classifiers. CFmax = max(CF1-3) is the max- 
logistic intelligence classifier. The numbers are fitted coefficient values.

sites gene CF1 CF2 CF3 CFmax

 Intercept − 27.7252 − 78.6488 − 20.8835 
cg16259714 SDK1  55.57  
cg16046954 MFSD11 − 92.8578   
cg06852824 CAB39 20.3366 42.3906  
cg25426982 SERPINB8 35.1956   
cg07126281 SAMM50  − 60.8459  
cg22948085 KCNAB1   − 101.445 
cg27420834 ZNF280D   − 24.2856 
cg21872428 RANP1   116.8975 
Accuracy % 81.25 75 34.38 100
Sensitivity % 76.47 68.63 17.65 100
Specificity % 100 100 100 100
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MFSD11 (Major Facilitator Superfamily Domain Containing 11) is a Protein Coding gene. Diseases associated with MFSD11 include 
Atypical Chronic Myeloid Leukemia, Bcr-Abl1 Negative, and Leukemia Acute Myeloid. CAB39 (Calcium Binding Protein 39) is a 
Protein Coding gene. Among its related pathways are Innate Immune System and Endochondral ossification. Gene Ontology (GO) 
annotations related to this gene include binding and kinase binding. SERPINB8 (Serpin Family B Member 8) is a Protein Coding gene. 
Diseases associated with SERPINB8 include Peeling Skin Syndrome 5 and Peeling Skin Syndrome 4. Among its related pathways are 
Response to elevated platelet cytosolic Ca2+ and Dissolution of Fibrin Clot. Gene Ontology (GO) annotations related to this gene 
include serine-type endopeptidase inhibitor activity. SAMM50 (SAMM50 Sorting And Assembly Machinery Component) is a Protein 
Coding gene. Diseases associated with SAMM50 include glanders. Among its related pathways are Signaling by Rho GTPases and 
Transcriptional activation of mitochondrial biogenesis. KCNAB1 (Potassium Voltage-Gated Channel Subfamily A Regulatory Beta 
Subunit 1) is a Protein Coding gene. Diseases associated with KCNAB1 include Episodic Ataxia, Type 1 and Developmental And 
Epileptic Encephalopathy 32. Among its related pathways are Potassium Channels and Transmission across Chemical Synapses. Gene 
Ontology (GO) annotations related to this gene include voltage-gated potassium channel activity and NADPH binding. ZNF280D (Zinc 
Finger Protein 280D) is a Protein Coding gene. Diseases associated with ZNF280D include Borderline Glaucoma and Intellectual 
Developmental Disorder, X-Linked 109. RANP1 (RAN Pseudogene 1) is a Pseudogene. The above information is from the web link.24

Fig. 1 presents critical site methylation levels and risk probabilities corresponding to different combinations in the dataset and 
Table 1. It can be seen that each plot shows a methylation signature pattern and functional effects of the sites/genes involved.

S4 classifiers can simultaneously perform clustering and classifications. In this analysis, there are seven clusters (classes). Fig. 2
presents a Venn diagram showing all COVID-19-positive patients classifications.

From the figure, we can see that there are 22, 21, and 2 patients who can only be detected by CF1, CF2, and CF3, individually and 
respectively. 41, 8, and 1 patient can be simultaneously detected by CF1 and CF2, CF1 and CF3, and CF2 and CF3, respectively. Seven 
patients can be simultaneously detected by all three classifiers CF1, CF2, and CF3. These seven patients are all ICU patients, which 
strongly indicates that the eight identified CpG sites (genes) and their derived classifiers are informative.

Recall that diseases associated with SAMM50 include glanders. Among its related pathways are signaling by rho GTPases and 
transcriptional activation of mitochondrial biogenesis. SAMM50 is also associated with sennetsu fever.25 From the web informa-
tion,26 we can see among eight genes associated with sennetsu fever, four genes PDF, MTCH1, TIMM10, TIMM9 are all mitochondrial. 
These phenomena lead to the fact SAMM50 might have caused diseases of Sennetsu fever and/or glanders.

