
Research Article 

Science of Climate Change https://scienceofclimatechange.org 

35 

Global Atmospheric CO2 Lags Temperature by 

150 yr  between 1 and 1850 AD 

Ronald Grabyan 

Irvine, California, USA 

Abstract 

This study investigates whether atmospheric CO₂ precedes or lags global temperature changes 
over the past 2000 yr, using both visual and statistical analyses. A parallel evaluation of Total 
Solar Irradiance (TSI) and temperature was conducted to assess the influence of solar forcing on 
climate variability. 

Temperature, CO₂, and TSI data were drawn from many well-established publications and inter-
national climate data repositories. Original, unsmoothed series were used to identify visual mark-
ers—such as peak–trough alignments, correlative clusters, and trend concordance—while 
smoothed series (using 50-yr and 100-yr running averages and Loess filters) were employed to 
emphasize large-scale patterns and reduce local variability. Correlation analysis, conducted 
within a statistical validation framework, was applied across all data variants. 

Results show that atmospheric CO₂ consistently lags temperature by approximately 150 yr from 
1 to 1850 AD. After applying this lag correction (CO₂Lag), Pearson correlation coefficients (rPCC) 
between CO₂Lag and temperature reached Very Strong values ranging from 0.85 to 0.99. TSI–
temperature correlations were generally Strong across the full 2000 yr interval, and Very Strong 
from 1850 to present. A prominent alignment among CO₂Lag, TSI, and temperature occurs around 
1460 AD. 

These findings indicate that atmospheric CO₂ does not precede, nor appear to drive, global tem-
perature trends. Rather, CO₂ consistently lags temperature, suggesting it functions as a response 
variable rather than a primary forcing. In addition, TSI exhibits Strong to Very Strong temporal 
alignment with temperature, supporting the hypothesis that solar variability plays a significant 
role in long-term climate change. 

Keywords: CO2; temperature; CO2 lags temperature; total solar irradiance; last 2000 yr 

Submitted 2024-12-17, Accepted 2025-08-20. https://doi.org/10.53234/scc202510/04 

1. Introduction

Understanding the role of atmospheric CO₂ in climate dynamics is a critical scientific and policy 
concern. If CO₂ is a primary driver of global temperature change, then reducing anthropogenic 
emissions becomes essential. Conversely, if CO₂ plays a lagging role, the rationale for large-scale 
mitigation strategies deserves reexamination. A rigorous, evidence-based evaluation of this rela-
tionship is needed. 

The prevailing consensus in climate science maintains that increased atmospheric CO₂—
primarily from fossil fuel combustion—drives warming of the Earth’s surface and lower atmos-
phere. This conclusion is supported by numerous studies linking rising CO₂ levels to temperature 
trends across multiple timescales. However, other peer-reviewed studies challenge this causality, 
suggesting that temperature changes lead CO₂ changes, rather than follow them (e.g., Humlum et 
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al., 2013; Chylek et al., 2018a; Sharma & Karamanev, 2021). Some of these studies show tem-
perature leading CO₂ by centuries in paleoclimate records, while others find leads of months in 
the instrumental era and millions of years in the distant paleoclimate records. 

Recent publications further support the hypothesis that temperature changes precede atmospheric 
CO₂ fluctuations. Several studies by Koutsoyiannis and collaborators (2020, 2022a, 2022b, 2023, 
2024a, 2024b) suggest that global air temperature may act as leading indicators or drivers of CO₂ 
concentration changes. 

In addition to the CO₂-temperature relationship, a wide array of natural factors has been proposed 
to explain historical temperature variability. These include: 

1. Solar variability: Total Solar Irradiance (TSI), magnetic modulation of cosmic rays, UV-
induced atmospheric chemistry, and weakening of the jet stream (Easterbrook, 2016a; 
Svensmark and collaborators, 1999,  2007, 2016, 2021, 2022; Ogurtson et al., 2002; Sha-
viv et al., 2023; Scafetta, 2023; Gray et al., 2010; Moffa-Sanchez et al., 2014; Ineson et 
al., 2011). 

2. Oceanic oscillations: The Atlantic Multidecadal Oscillation (AMO), thermohaline circu-
lation, and ENSO-like cycles (Knudsen et al., 2011; Lin & Qian, 2022; Gray, 2012; Gray 
et al., 2003; D’Aleo & Easterbrook, 2016; Doos et al., 2012; Toggweiler & Key, 2001). 

3. Planetary and orbital forcing: Changes in Earth’s eccentricity, axial tilt, and precession 
(Milankovitch cycles), as well as planetary gravitational influences (Scafetta & Bianchini, 
2022; Stefani et al., 2004; Wanner et al., 2022; Morner, 2012; Lourens & Tuenter, 2016; 
Marsh, 2014; Roe, 2006; Shackleton, 2000; Imbrie et al., 1992). 

4. Volcanism, tectonics, and extraterrestrial impacts: Volcanic aerosols, plate tectonics, and 
meteor strikes as agents of climate change (Covey et al., 1994; Dekan, 2021; Komitov & 
Kaftan, 2020; Wanner et al., 2022; Vinos, 2024a; Vinos, 2024b; Vevard & Veizer, 2019). 

Multiple studies across diverse timescales have found that CO₂ tends to lag temperature. For in-
stance: 

1. Ice core records from the last 420 kyr show lags of 300 to 2300 yr (Mudelsee, 2001; Cail-
lon et al., 2003). 

2. Monnin et al. (2001) reported a lag of ~410,000 yr between 11.2 and 17 kyr BP. 
3. Sharma and Karamanev (2021) found CO₂ lagging temperature by 1020–1080 yr over the 

last 650 kyr. 
4. Middleton (2011) postulated a 250-yr lag of CO2 to temperature during the Little Ice Age. 
5. Instrumental records from 1980–2011 show CO₂ lagging SST and air temperatures by 9 

to 12 mo (Humlum et al., 2013). 
6. Monthly datasets for the 1960–2016 period show average lags of 4 to 5 mo (Adams & Pi-

ovesan, 2005; Chylek et al., 2018b). 
7. Koutsoyiannis (2024a) synthesized findings across multiple geological intervals, report-

ing that CO₂ consistently lagged temperature, with lag duration increasing with timescale: 
7.1. Phanerozoic: ~2.3 million yr 
7.2. Cenozoic: ~800,000 yr 
7.3. Late Quaternary: ~1200 yr 
7.4. Common Era (1–1700 AD): ~33 yr 
7.5. Instrumental Period: 3–8 months 

The consistent pattern of temperature leading CO₂ invites a reevaluation of cause-and-effect as-
sumptions in climate science. This study focuses on the Common Era, analyzing the lag relation-
ship between CO₂ and temperature using 16 global temperature proxies and 4 CO₂ proxies over 
the past 2000 yr. Both visual and statistical methods (e.g., statistically validated Pearson correla-
tion, lag testing) are employed. 
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Results show that CO₂ consistently lags temperature by approximately 150 yr across the 1–1850 
AD period. These findings hold for both the pre-1600 and post-1600 segments of the data, even 
accounting for structural breaks or regime shifts. 

Given the robust pattern of temperature leading CO₂, this analysis is extended to evaluate potential 
drivers of temperature change. Numerous studies have pointed to solar variability as a plausible 
mechanism, including changes in TSI (Scafetta, 2023; D’Aleo, 2016; Whiteet al., 1997; White, 
2000; Hoyt & Schatten, 1993; Soon, 2009; Soon & Legates, 2013; Soon et al., 2015, Li, 2022; 
Wang et al., 2020; Schmutz, 2021; Usoskin et al., 2005;  Douglass & Clader, 2002; Abdussama-
tov, 2016; Lean, 2000), solar magnetic activity (Lockwood & Stamper, 1999),  and radiative forc-
ing beyond TSI alone (Shaviv, 2008). Though satellite measurements since 1978 show only 
~0.1% variation in TSI over an 11 yr solar cycle (Willson & Hudson, 1988), longer-term changes 
since the Maunder Minimum may be as high as 0.4–0.5% (Willson, 1997; Hoyt & Schatten, 1997; 
Solanki & Fligge, 2000; Willson & Mordvinov, 2003).  

In addition to variations in TSI, several studies have proposed more indirect solar influences on 
climate. These include solar eruptions such as flares, coronal mass ejections, and high-speed 
wind streams from coronal holes (D’Aleo, 2016). Since 2001, the total magnetic flux emitted by 
the Sun has reportedly increased by a factor of 2.3, which may influence Earth's climate through 
two primary mechanisms: (1) enhanced ozone chemistry in the upper atmosphere triggered by 
ultraviolet radiation (Bard & Frank, 2006; Gray et al., 2010; Haigh et al., 2010; Ermolli et al., 
2013), and (2) ionization at higher latitudes during geomagnetic storms (D’Aleo, 2016; Lock-
wood & Stamper, 1999). In parallel, variations in cloud formation linked to galactic cosmic rays 
and solar modulation have been suggested as additional contributors to climate variability 
(Svensmark & Friis-Christensen, 1997; Svensmark, 1999, 2007, 2016, 2022; Svensmark et al., 
2021; Shaviv et al., 2023). 

Abdussamatov (2015) further argued that Earth’s temperature is influenced by the annual en-
ergy balance, incorporating factors such as TSI, oceanic thermal inertia, albedo feedback, and 
greenhouse gas concentrations. According to D’Aleo (2016), these indirect solar effects may 
significantly amplify the Sun’s role in modulating climate. 

This study evaluates solar irradiance records from multiple sources and compares them to global 
temperature over the last two millennia and selected modern periods (1659, 1850, 1880 to pre-
sent). While causation cannot be definitively established, the correlations observed suggest that 
solar energy input—direct and indirect—plays a substantial role in global temperature variability. 

Four Appendices for this study are incorporated in the Supplementary Material, including Appen-
dices A–D: (A) Data – Correlation Analysis of CO2 vs. temperature, (B) Statistical Validation 
Framework, (C) Structural Break or Regime Shift at 1600 AD, and (D) Total Solar Irradiance and 
Temperature.   

2.  Methods 

Published data from 18 studies of air temperature and five studies of CO2 across the last 2000 yr 
were used in this investigation.  Multiple proxies from across the world were utilized in these 
published studies of CO2 and temperature. For CO2, ice cores from Antarctica were used in this 
study.  For temperature, ice cores, tree rings, marine and lake sediment, speleothem, pollen, 
Mg/Ca in fossil shells, and stalagmites, and others, were also used in these studies.   

Data from the published studies were either obtained from the respective authors, downloaded 
from public repositories or digitized from the published papers utilizing an online digitizing pro-
gram, Graph Grabber v2.0.2 (Quintessa Limited, 2020) – all with permission.  Each temperature 
study was compared to each CO2 study (64 pairs in the main body of this report – Data Set A and 
Data Set B). 
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Results of rPCC data analysis for Data Set A and Data Set B, for data ranges of 200-1600 AD and 
1000-1600 AD are presented in Supplementary Material, Appendix A. 

The research plan of this paper includes using Pearson Correlation Coefficients obtained by eval-
uating each pair of CO2 and temperature time-series data obtained from various published studies, 
both in original form, data smoothing transformations, and with CO2 at a range of lags from -200 
to +200 yr in an interval of 10 yr.  Therefore, it is important to discuss the potential weaknesses 
of this approach as presented by Koskinas et al. (2022) and Koutsoyiannis (2024c), as well as the 
potential strengths.  These studies address the strong time-dependence of such data, especially of 
long-range memory type (Hurst-Kolmogorov dynamics) where the probability distribution of rPCC 
is potentially heavily modified by the presence of long-range dependence (LRD).  Long memory 
processes imply persistent autocorrelation that can inflate apparent statistical significance of 
cross-correlations and cause unreliable p-values.  

