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Abstract
The Standard Model of particle physics describes electromagnetic, weak, and strong
interactions, which are three of the four known fundamental forces of nature. The unification of
the fourth interaction, gravity, with the Standard Model has been challenging due to
incompatibilities of the underlying theories—general relativity and quantum field theory. While
quantum field theory utilizes compact, finite-dimensional symmetries associated with the
internal degrees of freedom of quantum fields, general relativity is based on noncompact,
infinite-dimensional external space-time symmetries. The present work aims at deriving the
gauge theory of gravity using compact, finite-dimensional symmetries in a way that resembles
the formulation of the fundamental interactions of the Standard Model. For our eight-spinor
representation of the Lagrangian, we define a quantity, called the space-time dimension field,
which enables extracting four-dimensional space-time quantities from the eight-dimensional
spinors. Four U(1) symmetries of the components of the space-time dimension field are used to
derive a gauge theory, called unified gravity. The stress-energy-momentum tensor source term
of gravity follows directly from these symmetries. The metric tensor enters in unified gravity
through geometric conditions. We show how the teleparallel equivalent of general relativity in
the Weitzenböck gauge is obtained from unified gravity by a gravity-gauge-field-dependent
geometric condition. Unified gravity also enables a gravity-gauge-field-independent geometric
condition that leads to an exact description of gravity in the Minkowski metric. This differs
from the use of metric in general relativity, where the metric depends on the gravitational field
by definition. Based on the Minkowski metric, unified gravity allows us to describe gravity
within a single coherent mathematical framework together with the quantum fields of all
fundamental interactions of the Standard Model. We present the Feynman rules for unified
gravity and study the renormalizability and radiative corrections of the theory at one-loop order.
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The equivalence principle is formulated by requiring that the renormalized values of the inertial
and gravitational masses are equal. In contrast to previous gauge theories of gravity, all infinities
that are encountered in the calculations of loop diagrams can be absorbed by the redefinition of
the small number of parameters of the theory in the same way as in the gauge theories of the
Standard Model. This result and our observation that unified gravity fulfills the
Becchi–Rouet–Stora–Tyutin (BRST) symmetry and its coupling constant is dimensionless
suggest that unified gravity can provide the basis for a complete, renormalizable theory of
quantum gravity.

Supplementary material for this article is available online
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1. Introduction

Quantum field theory is a theoretical framework, which syn-
thesizes classical field theory, quantummechanics, and special
relativity [1–3]. The Standard Model of particle physics arises
from this framework through unitary symmetries of fermionic
and Higgs fields related to invariances of a physical system
[4]. The gauge invariance of quantum electrodynamics (QED),
related to the Abelian phase rotation transformations of fermi-
ons, is themost trivial example of such a symmetry [U(1)]. The
Yang–Mills theory extends the gauge theory to non-Abelian
special unitary symmetries [1–5], which enablemutually inter-
acting force carriers. It describes the behavior of the other
fundamental interactions of the Standard Model being at the
core of the unification of electrodynamics to weak [SU(2)] and
strong [SU(3)] interactions [4]. The theories of these inter-
actions are called the electroweak theory and quantum chro-
modynamics (QCD). The Yang–Mills gauge symmetries oper-
ate as matrix transformations of the Higgs field and doublets
and triplets of fermionic fields. The symmetry groups of the
StandardModel are all compact and finite dimensional. A sim-
ilar compact and finite-dimensional unitary-symmetry-based
approach to the description of gravity as a gauge field has
remained unknown [6–10]. Therefore, alternative approaches,
such as string theory [11–13], loop quantum gravity [14–17],
asymptotic safety [18, 19], noncommutative geometry [20],
and causal dynamical triangulation [21], are being developed.
There are also discussions on whether gravitational interaction
should be quantized at all [22, 23].

The current standard understanding of gravity is based on
general relativity, which describes gravitational interaction
through the curvature of space-time that is similarly exper-
ienced by all objects [8, 9, 24]. This universality is dic-
tated by Einstein’s equivalence principle [8, 25, 26]. It fol-
lows that the space-time symmetries of gravity appear fun-
damentally different from the symmetries of the Standard
Model. In modern understanding of gravity, put forward by
Einstein [27] and Cartan [28], it is recognized that, in addi-
tion to the curvature of space-time, the gravitational interac-
tion can also be equivalently described by different metric-
affine geometries using torsion or nonmetricity [29–33]. Thus,
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curvature, torsion, and non-metricity provide three seemingly
different representations of the same underlying theory of gen-
eral relativity as special cases of a wider class of gauge the-
ories of gravity [29–42]. The theory, where only torsion is
nonzero, is called the teleparallel equivalent of general relativ-
ity (TEGR) [30–36]. TEGR is considered to be a natural
way to understand the gauge field aspects of gravity since
it can be formulated as the gauge theory of the translation
group, and it enables the Lorentz-covariant definition of the
stress-energy-momentum (SEM) tensor of gravity [37, 43].
Modifications of TEGR have also been widely studied [44–
54]. The present work investigates the possibility of deriv-
ing the gauge theory of gravity by using compact, finite-
dimensional gauge symmetry groups instead of the noncom-
pact, infinite-dimensional translation gauge group of TEGR.
We use the eight-spinor formalism [55] and the associated
unitary symmetries in a way that closely resembles the for-
mulation of the interactions of the Standard Model. Thus, the
goal of the present work is to bring the gauge theory of grav-
ity as close as possible to the gauge theory formulation of the
Standard Model, and thereby to contribute to improved under-
standing of the relations of all four fundamental interactions of
nature.