We next conduct literature review of two rare diseases: Sennetsu fever and glanders.
The symptoms of Sennetsu fever may include a sudden high fever, headache, and muscle aches (myalgia) within a few weeks after 

the initial infection. In some cases, affected individuals may also experience nausea, vomiting, and loss of appetite (anorexia). A 
primary bacterial infectious disease that results in infection has a material basis in Neorickettsia Sennetsu, transmitted by ingesting 
raw or undercooked gray mullet fish infected with the trematodes. Sennetsu fever is a rare infectious disease from a group of diseases 
known as the human ehrlichioses. Researchers have known about ehrlichioses in animals for quite some time. For example, canine 
ehrlichiosis, an ehrlichial infection affecting dogs, was identified in 1935. On the other hand, Sennetsu fever was the first identified 
human ehrlichiosis, and it was only discovered in 1954. Many ehrlichioses are transmitted through ticks; However, researchers still do 
not know the vector organism for Sennetsu fever. Although there is no consensus, many believe that the disease spreads through the 
consumption of uncooked fish. Hepatosplenomegaly (liver and spleen enlargement) is a common clinical finding in Sennetsu fever. In 
many cases, Sennetsu fever is associated with a drop in white blood cell (WBC) count and an increase in the concentration of liver 
enzymes (transaminases). Sennetsu fever is extremely rare, and so far, cases of the disease have been reported were only in two regions. 

Fig. 1. COVID-19 classifiers in Table 1: Visualization of site-site relationship and site-risk probabilities. Note that 0.5 is the probability threshold.
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Neoehrlichia mikurensis is a tickborne pathogen that occurs in many parts of Europe and Asia. It generally infects older or immu-
nocompromised people. The above information was taken from the web links.26–29

The authors30 stated glanders are a highly contagious and often fatal zoonotic disease primarily of solipeds such as horses, mules, 
and donkeys. It was first described by the Greeks in 450–425 BC and again by the Romans in 400–500 AD. Throughout history, 
glanders have been known by other names, including equinia, malleus, droes, and farcy. Glanders is primarily characterized by ul-
cerating lesions of the skin and mucous membranes. Solipeds are the natural reservoir of Burkholderia mallei. Donkeys are prone to 
develop acute forms of glanders, while horses are more likely to develop chronic and latent diseases. Mules are susceptible to acute and 
chronic forms of the disease as well as latent infections. B. mallei, the etiological agent of glanders, is a Gram-negative, non-motile, 
facultative intracellular pathogen. At one time, B. mallei infections occurred worldwide, but over the last 100 years, the occurrence of 
glanders has decreased with the reduced economic reliance on solipeds as the primary mode of transportation, the implementation of 
testing all solipeds for glanders, and euthanizing those that are confirmed positive. The last naturally occurring human case was re-
ported in 1934. Glanders in solipeds and humans have also been eradicated from some developed countries. However, sporadic in-
fections of animals are still reported in Far East Asia, South America, Eastern Europe, North Africa, and the Middle East. Although 
human epidemics have not been recorded, isolated outbreaks in human populations and the deliberate use of B. mallei as a biological 
weapon have been documented.30

COVID-19 symptoms of early infected patients (and even some patients now) are incredibly close to Sennetsu fever and glanders. 
However, COVID-19 and Sennetsu fever are different types of infectious diseases. We now interpret Table 1. In the table, CF2 is a 
combination of (SDK1, CAB39, SAMM50) with a specificity of 100 % and a sensitivity of 68.63 %. The negative coefficient sign 
(− 60.8459) of SAMM50 tells that the higher the beta values (the methylation intensities), the lower the risk of COVID-19 positive. The 
functions of other genes can be interpreted similarly. However, this is not the whole story. The significant difference between our max- 
logistic intelligence model and results (Table 1) and other models lies in the interpretation of selected genes (CpG sites).