The well-described concerns regarding long-range dependence (LRD) in paleoclimate CO₂ and 
temperature data — as outlined by Koskinas et al. (2022) and Koutsoyiannis (2024c) — are 
fully acknowledged, and these concerns center on the potential inflation of correlation coeffi-
cients when applied to nonstationary or persistent time series.  However, based on a structured 
series of diagnostic tests and methodological guard rails (herein termed Statistical Validation 
Framework, as described below), I consider the conditional use of Pearson Correlation Coeffi-
cient (rPCC) both acceptable and informative within the context of this study and pending the re-
sults of the SVF (Beran, 1994; Granger & Joyeux, 1980). The following measures support this 
judgment: 

1. Alignment of time-series by calendar-year, with a consistent shift 150 yr earlier in time 
applied to CO2, testing the hypothesized delayed or lagged response to temperature 

2. Multiple smoothing levels (Original, RA 100, multiple Loess) applied to isolate persistent 
structure while at the same time observing inflation risk 

3. Visual inspection of CO2 and temperature curve alignment which in most cases depicts 
strong shape and change similarity consistent with lagged response, including alignment of 
peaks and troughs 

4. Max-r-lag testing across a broad range of lag intervals (-200 to +200 yr) to identify the peak 
r-correlations with physical lags (generally at an interval of 10 yr) 

5. Statistical Validation Framework: 

       5.1  Autocorrelation Tests:  
 5.1.1  Durbin-Waston Test (Durbin & Watson, 1950) 
 5.1.2   Breusch-Godfrey Test (Breusch, 1978; Godfrey, 1978) 
 5.1.3   Ljung-Box Q-Test (Ljung & Box, 1978) 

       5.2  Hurst Exponent Analysis: 
 5.2.1   Rescaled Range (R/S) (Hurst, 1951) 

5.2.2   Detrended Fluctuation Analysis (DFA) (Peng et al., 1994) 
5.2.3   Geweke-Porter-Hudak Spectral Estimation (GPH) (Geweke & Porter- 

 Hudak, 1983) 

5.3  Heteroskedasticity and Autocorrelation Consistent Standard Errors (HAC SE)          
(Newey & West, 1987) 

5.4  Effective Sample Size (Neff) (Newey & West, 1987; Bretherton et al., 1999) 

5.5  Block Permutation Results (Politis & Romano, 1994) 

5.6  False Discovery Rate Methods (Globally Grouped) (Benjamini & Hochberg, 1995) 

           A complete discussion of these tests with their results can be found in Supplementary Ma-
terial, Appendix B, in the context of the Statistical Validation Framework (SVF) -- valida-
tion of correlation significance under dependence, autocorrelation, and long-memory 
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conditions. 

Total Solar Irradiance (TSI) data were analyzed and compared to the temperature data utilized in 
this study in order to observe potential correlations.  11 TSI studies were included, and six tem-
perature studies from 1659, 1850 and 1880 were included to address the near-term timeframe of 
200 to 400 yr as well as the last 2000 yr timeframe. 

Visual graphical analysis, in conjunction with various smoothing algorithms, assisted in the qual-
itative and semi-quantitative search for understanding the relationship in our climate of: 

CO2 and temperature 
TSI and temperature 

The methods process of this study is identified and followed as shown in detail below: 

1. Each data set (from published sources) was evaluated in its original state and processed 
with a straight-line interpolation algorithm resulting in a data set of whole number years 
with an interval of one, unless it was already presented as such. 

2. Each resulting data set was graphed as comparison graphs of every CO2-temperature pair. 
Vertical axes adjustments were made to overlay the graphs to similar curve amplitudes in 
order to visually compare the curves. 

3. The average lag of CO2 to temperature was determined to be about 150 yr, based on a max-
lag analysis with a range of -200 to +200 yr – the CO2Lag curves were added to the charts 
with original non-smoothed CO2 and non-smoothed temperature. 

4. In order to remove noise and other more granular data influences, and reveal larger trends, 
each data set was smoothed in Excel Professional 2019, using 4 algorithms: 

4.1. Running Average, centered on 50 yr (RA 50) 
4.2. Running Average, centered on 100 yr (RA 100) 
4.3. Loess Smoothing Algorithm – less smoothing (Loess 1) 
4.4. Loess Smoothing Algorithm – more smoothing (Loess 2) 

 Loess (Locally Estimated Scatterplot Smoothing) is an Excel plugin, non-parametric lo-
cally weighted smoothing algorithm, with a smoothing parameter and the number of years 
for the quadratic moving regression (Peltier Tech, 2024).   

5. Several iterations of selecting the appropriate Loess smoothing parameters were con-
structed in order to have resulting curves which had similar amplitude and frequency.  If 
these two elements of the curves are not compatible, they may not reflect the true relation-
ship of the curves, and statistical correlation could be poor and misleading.  Note a larger 
number of data points (yr) in the Loess smoothing parameter will remove noise and other 
local features providing a broader, more regional view of the data.  When smoothing data, 
the smoothed result is reflecting the impact of up to several hundred yr surrounding each 
data point (yr), and the localized nature of the original data will influence the smoothed 
curves.  Thus, detailed temporal analysis with smoothed curves should be conducted with 
caution. 

6. Pearson Correlation Coefficient (rPCC) was calculated conditionally for each data pair of 
CO2 and temperature, where there were data values at each year of both curves (64 sets for 
Data Set A and Data Set B)—data ranges 200-1600 AD, 1000-1600 AD, and 1600-1850 
AD. An in-depth lag analysis approach was implemented where an rPCC was calculated for 
each lag between -200 yr and +200 yr, and the maximum rPCC was selected with its corre-
sponding lag, along with an rPCC at 0-lag, as well as rPCC.  These calculations resulted in 
tables and graphs of rPCC as a function of lag correction, thus identifying the CO2 lag year 
with the highest correlation. All rPCC values are considered conditional as previously 
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mentioned.  For this study the following correlation coefficient strength ranges are utilized 
for general strength of correlation: 

rPCC > 0.00 and rPCC < 0.20 None 
rPCC > 0.20 and rPCC < 0.40 Weak 
rPCC > 0.40 and rPCC < 0.60 Moderate 
rPCC > 0.60 and rPCC < 0.80 Strong 
rPCC > 0.80 and rPCC < 1.00 Very Strong 

7. Based on the general outline of the Statistical Validation Framework (SVF) described 
above, the detailed methodology and results are presented in Supplementary Material, Ap-
pendix B. 

8. All statistical analyses were conducted using R (R Core Team, 2024) and Python 3.10 (Py-
thon Software Foundation). Analyses utilized the following libraries: numpy, scipy, pandas, 
and matplotlib in Python, and zoo, car, and nlme in R (Harris et al., 2020; Hunter, 2007; 
McKinney, 2010; Virtanen et al., 2020; Wickham, 2016; Zeileis & Grothendieck, 2005; 
Zeileis & Hothorn, 2002).  Data alignment and preliminary Pearson correlation analyses 
were also implemented in Microsoft Excel using custom Visual Basic for Applications 
(VBA) scripts, which matched paired CO₂ and temperature values by calendar year (Mi-
crosoft Corporation, 2022). These routines served as independent verification of the pri-
mary results computed in R and Python. All figures in this study were created using Mi-
crosoft Excel’s charting tools. 

9. The data was separated into three main categories: (1) range 200-1600 AD, (2) range 1000-
1600, and (3) range 1600-1850 AD.  This is due to the presence of a structural break, pos-
sibly the result of a regime-shift at 1600 AD.  This is discussed in Section 3.2 and in Sup-
plementary Material, Appendix C.  The data in the range 1600-1850 AD was treated more 
rigorously due to the character of CO2 post-1600 AD.  The following data transformation 
steps applied to both CO2 and temperature for this range, except where noted, are followed: 

9.1. 50-yr centered running average – applied to suppress short-term fluctuation and em-
phasize low-frequency variability (Jones & Mann, 2004). 

9.2. Cubic Transformation – utilized to amplify long-term fluctuations and nonlinearly en-
hance larger variations in the CO2 time series.  This emphasizes major deviations while 
preserving the sign of the data, a paleoclimate technique used to highlight signal dy-
namics (Moberg et al., 2005). 

9.3. Standard Linear Detrending – fits a straight line to the data using least squares regres-
sion which isolates the stationary fluctuation component at the same time eliminating 
monotonic drift (Mann, 2004; Mudelsee, 2010)  

9.4. Normalization (min-max, 0-1) – Each series was subsequently normalized to the (0,1) 
interval using min-max scaling.  This process allows for direct visual and statistical 
comparison of series with different magnitudes while preserving the relative shape of 
each curve (Wilkes, 2011). 

This data was then processed for rPCC and lag values prior to tabulating and charting the results.  
Results are tabulated in Supplementary Material, Appendix A, Table A23. 

10. Graphs of the original curves were produced showing the original curves and lagged orig-
inal curves.  Graphs of the smoothed curves were produced showing smoothed CO2, 
smoothed temperature, and smoothed lagged CO2 by the amount identified by the strongest 
correlation analysis and related lag, which usually corresponded to the visual correlation. 
Smoothing included Running Average (RA 50 and RA 100) and a matrix of Loess (level 1 
and level 2).  Documented on each graph is the recording of conditional rPCC (max at lag) 
and rPCC at 0-lag, as well as significance qualification from the SVF. 
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11. For the data range 200-1600 AD, a composite graph was produced with the top 8 smoothed 
temperature curves; all 4 of the ice-core-based lag-corrected CO2 curves; an average curve 
of the temperature curves; and an average of the CO2Lag curves. 

12. Pearson Correlation Coefficient (rPCC) was calculated conditionally between the two aver-
age curves of temperature and lag-corrected CO2 (at the peak of CO2lag correction). 

13. TSI data and temperature data were utilized in this study in order to observe potential cor-
relations and possible causation (correlation does not automatically equate to causation) 
(Supplementary Material, Appendix D). Visual graphics and statistical correlation tech-
niques were applied to this data as described previously. 

3.  Results 

3.1 Data Results - CO2 vs. Temperature (200-1600 AD and 1000-1600 AD) 

Pearson Correlation Analysis, rPCC, and lag analysis were conducted on all pairs of CO2 and tem-
perature data analyzed in this study – both Data Set A and Data Set B (Supplementary Material, 
Appendix A).  This included calculating rPCC for all combinations of four published CO2 data sets 
and 16 published temperature data sets (eight in each set) covering varying ranges between two 
major data ranges (200- 1600 AD, and 1000-1600 AD) for five smoothing transformation algo-
rithms: 

1. Original data (Orig) 
2. Running Average – 50 (RA 50) 
3. Running Average – 100 (RA 100) 
4. Loess Smoothing 1 (Loess 1) less smoothed 
5. Loess Smoothing 2 (Loess 2) more smoothed 

This approach calculated the following for each transformation level of the data: 
1. rPCC (no lag of CO2 to temperature) 
2. rPCC (maximum rPCC) (calculated from -200 to +200 lag yr in 10-yr intervals) 
3. lag (lag interval at the maximum rPCC) 
4. Averages of each calculated parameter per CO2 and temperature source 

In Supplementary Material, Appendix A, Fig. A1 shows the lag value at the maximum rPCC de-
picted for a pair of CO2 and temperature series – Rubino et al. (2019) and Yang et al. (2002).  
Typical of almost every pair of CO2 and temperature lag analysis curve analyzed in this study, 
the curve resembles a normal or slightly log-normal curve where the correlation-lag values climb 
rather smoothly from 0, or negative, rPCC to a peak of maximum rPCC at a lag in the general average 
range of +150 yr.  The curve then declines at a similar pace to the incline to 0, or negative rPCC.  
This pattern is extremely consistent.  While the average is about a 150 yr CO2 lag, various data 
combinations at different smoothing transformations range from about 100 to about 200 CO2 lag 
to temperature. 

The following tables in Supplementary Material, Appendix A, contain the results organized as 
follows: 
 Data Set A Data Set B  
 Table  Table  Transformation  Range 
 Table A1   Table A12 Original       200-1600 AD 

Table A2  Table A13 Original   1000-1600 AD 
Table A3   Table A14 RA 50      200-1600 AD 
Table A4   Table A15 RA 50    1000-1600 AD 
Table A5   Table A16 RA 100     200-1600 AD 
Table A6 Table A17 RA 100   1000-1600 AD 
Table A7 Table A18 Loess 1     200-1600 AD 
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Table A8 Table A19 Loess 1   1000-1600 AD 
Table A9   Table A20 Loess 2     200-1600 AD 
Table A10 Table A21 Loess 2   1000-1600 AD 

Tables A11 (Data Set A) and A22 (Data Set B) (as shown in Supplementary Material, Appendix 
A) identify the smoothing transformation parameters utilized, specifically the parameters for the 
Loess method.  A general overview of the data in Tables A1 through A11 (as shown in Supple-
mentary Material, Appendix A) are summarized in Table 1.  The separation of results into the 
ranges (200-1600 AD and 1000-1600 AD) are predicated on a couple of factors: 

1. Two of the four CO2 data sets have data from well-before 1000 AD and the other two 
commence at around 1000 AD.  Likewise, 10 of the 16 temperature data sets begin well 
before 1000 AD, and the other six commence around 1000 AD. 

2. It appears there was a more sparsely sampled original sampling rate by the published au-
thors pre-1000 AD than post-1000 AD, creating some uncertainty with the earlier data. 

3. The calculated rPCC data from the range of 200-1600 AD was consistently lower by about 
0.20 than the data from the range of 1000-1600 AD. 

A general overview of the data in Tables A12 through A22 (as shown in Supplementary Material, 
Appendix A) are summarized in Table 2.   