Many authors have approached the problem of unifying
the Standard Model and gravity by attempting to reformu-
late space-time symmetries in a way compatible with the
gauge symmetries of the Standard Model [56–71]. The dif-
ference between external space-time symmetries and symmet-
ries related to internal degrees of freedom, which govern the
dynamics of quantum fields via creations and annihilations of
field quanta, however, represents a challenge for this gauge
theory approach of gravity especially at high energies [36, 72–
76]. In previous literature, there are at least two different ways
to interpret whether a symmetry is internal or external. The
first interpretation is based on observing how the given sym-
metry transformation operates on objects in the Lagrangian
density. Internal symmetries operate via scalar and matrix
multiplications, which do not depend on how the fields vary
around the given space-time point. Examples are the mul-
tiplication of the Dirac field by a complex phase factor in
QED and the color and weak isospin rotations of fermion
field triplets and doublets and the Higgs field doublet in the
strong and weak interactions of the Standard Model. This is in
contrast with external symmetries, such as space-time trans-
lations, which are generated by differential operators [3]. The
second interpretation of determining the internal or external
nature of a symmetry is based on the well-known Coleman–
Mandula theorem [77]. This theorem states that the symmetry
group of a theory that can be described by an S-matrix is loc-
ally isomorphic to the direct product of the Poincaré group and
internal symmetry groups. Therefore, any symmetries associ-
ated with the Poincaré symmetry structure of the space-time
are clearly not internal symmetries from the point of view
of the Coleman–Mandula theorem. Consequently, symmet-
ries associated with gravity can be interpreted internal only
according to the first interpretation discussed above. The four

U(1) symmetries of gravity, to be revealed in the present
work, are based on the eight-spinor representation of the
Lagrangian density, and they are internal according to the first
interpretation above. To avoid misunderstanding, we, how-
ever, call these symmetries the U(1) symmetries of gravity
instead of internal symmetries.

The main challenge of the conventional gauge theory
approach of gravity, which emerges from the nature of the
space-time symmetries, is the nonrenormalizability of the res-
ulting theory without an infinite number of counterterms [3, 4,
78–84]. In contrast, all gauge theories of the Standard Model
are renormalizable, which means that their ultraviolet diver-
gences can be reabsorbed into the redefinition of a finite num-
ber of parameters [4, 85, 86]. The renormalization procedure
then leads to the running of the coupling constants as a func-
tion of the energy scale [1, 3, 4]. The nonrenormalizability
of conventional theories of gravity makes it impossible to use
the quantized gauge theory of gravity to make predictions at
high energies. However, the quantum field theory treatment
of general relativity can be argued to be successful as a low-
energy effective field theory [4, 78, 87–92]. The main idea
of the effective field theory is that the low-energy degrees of
freedom organize themselves as quantum fields in such a way
that one can make predictions without knowledge of the full
high-energy theory [78]. This also indicates that fundamental
breakthroughs are needed to formulate a predictive quantum
theory of gravity applicable to all energy scales. Such a theory
can finally answer ultimate questions on the structure of the
Universe in circumstances of extremely high energy densities,
such as those inside black holes and at the possible beginning
of time [6].

On the experimental side, general relativity has so far
passed all tests planned to probe gravitational interaction.
The well-known classical tests involve the precession of the
perihelion of Mercury [24], the bending of light by the Sun
[93], and the gravitational redshift of light [94]. New experi-
ments are continuously developed [95–104]. The waveforms
recorded in recent measurements of gravitational waves [105–
107] are in good agreement with general relativity. The first
image of a black hole is consistent with the shadow of a
Kerr black hole predicted by the theory [108]. Other recent
measurements involve the study of the effect of gravity on
the motion of antimatter [109] and the measurement of grav-
ity with milligram-scale masses [110, 111] and with bending
beam resonators [112, 113].