Before interpreting the results in Table 1, we discuss how site-site (gene-gene) interactions (synergy) are defined in this paper. They 
are characterized by their functions in classifiers. Such interactions are new to biological/medical/physical studies. At first glance, one 
may consider our model a variable selection model, like many other existing models in the literature. We argue that with the superior 
interpretability of the resulting classifiers and the mathematical equivalence (100 % accuracy) between the classifiers and the diseases, 
we can infer that this model is a new kind of site-site interaction among CpG sites, and they can be used in exploring the causal 
relationship. Until now, no mathematical model has been able to characterize causal relationships fully.

Our earlier paper18 mathematically proved that the classifiers lead to the smallest subset and number of signatures of our models 
(classifiers). In Ref. 10, we established the geometry of genome space for COVID-19 classifiers, a finding with significant implications 
for disease classification. Such properties were not shown in the literature by other methods. With the mathematical equivalence and 
the geometry of genome space, we can explore the causal relationship between predictors (genes) and diseases and the gene-gene 
interactions (synergy).

Our models stand out due to their unique features, particularly the gene-gene interactions that are implied by their associated 
different coefficient signs and strengths. These features, which were missed in other existing models, contribute significantly to the 
robustness and accuracy of our classifiers.

The relationship between gene combinations and model performance can be likened to a basketball team where critical genes are 
players, and their combinations determine the team’s ability to score. In this analogy, a positive coefficient for a gene indicates it 
increases the likelihood of classification as COVID-19+, while a negative coefficient suggests the opposite. Imagine a team with CAB39 
as Point Guard, SAMM50 as Shooting Guard, SDK1 as Center, MFSD11 as Power Forward, and SERPINB8 as Small Forward. The main 
scoring combinations are: (CF1: MFSD11, CAB39, SERPINB8), (CF2: SDK1, CAB39, SAMM50), and (CF3: KCNAB1, ZNF280D, RANP1). 
A negative sign for SAMM50 implies that decreasing its ball handling time (lowering its methylation level) increases scoring proba-
bility, akin to increasing the risk of COVID-19+. Conversely, increasing CAB39’s ball handling time improves the team’s scoring, 
analogous to raising the likelihood of COVID-19+ classification.

Fig. 2. Venn diagram of COVID-19 subtypes classified by AI-type classifiers.
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Unlike simple basketball plays, gene-gene interactions are more complex and can be seen as interactions that include playing time, 
coordination, and the entire stadium environment. Our models select genes and describe these intricate gene-gene interactions 
(synergy). These interactions are not merely regulatory or physical, as commonly discussed in the literature, but can be likened to 
quantum interference. In this analogy, subatomic particles in a probabilistic superposition state influence each other, affecting 
outcome probabilities when measured, similar to how gene interactions impact classification outcomes.31

With the evidence of the very close symptoms between COVID-19 and Sennetsu fever and their shared SAMM50 gene, it may be safe 
to infer that COVID-19 was triggered by eating undercooked contaminated seafood, e.g., grey mullets infected with the trematodes, 
with its interactions with CAB39 (Calcium Binding Protein 39) and SDK1 (Sidekick Cell Adhesion Molecule 1). Recall that diseases 
associated with SDK1 include Immunodeficiency 11B With Atopic Dermatitis and Brugada Syndrome 9; the innate immune system 
and endochondral ossification are among CAB39’s related pathways, which makes CF2 a classifier of immune-related. The work32

found that SARS-CoV-2 can infect hepatocytes and stimulate these cells to produce glucose through gluconeogenesis. As a result, the 
site-site interactions caused COVID-19 infection. Note that not all infected individuals in Table 1 were classified by CF2 (68.63 % 
sensitivity), which again shows that COVID-19 only shares parts of the pathological features of Sennetsu fever at DNA methylation 
levels. Recall that the data GSE174818 was first public on May 21, 2021, and as such, COVID-19 has evolved from the first infected 
individuals in 2019. In other words, a 68.63 % sensitivity (together with a 100 % specificity) is already extremely significant, given 
SARS-CoV-2 is a very contagious virus. Given a 100 % specificity, we note that any patient detected by any CFs is definitely COVID-19 
positive. This unique property guarantees our finding to be meaningful.