Table 1.  Summarizes the conditional rPCC and lag data for Data Set A and five transformational levels 
(Original, RA 50, RA 100, Loess 1, and Loess 2) for two data ranges (200-1600 AD and 1000-1600 AD). 
This summary is based on the results shown in tables A1-A11 in Supplementary Material, Appendix A. 

Summary of rPCC Analysis 
       Data Set A                                                                            

No Lag rPCC and Maximum rPCC with Corresponding Lag 
Five Transformation Levels and two Data Ranges (200-1600 AD, 1000-1600 AD)  

  
Average 
rPCC(no 

lag) 

 Average 
rPCC(max 

lag) 

Average        
lag 

Range        
rPCC(no lag) 

Range         
rPCC (max 

lag) 

Range            
lag 

Original 
            

      200-1600 AD -0.05 0.52 151 -0.38 to 0.16 0.47 to 0.57 90 to 180 

    1000-1600 AD 0.17 0.76 135 -0.13 to 0.38 0.60 to 0.92 60 to 160 

RA 50       

      200-1600 AD 0.02 0.66 152 -0.37 to 0.27 0.57 to 0.79 120 to 180 

    1000-1600 AD 0.30 0.87 132 0.07 to 0.60 0.77 to 0.96 60 to 170 

RA 100 
            

      200-1600 AD 0.04 0.71 153 -0.40 to 0.33  0.59 to 0.82 120 to 163 

    1000-1600 AD 0.45 0.91 128 0.08 to 0.81 0.81 to 0.95 80 to 160 

Loess 1             

      200-1600 AD -0.01 0.61 151 -0.41 to 0.33 0.52 to 0.78 120 to 200 

    1000-1600 AD 0.25 0.85 132 -0.15 to 0.52 0.69 to 0.97 70 to 160 

Loess 2             

      200-1600 AD 0.02 0.68 155 -0.39 to 0.38 0.56 to 0.80 120 to 200 

    1000-1600 AD 0.35 0.92 127 -0.01 to 0.76 0.77 to 0.98 80 to 160 

Averages             

    200-1600 AD 0.00 0.64 152 -0.39 to 0.29  0.54 to 0.75  114 to 184  

    1000-1600 AD 0.30 0.86 131 -0.03 to 0.61  0.73 to 0.96  70 to 162  
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Table 2.  Summarizes the conditional rPCC and lag data for Data Set B and five transformational levels 
(Original, RA 50, RA 100, Loess 1, and Loess 2) for two data ranges (200-1600 AD and 1000-1600 
AD). This summary is based on the results shown in tables A12-A22 in Supplementary Material, Ap-
pendix A. 

Summary of rPCC Analysis 
       Data Set B                                                                            

No Lag rPCC and Maximum rPCC with Corresponding Lag 
Five Transformation Levels and two Data Ranges (200-1600 AD, 1000-1600 AD)  

  
Average 

rPCC           

(no lag) 

 Average 
rPCC       

(max lag) 

Average        
lag 

Range        
rPCC              

(no lag) 

Range         
rPCC     

(max lag) 

Range            
lag 

Original 
            

      200-1600 AD -0.24 0.41 154 -0.47 to -0.10 0.25 to 0.48 150 to 160 

    1000-1600 AD 0.08 0.59 128 -0.23 to  0.64  -0.10 to 0.87 100 to 200 

RA 50       

      200-1600 AD -0.32 0.47 152 -0.56 to 0.19 0.32 to 0.57 140 to 170 

    1000-1600 AD 0.18 0.70 138 -0.16 to 0.77 0.15 to 0.95 120 to 160 

RA 100 
            

      200-1600 AD -0.33 0.50 154 -0.57 to -0.19  0.36 to 0.60 140 to 170 

    1000-1600 AD 0.30 0.74 125 -0.19 to  0.87 0.19 to 0.96 70 to 160 

Loess 1             

      200-1600 AD -0.32 0.47 154 -0.56 to -0.17 0.44 to 0.57 130 to 180 

    1000-1600 AD 0.09 0.71 132 -0.37 to  0.69 0.15 to 0.95 70 to 180 

Loess 2             

      200-1600 AD -0.32 0.52 161 -0.55 to -0.17 0.38 to 0.64 140 to 190 

    1000-1600 AD 0.19 0.77 118 -0.41 to  0.88 0.26 to 0.98 50 to 180 

Averages             

    200-1600 AD -0.31 0.47 155 -0.54 to -0.09  0.35 to 0.57  140 to 174  

    1000-1600 AD 0.17 0.70 128 -0.27 to  0.77  0.13 to 0.94  82 to 176  
 

The data in Table 1 and Table 2 reveal the following observations: 

1. The original data (Orig) rPCC (max) is consistently lower than the four smoothed transfor-
mations (RA 50, RA 100, Loess 1, and Loess2) by about 0.14 (200-1600 AD) and 0.13 
(1000-1600 AD).  rPCC (0-lag) is lower by about 0.07 (200-1600 AD) and 0.17 (1000-1600 
AD).  These numbers are from Data Set A.  Data Set B shows the same trend with slightly 
smaller values.  However, the Orig rPCC (max)is 0.52 and 0.76, respectively, for the longer 
and shorter ranges of Data Set A, which are Moderate and Strong correlations.  For Data 
Set B, the Orig rPCC (max) values are 0.41 and 0.59 for the longer and shorter ranges re-
spectively.  Thus, the original data, without smoothing and with a larger noise component, 
still record significant conditional correlation values. 

2. The RA 50 series is similar, but the values tend to lie between Orig and RA 100 which is 
consistent with the gradational nature of increasingly smooth character. The RA 50 rPCC 
(max) is 0.66 and 0.87, respectively, for the longer and shorter ranges of Data   Set A, which 
are Moderate and Strong correlations.  For Data Set B, the RA 50 rPCC (max) values are 
0.47 and 0.70 for the longer and shorter ranges respectively. 
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3. The rPCC values (no lag) vs. the rPCC values (max lag) are always significantly lower for 
every transformation method, for both data ranges, and for every CO2-temperature corre-
lation pair.  The average differential in Orig rPCC (max) (200-1600 AD) is 0.57 for Data Set 
A, and 0.65 for Data Set B.   The average differential in Orig rPCC (max) (1000-1600 AD) 
is 0.59 for Data Set A, and 0.51 for Data Set B.  The change in correlation strength is from 
None to Very Strong, thus emphasizing the lack of correlation from a statistical perspective 
for the no lag case.  

4. While the average Orig CO2 lag to temperature of both Data Sets A and B is about the same 
for the 200-1600 AD range, 151 and 154 yr respectively, and likewise for the 1000-1600 
AD range, 135 and 128 yr, the range of lag is about 100 to 200 yr with a tighter cluster 
between 130 and 170 yr respectively.  For the Orig data the average lag is about 153 yr and 
132 yr, respectively, while for the RA 50 data the average lag is about 152 yr and 135 yr, 
respectively.   

5. As shown below in the Original Charts (Fig. 1 and Fig. 2) of CO2 and temperature, the most 
likely lag is about 150 yr based on prominent markers. Thus, the conditional rPCC (max) 
values for Original and RA 150 at the full data range of 200-1600 AD (156 and 152) seem 
to be a close match to the physical chart of the data even with a higher degree of noise 
component. 

6. Observations regarding the shorter and younger range of 1000-1600 AD versus the longer 
range of 200-1600 AD: 

6.1. rPCC (max) lagged data for 1000-1600 AD has a consistently higher rPCC average dif-
ferential of 0.23 compared to the 200-1600 AD range. 

6.2. While all of the rPCC values of the data with no lag are very low, 200-1600 AD is 
consistently lower than 1000-1600 AD: 0.07 at 0.47. 

6.3. The CO2 lag to temperature is recoding about 23 yr higher for the longer range than 
the shorter range.  

6.4. The rPCC correlations may be somewhat lower for the 200-1600 AD period, although 
still showing at least Moderate strength of correlation, due to a probable lower sam-
pling rate by the various researchers in the range of 1-1000 AD.  Also, the Little Ice 
Age (LIA) is identified as ranging from 1300-1850 AD (Mann et al., 1999), but as 
shown in Fig. 1, temperature begins to steeply decline around 1100 AD and completes 
its rebound around 1900 AD.  The dynamics of the LIA may have been a factor. 

7. Running Average (RA 100) with significantly lower smoothing factor than Loess1 or Lo-
ess2, records similar rPCC values for the respective ranges of 200-1600 AD and 1000-1600 
AD.   

8. It is observed the rPCC for the longer range, ≈ 200 to 1600 AD, is always a bit lower than 
the rPCC for the shorter range (Table 1).  There are several possible reasons for this result.  
The data sample distribution in most of the published studies was sparser in the years below 
1000 AD. Having a longer-range extent will possibly introduce more inaccuracy and less 
precision.  It is possible the driving process responsible for the 150-yr lag of CO2 to tem-
perature may fluctuate somewhat over time. 

9. Loess 2 appears to show the highest rPCC compared to the other transformations. 

10. Generally, regarding the different sources of data, there does not appear to be a significant 
difference among the CO2 data sources or the temperature data sources with this view of 
the data. Two or three of the temperature sources in Data Set B do appear to be somewhat 
out of phase with the rest of the temperature data, although the major trends appear intact. 

11. Given the influence of smoothing, preprocessing, and probable auto-correlation (Long-
term memory), these rPCC correlations should be viewed as context-dependent indicators 
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rather than fixed or universal measures of the CO₂–temperature relationship.  They should 
be interpreted comparatively rather than as intrinsic measures.  The Statistical Validation 
Process described in Supplementary Material, Appendix B, should provide guidance as to 
whether the correlation analysis of individual pairs be considered significant. 

3.2   Statistical Validation Framework (SVF) Summary 

Given the well-documented concerns regarding autocorrelation, long-range dependence (LRD), 
and smoothing-induced bias in paleoclimate time series, a dedicated Statistical Validation Frame-
work (SVF) was developed and applied to all Pearson correlation results in this study. The SVF 
combines multiple diagnostic tests to safeguard against false-positive inferences and ensures that 
any reported associations between CO₂ and temperature meet rigorous statistical thresholds. 

As outlined in the Methods section and detailed fully in Supplementary Material, Appendix B, 
the SVF includes seven validation categories: (1) autocorrelation testing (Durbin-Watson (Durbin 
& Watson, 1950), Breusch-Godfrey (Breusch, 1978; Godfrey, 1978), and Ljung-Box (Ljung & 
Box, 1978)); (2) Hurst exponent analysis using R/S, DFA, and GPH methods; (3) HAC (Het-
eroskedasticity and Autocorrelation Consistent) standard errors; (4) estimation of the effective 
sample size (Neff); (5) block permutation testing; (6) false discovery rate (FDR) correction; and 
(7) final significance classification based on joint criteria. The goal of the SVF is not to suppress 
correlation results but to distinguish robust signal from statistical artifact in the presence of serial 
correlation and LRD — concerns highlighted by Koskinas et al. (2022), Koutsoyiannis (2024c), 
and others. 

Out of 64 primary CO₂–temperature pairs evaluated (across multiple lags and smoothing levels), 
79 of 320 pairings passed at least one SVF statistical significance threshold, with Neff ≥ 10 or 
Neff ≥ 8. Most statistically reliable results (rPCC passing all SVF tests) occurred in unsmoothed or 
lightly smoothed datasets — especially the Original and Running Average 50 (RA 50) CO₂ series. 
A smaller number of valid results emerged from RA 100 and Loess-smoothed datasets, though 
these were treated with caution due to inflation risk. These outcomes reinforce the overall finding 
that correlation strength alone is not sufficient to infer significance without correcting for struc-
tural dependencies. 

In order to reduce serial dependence and improve the reliability of statistical inference, all corre-
lation analyses were performed on down-sampled series. All pairs were down-sampled by five 
subsets (every 1/10th, 1/20th, 1/30th, 1/40th, and 1/50th). Final selection of unique pairs was based 
on Neff value, down-sampling, and n (final sample size), and to some degree rPCC. Some pairs 
required more aggressive down-sampling depending on autocorrelation structure and overall se-
ries length. While down-sampling helps mitigate inflation of rPCC due to autocorrelation, it can 
also reduce the number of observations (n) available for correlation. To preserve meaningful sta-
tistical power, the final selection of unique, SVF-passing pairs balanced multiple criteria — in-
cluding correlation strength (rPCC), effective sample size (Neff), and actual sample count (n) as 
shown in Table B4, Supplementary Material, Appendix B. In a few cases, a slightly smaller Neff 
value was accepted in favor of a higher n value, provided all SVF thresholds were still satisfied. 
This conservative approach prioritized statistical validity while ensuring that results were not 
driven by overly small sample sizes. 