In a recent work [55], we have reformulated QED based
on an eight-component spinorial representation of the elec-
tromagnetic field. The eight-spinor formulation reveals a pro-
found connection between the unitary symmetries of the
Lagrangian density in the eight-dimensional spinor space and
the symmetric SEM tensor of the Dirac and electromagnetic
fields. Since the SEM tensor is the well-known source of the
gravitational field in general relativity, it becomes obvious
that the gauge theory obtained by studying the appropriate
Lagrangian density under unitary symmetry transformations
describes gravitational interaction. In such a theory, the SEM
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tensor appears analogously to the pertinent source terms of the
quantum fields of the Standard Model. This is the basis for
the development of the gauge theory of gravity, called unified
gravity, in the present work. The present work also essentially
generalizes some of the key mathematical concepts of our pre-
liminary study [55].

In this work, we extend the eight-spinor formulation to
cover the full Standard Model and derive the gauge theory
of unified gravity. Our theory is based on introducing the
concept of the space-time dimension field, a geometric object
which, by definition, enables extracting four-dimensional
space-time quantities from the eight-dimensional spinor space.
Introducing the space-time dimension field enables identi-
fying compact, finite-dimensional unitary symmetries in the
Lagrangian density, which can be utilized to form a gauge
theory in analogy to how gauge symmetries are used in the
Standard Model. While the interaction symmetries of the
Standard Model are based on symmetry transformations of
fermionic and Higgs fields as discussed above, our exten-
sion of the Standard Model to cover gravity is based on
four U(1) symmetry transformations, which act on the com-
ponents of the space-time dimension field. Therefore, the
symmetries of the space-time dimension field form a hier-
archy separate from the symmetries of the Standard Model.
The U(1) symmetry transformations of the space-time dimen-
sion field components allow us to couple the quantum fields
of the Standard Model to a tensor gauge field in a way
that is formally analogous to the gauge couplings of the
fields in the electromagnetic, weak, and strong interactions.
Once the gauge field and its Lagrangian density are intro-
duced, we obtain unified gravity and its dynamical equations,
which are shown to describe the behavior of the gravitational
field.

The space-time metric tensor enters unified gravity through
geometric conditions. We are allowed to use geometric condi-
tions, in which the space-time metric tensor is independent of
the gravity gauge field. This leads us to study unified gravity
in the Minkowski metric (UGM) in an exact way. This differs
from the use of metric in general relativity, where the metric
depends on the gravitational field by definition [8–10, 24], and
whose effective quantization requires expansion of the metric
about the flat or smooth background with an assumption that
the deviation is small [88, 104, 114–121]. In this respect, the
conventional translation gauge formulation of TEGR is not
significantly different from general relativity since a similar
expansion of the tetrad is needed [122, 123]. Alternatively,
in unified gravity, we are allowed to use geometric condi-
tions, in which the space-time metric tensor depends on the
gravity gauge field, as in general relativity and in TEGR [30–
32, 34–36]. We show that, within a particular Weitzenböck
gauge fixing approach, the representation of unified gravity
becomes equivalent to the known representation of TEGR in
the Weitzenböck gauge (TEGRW), where the teleparallel spin
connection vanishes. This shows that unified gravity is in per-
fect agreement with the known nonlinear field equations of
general relativity.

The harmonic gauge fixing of UGM is analogous to the
Feynman gauge fixing of QED. It enables us to determine the
Feynman rules for unified gravity. These rules are also written
in a more general form for an arbitrary gauge fixing parameter.
As a gauge theory similar to those of the Standard Model [1,
2], unified gravity is subject to quantization. The quanta of
the gauge field, the gravitons, are spin-2 tensor bosons. These
quanta are to be added in the spectrum of the known element-
ary particles extending the StandardModel to describe gravity.
However, this can be done only after the nonrenormalizability
problem of quantum gravity has been fully resolved making
the quantum theory predictive at all energies. In this work,
we study the renormalizability and the radiative corrections
of UGM at one-loop order. We show that, in contrast to previ-
ous gauge theories of gravity, all infinities that are encountered
in the calculations of loop diagrams can be absorbed by the
redefinition of the small number of parameters of the theory in
the same way as in the gauge theories of the Standard Model.
Furthermore, Einstein’s equivalence principle is formulated by
requiring that the renormalized values of the gravitational and
inertial masses are equal. The direct relation between the equi-
valence principle and renormalization is obviously absent in
previous studies of the equivalence principle in the quantum
regime [25, 26]. Based on the dimensionless coupling constant
and the fulfillment of the Becchi–Rouet–Stora–Tyutin (BRST)
symmetry [1, 4, 124–126], we expect that unified gravity is
renormalizable to all loop orders. The complete proof extend-
ing our one-loop results to all loop orders is, however, left as
a topic of further works.

