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Is gravity evidence of a computational universe?
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ABSTRACT
Using the second law of information dynamics and the mass–energy–information equivalence principle, we show that gravitational attrac-
tion manifests as a requirement to reduce the information entropy of matter objects in space. This is another example of data compression
and computational optimization in our universe, which supports the possibility of a simulated or computational universe. Here, we derive
Newton’s gravitational force from information dynamics and show that gravity emerges as an entropic information force governed by the
second law of infodynamics. This is fully aligned with Verlinde’s entropic gravity studies published in 2011 but is demonstrated here via a
different approach.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0264945

I. INTRODUCTION

The second law of infodynamics describes the time evolution
of the entropy of information states in an isolated system evolv-
ing to equilibrium. This law requires the entropy of information
to decrease or remain constant over time, up to a minimum value
reached when the system achieves equilibrium. This is in total con-
trast to the second law of thermodynamics, which requires the
entropy of physical states to remain constant or increase over time.
The second law of infodynamics was firs introduced for digital
and biological information states,1 and it was also demonstrated
to be a cosmological necessity.2,3 This new law of physics was
successfully tested on other systems, explaining, for example, the
rules followed by the electrons in populating atomic orbitals on the
ground states.3 Moreover, the second law of infodynamics success-
fully explained a long-standing curiosity related to the abundance of
symmetries in the universe, by demonstrating that high symmetry
is a preferred state in nature because high symmetry corresponds
to a low information entropy content.3,4 Since the second law of
infodynamics appears in nature at all scales, from subatomic to
cosmological scales, and since it originates from information consid-
erations, as define in the context of Shannon’s classical information
theory,5 the possibility that the entire universe is informational in
nature and resembles a computational process was speculatively
suggested.3,4

A computational or simulated universe would exhibit specifi
signatures of the computational process, with the second law of
infodynamics being one such indicator. This intriguing possibility
invites us to revisit the entire physical description of our universe,
where the laws of physics are just manifestations of computational
rules within a source code. In other words, for an observer out-
side of the universe, everything follows a set of coding instructions,
while for an observer inside the code (i.e., in our universe), these
coding instructions manifest as mathematical and physical laws of
nature. For example, Pauli’s exclusion principle states that two or
more identical fermions cannot simultaneously occupy the same
quantum state within a quantum system. In the case of electrons in
atoms, it is impossible for two electrons in a multi-electron atom to
have the same values of the four quantum numbers. Pauli’s exclusion
principle requirement of distinguishable particles bears an uncanny
resemblance to the rules of coding and programming, specificall in
the context of definin variables that must be distinguishable, ensur-
ing order and predictability in the execution of the code. This is
exactly how a set of variables in a computer code would be define to
ensure computability. Looking from the same angle, the abundance
of symmetries observed at all scales in the universe is another exam-
ple of a computational optimization process, or data compression,
because symmetry scales inversely proportional to the information
content or computational power, i.e., high symmetry means less
computational power and low information content. Assuming the
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simulated universe hypothesis, in this article, we examine another
intriguing possible evidence of this computational process, which
manifests in our universe as gravity or the gravitational force.

II. MOTIVATION
To understand the motivation of this approach, we begin by

emulating exactly how we perform computational simulations in

routine computer programming. For example, when performing
computational analysis using finit element analysis (FEA),6 a typ-
ical approach is to create a discrete mesh. Meshing breaks down the
simulated object into very small cells that defin accurately the object
and its geometry. A governing equation can be assigned to each cell,
allowing the solver to efficientl simulate the physical behavior of the
entire macro-object.

FIG. 1. (a) 2D diagram of discrete and empty space, where each elementary space cell can register information; (b) four static point masses are placed inside this space
structure at random locations; (c) the point masses begin to move toward the center of mass; (d) all masses are joined together into a single object inside the cell that
corresponds to the center of the mass location.
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Hence, our key assumption in this work is the fact that space-
time is not continuum but discrete, similar to a pixelation or
FEA meshing as described above. This discrete view of space is
supported by evidence from quantum mechanics, the discovery
of Planck quanta, and subsequently the Planck scales. Essentially,
space-time gives meaning to physical properties of material objects,
such as position and momentum, and for this reason, space could be
regarded as an information storage medium of matter properties in
the universe.