Later, sections of this paper will visually display selected CO₂–temperature pairs using smoothed 
Loess curves for interpretive clarity, but will explicitly annotate on each figure whether the un-
derlying pair passed SVF criteria in its Original or RA 50 form. A summary comparison chart 
showing Original, RA 50, and Loess curves will also be provided to highlight their structural 
similarity and justify visual interpretation. In this way, SVF results are fully transparent and inte-
grated, allowing readers to assess both statistical and visual coherence across all candidate rela-
tionships. 
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3.3 Structural Break or Regime Shift in the CO2Lag and Temperature Data at 1600 AD 

Unexpected behavior across the boundary of 1600 AD in the CO2Lag and temperature data, 
prompted testing for stability or non-stationarity in the CO₂–temperature relationship. Therefore, 
formal structural break analysis centered on 1600 AD was conducted. This breakpoint was hy-
pothesized based on a marked reduction in correlation when extending from the 200–1600 AD 
segment to the full 200–1850 AD range. It is also about the time period where CO2Lag accelerated 
higher exponentially; temperature accelerated higher; and the nadir of the Little Ice Age occurs.  
Supplementary Material, Appendix C, details the application of three diagnostic tests: (1) the 
Chow test for structural discontinuity (Chow, 1960), (2) segmented Pearson correlation analysis, 
and (3) regression slope comparison across pre- and post-1600 intervals. Results show a highly 
significant F-statistic (F = 877.23) and an ~87% drop in regression slope post-break, alongside 
the collapse of full-span correlation (r ≈ –0.06). These findings collectively indicate either a sta-
tistical phenomenon (structural break) or a large ecosystem change (regime shift) in system dy-
namics at 1600 AD, warranting the partitioning of subsequent analyses into distinct temporal 
phases. A detailed discussion with test results, about the structural break or regime shift, is pre-
sented in Supplementary Material, Appendix C.  

3.4 Data Results - CO2 vs. Temperature (1600-1850 AD) 

The data within the range of 1600-1850 AD was analyzed separately due to three previous out-
comes: 

1. The analysis of the entire range of CO2 and temperature data from 200-1850 AD 

2. The evidence of a structural break or regime shift in the data at 1600 AD shown in section 
3.2 

3. The analysis of the range of data from 200-1600 AD as shown in section 3.1 

A more robust correlation analysis approach was conducted with one transformation level of the 
data, Running Average (50-yr centered).  This was due to the structural break condition at about 
1600 AD and the exceptional steep trending slopes of both CO2 and temperature after 1600 AD.  
This approach calculated the following (Table A23 in Supplementary Material, Appendix A):  

1. rPCC (no lag of CO2 to temperature) 

2. rPCC (maximum rPCC) (calculated from -100 to +250 lag years in 5 yr intervals) 

3. lag (lag interval with the maximum rPCC) 

4. Averages of each calculated parameter per CO2 and temperature source 

Three CO2 sources and 6 temperature sources were utilized from this study. 

The following steps were followed in deriving the results: 

1. Cubic Transformation of CO2 to enhance sensitivity to relative increases (Hyndman & Ath-
anasopoulos, 2018). 

2. The cubed CO2 series was linearly detrended to remove long-term trends and better isolate 
internal variability (Granger & Newbold, 1974: Box et al., 2015). 

3. Normalization of both CO2 and temperature using min-max scaling to enable direct com-
parison.  This technique facilitates comparative analysis, particularly when applying re-
gression-based methods across differently scaled data (James et al., 2021). 

4. Smoothing via a 50-yr Running Average to reduce high frequency variability.  In correlation 
metrics smoothing improves stability while preserving decadal patterns of climate varia-
bility (von Storch & Zwiers, 1999). 

5. Lag-alignment of CO2 to temperature was calculated utilizing a lag range of -100 to 250 yr 
in 5-yr increments to determine the lag of the highest rPCC value.  This both identifies the 
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lag and tests the hypothesis of a CO2 to temperature of about 150 yr as observed with the 
data from 200-1600 AD (Granger, 1969; Mudelsee, 2010). 

6. Pearsons Correlation Coefficients were calculated conditionally, in the same manner as for 
the data range of 200-1600 AD, since autocorrelation and long-term memory are issues that 
could inflate rPCC somewhat (Beran, 1994). 

The data in 1600-1850 AD is similar to the range of 200-1600 AD in that it is autocorrelated and 
exhibits evidence of long-memory behavior, however based on the previous analysis shown in 
Supplementary Material, Appendix A, use of rPCC is considered conditionally acceptable for this 
study. 

Referring to Table A23, in Supplementary Material, Appendix A, there are a few observations 
made for this RA 50 smoothing level data: 

1. The average correlation is 0.85 at an average lag of 199 yr (range 130-250). This is a Very 
Strong correlation. 

2. The average correlation is 0.29 at No Lag, indicating the hypothesis of CO2 lagging tem-
perature by about 150 yr is strong, and not the reverse, as popularly hypothesized. 

3. The strongest lagged relationship is observed between the Juckes temperature series and 
Ahn CO2 data (rPCC = 0.99 at a lag of 210 yr). 

4. Based on the data alone, it appears the relationship of CO2 to temperature is not signifi-
cantly different between the two ranges of data (200-1600 AD and 1600-1850 AD), even 
with the structural break at 1600 AD.  CO2 lags temperature by at least 150 yr, which ef-
fectively places all of the CO2 data to present day as influenced centennially by temperature 
about 150 ys in the past. 

3.5 Graphical Results - Original CO2 and Temperature (200-1600 AD) 

Visual and correlation analysis of CO2 versus temperature results are presented utilizing many of 
the widely recognized studies of CO2 and temperature covering the past 2000 yr. 

Conditional correlation analysis in the form of rPCC has been conducted on all of the data analyzed, 
and all 5 forms including the Original data (Orig), Running Average (RA 50); Running Average 
(RA 100); Loess 1 (lesser smoothing algorithm); and Loess 2 (greater smoothing algorithm).  
Maximum rPCC – lag analysis was also conducted and results are shown on Tables A1 through 
A22 in Supplementary Material, Appendix A.  

As discussed in detail in the Supplementary Material, Appendix B, a robust statistical analysis, 
Statistical Validation Framework (SVF), has been conducted on all data in this study, and roughly 
25% of the rPCC pairs passed statistical significance at either Robustly Significant or Tentatively 
Significant. Thus, all of the charts shown will identify this status.  In many cases a chart will be 
presented at a higher smoothing factor, which itself has not passed the SVF, but one of its other 
variants has, and this status will be identified.   For example, a Loess 2 chart may be shown (not 
passed), but it is a smoothed variant of an Orig or RA 50 that has passed the full SVF, meeting 
all criteria. Rather than formal inference, the purpose of the Loess 2 Chart would be to present an 
enhanced visual expression of the validated version illustrating the temporal and structural align-
ment in a visually compelling manner, not necessarily introducing an entirely new relationship. 
In these cases, the Loess 2 chart would be labelled as “conditional”, based on the corresponding 
Orig or RA 50 SVF pass status.  This illustrates that while high smoothing can visually enhance 
apparent alignment, formal inference must rely on statistical validation.  This is consistent with 
best practices in statistical communication, where exploratory or supporting plots are distin-
guished from validated results (Kauffman et al., 2020; McGregor et al., 2013; Tufte, 2001; Gel-
man & Hill, 2006). 

Fig. 1 shows a good example of the original data of CO2 (Rubino et al., 2019) plotted against the 
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original data of temperature (Ljungqvist, 2010) from about 1 to 2000 AD.  Upon inspection, even 
with a noise component, it is apparent the two curves visually correlate very well with each other, 
but only if the CO2 curve is time-shifted 150 yr earlier to correct for the CO2 lag.  Both the original 
CO2 curve and the shifted CO2 curves reflecting the lag are shown in the figure. 

 

Figure 1. Original CO2 and temperature data (from Rubino et al., 2019; Ljungqvist, 2010, 
respectively) are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag 
correction.  Aligned peaks and troughs are depicted with thin red lines.  A sharp low in CO2Lag and 
temperature are shown at about 1460 AD. rPCC is shown for lagged 150 yr and no lag for both ranges 
of 200-1600 AD and 1000-1600 AD.  Orig for this pair is directly validated under SVF, and its 
correlation is presented here conditionally, supported by the corresponding result, Robustly 
Significant (SVF passed). The complete list of SVF passed pairs is in Supplementary Material, Ap-
pendix B, Table B4.  

Visual correlations covering peaks and troughs of 50-100 yr as well as 800-1000 yr are observed 
between the two curves of CO2Lag and temperature. Aligned peaks, or peak-clusters, are observed 
at about 80, 175, 410, 490, 590, 740, 920-1100, 1240, 1300, 1360-1420, and 1500-1575 AD.  
Correlative troughs can also be observed, in particular, the deep trough at about 1460 AD.  At this 
year, with close precision, a deep trough is identified on almost every CO2Lag and temperature pair 
analyzed in this study.  

At about 1775 AD for CO2 and 1625 AD for CO2Lag, the CO2 curves take a sharp and exponentially 
high shift probably coinciding with the temperature curve which begins to increase more steeply, 
but at a much lower slope than CO2. The Little Ice Age spanning from about 1100-1300 AD to 
about 1900 AD shows its latter upward temperature recovery from about 1700 to about 1900 AD, 
as it moves out of the low point of the Little Ice Age.  

Fig. 1 also shows two broad trends of temperature: (1) peaks at about 100 AD and about 1000 
AD with a trough at about 500 AD, and (2) peaks at about 1000 AD and about 2000 AD with a 
trough at about 1500 AD.  These features may be associated with the 1000-yr cyclicity of earth 
climate indices and solar activity -- Eddy Cycle (Zhao et al., 2020).  While there is not adequate 
length of data in the temperature records presented here to define a cycle of that nature, the amount 
of data that is present is consistent with the proposed, but not proven, Eddy cycle.  However, 
below in this article, data is presented showing relative correlation between the temperature data 
curves and Total Solar Irradiance.  

Fig. 2 shows the original data of CO2 from (Rubino et al., 2019) plotted against the original data 
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of temperature from Moberg et al. (2005) for the same period in the last 2000 yr. Similar to Fig. 
1, the CO2 curve and temperature curve in Fig. 2 correlate visually only when the CO2 curve is 
shifted 150 yr. 

 

Figure 2.  Original CO2 and temperature data (from Rubino et al., 2019; Moberg, 2005, respectively) 
are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag correction. Aligned 
peaks and troughs are depicted with thin red lines.  A sharp low in CO2Lag and temperature are shown 
at about 1460 AD. rPCC is shown for CO2 lagged 150 yr and no lag for both ranges of 200-1600 AD 
and 1000-1600 AD.  Orig for this pair is directly validated under SVF, and its correlation is presented 
here conditionally, supported by the corresponding result, Robustly Significant (SVF passed). The 
variant, RA 50, is also SVF-validated at Tentaatively Significant, passed with caution. The complete 
list of SVF passed pairs is in Supplementary Material, Appendix B, Table B4.    

While evaluating the original published data included in Fig.1 and Fig. 2, even with a high noise-
level component, certain key common observations can be made: 

1. The CO2Lag of about 150 yr with temperature, is consistent and representative of all 64 
original pairs of CO2 versus temperature data in this study. 

2. The CO2Lag curve is interrupted by a shift in the CO2 curves at about 1600 AD (1750 AD 
on the CO2 non-lagged curve).  While CO2 accelerates rapidly from this point, temperature 
climbs, but at a lower rate.  This observation is consistent with all 64 data correlations.   

3. Many peaks and troughs, and peak-trough clusters, of varying widths from 10 yr to 150 yr, 
appear to visually correlate between the CO2Lag and temperature curves. 

4. There is a sharp notched decline of both CO2Lag and temperature at about 1460 AD with a 
width of 50 yr to 80 yr.  This distinctive feature appears as a signature marker on all 64 
correlations of CO2Lag and temperature.   

5. A potential long cycle is observed on the temperature curves (shadowed by the CO2Lag 
curves) with peaks at about 100, 1000, and 2000 AD, and troughs at about 550 and 1500 
AD, with a frequency cycle of about 1000 yr.  This appears to very closely shadow the 
proposed Eddy Cycle for this range of data (Zhao et al., 2020).  A longer data record show-
ing these repeatable features with several major peaks and troughs would be desirable. 
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3.6.  Graphical Results - Smoothed CO2 and Temperature (200-1600 AD) 

Fig. 3 presents five curves representing all smoothing transformation variants for a specific tem-
perature series, (Hegerl, 2007), which shows the degree of variation in the charted curves typical 
of all of the series in the study.  The Orig (violet) curve is the original published data which 
generally has more noise.  However, this curve retains the sharper peaks and troughs which rep-
resent key markers, such as the marker at 1460 AD which is observed on almost all of the curves 
in this study: CO2LAG at 150 yr, temperature, and Total Solar Irradiance (TSI).  The RA 50 (black) 
curve is the least-smoothed of the transformed curves, but retains the major peaks and troughs 
while shedding the minor noise. The RA 100 (red) curve is often very close to the Loess 1 (green) 
curve in character, and maintains the more major peaks and troughs while shedding the minor 
ones.  The Loess 2 (blue) curve is the most smoothed, and generally reflects the more regional 
trends, while it smooths away the noise and smaller more granular features. 