Gravity couples to all fields and matter. Therefore, one can-
not exclude any field or matter from the complete dynamical
description of gravity. However, to make our theory of unified
gravity more transparent and easier to understand for nonex-
pert readers, we limit, in the first part of this work, our study
to the coupling between gravity and electrodynamics. The sys-
tem of the electromagnetic field, Dirac electron–positron field,
and the gravitational field provides all the insight needed for
obtaining a unified description of gravity in a coherent frame-
work with the other known fundamental forces of nature. The
extension of unified gravity to cover the full Standard Model
is presented in the later part of the present work.

This work is organized as follows: section 2 describes
the theoretical concepts and conventions, including the eight-
spinor formulation, originally introduced in [55]. The ker-
nel matrices, the space-time dimension field, and the gener-
ating Lagrangian density of gravity are presented in section 3.
We also formulate the equivalence principle in unified grav-
ity. Furthermore, the generating Lagrangian density of grav-
ity is shown to be equal to the Lagrangian density of QED
in flat space-time. Section 4 discusses the symmetries of the
generating Lagrangian density of gravity and derives the con-
servation law of the SEM tensor of the Dirac and electromag-
netic fields. The gravity gauge field is introduced through the
gauge-covariant derivative in section 5. The gravity gauge field
strength tensor is also discussed. In section 6, we present the
locally gauge-invariant Lagrangian density of unified gravity.
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This section also provides the scaled representation of unified
gravity to allow easier comparison with the gauge theories of
the Standard Model. Section 7 discusses the representation of
unified gravity in the Minkowski metric in UGM and derives
the corresponding dynamical equations. Section 8 presents
the Feynman rules and their selected applications in UGM.
Section 9 proves the renormalizability of unified gravity at
one-loop order and determines the values of the related renor-
malization factors using the conventional on-shell renormaliz-
ation scheme and dimensional regularization [4]. In section 10,
radiative corrections to the Coulomb andNewtonian potentials
and to the anomalous magnetic moment of the electron are cal-
culated to exemplify the calculation of radiative corrections
using unified gravity. Section 11 derives TEGRW from unified
gravity by applying the Weitzenböck gauge fixing approach.
The dynamical equations for the Dirac, electromagnetic, and
gravitational fields in TEGRW are also presented. The exten-
sion of the theory to cover all quantum fields of the Standard
Model is developed in section 12. The results are discussed
and compared with previous theories in section 13. Finally,
conclusions are drawn in section 14.

2. Theoretical concepts and conventions

This section presents the theoretical concepts and conventions
used in the present work. These include the index conventions,
tetrads, metric tensors, connection coefficients, torsions, con-
tortions, derivative operators, and the eight-spinor formalism
of [55].

2.1. Index conventions, tetrads, and metric tensors

The Latin indices a,b,c,d ∈ {0,x,y,z} in this work range
over four Cartesian Minkowski space-time coordinates. The
Latin indices starting from i range over the three spatial
dimensions, i.e. i, j,k ∈ {x,y,z}, or over other values separ-
ately specified. The Greek indices denote the general space-
time indices, which range over the four general space-time
dimensions µ,ν,ρ,σ ∈ {x0,x1,x2,x3}. The Latin Cartesian
Minkowski space-time indices are lowered and raised by the
Cartesian Minkowski metric tensor ηab and its inverse ηab. We
use the sign convention η00 = 1 and ηxx = ηyy = ηzz =−1. The
Greek general space-time indices are raised and lowered by the
general space-timemetric gµν and its inverse gµν . The determ-
inant of the general space-time metric tensor is denoted by
g= det(gµν).

The Latin Cartesian Minkowski space-time indices and
any Greek general space-time indices can be converted into
each other by the tetrad e µa and the inverse tetrad eaµ [27–
29, 34–36]. In flat space-time, i.e. in the absence of the
gravitational field, and more generally, in a Minkowski man-
ifold with the torsion and the spin connection equal to zero,
the tetrad and the inverse tetrad are given by e◦ µa = ∂µxa and
e◦aµ = ∂µxa, where xa is a four-vector ofMinkowski space-time
coordinates, e.g. xa = (ct,x,y,z) in Cartesian coordinates and
xa = (ct,rsinθ cosϕ,rsinθ sinϕ,rcosθ) in spherical coordin-
ates. Respectively, we use the symbol e• µa to highlight the

tetrad of TEGRW, discussed in section 11. The generic tetrad
symbol e µa is used to indicate that an equation is independ-
ent of the definition of the tetrad and one is not restricted to
using the tetrad of theMinkowski manifold or that of TEGRW.
In any definition of the tetrad, the general space-time met-
ric tensor is given in terms of the Cartesian Minkowski met-
ric tensor and inverse tetrads as gµν = ηabeaµe

b
ν . In the spe-

cial case of the Minkowski space-time in Cartesian coordin-
ates, used in UGM, the Latin and Greek indices are identical
and the tetrad and the metric tensor are trivial as e◦ νµ = δνµ and
gµν = ηµν , where δνµ is the Kronecker delta.