In our previous work,14 we explored the genetic connections between COVID-19 and other infectious diseases and rare diseases, 
specifically SARS-CoV-1, MERS-CoV, subacute sclerosing panencephalitis (SSPE), and influenza. By identifying common genes that 
play crucial roles in these diseases, we established potential links between them and COVID-19. However, despite these connections, 

Fig. 3. Mean beta values of all patients. The cell (0,0) corresponds to patients with other diseases. The cells (1,1) to (7,1) correspond to Venn 
Diagram in Fig. 2 and eight CpGs in Table 1.
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we were unable to conclude that these diseases (excluding SSPE) were the origins of the COVID-19 pandemic.
This paper presents a novel hypothesis by being the first to suggest that Sennetsu fever could potentially be the causative factor 

behind the onset of COVID-19.
One may question why the original paper of GSE174818 didn’t find these CpG sites, given that they are significant and lead to 100 

% accuracy in our new study. It is because of the limitation of analytical methods used in the original paper, even though the data 
contains critical information. Indeed, many literature analytical methods seldom yield 100 % accuracy in published work, which 
makes our model and method desirable.

3. Heatmap illustration

Although Fig. 1 shows clear signature patterns of how eight CpG sites interact and synergies, reporting the methylation states (Beta 
values) for the eight CpG sites is crucial. This section presents the raw counts of methylated and unmethylated intensities, which is 
available in an Excel file (a link is provided in the Data Availability section). Additionally, we present heatmaps illustrating the eight 
CpG sites. These heatmaps will display both the Beta values (Fig. 3) and the total intensity counts (sum of methylated and unme-
thylated intensities, Fig. 4), better depicting the differential methylation and its biological significance.

Fig. 3 reveals no clear patterns, except for cg21872428 (RANP1) and cg25426982 (SERPINB8), where the mean beta values for 
non-COVID-19 patients are lower than those for COVID-19 patients. The mean beta values of cg07126281 (SAMM50) show that, 
except cells (3,1) and (5,1), the higher the methylation rates of cg07126281 (SAMM50), the lower the risk of COVID-19 positive, which 
is consistent with the prior interpretations regarding the negative coefficient sign of cg07126281 (SAMM50) in Table 1. This obser-
vation suggests that averaging may obscure the true effects and reinforces the importance of jointly studying interactions and synergies 
to uncover the underlying truths.

In Fig. 4, the higher total intensity mean count (sum of methylated and unmethylated intensities) at cg07126281 (SAMM50) may 

Fig. 4. Mean total intensity counts of all patients. The cell (0,0) corresponds to patients with other diseases. The cells (1,1) to (7,1) correspond to 
Venn Diagram in Fig. 2 and eight CpGs in Table 1.
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be influenced by several factors. 1) CpG Site-Specific Regulation: Some CpG sites are located in biologically significant regions, such as 
promoters or enhancers of key immune-related genes. These regions may experience more dynamic methylation changes during 
immune activation in response to respiratory diseases, resulting in increased total intensity counts. 2) Inflammatory Response: Res-
piratory diseases, particularly viral infections like COVID-19, often trigger systemic inflammation that alters DNA methylation patterns 
in immune-related genes, leading to elevated methylation and unmethylation activities at CpG sites. 3) CpG Island Density: CpG sites 
within CpG islands, rich in CpG dinucleotides, are more likely to exhibit methylation changes, contributing to higher intensity counts. 
4) Epigenetic Modulation by Disease: Severe respiratory diseases can modify gene expression by altering the epigenome, including 
DNA methylation patterns, reflecting disease-induced changes at key regulatory regions. 5) Cellular Heterogeneity in Whole Blood: 
The mixture of immune cell types in whole blood, each with distinct methylation patterns, can influence overall methylation intensity, 
especially with shifts in cell populations during immune responses. 6) CpG Site Polymorphism: Genetic variations near CpG sites, such 
as SNPs, can affect methylation status and intensity, resulting in higher counts.