Figure 3. Presents five forms of the temperature series, Hegerl et al., 2007: Original published data, 
Orig; Running Average centered on 50 yr, RA 50; Running Average centered on 100 yr, RA 100; 
smoothing algorithm, Loess 1 (Loess, 0.178, 250); and smoothing algorithm, Loess 2 (Loess, 0.356, 
500). 

As displayed below in Fig. 4, on the Running Average (RA 50) chart, the visual correlation is 
excellent for the two curves — (1) Ljungqvist (2010) temperature (blue) and (2) Rubino et al. 
(2019) CO2Lag (red). The CO₂Lag curve is time-shifted 150 yr earlier to correct for the lag.  This is 
shown by the curves tracing each other from 200 to 1600 AD. The original CO2 curve represented 
by a dashed light gray curve is clearly out of synch with the temperature curve.  Several thin 
vertical red lines are drawn to highlight close orientation of many of the peaks and troughs show-
ing more granular alignment.  The general curvature aligned between the two curves over 2000 
yr is easily apparent.  From 1600 AD to about 1850 AD, the lagged-CO2 and temperature curves 
also track on steep inclinations with CO2lag having a slightly steeper slope. Similar to the Original 
curves in Fig. 1, the visual correlation is excellent as are the conditional rPCC correlation numbers.  
For the data range 1000-1600 AD the rPCC is stronger.  The comparison of the CO2Lag vs. no lag 
is striking with rPCC showing 0.81 and 0.28 for the data range of 1000-1600 AD and 0.67 and 0.06 
for the data range of 200-1600 AD.  This sharp differential of Strong correlation to No correlation 
agrees with the visual inspection of the chart where CO2 is clearly offset by 150 yr.  The running 
average smoothing, centered at 50 yr (RA 50), allows easier visual review than Orig, while the 
smoothing modifies the curve only slightly by removing noise, smaller inflections, and localized 
features.  Although RA 50 smoothing for this pair is not directly validated under SVF, its 
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correlation is presented here conditionally, supported by the corresponding Orig variant which 
passed full SVF criteria for statistical significance with Robustly Significant (SVF passed). The 
complete list of SVF passed pairs is in Supplementary Material, Appendix B, Table B4. 

 

Figure 4.  Running Average smoothing, centered 50 yr, (RA 50), CO2 and temperature data (from 
Rubino et al., 2019; Ljungqvist, 2010, respectively) are shown from 1 to 2000 AD along with the CO2 
curve shown with a 150-yr lag correction.  Aligned peaks and troughs are depicted with thin red lines.  
rPCC is shown for 150-yr lag and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although 
RA 50 smoothing for this pair is not directly validated under SVF, its correlation is presented here 
conditionally, supported by the corresponding Orig variant which passed full SVF criteria for 
statistical significance with Robustly Significant (SVF passed). The complete list of SVF passed pairs 
is in Supplementary Material, Appendix B, Table B4.      

Another excellent example of visual correlation is a chart showing RA 100 smoothing with a Very 
Strong rPCC, as observed in Fig. 5.  Several thin vertical red lines are drawn to highlight key peaks 
and troughs.  In this chart, Rubino et al. (2019) is compared to Yang et al. (2002). The continuous 
alignment over the 2000 yr is striking when comparing the temperature (blue) to CO2Lag (red) 
curves.  The CO2Lag curve is corrected 150 yr from its original position shown by CO2 (dotted 
gray).  From 1600 AD to about 1850 AD, the lagged-CO2 and temperature curves also track on 
steep inclinations with CO2lag having a slightly steeper slope. This is similar as observed in Fig. 
4.  For the data range, 1000-1600 AD, the rPCC is stronger.  The comparison of the CO2Lag vs. no 
lag is impressive with rPCC showing 0.93 and 0.15 for the data range of 1000-1600 AD and 0.72 
and 0.13 for the data range of 200-1600 AD.  The Very Strong correlation to Weak correlation 
agrees with the visual review of the chart where CO2 is clearly offset by 150 yr. Comparisons of 
rPCC should be considered conditional, as mentioned previously. Even though RA 100 is not di-
rectly validated under SVF, Orig and RA 50 for this pair are both directly validated, and the rPCC 
correlation is presented here conditionally, supported by the corresponding result, Robustly Sig-
nificant (SVF passed). Smoothing visually enhances apparent alignment, but should be statisti-
cally validated for formal inference. The complete list of SVF passed pairs is in Supplementary 
Material, Appendix B, Table B4.    

Loess smoothing was applied to all pairs of CO2 and temperature as well as all pairs of CO2Lag 
and temperature in this study.  Two levels of Loess were applied, somewhat subjectively.  Loess 
1 tends to be close to RA 100, while Loess 2 is smoother, and tends to eliminate more local 
features, accentuating the larger-scale features.   
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Figure 5.  Running Average smoothing, 100 yr, centered, CO2 and temperature data (from Rubino et 
al., 2019; Yang et al., 2002, respectively) are shown from 1 to 2000 AD along with the CO2 curve 
shown with a 150-yr lag correction.  Aligned peaks and troughs are depicted with thin red lines.  rPCC 
is shown for CO2 lagged 150 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD.  
Although RA 100 is not directly validated under SVF, Orig and RA 50 for this pair are both directly 
validated, and the rPCC correlation is presented here conditionally, supported by the corresponding 
result, Robustly Significant (SVF passed). Smoothing visually enhances apparent alignment, but should 
be statistically validated for formal inference. The complete list of SVF passed pairs is in 
Supplementary Material, Appendix B, Table B4.   

As discussed previously, rPCC is used conditionally in this study due to autocorrelation and long-
memory issues, although mitigated with various tests and methods (SVF).  It should be noted that 
one of the concerns with autocorrelation and long-memory is an inflation of rPCC, which is exhib-
ited in the data, where rPCC is increasingly larger from Original to RA 100 to Loess 1 to Loess 2.  
However, visually comparing the curves where higher rPCC values are found does show commen-
surately closer visual correlation.  Comparing the relative values of a maximum rPCC at an ob-
served lag for CO2Lag against rPCC for the no lag case will not be an issue.  It subjectively appears 
that the increase in rPCC as additional smoothing is applied, for the data in this study, is due to a 
combination of the two factors—some inflation due to autocorrelation and long memory effects 
and a resulting closer correlation for the broader more regional aspect.  In either event the ap-
proach discussed previously in applying a battery of statistical tests associated with the Statistical 
Validation Framework appears to add confidence to using the rPCC data more quantitatively when 
the correlated pairs pass either as Robustly Significant (SVF passed) or Tentatively Significant 
(SVF passed with caution) (in Supplementary Material, Appendix B, Table B4). 

Four typical examples of smoothed data are shown respectively in Fig. 6, based on Loess 2 
smoothed data by Rubino et al. (2019) and Ljungqvist (2010), Fig. 7, based on Loess 2 smoothed 
data by Rubino et al.  (2019) and Yang et al. (2002), Fig. 8, based on Loess 2 smoothed data by 
MacFarling Meure et al. (2006) and Hegerl et al. (2007), and Fig. 9, MacFarling Meure et al. 
(2006) and Yang et al. (2002).  The smoothed curves show a very close visual relationship be-
tween CO2Lag and temperature.  Large scale rolling peaks and troughs exhibit strong visible cor-
relation, and the conditional correlation rPCC values are Very Strong as labelled on the figures.  
The CO2Lag curves have both been corrected by 175 (Fig. 6), 150 (Fig. 7), 120 (Fig. 8), and 150 
(Fig. 9) yr for CO2 lag, respectively, as indicated by correlation analysis as a function of lag 
correction (Tables A9 and A10, Supplementary Material, Appendix A). 
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Figure 6.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Ljungqvist, 2010, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 175 yr lag 
correction. Aligned peaks and troughs are depicted with thin red lines.  rPCC is shown for CO2Lag lagged 
175 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing 
for this pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding Orig variant which passed full SVF criteria for statistical significance 
with Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference. The complete list of SVF passed pairs is in 
Supplementary Material, Appendix B, Table B4.      

 
Figure 7.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Yang et al., 2002, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag 
correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag lagged 
150 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing 
for this pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding Orig and RA 50 variants which passed full SVF criteria for statistical 
significance with Robustly Significant (SVF passed).  High smoothing visually enhances apparent 
alignment, but should be statistically validated for formal inference.  The complete list of SVF passed 
pairs is in Supplementary Material, Appendix B, Table B4.  
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Figure 8.  Loess 2 smoothing, CO2 and temperature data (from MacFarling Muere et al., 2006; Hegerl 
et al., 2007, respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 120-
yr lag correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag 
lagged 120 yr and no lag for both ranges of 200-1600 AD and 1000-1600 AD. Although Loess 2 
smoothing for this pair is not directly validated under SVF, its correlation is presented here 
conditionally, supported by the corresponding Orig and RA 50 variants which passed full SVF criteria 
for statistical significance with Robustly Significant (SVF passed).  Its correlation is also supported by 
the corresponding Loess 1 variant which passed SVF criteria for statistical significance with 
Tentatively Significant (SVF passed with caution).  High smoothing visually enhances apparent 
alignment, but should be statistically validated for formal inference.  The complete list of SVF passed 
pairs is in Supplementary Material, Appendix B, Table B4. 

 
Figure 9.  Loess 2 smoothing, CO2 and temperature data (from MacFarling Meure et al., 2006; Yang et al., 2002, 
respectively), are shown from 1 to 2000 AD along with the CO2 curve shown with a 150-yr lag correction. Aligned 
peaks and troughs are depicted with thin red lines. rPCC is shown for CO2Lag lagged 150 yr and no lag for both ranges 
of 200-1600 AD and 1000-1600 AD. Although Loess 2 smoothing for this pair is not directly validated under SVF, its 
correlation is presented here conditionally, supported by the corresponding Orig and RA 50 variants which passed full 
SVF criteria for statistical significance with Robustly Significant (SVF passed).  High smoothing visually enhances 
apparent alignment, but should be statistically validated for formal inference.  The complete list of SVF passed pairs 
is in Supplementary Material, Appendix B, Table B4.  
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On all four charts (Fig. 6, Fig. 7, Fig. 8, and Fig. 9) at about 1600 AD show an exponential rate 
of increase in CO2Lag and temperature, as does the corresponding CO2 curve at about 1750 AD, 
whereas the temperature curve depicts a much smaller rate of increase. All four charts identify 
with one to two variant curves that have passed the SVF as Robustly Significant, while one chart 
added a third pass, Tentatively Significant, passed with caution.  High smoothing visually 
enhances apparent alignment, but should be statistically validated for formal inference as thes 
charts signify.  The complete list of SVF passed pairs is in Supplementary Material, Appendix B, 
Table B4.  

Fig. 10 presents another chart of CO2, CO2Lag, and temperature with pairs at Loess 2 with a 130-
yr lag of CO2lag. This particular pair had three variants of which two have Robustly Significant 
(SVF passed) variants, Orig and RA 50.  The other variant, RA 100, is Tentatively Significant 
(SVF passed with caution).  The visual correlation is quite good, substantiating the rPCC and SVF 
results.  This chart includes Rubino et al. (2019) CO2 data and Hegerl et al. (2007) temperature 
data with excellent visual correlation and commensurate correlation data. 

 

Figure 10.  Loess 2 smoothing, CO2 and temperature data (from Rubino et al., 2019; Hegerl et al., 
2007, respectively), are shown from 1 to 2000 AD along with the CO2Lag curve shown with a 130-yr 
lag correction. Aligned peaks and troughs are depicted with thin red lines. rPCC is shown for both 
analyzed ranges of 200-1600 AD and 1000-1600 AD.  Although Loess2 for this pair is not directly 
validated under SVF, its correlation is presented here conditionally, supported by the corresponding 
variants RA 100, Tentatively Significant (SVF passed with caution), and RA 50 and Orig, both  Robustly 
Significant (SVF passed).   

In summary, the graphical results for smoothed CO2 and temperature data in the overall range of 
200-1600 AD in this study, show a strong and reproducible visual correlation between tempera-
ture and CO2 when it is CO2 lag-corrected by about 150 yr. This relationship is consistent and 
continuous over the entire period and can be observed with the original published data and every 
variant tested (RA 50, RA 100, Loess 1, and Loess 2) for all combinations of 4 CO2 series and 16 
temperature series.  Several combinations of CO2 and temperature series are displayed the figures 
in this section of the report to show the consistency of correlation across the different published 
data. 