Throughout this work, with a few exceptions, we use the
Einstein convention for the summation over repeated indices.
Exceptions to the summation convention are separately dis-
cussed and indicated by parentheses around the indices.

2.2. Connection coefficients, torsions, and contortions

The Levi–Civita connection coefficients of standard general

relativity, i.e. the Christoffel symbols Γ
◦
µ
σν , are associated

with all Greek space-time indices. They are used to define
the Levi–Civita coordinate-covariant derivative as presented
in section 2.3. The Christoffel symbols can always be written
in terms of the metric tensor as [8, 127]

Γ
◦
µ
σν =

1
2
gµρ (∂σgρν + ∂νgρσ − ∂ρgσν) . (1)

The Christoffel symbol contraction Γ
◦
σ
ρσ, used in many

equations of this work, can be given in terms of the determ-
inant of the metric tensor as

Γ
◦
σ
ρσ =

1√
−g

∂ρ
(√

−g
)
. (2)

In a Minkowski manifold with the torsion and the spin con-
nection equal to zero, the Christoffel symbols can be written
in terms of tetrads as [30, 34]

Γ
◦
µ
σν = e◦ µa ∂νe

◦a
σ =−e◦aσ∂νe

◦ µ
a . (3)

The condition of zero torsion tensor, T
◦
ρ
µν , is written as

T
◦
ρ
µν = Γ

◦
ρ
µν −Γ

◦
ρ
νµ = 0. (4)

The related contortion tensor, K
◦
µνρ, is trivially zero as

K
◦
µνρ =

1
2

(
T
◦
νµρ+T

◦
µρν −T

◦
ρνµ
)
= 0. (5)

In TEGRW, where the spin connection is zero but the tor-
sion is generally nonzero, the relation of the Christoffel sym-
bols is given by [34, 43]

Γ
◦
µ
σν = Γ

•
µ
σν −K

•
µ
σν . (6)

6
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Here Γ
•
µ
σν is the is the so-called Weitzenböck connection and

K
•
µ
σν is the corresponding contortion tensor. The Weitzenböck

connection is given by [29, 30]

Γ
•
µ
σν = e• µa ∂νe

•a
σ =−e•aσ∂νe

• µ
a , (7)

The torsion tensor of the Weitzenböck connection is given by
[30, 34, 43]

T
•
ρ
µν = Γ

•
ρ
µν −Γ

•
ρ
νµ = e• ρa ∂µe

•a
ν − e• ρa ∂νe

•a
µ. (8)

From this definition, it follows that the torsion tensor is anti-

symmetric in its last two indices as T
•
ρ
µν =−T

•
ρ
νµ. In terms of

the torsion tensor, the contortion tensor is written as

K
•
µνρ =

1
2

(
T
•
νµρ+T

•
µρν −T

•
ρνµ
)
. (9)

The contortion tensor is antisymmetric in its first two indices

as K
•
µνρ =−K

•
νµρ.

The definition of e•aσ in the gauge theory formulation
of TEGRW obtained from unified gravity is discussed in
section 11.1. If the so-called spin connection is added to the
Weitzenböck connection of TEGRW, the connection is called
the teleparallel connection [30]. However, there is varying ter-
minology in the literature [34]. The spin connection is not used
in the present work. For the related discussion on the local
Lorentz invariance of the Lagrangian density, see section 4.3.

2.3. Derivative operators

The partial derivative operator is denoted by ∂ρ as conven-
tional. In Cartesian Minkowski coordinates, we, thus, have
∂a = ( 1c∂t,∇), where the three-dimensional vector-differential
operator ∇ is defined as ∇= (∂x,∂y,∂z). For the contraction
of ∂ρ with itself, we use the shorthand notation ∂ρ∂ρ = ∂2.