In this approximation, each quantum of space is called an ele-
mentary cell, and each elementary cell would have the function
to register properties of matter in space, including position and
velocity, acting as storage of information. The role of the informa-
tion stored in the elementary cells is to provide the properties and
the coordinates of matter in the space-time simulated construct.
This process is exactly identical to how a digital computer game,
a VR application, or advanced simulations would be designed via
meshing.

It is natural to assume that the smallest physical length, Planck
length (Lp ≈ 1.6 ⋅ 10−35 m), define the size of an elementary space
cell, and each Planck elementary cell stores one digital bit state in its
surface area, equal to a Planck area. Assigning position coordinates
to objects/matter in a 3D computed reality would require stacked 2D
space surfaces to provide the detailed coordinates for the computa-
tion. This should be seen as a foliation of space in surfaces, similar
to an onion structure.

Hence, we assume that information is stored in 2D space sur-
faces, with a maximum of one digital bit per elementary Planck
area. This is fully consistent with the holographic principle and
Beckenstein’s black hole entropy studies.7

Let us assume a simplifie single 2D space surface, consisting
of 10 × 10 elementary cells and a surface area A ≈ R2, where R is
the lateral size of the surface or the radius if spherical coordinates
are chosen (Fig. 1). The cells in this diagram are not to scale, and for
simplicity, we show a fla space surface, while recognizing the curved
complex geometry of our space-time. Each cell can register infor-
mation in the form of binary data. For example, if a cell is empty,
it registers a digital “0,” and if matter is present in a cell, it regis-
ters a digital “1.” We also assume that the point mass approximation
applies here, so a matter object physically larger than a single cell
would be represented by a pointmass inside the cell that corresponds
to the coordinates of its center of mass. In the initial state, we assume
that this simplifie and hypothetical 2D space surface contains no
matter, so each cell would register a digital “0” [see Fig. 1(a)]. The
maximum number of bits stored in this simplifie thought example
is N = 100, where N0 = 100 digital 0s and N1 = 0 digital 1s.

Considering each elementary cell of space as an event in
Shannon’s information theory framework, these form a set of n = 2
independent and distinctive events X = {0, 1} having a probability
distribution P = {p0, p1} on X and p0 + p1 = 1.

We recall Shannon’s information entropy formula for binary
bits of information that gives the average information per event or
the number of bits of information per event,5

H(X) = −
n
∑
j=1

pj ⋅ log2 pj. (1)

As the probability of findin a digital “0” in an empty space is
100%, then using (1), we determine the information entropy of the
system in Fig. 1(a) to be H(X) = 0 bits, or each cell of space contains
zero bits.

We now assume that a few particles of matter are placed in
this space fabric at some random locations [see Fig. 1(b)]. Each par-
ticle occupies an individual elementary cell, so the occupied cells
would register a digital “1” each. Let us populate our hypothetical
2D space structure with an arbitrary number of four particles, hav-
ing the following random coordinates: (x1 = 2, y1 = 2), (x2 = 3, y2 = 7),
(x3 = 7, y3 = 10), and (x4 = 8, y4 = 5). For simplicity, we also assume
that each particle has the same mass, m. In this case, N = N0 + N1
= 100, where N0 = 96 and N1 = 4. For this system, the prob-
ability distribution is P = { 96

100 ,
4

100}, and using (1), we calculate
the information entropy of the system as H(X) = 0.242 bits.
We noticed that the empty space had the lowest information
entropy of zero bits, while placing four random matter parti-
cles in it produced an increase in the information entropy from
0 to 0.242 bits per event or a total information content of
NH(X) = 24.2 bits.