Pearson’s Correlation Coefficient was calculated for all pairs and variants as shown above, and 
with the confirmation of a significant number of pairs passing a rigorous Statistical Validation 
Framework process (in Supplementary Material, Appendix B), confidence can be placed in the 
results. 

Although data was not included in this section above 1600 AD due to the structural break or 
regime shift discussed in Section 3.3, data results for range 1600-1850 are presented in Section 
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3.4, and graphical results for that data range are presented in Section 3.8. 

3.7 Graphical Results – Smoothed Average CO2 and Temperature (200-1600 AD) 

All four CO2Lag smoothed data sets (Loess 2) identified in Table A10, Supplementary Material, 
Appendix A, were averaged to produce a composite CO2Lag curve.  Eight temperature data sets 
(Loess 2) also shown on Table A10, Supplementary Material, Appendix A, were averaged to 
produce a composite temperature curve.  Both the CO2 and temperature were taken from Data Set 
A.  The four CO2Lag, eight temperature, composite CO2Lag, and composite temperature curves are 
all shown on Fig. 11.  The CO2Lag curves were corrected for CO2 lag by 150 yr.  Based on the 
temperature curves, warm periods and cool periods are shaded in light orange and light blue re-
spectively.  Key visually correlated peaks and troughs between CO2Lag and temperature are shown 
in red and blue dashed lines respectively.  Named warm and cool periods over the last 2000 yr 
are identified along the base of Fig. 11 after Easterbrook (2016a). 

Fig. 11 unambiguously shows the close visual relationship of the composite curves of CO2Lag 
(corrected for CO2 lag by 150 yr) and composite temperature, as well as the non-lagged CO2 
curve, clearly out of phase with temperature.  Conditional statistical correlation supports this ob-
servation with the following rPCC data: 

Year Range:  Data:   Correlation: 

1000 – 1600 AD CO2Lag (150-yr lag) rPCC =   0.93    Very Strong 
1000 – 1600 AD CO2 (no lag)  rPCC =   0.05    None 
  200 – 1600 AD       CO2Lag (150-yr lag)        rPCC =   0.73    Strong 
  200 – 1600 AD CO2 (no lag)         rPCC =  -0.07    None 

The averaged pairs of CO2 and temperature contain similar autocorrelation and long memory 
issues that its underlying component series have, and there may be additional artificial inflation 
of correlation due to smoothing and aggregation.  However, of the 64 pairs of combinations from 
Table A10, Supplementary Material, Appendix A, 60 pairs have variants (Orig and/or RA 50) 
that have passed the SVF process as mostly Robustly Significant. In the averaged case four aver-
age CO2 and temperature pairs (Orig, RA 50, RA 100, and Loess 2) have been tested with the 
SVF, and one pair successfully passed – the Orig pair.  The results are shown in Table 3. 

Table 3.  Results of the SVF testing for the Average CO2 vs. Average Temperature records Data Set A 
are shown for the range, 200-1600 AD.  rPCC is the Pearson’s Correlation Coefficient; Samp Rate is the 
de-sampling rate to reduce the data points; n is the number of data points after de-sampling; Neff is the 
effective number of data points (Bretherton et al., 1999); Block-Perm-FDR p-values Grouped repre-
sents the process of using block permutations and grouped FDR (Fake Discovery Rate) showing p-
values; HAC SE (Heteroskedasticity and Autocorrelation Consistent Standard Errors); and SVF Pass-
ing Category. 

Results of Statistical Validation Framework Testing 

Average CO2 vs. Average Temperature Correlation 200 -- 1600 AD 

Avg CO2 &            
Temp  Pair 

rPCC 
Samp 
Rate 

n Neff 

Block-
Perm-FDR 

p-value 
Grouped 

Blocks 
Passed 

HAC 
SE 

SVF    Passing Cate-
gory 

CO2 & Temp 
(Orig) 0.63 20 71 13.5 < 0.05 1,5,10 2.91 Robustly Significant 
CO2 & Temp 
(RA 50) 0.68 20 71 5.8 < 0.05 1,5 4.55   

CO2 & Temp 
(RA 100) 0.71 30 47 4.7 < 0.05 1,5 4.89   

CO2 & Temp 
(Loess 2) 0,72 20 71 2.7 < 0.05 1,5,10 32.8   
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In Table 3 the Neff values on the Orig pair is strong, and the HAC SE value is commensurately 
low. Orig, RA 50, and RA 100, also passed on multiple blocks for FDR-grouped permutations p-
value.  The Neff values, being less than 8, are the primary reason for not passing SVF.  Although 
Loess 2 for this averaged pair scenario is not directly validated under SVF, its correlation is pre-
sented here conditionally, supported by the corresponding Orig, passing Robustly Significant 
(SVF).                       

 

Figure 11.  Smoothed Composite CO2Lag, CO2, and temperature data for the range of 1 to 2000 AD as 
well as average CO2Lag, CO2, and temperature.  Cool and warm zones observed from this study are 
delineated as well as standard geologic-named cool and warm periods.  Vertical red dashed lines 
identify visually correlated peaks between CO2Lag and temperature.  Vertical blue dashed lines identify 
visually correlated troughs between CO2Lag and temperature. Averaged rPCC values are shown for the 
lagged CO2 and non-lagged CO2 cases. Although Loess2 for this Average pair is not directly validated 
under SVF, its correlation is presented here conditionally, supported by the corresponding variant 
Orig, as Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference. References: CO2: Ahn et al. (2012), Frank et al. 
(2010), MacFarling Meure et al. (2006), and Rubino et al. (2019); Temperature: Moberg et al. (2005), 
Ljungqvist (2010), Crowley (2000), Hegerl et al. (2007), Jones et al. (1998), Loehle and McCulloch 
(2008), Juckes et al. (2007), Yang et al. (2002).   
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The average curves are shown without the composite curves for clarity on Fig. 12.  The composite 
analysis confirms the individual analyses, both visually and statistically.  Over the period of 1 to 
1600 AD, CO2 does not appear to control temperature in any manner.  Rather, temperature appears 
to precede CO2 in a closely coordinated process throughout the entire time period.  This is shown 
by the visually coordinated curves of CO2Lag and temperature after the CO2 lag correction of 150 
yr. The Very Strong rPCC of 0.93 and 0.73 respectively for the two ranges analyzed, and the very 
low values of rPCC for the non-lagged CO2 data of rPCC = 0.05 and rPCC = 0.07 also contribute in 
this confirmation. 

 
Figure 12.  Smoothed Average CO2Lag, CO2, and temperature data for the range of 1 to 2000 AD.  Cool 
and warm zones observed from this study are delineated as well as standard geologic-named cool and 
warm periods.  Vertical red dashed lines identify visually correlated peaks between CO2Lag and tem-
perature.  Vertical blue dashed lines identify visually correlated troughs between CO2Lag and temper-
ature. Averaged rPCC values are shown for the lagged CO2 and non-lagged CO2 cases. Although Loess2 
for this Average pair is not directly validated under SVF, its correlation is presented here conditionally, 
supported by the corresponding variant Orig, as Robustly Significant (SVF passed). High smoothing 
visually enhances apparent alignment, but should be statistically validated for formal inference.   Ref-
erences: CO2: Ahn et al. (2012), Frank et al. (2010), MacFarling Meure et al. (2006), and Rubino et 
al. (2019); Temperature: Moberg et al. (2005), Ljungqvist (2010), Crowley (2000), Hegerl et al. 
(2007), Jones et al. (1998), Loehle and McCulloch (2008), Juckes et al. (2007), Yang et al. (2002). 
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3.8   Graphical Results – Smoothed CO2 and Temperature (1600-1850 AD) 

As discussed in Section 3.3 and detailed further in Supplementary Material, Appendix C, a struc-
tural break, consistent with a broader regime shift in climate dynamics, was identified around 
1600 AD. This apparent state transition introduces a discontinuity in the statistical behavior of 
the system, particularly in the correlation between atmospheric CO₂ and temperature. For exam-
ple, Pearson’s correlation coefficients (rPCC) are internally consistent within each period (e.g., 
200–1600 AD and 1600–1850 AD), and even generally consistent between the two periods, but 
they degrade significantly when calculated across the boundary. Periods that span this break-
point—such as 200–1650 AD or 200–1850 AD—show a marked decline in correlation strength, 
transitioning from strong to weak or nonsignificant values. To account for this discontinuity, the 
present study analyzes the two time periods separately: 

1. a pre-break interval from 200–1600 AD, and 

2. a post-break interval from 1600–1850 AD. 

The upper bound of 1850 AD was selected based on the availability of robust correlation between 
CO₂ and temperature after applying a 150-yr lag correction to the CO₂ data—consistent with lag 
patterns observed throughout this study. Beyond 1850 (i.e., post-2000 when adjusted for lag), no 
valid comparisons can be drawn due to the absence of viable lag-corrected CO₂ data. This section 
presents the graphical and statistical analyses of the 1600–1850 AD interval, highlighting key 
patterns in the CO₂–temperature relationship during this climatically transitional period. 

This section of the study investigates the conditional statistical association and visual graphical 
correlation between atmospheric CO2 concentrations and multiple paleotemperature proxies over 
the period 1600-1850 AD by employing Running Average (RA 50) smoothing with a 50-yr cen-
tered window on all series.  Three independent CO₂ records—Ahn et al. (2012), MacFarling 
Meure et al. (2006), and Rubino et al. (2019)—are analyzed against six established temperature 
reconstructions.  Data results are shown in Supplementary Material, Appendix A, Table A23.  
Key findings are summarized below (average rPCC of each temperature vs. the three CO2 series): 

Temperature        Average rPCC      Average rPCC               Average
                          No Lag          Lag Max  Lag Years 

 

Crowley (2000)   0.25   0.90         170 
Hegerl (2007)   0.46   0.96         183 
Juckes (2007)   0.43   0.99         223 
Ljungqvist (2010)  0.68   0.90         203 
Moberg (2005)   0.63   0.90         163 
Yang (2002)   0.46   0.92         193 
Overall Averages   0.45   0.90         189 

 
Significant points: 

1. There is a significant increase between the No Lag and Lagged rPCC values – the average 
correlation is 2 times higher for lagged vs. no lagged scenarios.  This is similar to the data 
from the data range 200-1600 AD. 

2. The max rPCC values (0.90- 0.99) and the no lag rPCC (0.25 – 0.68) values are both within 
the close range of the rPCC values in the data range 200-1600 AD, albeit slightly higher. 

As with other data in this study, the 1600-1850 AD data have been processed through the SVF to 
better understand the significance of the correlations. Table 4 depicts the results of the SVF.  There 
is one CO2 and temperature pair that passed the SVF in either of the two passing categories.  
Rubino CO2 (Orig) vs. Moberg Temp (Orig) passed as Robustly Significant with a Neff value 
over 10 and group-block-permutation-FDR p-value < 0.05 in at least one block. It also had an rPCC 
= 0.54, sample size of 10, and HAC SE = 150.97.  The HAC SE values were higher overall than 
the data from range 200-1600 AD possibly due to the regime change at 1600 AD and the expo-
nentially increasing rates of increase for the CO2 and temperature data commencing in this 
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timeframe. Five of the pairs exhibited Neff between 5 and 7; passed the p-value test of Grouped-
Block-Perm-FDR with values < 0.05; and all had reasonable strong sample sizes with rPCC be-
tween 0.52 and 0.80 (4 Orig and 1 RA 100).  While these five pairs did not pass the stringent 
SVF, they exhibited strong parameters.  The last three pairs are noteworthy from the perspective 
they had strong enough Neff values, but faltered in the Grouped-Block-Perm-FDR, which indi-
cates strong Neff values alone are not enough. 

As mentioned above, the goal of the SVF is not to suppress correlation results but to distinguish 
robust signal from statistical artifact in the presence of serial correlation and long-term memory 
issues.  The results from 1600-1850 AD are consistent with those of 200-1600 AD, although there 
is a much lower pass rate probably related to regime change and rapid rise in CO2 and temperature 
commencing in this time period.  Along with the visual correlations shown below, the data does 
conditionally indicate some marginal significance (Santer et al., 2000; von Storch & Zwiers, 
1999; Bretherton et al., 1999). 

Table 4.  Results of the SVF testing for the CO2 vs. temperature records from Data Set A are shown 
for the range, 1600-1850 AD .  rPCC is the Pearson’s Correlation Coefficient; Samp Rate is the de-
sampling rate to reduce the data points; n is the number of data points after de-sampling; Neff is the 
effective number of data points (Bretherton et al., 1999); Grouped-Block-Perm-FDR p-values repre-
sents the process of using block permutations and grouped FDR (Fake Discovery Rate) showing p-
values; HAC SE (Heteroskedasticity and Autocorrelation Consistent Standard Errors); and SVF Pass-
ing Category. 