As another short notation, we define the space-time derivat-
ive operator ∇̃ρ. In distinction to the conventional Levi–Civita
coordinate-covariant derivative, to be defined below, the oper-
ator ∇̃ρ operates through a contraction with a single space-
time index of a tensor or pseudotensor and does not care about
other indices as

∇̃ρV
µ1...ρ...µn

ν1...νm

=
1√
−g

∂ρ
(√

−gVµ1...ρ...µn
ν1...νm

)
= ∂ρV

µ1...ρ...µn
ν1...νm +Γ

◦
σ
ρσV

µ1...ρ...µn
ν1...νm . (10)

Here Vµ1...ρ...µn
ν1...νm is a generic tensor or pseudotensor with

an arbitrary number of upper and lower space-time indices.
Another derivative to be used is the well-known Levi–

Civita coordinate-covariant derivative, denoted by ∇
◦
ν and

defined as [8, 127]

∇
◦
ρV

µ1...µn
ν1...νm = ∂ρV

µ1...µn
ν1...νm

+Γ
◦
µ1
σρV

σµ2...µn
ν1...νm + . . .+Γ

◦
µn
σρV

µ1...µn−1σ
ν1...νm

−Γ
◦
σ
ν1ρV

µ1...µn
σν2...νm − . . .−Γ

◦
σ
νmρV

µ1...µn
ν1...νm−1σ.

(11)

In the present work, the Levi–Civita coordinate-covariant
derivative is the only coordinate-covariant derivative used.
For completeness and for comparison, we present the telepar-
allel coordinate-covariant derivative, which is in analogy to
equation (11) given by

∇
•
ρV

µ1...µn
ν1...νm = ∂ρV

µ1...µn
ν1...νm

+Γ
•
µ1
σρV

σµ2...µn
ν1...νm + . . .+Γ

•
µn
σρV

µ1...µn−1σ
ν1...νm

−Γ
•
σ
ν1ρV

µ1...µn
σν2...νm − . . .−Γ

•
σ
νmρV

µ1...µn
ν1...νm−1σ.

(12)

Using the definition of ∇
•
ρ in equation (12), the tetrad e•aν

satisfies the so-called distant parallelism condition, given by

∇
•
ρe
•a
ν = 0 [34]. The name of teleparallel gravity originates

from this condition [34].
For the Dirac field, we also define the conventional right

and left electromagnetic-gauge-covariant derivative operators

D
→

ν and D
←

ν , given by [1, 128]

D
→

ν = ∂
→

ν + i
qe
h̄
Aν , D

←

ν = ∂
←

ν − i
qe
h̄
Aν . (13)

Here h̄ is the reduced Planck constant, Aν is the electromag-
netic four-potential gauge field, and qe = Qe is the electric
charge of the Dirac field, where e is the elementary charge
and Q=±1 for positrons and electrons. The vector arrows
in equation (13) indicate the direction in which the differen-
tial operators operate. In the case of other fundamental inter-
actions of the Standard Model, the derivative operators in
equation (13) are complemented by the pertinent gauge field
terms as discussed in section 12. The eight-spinor forms of
the partial differential and electromagnetic-gauge-covariant
derivative operators are presented in the next section.

2.4. Eight-spinor formalism

The eight-spinor formulation of QED, presented in [55], is
not the first spinorial representation of the electromagnetic
field [129–134]. However, the eight-spinor formalism has cer-
tain advantages over other known formulations. For example,
it enables the representation of all Maxwell’s equations by
a single spinorial equation. As discussed below and in [55],
the term eight-spinor is used in a meaning that covers dif-
ferent types of eight-component physical quantities whose
certain components can be defined to be zero and whose
Lorentz transformation properties depend on the type of the
eight-spinor. Here we briefly review the key quantities of the
eight-spinor formulation.

7
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The eight-spinor theory is formulated in terms of four
8× 8 bosonic gamma matrices γaB and γ5

B = iγ0
Bγ

x
Bγ

y
Bγ

z
B

[55]. These matrices and their equivalence transformations are
explicitly presented in section 1 of the supplementary mater-
ial. The matrices γaB satisfy the Dirac algebra, i.e. the Clifford
algebra Cℓ1,3(C). The defining property of the Dirac algebra of
γaB is the anticommutation relation {γaB,γbB}= 2ηabI8, where
I8 is the 8× 8 identity matrix.

The conventional 4× 4 Dirac gamma matrices are denoted
by γaF. Here we use the subscript F in distinction to the sub-
script B used for bosonic gamma matrices discussed above.
The Clifford algebra relation for the Dirac gamma matrices
is given by {γaF,γbF}= 2ηabI4, where I4 is the 4× 4 identity
matrix. In some places, we use the Feynman slash notation for
the Dirac gamma matrices to write equations more compactly.
For example, one can write γρF∂ρ = ∂/ and γρFpρ = p/.