We now invoke the second law of infodynamics, which requires
that the system must evolve to equilibrium, in a state of lowest pos-
sible entropy of information (Sinf ). The link between the entropy of
the information states and Shannon’s information entropy, H(X), is
given by1,3,4

Sinf = Nkb ln (2)H(X), (2)

where kb = 1.380 64 × 10−23 J/K is the Boltzmann constant and N
is the number of bit states in the system, which is also equal to the
number of elementary space cells. In this case, the reduction in Sinf
can only come from a reduction in H(X), since neither matter parti-
cles nor the space itself can be made to vanish. Assuming again the
point mass approximation, which implies that a cell can accommo-
date more than one particle, the system will evolve itself by moving
the particles in space to join them together into a single larger parti-
cle inside a single cell. The fina state will therefore consist of a single
cell occupied by a particle of mass equal to the sum of the other four
particles. This cell will be located in the 2D space at the coordinates
corresponding to the center of mass of the n particle system (four in
this case study).

Indeed, the particles will move into the direction that brings
them at this location, which for the hypothetical example discussed
here corresponds to the center of mass (xcm = 5, ycm = 6), as can be
seen in Fig. 1(c). The particle movement will obey the least action
principle, taking the shortest path in space. Hence, the fina system
will contain N0 = 99 and N1 = 1, giving a Shannon information
entropy of H(X) = 0.081 bits [see Fig. 1(d)]. The total informa-
tion content of the system is then NH(X) = 8.1 bits, reduced from
24.2 bits. For the example discussed here, consisting of a finit 2D
space with four particles randomly placed in it, this is the lowest
possible Shannon information entropy and, by extension, the low-
est entropy of the information states. The total mass in this system
is conserved, but merging the particles together into a single larger
particle minimized the entropy of information and the system will
remain perpetually in this state at equilibrium.
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FIG. 2. Typical evolution of matter in the universe under gravitational attraction. The tendency is to merge smaller matter objects into larger cosmic objects.

The requirement to reduce the entropy of information, as dic-
tated by the second law of infodynamics, generated an attractive
entropic force between the particles. One could not help noticing
that this entropic attractive force has all the hallmarks of a gravi-
tational force. For example, taking a real case where a number of
matter particles are placed in an isolated region of space at zero ini-
tial velocity, and assuming no other forces are acting on the particles,
the particles will start attracting each other under the action of the
gravitational force. Newton’s law of gravity beautifully describes this
classical force, while Einstein described the relativistic case of this
force and he made the connection between gravity and the geometry
of the space-timemanifold, demonstrating howmatter curves space-
time. However, despite their absolute success in describing classical
and relativistic gravitational phenomena, none of these theories
explain why matter objects attract each other gravitationally.

In the example detailed here, our computational construct trig-
gers the attractive force because of the rule set in the computational
system, requiring the minimization of the information content and,
by extension, a reduction in the computational power. To put it sim-
ply, it is far more computationally effective to track and compute the
location and momentum of a single object in space than n objects.

Hence, it appears that the gravitational attraction is just another
optimizationmechanism in a computational process that plays a role
in reducing the computational power and compressing information.
This is nicely illustrated in Fig. 2, where cosmic dust spread over a
vast volume of space would have a much higher entropy of informa-
tion than a single cosmic object, such as a planet of equal mass to
the entire mass of the cosmic dust but concentrated into a densely
packed solid object and located in the same volume of space.

The example illustrated diagrammatically in Fig. 1 is perfectly
reproduced in our universe when matter objects cluster together
gravitationally forming a larger object, as shown in Fig. 2. In fact, in
this example, not only the information entropy and computational
power are reduced, but also the physical entropy is lower when grav-
itational clustering occurs. In Sec. III, we will attempt to develop a
mathematical justificatio of the entropic force.

III. THE ENTROPIC FORCE
Let us reconsider our hypothetical 2D space structure of dis-

crete elementary cells containing matter in the micro-canonical

ensemble, having total energy E and temperature T. The informa-
tion entropy of the system is then a function of the energy, E,
Sinf = Sinf (E). As we already explained, invoking the second law of
infodynamics requires the system to evolve in a way that minimizes
its information entropy. The evolution to minimum information
entropy takes place under the action of an entropic force, Fs. This
force is responsible for the system’s evolution to the minimum Sinf ,
and it has a universal character. In other words, in the case discussed
here, the entropic force appears to be the origin of the gravita-
tional force, but in other information systems, the entropic force can
manifest differently.