Overall, the elevated total intensity at this CpG site suggests its critical role in immune or inflammatory pathways, making it a 
candidate for further functional studies.

4. Cohort-to-cohort cross-validation

In this section, we use public data GSE1938794 (public on January 18, 2022) to cross-validate the findings presented in Table 1. 
GSE193879 used the same platform GPL21145 Infinium MethylationEPIC as GSE174818 used. In GSE193879 there were 43 MIS-C 
patients, 15 pediatric COVID-19 cases and 69 healthy controls. The significant difference is that the patients who participated in 
GSE174818 were adults in USA, while those who participated in GSE193879 were pediatric in Spain, which makes the comparisons 
indirect as pediatric patients’ immune systems can still be under development. Using the eight CpG sites in Table 1, we obtain the 
following Table 2 related to GSE193879.

Comparing Tables 1 and 2, we can immediately see significant differences. The coefficient signs of SAMM50 in both tables are 
negative. The signs of other CpG sites are different from Tables 1 and 2. This phenomenon reveals that SAMM50 played a fundamental 
biological role in early COVID-19 development regardless of whether the patients were adult or pediatric. Because the control groups 
in both tables (cohorts) are different, we cannot directly comment on other CpG sites’ accuracy and coefficient signs. A natural 
question arises: Are there some other genes beyond those in Table 1 that are also pivotal? Table 3 presents the performance of CpGs in 
Table 1.

In Table 3, ZNF71 (Zinc Finger Protein 71) is a Protein Coding gene. Diseases associated with ZNF71 include Myasthenic Syndrome, 
Congenital, 6, Presynaptic. Among its related pathways are Gene expression (Transcription). Gene Ontology (GO) annotations related 
to this gene include DNA-binding transcription factor activity. MMS19 (MMS19 Homolog, Cytosolic Iron-Sulfur Assembly Component) 
is a Protein Coding gene. Diseases associated with MMS19 include Progressive External Ophthalmoplegia With Mitochondrial DNA 
deletions, Autosomal Dominant 6 and Xeroderma Pigmentosum, Variant Type. Among its related pathways are Metabolism and 
Cytosolic iron-sulfur cluster assembly. Gene Ontology (GO) annotations related to this gene include binding and protein- 
macromolecule adaptor activity. MRPS35 (Mitochondrial Ribosomal Protein S35) is a Protein Coding gene. Among its related path-
ways are Mitochondrial translation and Metabolism of proteins. Gene Ontology (GO) annotations related to this gene include RNA 
binding and structural constituent of ribosome. SLC10A7 SLC10A7 (Solute Carrier Family 10 Member 7) is a Protein Coding gene. 
Diseases associated with SLC10A7 include Short Stature, Amelogenesis Imperfecta, And Skeletal Dysplasia With Scoliosis and Ame-
logenesis Imperfecta. Gene Ontology (GO) annotations related to this gene include symporter activity. The information above is from 
the web link.33

Again, SAMM50 in Table 3 shows the same sign as it is in Tables 1–2 Recall that its related pathways are signaling by rho GTPases 
and transcriptional activation of mitochondrial biogenesis. SAMM50, MMS19, and MRPS35 are mitochondrial genes and core 
mitochondrial genes at the epigenetic level. In Table 3, MMS19 and MRPS35 were up-regulated, with SAMM50 being down-regulated 
with the infected. In the literature, core mitochondrial genes were found to be down-regulated during SARS-CoV-2 infection.34 The 
authors derived the findings from mouse experiments, which can be different from humans, as shown in Table 3.