Results of Statistical Validation Framework Testing 
CO2 vs. Temperature Correlations 

1600 -- 1850 AD 

Avg CO2 &            
Temp  Pair rPCC Samp 

Rate n Neff 

Grp-
Block-

Perm-FDR 
p-value 

Blocks 
Passed HAC SE 

SVF      
Passing 

Category 

Rubino CO2 (Orig)    
Moberg Temp (Orig) 0.54 10 22 12.31 < 0.05 1 150.97 

Robustly         
Significant 

Ahn CO2 (Orig)    Hegerl 
Temp (Orig) 0.84 10 16 6.18 < 0.05 1 7.68 - 

MacFarling CO2 (Orig) 
Hegerl Temp (Orig) 0.52 10 23 5.51 < 0.05 1 152.85 - 

Ahn CO2 (RA 100)           
Moberg Temp (RA 100) 0.80 10 11 5.51 < 0.05 1 41.17 - 

Rubino CO2 (Orig)             
Hegerl Temp (Orig) 0.71 10 22 5.32 < 0.05 1 10.28 - 

Rubino CO2 (Orig)            
Crowley Temp (Orig) 0.64 10 22 5.00 < 0.05 1 34.61 - 
                  

Ahn CO2 (Orig)   
Moberg Temp (Orig) 0.18 10 16 14.02 > 0.05 - 74.22 - 

MacFarling CO2 (Orig) 
Moberg Temp (Orig) 0.39 10 23 13.16 > 0.05 - 49.55 - 

MacFarling CO2 (Orig) 
Crowley Temp (Orig) 0.35 30 8 8.18 > 0.05 - 21.47 - 

 

Figure 13 presents the transformed CO₂ and temperature series from Ahn et al. (2012) and Hegerl 
et al. (2007), respectively, for the period 1600–1850 AD as RA 50. The CO2 series was cubed, 
detrended with linear regression, and normalized to a common scale from 0.0 to 1.0, and the x-
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axis extends from 1600 to 2000 AD to display the full temporal extent of the data, including lag 
alignment.  The temperature series was normalized to match the CO2 data. The purpose of this 
display style is due to the exponentially rising CO2 and temperature curves.  The transformation 
mollifies the chart without changing relationships to allow more character to be observed. The 
lag-adjusted CO₂ series (CO₂Lₐg, red), the unadjusted CO₂ series (gray dashed line), and the tem-
perature series (blue) are plotted, with the CO2Lag offset by 170 yr. Vertical reference lines mark 
visually striking coincident peaks and troughs between CO₂Lₐg and temperature, which are now 
visible due to the transformations. This alignment is quantitatively supported by a conditional 
Pearson correlation coefficient (rPCC) of 0.95, compared to a much weaker correlation of 0.48 
between the non-lagged CO₂ and temperature series.  RA 50 for this pair is not directly validated 
under SVF, nor is its Orig variant. Its correlation is presented here conditionally, supported by 
SVF showing marginal significance with marginal Neff and passing FDR, and a related pair, 
Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference. 

 

Figure 13. Running Average, RA 50 smoothing, CO2 and temperature data (from Ahn et al., 2012; 
Hegerl, 2007, respectively), are shown from 1600 to 2000 AD along with the CO2 curve shown with a 
170-yr lag correction. CO2 is cubed, detrended with a linear regression, and normalized.between 0-1.  
Temperature is normalized between 0-1. Aligned peaks and troughs are depicted with thin red lines. 
Conditional maximum rPCC correlations at lag and rPCC at no lag are presented. Although RA 50 for 
this pair is not directly validated under SVF, nor is its Orig variant, its correlation is presented here 
conditionally, supported by SVF showing marginal significance with marginal Neff and passing FDR, 
and a related pair, Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, 
Orig, Robustly Significant (SVF passed). High smoothing visually enhances apparent alignment, but 
should be statistically validated for formal inference.     

Figure 14 displays a very similar chart to Figure 13. The transformed CO₂ and temperature series 
from Rubino et al. (2019) and Hegerl et al. (2007), respectively, for the period 1600–1850 AD. 
The CO2 series was cubed, detrended with linear regression, and normalized to a common scale 
from 0.0 to 1.0, and the x-axis extends from 1600 to 2000 AD to display the full temporal extent 
of the data, including lag alignment. The temperature series was normalized from 0-1.  The lag-
adjusted CO₂ series (CO2Lag, red), the unadjusted CO₂ series (gray dashed line), and the tempera-
ture series (blue) are plotted, with the CO2Lag off-set by 180 yr. Vertical reference lines mark 
visually striking coincident peaks and troughs between CO₂ₗₐg and temperature, which are now 
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visible due to the transformations. This alignment is quantitatively supported by a conditional 
Pearson correlation coefficient (rPCC) of 0.97, compared to a weaker correlation of 0.43 between 
the non-lagged CO₂ and temperature series. Although RA 50 for this pair is not directly validated 
under SVF, nor is its Orig variant, its correlation is presented here conditionally, supported by 
SVF showing marginal significance with marginal Neff and passing FDR, and a related pair, 
Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference.  

 
Figure 14.  Running Average, RA 50 smoothing, CO2 and temperature data (from Rubino et al., 2019; 
Hegerl, 2007, respectively), are shown from 1600 to 2000 AD along with the CO2 curve shown with a 
180-yr lag correction. Aligned peaks and troughs are depicted with thin red lines. Conditional 
maximum rPCC correlations at lag and rPCC at no lag are presented.  Although RA 50 for this pair is not 
directly validated under SVF, nor is its Orig variant, its correlation is presented here conditionally, 
supported by SVF showing marginal signifi-cance with marginal Neff and passing FDR, and a related 
pair, Rubino CO2 (Orig) and Moberg Temp (Orig), showing the corresponding variant, Orig, Robustly 
Significant (SVF passed). High smoothing visually enhances apparent alignment, but should be 
statistically validated for formal inference. 

Fig. 15 displays the Pearson Correlation Coefficient, rPCC, plotted against a range of CO2 lag val-
ues (-100 to 250).  The curve in this example shows a flat peak area ranging between rPCC of 0.90 
and 0.92 between lags of 160 to 195 yr.  rPCC drops off quickly in either direction before and after 
the flat peak. 

These figures highlight the very strong relationship between lag-adjusted CO₂ and temperature, 
and reinforces a critical observation: once CO₂ is corrected for its lag (~170 to 180 yr), little 
comparable data remain in the late 20th and early 21st centuries to inform centennial or millen-
nial-scale analyses. Notably, the more granular analyses by Koutsoyiannis (2024a), Humlum et 
al. (2013), Chylek et al. (2018b), and Adams and Piovesan (2005) report that CO₂ lags tempera-
ture by less than one year during the modern instrumental era. These studies typically assess 
monthly or annual fluctuations over relatively short time spans and likely capture dynamics dis-
tinct from those observed at centennial or millennial scales. 

Therefore, the lag observed in the present study from 200-1600 AD and 1600-1850 AD (~150–
170 yr) does not contradict the findings of these short-term studies. Rather, the consistent and 
strong correlation between CO₂ₗₐg and temperature throughout the last 2000 yr—using annual 
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resolution data—suggests a robust long-term relationship where temperature changes consistently 
precede CO₂ over centennial timescales. 

 

Figure 15.  Pearson Correlation Coefficient, rPCC , is plotted against CO2 lag corrections (-100 to 250, 
interval of 5 yr) for CO2 (Rubino et al., 2019) and temperature (Hegerl et al., 2007).  The peak of the 
curve depicting maximum correlation is at 180 yr of CO2 lag correction.  Correlation drops off in either 
direction rapidly after the flat peak area. 

3.9   Total Solar Irradiance (TSI) and Temperature (1-2000 AD) 

A comparative analysis was performed between multiple published reconstructions of Total Solar 
Irradiance (TSI) and temperature data spanning the past two millennia as detailed in Supplemen-
tary Material, Appendix D. Using conditional Pearson correlation coefficients with input on sig-
nificance from the SVF, both visual and statistical congruence were identified across a broad array 
of TSI reconstructions (e.g., Scafetta & Bianchini, 2022; Scafetta, 2023; Lean, 2018; Shapiro et 
al., 2011; Wu et al., 2018; Steinhilber et al., 2009) and temperature datasets (e.g., Ljungqvist, 
2010; Morice et al., 2012 [HadCRUT4]; Lenssen et al., 2024 [GISS]; Parker et al., 1992 [CET]). 
Similar to the previous conditional analysis of CO2 and temperature, this analysis accounts for 
autocorrelation and long-term memory in paleoclimatic records.  Given this caveat, Strong to 
Very Strong correlations were observed between TSI and global atmospheric temperature, rein-
forcing the hypothesis that TSI variability represents solar energy, which has been a persistent 
contributor to centennial-scale temperature dynamics. Integrating the TSI–temperature analysis 
alongside the CO₂–temperature analysis provides a more comprehensive perspective on the po-
tential dynamic relationships among solar energy, surface temperature, and atmospheric CO₂. 

4.  Discussion 

4.1  Atmospheric CO2 Lags Temperature by 150 yr 

Results from both original and smoothed datasets—derived from visual inspection and correlation 
analysis—indicate that global atmospheric CO₂ lags atmospheric temperature by approximately 
150 years over the period 1–1850 AD. Although the Industrial Revolution began around 1750 AD 
(Wilson, 2014), significant anthropogenic CO₂ emissions did not occur until roughly 1930 AD 
(Hoesly, 2018). This finding suggests that the observed lag is a natural process, as is the 
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subsequent exponential increase in CO₂Lag from ~1600 AD to the present in response to rising 
temperatures. 

Because this analysis shows that CO₂ change has continuously followed temperature change 
throughout the Common Era—including 1850–2000 AD CO₂ changes that reflect temperature 
changes from 1700–1850—there is no evidence for a fundamental change in the CO₂–temperature 
relationship over the last 150 years. 

Figures 11 and 12 summarize the smoothed CO₂Lag and temperature curves, which visually track 
each other closely from 1–1600 AD. Figures 13 and 14 show a similar close correspondence from 
1600–1775 AD. In all four figures, vertical dashed lines (red for peaks, blue for troughs) mark 
the synchronous occurrence of every identified peak and trough in CO₂Lag and temperature over 
nearly 1800 years. 

The combined evidence indicates that CO₂ does not exert a primary control on Earth’s tempera-
ture over this time period; rather, it closely tracks temperature with a lag of ~150 yr. The analysis 
also reveals a structural break or regime shift around 1600 AD, coinciding with both the nadir of 
the Little Ice Age (Maunder Minimum) and a solar energy minimum, which corresponds to the 
observed temperature low and subsequent rapid increase in both temperature and lag-corrected 
CO₂. Between 1600 and 1850, the visual and statistical correlations between CO₂Lag and temper-
ature are strong. 

The original CO₂ and temperature curves (Figs. 1–2), along with RA 50 (Fig. 4) and RA 100 (Fig. 
5) series, strongly agree with the Loess smoothed-curve analyses (Figs. 6–10). All original da-
tasets exhibit a pronounced concurrent drop in temperature and CO₂Lag around 1460 AD, with a 
narrow 50–80 yr width. This distinct feature is only apparent after applying the −150 yr CO₂ lag 
correction and is further supported by: 

1. Long-term patterns: The data suggest a possible millennial-scale cycle, with peaks near 
100, 1000, and 2000 AD, and troughs around 550 and 1450 AD (~1000 yr frequency). Both 
CO₂Lag and temperature appear to track this pattern, which aligns with proposed solar ac-
tivity cycles such as the Eddy Cycle (Abreu et al., 2010; Zhao et al., 2020) and Hallstatt 
Cycle (Steinhilber et al., 2010). Longer datasets would be required to confirm a true cycle. 

2. Shorter-term variability: Numerous visually correlated peaks, troughs, and peak–trough 
clusters are evident throughout 1–1850 AD, on timescales of 10–100 yr. 

This mirrored relationship between CO₂Lag and temperature appears at multiple temporal scales: 

1. Macro-scale (~2000 yr): millennial cycles 

2. Meso-scale (10–100 yr): decadal–centennial variability 

3. Micro-scale (months): as documented by other studies 

For example, Humlum et al. (2013) found that monthly CO₂ lags global SST by 11–12 mo and 
global air temperature by 9.5–10 mo (1980–2011 instrumental data). Monnin et al. (2001) identi-
fied a ~410 yr CO₂ lag during 11.2–17.0 kyr BP. Sharma and Karamanev (2021) reported a 1020–
1080 yr lag over the last 650 kyr (max rPCC = 0.837). Koutsoyiannis (2024a) demonstrated varying 
CO₂–temperature lags at multiple geologic periods, from 2.3 Myr in the Phanerozoic to 3–8 mo 
in the modern instrumental era. 