Returning to our simplifie system in discussion, since it is iso-
lated, the work done by the entropic force within the system on its
own components must come from the total energy within the sys-
tem itself. Hence, the work done by the entropic force on n particles
changes the total energy of the system as

E → E −
n
∑
i=1

FS ⋅ ri, (3)

where Fs ⋅ ri is the work done by the entropic force on the particle i
over a distance r. Considering a single particle case, we can write E
→ E − Fs⋅r, so Sinf (E)→ Sinf (E − Fs⋅r). Applying a Taylor expansion
of Sinf around E, we obtain

Sinf(E − FS ⋅ r) ≈ Sinf(E) +
∂Sinf

∂E
⋅ (E − FS ⋅ r − E) + ⋅ ⋅ ⋅ . (4)

We now impose the minimum information entropy condition,
dSinf
dr = 0, which after algebraic manipulation results in

dSinf

dr
=

dSinf

dE
FS. (5)

We now recall that ∂Sinf
∂E =

1
T , so relation (5) becomes

FS = T
dSinf

dr
or

→

FS = T ⋅
→

∇Sinf. (6)

Relation (6) describes the entropic force acting on a system to
reduce its information entropy, as dictated by the second law of
infodynamics. This relation is also identical to the relation derived
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by Verlinde in his entropic gravity article.8 Indeed, other stud-
ies proposed the existence of an entropic force in various physical
systems,9–13 including magnetic systems.14

IV. NEWTON’S LAW OF GRAVITY FROM THE SECOND
LAW OF INFODYNAMICS

Having established the foundation of the entropic force, which
is required to fulfil the second law of infodynamics, and having
noted the similarities between this entropic force and the gravita-
tional attraction of matter, we now attempt to establish an analytical
connection between the two forces. Returning to our 2D discrete
space structure containing matter, we ask the following question:

What actually moves under the entropic force to reduce
the information entropy?

The answer is that matter moves in space to minimize its own
imprint of information in the fabric of space. In our own example,
four particles of mass m each will move to join together into a larger
particle of mass 4m. Hence, the entropic force on a single particle
will be

FS = T
dSinf

dr
= m ⋅ a, (7)

where m is the mass of the particle and a is its acceleration under
the action of the entropic force. We now write for convenience the
entropic force in terms of the entropy and position change as

FS = T
ΔSinf

Δr
. (8)

We consider that a single particle m moves in space toward a larger
mass M, under this entropic force (Fig. 3), in order to reduce
the overall information entropy as dictated by the second law of
infodynamics.

Taking the nominator as the entropy change due to the move-
ment of the particle of mass m over an infinitesima distance Δr (i.e.,
a Planck length or a single elementary cell), Δr can be taken equal
to one reduced Compton wavelength,7 which is equal to the Planck
length when the particle has a mass close to the Planck mass (i.e., on
the order of ∼10−8 Kg),

Δr ≈ λ =
h̵
mc

, (9)

where c is the speed of light. Note that the use of reduced Compton
wavelength (h/2π) is a common representation of mass at the quan-
tum scale when it pertains to inertial mass. Again, this relation has

FIG. 3. Schematic of the entropic force acting on the object of mass m, which
moves toward mass M to reduce the information entropy in space.

been used previously in an identical form by Bekenstein7 and Ver-
linde.8 Using relation (2), the change in the entropy of information
due to the position change of the mass m over a single elementary
cell is

ΔSinf = kb ln (2)(NHN(X) − (N − 1)HN−1(X)). (10)

The particle’s movement is tracked by the change in the function H.
If the particle’s movement produced no change in the information
entropy, then HN(X) = HN−1(X) = H(X), so (10) becomes

ΔSinf = kb ln (2)H(X). (11)

In order to demonstrate the validity of this approximation, we com-
puted HN(X) and HN−1(X) for two matter objects in space for a
range of N up to 10 000 elementary cells. Figure 4 shows that for
a large N, the two functions can be safely approximated as equal.