In analogy with the conventional Dirac adjoint ψ̄ = ψ†γ0
F

[1], whereψ is the four-component Dirac spinor and the super-
script † denotes the Hermitian conjugate, the zeroth bosonic
gamma matrix γ0

B is used to define eight-spinor adjoints. For
a generic eight-spinor Y, the adjoint operation is defined as
Ȳ= Y†γ0

B. For a generic 8× 8 matrix M, the corresponding
adjoint operation is defined as M̄= γ0

BM
†γ0

B.
To express four-vector quantities in the eight-spinor nota-

tion as discussed below, we define four eight-spinor unit vec-
tors ea as

e0 = [0,0,0,0,1,0,0,0]T ,

ex = [0,1,0,0,0,0,0,0]T ,

ey = [0,0,1,0,0,0,0,0]T ,

ez = [0,0,0,1,0,0,0,0]T . (14)

Here the superscript T denotes the transpose. The eight-spinor
unit vectors ea and their adjoints ēa = e†aγ

0
B satisfy the follow-

ing index-raising identities:

ea = ηabeb =−γaBe0,

ēa = ηabēb =−ē0γ
a
B. (15)

The electromagnetic field is described by an eight-
component electromagnetic potential spinor Θ, which is a
four-vector-type eight-spinor formed from the components
of the electromagnetic four-potential Aa [55]. In the present
work, we always use real-valued gauge fields and potentials
and omit the subscriptℜ used in eight-spinors in [55]. In terms
of the electromagnetic scalar and vector potential compon-
ents of Aa = (ϕe/c,A), where ϕe is the scalar potential and
A= (Ax,Ay,Az) is the vector potential, the electromagnetic
potential spinor is given by [55]

Θ=

√
ε0
2
cAaea =

√
ε0
2

[0,cAx,cAy,cAz,ϕe,0,0,0]
T
. (16)

Here ε0 is the vacuum permittivity, and c is the speed
of light in vacuum. The adjoint spinor Θ̄ is given by
Θ̄ = Θ†γ0

B =
√
ε0/2 [0,cAx,cAy,cAz,−ϕe,0,0,0]. As seen

from equation (16), there are only four nonzero components
inΘ. More nonzero components are needed in the eight-spinor
representation of the electric and magnetic fields as described
below.

The gauge-invariant electromagnetic spinor Ψ, associated
with the electric and magnetic fields, is a spin-1-field-type
eight-spinor, given in terms of the electromagnetic potential
spinor Θ in equation (16) by [55]

Ψ =−(I8 + e0ē0)γ
a
B∂aΘ

=

√
ε0
2

[0,Ex,Ey,Ez,0, icBx, icBy, icBz]T . (17)

To obtain the last form of equation (17), we have used the well-
known expressions of the electric and magnetic fields in terms
of the scalar and vector potentials, given by E= (Ex,Ey,Ez) =
−∇ϕe − ∂

∂tA and B= (Bx,By,Bz) =∇×A [135]. In the spe-
cial case of the Lorenz gauge, defined by the gauge condition
∂aAa = 0, one can set the term −e0ē0γ

a
B∂aΘ in equation (17)

to zero since ē0γaB∂aΘ=
√
ε0/2c∂aAa. This choice also cor-

responds to the Feynman gauge as discussed in section 7.2.1.
The electromagnetic adjoint spinor Ψ̄ is given by Ψ̄ = Ψ†γ0

B =√
ε0/2 [0,Ex,Ey,Ez,0, icBx, icBy, icBz].
As a convenient brief notation, the conventional four-

component Dirac spinor field ψ is used to form a Dirac eight-
spinor ψ8, given by

ψ8 = ψe0 = [0,0,0,0,ψ,0,0,0]T . (18)

Here the transpose operates on the eight-spinor degree of
freedom and not on the Dirac spinor ψ. As is evident from
equation (18), the components of ψ8 are not scalars but
four-component spinors. The use of a four-component Dirac
spinor as a component of the eight-spinor in equation (18)
may seem unusual at first sight but, apart from zero com-
ponents, it is similar to how the Dirac spinors of quarks
and leptons are used as triplets and doublets in the descrip-
tion of strong and electroweak interactions of the Standard
Model. The adjoint Dirac eight-spinor is given by ψ̄8 =
ψ†

8γ
0
Bγ

0
F = ψ̄ē0 = [0,0,0,0,−ψ̄,0,0,0]. Here ψ̄ = ψ†γ0

F is the
conventional Dirac adjoint for four-component spinors. All
quantum operators of conventional four-component Dirac
spinors extend to Dirac eight-spinors trivially so that they
operate in the usual way on the nonzero component of ψ8,
which is the conventional four-component Dirac spinor.