Table 2 
Performance of individual classifiers and max-logistic intelligence classifiers using blood sampled data GSE193879 to classify pediatric COVID-19 
patients and other types of patients and healthy (as control) into their respective groups. CF1, 2 are two different classifiers. CFmax = max(CF1- 
2) is the max-logistic intelligence classifier. The numbers are fitted coefficient values.

sites gene CF1 CF2 CFmax

 Intercept 3.1477 8.8827 
cg16046954 MFSD11 73.5632  
cg25426982 SERPINB8  − 19.5833 
cg07126281 SAMM50 − 115.236 − 110.706 
cg27420834 ZNF280D 7.9757 18.9041 
Accuracy % 88.19 85.83 87.40
Sensitivity % 73.33 33.33 86.67
Specificity % 90.18 92.86 87.50
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5. Discussions

Numerous genomic-level studies on COVID-19 have been published, each exploring the virus’s pathological causes from different 
perspectives. However, many of these studies face challenges in cross-validating results across different cohorts due to methodological 
limitations. An exception to this is our earlier work, which successfully cross-validated thirteen genes across fourteen cohort studies 
(whole blood samples and NP/OP PCR swabs samples) involving thousands of patients with diverse ethnicities, ages, and geographical 
regions.9–11 This comprehensive study achieved nearly perfect performance and interpretability, a feat unmatched in the existing 
literature.

Most published studies focus on single-gene expression changes, neglecting the interaction effects between genes due to analytical 
limitations. This oversight often leads to inaccuracies and diminishes the practical utility of their findings. Our previous work discussed 
these limitations and proposed stringent criteria for defining critical differentially expressed genes (DEGs).13,35,19 These criteria are 
essential for improving the accuracy and relevance of genomic studies.

The Defense Advanced Research Projects Agency (DARPA) posed 23 biological-mathematical challenges, one of which, Challenge 
Fifteen, involves understanding the geometry of genome space. DARPA’s challenge seeks to revolutionize biological mathematics and 
strengthen U.S. defense capabilities. Our earlier research established the geometry of the COVID-19 genome space, possibly the first 
such work in the literature.9,10 We further characterized the differences between the genome spaces of COVID-19 and SARS-CoV-2,10 

and established a link between Omicron infections in animals and humans.13 Recently, we inferred that SARS-CoV-2 might be better 
understood as a DNA-transcribed RNA virus.14

As our model and analysis method are significantly different from the biological, medical, and statistical literature, it is essential to 
compare with those mainstream. We discuss some technical constraints in the literature and their connections to our newly proposed 
max-logistic-intelligence classifiers.

Regarding microarray batch effects and data normalization in the literature, we recognize the critical importance of addressing 
batch effects in microarray data. In our discovery dataset (NCBI GEO Accession GSE174818), we calculated beta values using our 
innovative formula (M+100)/(M + U+200) from the intensity counts of methylated (M) and unmethylated (U) signals to ensure robust 
analysis. For cohort-to-cohort validation, we utilized the available beta values from the NCBI GEO dataset GSE193879, which includes 
pediatric COVID-19 patients, MIS-C patients, and healthy controls. While these datasets come from different sources and data types, 
traditional bioinformatics methods would typically require batch effect corrections.

However, our method (Equation (4)) is versatile enough to handle DNA methylation beta values generated by different platforms 
and data transformations and accommodate variations in viral strains over time without requiring batch correction. Many existing 
models struggle with heterogeneous populations and rely on batch effect adjustments, which can compromise inference accuracy. Our 
classifiers, on the other hand, achieved the highest accuracy for COVID-19 detection without adjusting for variables such as technical 
constraints, age, sex, or ethnicity.

We acknowledge that some public datasets lack comprehensive clinical and pathological information, limiting our ability to assess 
the prognostic value of the eight CpG sites. Nevertheless, our study uniquely applies a novel machine learning approach (max-logistic 
intelligence classifier), previously unused in infection studies. Furthermore, our findings were validated across diverse populations and 
ethnic groups, underscoring the potential of this approach for viral genetic tracing.