We now use the mass–energy–information (M/E/I) equiva-
lence principle, proposed in 2019,15 and we equate the entire mass
of an object M to an information mass. Since the mass of a bit of
information is known,15,16 the mass of NH(X) bits of information
would have an equivalent mass of

M = NH(X)
kbT ln (2)

c2
. (12)

Extracting the expression of T from relation (12) and combining (8),
(9), and (11), we obtain the following expression for the entropic
force:

FS =
Mmc3

h̵N
. (13)

We now recall that the Planck length Lp is given by

Lp =

√
Gh̵
c3

, (14)

FIG. 4. Information entropy content per elementary cell as a function of N. For a
large N, H(X) remains constant when a matter object moves over a single cell.

AIP Advances 15, 045035 (2025); doi: 10.1063/5.0264945 15, 045035-5
© Author(s) 2025

 16 June 2025 19:25:26

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

where G is the gravitational constant. Since the number of informa-
tion states equals the number of elementary cells, N ≈ R2

Lp
2 , combin-

ing (13) and (14), we recover an expression of the entropic force that
is identical to Newton’s law of gravity,

FS = G
Mm
R2 . (15)

V. RELATION TO VERLINDE’S ENTROPIC
GRAVITY STUDIES

Verlinde’s seminal work published in 20118 proposed that grav-
ity arises as an entropic force due to changes in a holographic screen
storing information associated with the positions of material bod-
ies in space. His approach relied on the holographic principle7,17,18
and the concept of entropic force, showing that Newton’s law
of gravity and Einstein’s fiel equations emerge naturally from
information-theoretic principles. Following Verlinde’s work, other
studies demonstrated the entropic nature of gravity,9,11,12 including
testing the theory on empirical data.19–21

Our study arrives at a similar conclusion but through a dis-
tinct approach, and there are key differences between this study and
Verlinde’s work. While Verlinde’s approach derives gravitational
attraction from entropic force considerations linked to holographic
screens, this study emphasizes the second law of infodynamics as
the primary driver, combined with the M/E/I equivalence princi-
ple, which are both absent in Verlinde’s formulation. In this study,
the gravitational force emerges as an optimization process where
matter moves in space to reduce information entropy, a perspec-
tive deeply rooted in computational physics and information theory.
This is in direct contrast to Verlinnde’s work, where his entropic
force points in the direction of increasing entropy. Verlinde claims
that the “dynamics of information stored on each screen is given by
some unknown rules, which can be thought of as a way of processing
the information that is stored on it.” In this study, we show that the
second law of infodynamics governs the dynamics of information,
without the need for the emergent space-time concepts and arbitrary
introduction of holographic screens. Despite these differences, both
approaches lead to the conclusion that gravity is not a fundamen-
tal interaction but rather a macroscopic consequence of microscopic
information dynamics. The results achieved in this study, therefore,
complement Verlinde’s work, making this study a novel extension
of the entropic gravity paradigm.

VI. CONCLUSIONS
This study presents a novel perspective on gravity as an

entropic force, grounded in the second law of infodynamics and
the mass–energy–information equivalence principle. By deriving
Newton’s law of gravity from information-theoretic considerations,
this work supports the view that gravitational attraction arises due
to a fundamental drive to reduce information entropy in the uni-
verse. The results obtained here align with Verlinde’s entropic
gravity framework but introduce distinct conceptual and method-
ological differences. This study suggests that gravity serves as a
computational optimization process, where matter self-organizes to

minimize the complexity of information encoding within space-
time. The broader implications of this work extend to fundamental
physics, including black hole thermodynamics, darkmatter and dark
energy considerations, and potential connections between gravity
and quantum information theory. Whether the universe is indeed a
computational construct remains an open question, but the entropic
nature of gravity provides compelling evidence that information
is a fundamental component of physical reality and data com-
pression drives physical processes in the universe. Future research
should focus on refinin this framework, exploring its applicability
in relativistic and quantum gravitational contexts, and investigating
possible experimental validations.
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