Collectively, these findings, combined with the ~150 yr lag identified here, suggest that different 
but related processes drive the CO₂–temperature lag at different timescales. Humlum et al. (2013) 
proposed that near-surface ocean temperatures are a primary cause for short-term lags. The mil-
lennial-scale lag found by Sharma and Karamanev (2021) may reflect deeper ocean processes. 
Adams and Piovesan (2005) further proposed that monthly lags may involve internal biogeo-
chemical cycles and tropical temperature influences. 

4.2  Statistical Validation Framework 

The inclusion of rPCC analysis in concert with the visual correlation of CO2Lag (150 yr) and 
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temperature and the visual correlation of TSI and temperature is based on a robust correlation 
testing framework, Statistical Validation Framework (SVF).  It is implemented to assess statistical 
reliability of observed correlations between lag-adjusted atmospheric CO₂ proxies and tempera-
ture reconstructions as well as Total Solar Irradiance (TSI) and temperature. The analysis incor-
porates block permutation testing (10,000 iterations) across multiple block sizes, HAC-consistent 
standard errors, and both global and grouped FDR corrections to rigorously control for autocor-
relation and long memory. Passing pairs were filtered based on effective sample size (Neff), yield-
ing results classified as Robustly Significant (Neff ≥ 10) or Tentatively Significant (Neff 8–10), 
providing a conservative assessment of correlation reliability across time series with complex 
temporal structure.  The SVF has successfully identified key correlation pairs that show signifi-
cance through the camouflage of dependence, serial correlation, and long memory. 

4.3  Role of the Oceans in the Relationship of CO2 to Temperature 

Humlum et al. (2013) states that changes in ocean temperatures appear to explain most of the 
changes in atmospheric CO2 during the 1980 to 2011 period, especially changes in Southern 
Ocean temperature.   

Ocean processes and the carbon cycle are potential areas to investigate the possible explanations 
for the lag of CO2 to temperature, especially deep ocean carbon sinks (Wang et al., 2024), atmos-
pheric CO2 ventilation (Yu et al., 2023), and the global ocean conveyor circulation (Toggweiler 
& Key, 2001).  For the 150-yr CO2 lag identified in this study, the answer may be related to deeper 
ocean processes as well as biogeochemical processes.  It has been established by many researchers 
that CO2, as part of the carbon cycle, is absorbed in the ocean as a carbon sink, when the temper-
ature of the water is cool, and conversely, CO2 is released into the atmosphere when the temper-
ature of the water is warm (Easterbrook, 2016b), but the process is more complex as noted by 
(Wang et al., 2024), (Yu et al., 2023), and (Toggweiler & Key, 2001). Additional investigation is 
required to establish the process causing CO2 to lag temperature, but the facts, as outlined in this 
study and the studies (Adams & Piovesan, 2005; Chylek et al., 2018b; Humlum et al., 2013; 
Monnin et al., 2001, Caillon et al., 2003; Mudelsee, 2001; Koutsoyiannis, 2024a; and Sharma & 
Karamanev, 2021), identify that CO2 lags temperature at all major timeframes: months, tens of 
years, hundreds of years, hundred  thousands of years, and even millions of years. These studies, 
as well as this study, also identify that CO2 does not influence temperature. 

4.4  Total Solar Energy (TSI) correlates with Temperature 

This study and others have established that atmospheric CO2 lags both atmospheric and sea sur-
face temperature. The next important question is the source of influence on the temperature of the 
oceans and atmosphere.  Accordingly, this study has evaluated the data from several TSI papers 
and compared these with temperature data assessed in this study.  The time period covers the last 
2000 yr and the last few hundred years respectively. 

Fig. D1, in Supplementary Material, Appendix D, defines a very close correlation between tem-
perature (Ljungqvist, 2010) and TSI (Shapiro et al., 2011) as evidenced by the tight visual tracking 
and Very Strong conditional statistical correlation (rPCC = 0.79 for the range of 5 to 1994 AD; rPCC 
= 0.91 for the range of 1000 to 1994 AD).  Causation cannot be proven from a chart such as this, 
but it is difficult to imagine how solar energy does not play a major role in control of atmospheric 
temperature from consistent results that span 2000 yr.  It is probably a matter of determining the 
characteristics of the solar energy which is the major influencer.  Fig. D2, in Supplementary Ma-
terial, Appendix D, utilizing three different TSI studies (Steinhilber et al., 2010; Lean, 2018; Wu 
et al., 2018) shows TSI versus the Average Temperature curve (Fig. 12) taken from averaging 
temperature from eight temperature studies. While the visual correlation is quite compelling, and 
the correlation analysis is Strong (rPCC = 0.61 to 0.62 for the range of 5 to 1994 AD; rPCC = 0.65 
to 0.75 for the range of 1000 to 1994 AD), the differences in Fig. D2, in Supplementary Material, 
Appendix D, compared to Fig. D1, in Supplementary Material, Appendix D, identify a slightly 
greater variability and less precision. 
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Switching the timeframe to the 250-yr range, Fig. 19 depicts TSI data from Scafetta (2023) com-
pared to three temperature data sets collected instrumentally.  These data are maintained by the 
Met Office Hadley Centre in Great Britain and are smoothed using Loess in this study: (1) Had-
CRUT4 (atmospheric temperature) (Morice et al., 2012), (2) HadSST3 (sea surface temperature) 
(Kennedy et al., 2011a; Kennedy et al., 2011b), and (3) CET (Legacy version) (atmospheric tem-
perature of central England) (Parler et al., 1992).  These data present as highly visually correlated 
on the chart and have a Very Strong statistical correlation ranging from rPCC = 0.84 to rPCC = 0.92.  
Thus, it appears the same results are evident regarding the close correlation of TSI and tempera-
ture both at very short and granular timeframes of 200 yr to longer periods of 2000 yr.   

In Fig. D4, in Supplementary Material, Appendix D, all three temperature curves appear to trend 
sharply upward from about 1995 through 2023, whereas the TSI curve makes a significant lower 
turn.  This appears to be somewhat discordant with the rest of the entire curve comparison from 
1800 to present. One possible explanation has been proffered by several researchers as an artifact 
of five factors, especially for the years since 1995, which are: 

1. Urban Heat Effect – a well-known result of temperature measurement stations being lo-
cated in cities, airports, and urban areas exhibiting a significant increase of temperature 
over the ambient baselines as much as 0.45 degrees C. (Scafetta, 2021; Soon et al., 2023; 
Katata et al., 2023; Spencer, 2024; Watts, 2012) 

2. Multiple questionable data adjustments since 2000 AD by organizations responsible for 
temperature repositories, such as NOAA, NASA, and Met Office Hadley Centre.  The ad-
justments have typically increased parts of the temperature record by as much as 0.2 to 0.4 
degrees C. (McKitrick, 2010; US Historical Climatological Network, 2024; Watts, 2012; 
Wallace et al., 2017) 

3. Reduction of temperature stations by as much as 25% or more in mostly rural areas and a 
practice of populating the removed stations data with calculated estimates. (McKitrick, 
2010; Wallace et al., 2017) 

4. Natural temperature-enhanced forcing from large El Nino events (Douglass & Christy, 
2009; Vinos, 2024b; Cobb et al., 2003) 

5. An underwater volcanic eruption in 2022, Tonga, which increased water vapor in the global 
atmosphere by 10%, causing a sharp increase in global temperature, which will take several 
years to dissipate (Bielfeld, 2023; Vinos, 2024a; Vinos, 2024b; Lee & Wang, 2022). 

The significant steep trough of TSI at about 1460 yr AD shown in Fig. 20 for all 4 TSI studies at 
a slight smoothing, is also replicated on all of the temperature and CO2Lag data sets shown in Fig. 
1, Fig. 2, Fig. 4, and Fig. D5, in Supplementary Material, Appendix D.  This marker, at 1460 AD, 
coupled with the overall visual and statistical correlations of these data, emphasize the relation-
ship of these data to each other. 

A strong correlation of TSI and atmospheric global temperature over a 2000-yr period is probably 
not a coincidence.  Solar energy either plays an integral part in controlling temperature on the 
earth, or another forcing agent influences both solar energy and temperature. Perhaps, a third 
option is possible, where solar energy plays a major role in controlling temperature in concert 
with other agents (Scafetta, 2023).  Some of these agents could include ocean and atmospheric 
pressure processes (D’Aleo & Easterbrook, 2016) such as the Atlantic Multidecadal Oscillation 
(AMO) (Knudsen et al., 2011), El Nino Southern Oscillation (ENSO) (Trenberth, 2016), or Ther-
mohaline Ocean Circulation (THC) (Toggweiler & Key, 2001), among others (D’Aleo & Easter-
brook, 2016). Cloudiness appears to be a significant contributor as well, as it appears to be con-
trolled by solar magnetic modulation of cosmic rays (Svensmark et al., 2021; Svensmark et al., 
2016; Svensmark, 2007). Volcanism also seems to correlate with temperature decreases as shown 
over the Little Ice Age (1250-1860 AD) (Wanner et al., 2022).  On a larger scale, orbitally-driven 
insolation forcing, mainly precession and obliquity, can have influence (Wanner et al., 2022; Lo-
renz et al., 2006). Another indirect impact of TSI is solar-driven weakening of the jet stream 
causing colder temperatures in the northern hemisphere (Schwander et al. 2017; Moffa-Sanchez 
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et al., 2014; Ineson et al., 2011). However, based on the strong visual and statistical correlations 
between TSI and temperature over short, medium, and longer time periods (2000 yr) shown in 
this study, it appears that solar energy is most probably a significant component, either directly 
or indirectly, in concert with other natural processes previously mentioned, controlling the tem-
perature of the earth. 

5. Conclusions 

Atmospheric CO2 clearly lags global temperature by about 150 yr over the timeframe of 1 to 1850 
AD as shown by both visual and conditional statistical correlations (Very Strong) using all 16 
atmospheric temperature studies compared with all 4 CO2 studies for both original data and 
smoothed data.   

Total Solar Irradiance (TSI) correlates both visually and statistically (conditional) with the data 
from the large number of temperature studies utilized in this paper: 

1. Six TSI data sets compared to temperature from Ljungqvist (2010) and the Average Tem-
perature from 8 atmospheric temperature studies over the last 2000 yr (Strong rPCC). 

2. Two additional TSI data sets compared to five shorter-term temperature data sets in the 
timeframe of 1850 to present (Very Strong rPCC). 

Along with many other correlated data curve artifacts such as peaks and troughs, a striking down-
ward dip at the year, 1460 AD, is observed on all related data: 

1. Atmospheric temperature 

2. CO2Lag of 150 yr 

3. Total Solar Irradiance 

The Statistical Validation Framework (SFV) supported the conditional use of the rPCC values for 
comparative purposes based on a robust testing process taking into account dependence, autocor-
relation, and long-term memory issues.  

Atmospheric CO2 does not precede temperature, nor does it control temperature as shown in this 
study over the last 2000 yr. The same conclusions have been reached in the study by Koutsoyian-
nis (2024a) coving several geologic time periods (e.g. Modern Period, Common Era, and Phan-
erozoic) over varying degree of CO2 lag.; Humlum et al. (2013) for the monthly timeframe in the 
time period of 1980 to 2010, for 9 to 12 mo; Chylek et al. (2018b) between 1960 and 2016 for 
monthly data for 5 mo; and Adams and Piovesan (2005) between 1960 and 2004 for monthly data 
for 4 mo.  The study by Sharma and Karamanev (2021) reached the conclusion CO2 lags temper-
ature by over 1000 yr over the last 650,000 yr.  

It appears temperature, especially ocean temperature, plays a major and significant role in the 
consistent change of atmospheric CO2, either directly or indirectly, with other oceanic processes.  
TSI correlates strongly with atmospheric temperature over the last 2000 yr (rPCC is Strong) and 
over the shorter period of the last 200 yr (rPCC is Very Strong) lending more evidence that solar 
energy plays a significant role in the temperature change of the earth. 

Thus, a likely scenario for earth’s climate change is driven by solar energy controlling tempera-
ture, directly or indirectly, and temperature controlling CO2 somewhat modified by other climate 
factors. As such, this progression is likely influenced to some degree by several other wide-rang-
ing processes from disparate sources such as: orbital-driven insolation forcing; vulcanism; change 
in cloudiness due to solar magnetic modulation of cosmic rays; planetary gravity; earth global 
and orbital mechanics; solar sub-processes; ocean circulation, oscillations, and cycles; atmos-
pheric pressures; polar vortexes; solar-driven weakening of the jet stream; and others. 
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