In earlier COVID-19 research, involving over thirteen cohorts, we consistently achieved high differential power without requiring 
batch effect corrections. This observation was also reflected in our published work on cancer.35

We understand the importance of accounting for additional clinical parameters, such as comorbidities, sex, and age, which could 
potentially influence the methylation status of CpG sites. However, we emphasize that our method, specifically the approach detailed 
in Equation (4), achieves 100 % accuracy without the inclusion of these clinical variables. This is because the clinical variables, while 
valuable for studying prognosis, are extrinsic factors. In contrast, the eight CpG sites we identified can be considered intrinsic variables 
with sufficient predictive power to diagnose the disease with complete accuracy and establish etiological links between COVID-19 
infection and genetic variations.

Incorporating extrinsic variables, such as age or comorbidities, would not enhance the model’s predictive capacity. In fact, it could 

Table 3 
Performance of individual classifiers and max-logistic intelligence classifiers using blood sampled data GSE193879 to classify hospitalized COVID-19 
patients and other types of patients (as control) into their respective groups. CF1, 2 are two different classifiers. CFmax = max(CF1-2) is the max- 
logistic intelligence classifier. The numbers are fitted coefficient values.

sites gene CF1 CF2 CFmax

 Intercept 35.2131 15.351 
cg12654612 ZNF71 53.162  
cg19770550 MMS19  218.9845 
cg03841686 MRPS35 101.8423  
cg25042073 SLC10A7 − 54.9763  
cg06852824 CAB39  − 23.5245 
cg07126281 SAMM50  − 73.7777 
Accuracy % 95.28 92.13 98.43
Sensitivity % 73.33 33.33 100.00
Specificity % 98.21 100.00 98.21
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obscure the underlying biological truths by introducing factors unrelated to the core genetic mechanisms at play. From a mathematical 
standpoint, when a model achieves 100 % accuracy, adding additional variables does not improve its predictive ability but could 
instead dilute its clarity. In such cases, the existing model can still be applied to explore subtypes associated with specific clinical 
variables if needed without compromising its foundational predictive strength.

Correction for multiple testing and false positives is often a significant challenge for model builders. However, these concerns are 
not relevant to our novel model (Equation (4)). As demonstrated in the discovery dataset (GSE174818) and Table 1, each of the in-
dividual classifiers achieved 100 % specificity, eliminating the possibility of false positives. In the Venn diagram, the intersection of all 
three individual classifiers identifies the same seven ICU patients, making our model uniquely reliable and irreplaceable.

Regarding multiple testing, it’s important to highlight that our model represents a new AI-based approach that differs funda-
mentally from traditional statistical methods. Unlike models that rely on individual CpG site fold changes and the need for multiple 
hypothesis testing to determine significance, our model focuses on the interactions and synergies among a minimal set of CpG sites. By 
studying these interactions, we avoid the pitfalls of traditional statistical approaches, including the correction for multiple compar-
isons, making our model both innovative and robust.

This AI-driven model offers a fresh perspective, bypassing the ‘nightmare’ problems typically encountered in traditional ap-
proaches, such as false positives and the complexities of multiple testing corrections. Its strength lies in identifying synergistic patterns 
rather than isolated changes, resulting in a more accurate and biologically meaningful prediction system.

In this paper, we investigate what may have triggered the onset of COVID-19, using the same dataset (GSE174818) as in our 
previous study, but with a different focus.14 Our earlier work identified specific CpG sites and genes, such as MX1, which are associated 
with diseases like influenza and subacute sclerosing panencephalitis (SSPE). SSPE, a severe neurological disorder with a long incu-
bation period, could be a significant concern for COVID-19.14 This highlights the urgent need to explore the potential of MX1 in 
COVID-19 research.

We also identified 31 CpG sites that regulate the SAMM50 gene, but cg07126281 plays a crucial role in COVID-19 infections. 
Additionally, literature shows that tumors can arise from epigenetic dysregulation, leading to inherited altered cell fates.36 While CF3 
has a specificity of 100 %, its sensitivity is only 17.65 %, detecting just two patients. The RANP1 gene, a non-protein-coding pseu-
dogene, also requires special attention. Its positive coefficient suggests that an increase in its CpG site methylation could trigger 
COVID-19.

The precise origin of COVID-19 remains elusive despite extensive scientific research. Though inherently idealized, theoretical 
models can reduce the complexity of the epigenetic landscape by condensing a vast number of methylation sites into smaller, more 
interpretable subsets, thereby highlighting key pathogen interactions and underlying biological processes. Traditional species iden-
tification relies on nucleic acid sequences or protein sequences, but methylation offers another layer of genetic information. 
Methylation profiles could potentially serve as a “fingerprint” for specific species. In this study, we utilized a max-logistic intelligence 
classifier to analyze 865,859 critical Infinium MethylationEPIC sites (CpGs), ultimately identifying eight CpGs that achieved 100 % 
accuracy in distinguishing COVID-19 patients from other respiratory diseases and healthy controls. Notably, one of these sites, 
cg07126281, is associated with the SAMM50 gene, which shares genetic links with rare infectious diseases such as Sennetsu fever and 
glanders. This raises the intriguing possibility of a connection between COVID-19 and variants of these rare diseases, potentially 
transmitted through contaminated seafood or contact with individuals infected by glanders.

The task of identifying such associations among methylation sites is inherently challenging, given the sheer volume of over 865,859 
CpG sites and the extensive list of known and unknown pathogens. The probability of randomly identifying a meaningful correlation 
between a pathogen and a CpG site is less than one in ten million (calculated using combinatorics). However, hypotheses connecting 
COVID-19 with rare diseases significantly lower this probability to one in one hundred million, thereby strengthening the plausibility 
of these associations. Our findings emphasize the critical importance of investigating seafood markets and global supply chains in 
tracing the origins of COVID-19, while underscoring the need for continuous biosafety and biosecurity measures to prevent future 
pandemics.

In their review paper, Sepsis Therapies: Learning from 30 Years of Failure in Translational Research to Propose New Leads,37 the authors 
highlighted that the use of inappropriate animal models and patient selection criteria contributed to the failure of many sepsis 
therapies. These same issues may have impacted research on other infectious diseases, including COVID-19, which is the focus of this 
paper.

However, we propose that an additional, potentially decisive factor has been overlooked in many studies and clinical trials: the 
efficiency of the analytical methods employed. In particular, the lack of attention to appropriate data transformation and the use of 
robust mathematical models has often hindered the ability to draw meaningful conclusions. This paper demonstrates that more ac-
curate and valuable insights can be obtained by applying rigorous analytical techniques, ultimately leading to the discovery of the 
cause of COVID-19.

Again, our mathematical model and analysis method are significantly different from the literature approaches. As a result, it is 
legitimate that our findings are significantly different from the published work but yet verified,38,39 among many others, which makes 
our results a significant factor in unlocking how COVID-19 started. One may further question that our data was from 2021, and then the 
conclusion may not be directly linked to the original virus. We note that the COVID-19-infected individuals in GSE174818 still had the 
earliest SARS-CoV-2 variant, i.e., the CpGs carried the original information.

Finally, we reflect on Murphy’s law: “Anything that can go wrong will go wrong at the worst possible time.” Rare diseases like 
Sennetsu fever and glanders can cause enormous losses if they reemerge as new virus variants. The COVID-19 pandemic exemplifies 
this principle, as described by extreme value theory and our max-logistic intelligence model. These observations confirm Murphy’s law 
and emphasize the importance of preparedness and innovative research approaches.
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6. Conclusions

The cause of COVID-19 and the drivers of SARS-CoV-2 replication remain unclear. Our research offers an extremely promising clue, 
suggesting that the virus may have been triggered by the rare Sennetsu fever, possibly transmitted through consuming raw or 
undercooked gray mullet fish infected with trematodes or by individuals infected with glanders. This finding naturally connects to the 
seafood markets and supply chains, offering new etiology insights into the origins of SARS-CoV-2. This breakthrough provides a critical 
clue in the quest to understand the origins of COVID-19 and underscores the importance of continued investigation. Our findings and 
any new findings will set new study protocols for studying future rare infectious diseases and biosafety and biosecurity measures for 
managing the diseases.
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