As discussed in [55], under the Lorentz transformation,
the electromagnetic spinor Ψ in equation (17) transforms as
Ψ→ΛSΨ, where the Lorentz transformation matrix ΛS is
given in equation (29) of [55]. This transformation preserves
Ψ invariant in 2π rotations, which is the characteristic property
of spin-1 fields [136]. In contrast, the Dirac eight-spinor ψ8 is
invariant in arbitrary transformations of the form ψ8 →ΛSψ8.
The reader can verify this by experimenting with the Lorentz
transformation matrices of [55]. Therefore, the eight-spinor

8
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degrees of freedom do not participate in the Lorentz trans-
formation of ψ8. Thus, the Lorentz transformation of ψ8 is
given by ψ8 →ΛFψ8, where ΛF is the conventional Lorentz
transformationmatrix of four-component Dirac spinors, which
operates on the components of ψ8 in equation (18), i.e. on
the conventional four-component Dirac spinorψ asψ→ΛFψ.
Therefore, ψ8 is not invariant in 2π rotations, but it is invariant
in 4π rotations, which is the characteristic property of spin- 12
fields [136–138].

In the conventional QED [136], reviewed in section 2 of
the supplementary material, the electric four-current density
Jae = (cρe,Je), where ρe is the electric charge density and Je
is the electric current density, is given in terms of the Dirac
spinors as Jae = qecψ̄γaFψ =−qecψ̄8γ

a
Fψ8. In the eight-spinor

formalism, the electric four-current density is described by
the charge-current spinorΦ, which is a four-vector-type eight-
spinor, given by [55]

Φ =
qe√
2ϵ0

ψ̄ (γF)ψ =

√
ε0
2
µ0cJ

a
eea

=

√
ε0
2

[0,µ0cJ
x
e ,µ0cJ

y
e ,µ0cJ

z
e,ρe/ε0,0,0,0]

T
. (19)

Here γF is an eight-spinor made of the Dirac gamma matrices,
and it is presented below. The eight-spinor adjoint ofΦ is given
by Φ̄ = Φ†γ0

B = qe(2ε0)−1/2ψ̄(γ̄F)ψ.
The Cartesian Minkowski coordinate forms of the con-

ventional 4× 4 Dirac gamma matrices γaF, partial derivatives

∂a, and the electromagnetic-gauge-covariant derivatives D
→

a

in equation (13) form eight-component spinors γF, ∂
→
and D

→
,

given by [55]

γF = γaFea =
[
0,γxF,γ

y
F,γ

z
F,γ

0
F,0,0,0

]T
, (20)

∂
→
=−ea∂

→

a =
[
0,∂
→

x,∂
→

y,∂
→

z,−∂
→

0,0,0,0
]T
, (21)

D
→
=−eaD

→

a =
[
0,D
→

x,D
→

y,D
→

z,−D
→

0,0,0,0
]T
. (22)

Here, again, the transpose operates on the eight-spinor degree
of freedom and not on the Dirac gamma matrices γaF in

equation (20). The adjoint spinors γ̄F, ∂
←
, and D

←
, are given by

γ̄F = [0,γxF,γ
y
F,γ

z
F,−γ0

F,0,0,0], ∂
←
= [0,∂

←

x,∂
←

y,∂
←

z,∂
←

0,0,0,0],

and D
←
= [0,D

←

x,D
←

y,D
←

z,D
←

0,0,0,0]. Using the partial derivat-
ive spinor in equation (21) and the electromagnetic potential
spinor in equation (16), the electromagnetic gauge-covariant-
derivative spinor in equation (22) and its adjoint can be rewrit-
ten as [55]

D
→
= ∂
→
− i

qe
√

2/ε0
h̄c

Θ, D
←
= ∂
←
+ i

qe
√

2/ε0
h̄c

Θ̄. (23)

The eight-spinor formulation enables writing field quantit-
ies in a compact way. For example, the electromagnetic scalar
and pseudoscalar are given by Ψ̄Ψ and iΨ̄γ5

BΨ [55]. In terms
of the electric and magnetic fields, we have

Ψ̄Ψ =− 1
4µ0

FabF
ab =

1
2

(
ε0E

2 − 1
µ0

B2

)
, (24)

iΨ̄γ5
BΨ=

1
4µ0

FabF̃
ab =−ε0cE ·B. (25)

Here Fµν is the electromagnetic field strength tensor. The
Cartesian Minkowski coordinate form of Fab is given in terms
of the electromagnetic four-potentialAa and the corresponding
electric and magnetic fields as [9, 135]

Fab = ∂aAb− ∂bAa

=


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 . (26)

The dual electromagnetic field tensor F̃µν in equation (25) is
defined as [135]

F̃ab =
1
2
εabcdFcd =


0 −Bx −By −Bz
Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0

 .
(27)

Here εabcd is the four-dimensional Levi–Civita symbol.

3. Space-time dimension field and the generating
Lagrangian density of gravity

In this section, we present the concept of the space-time
dimension field and use it to formulate the generating
Lagrangian density of gravity. Together with the symmetry
transformation in section 4, the space-time dimension field
forms the foundations of unified gravity. While the Standard
Model symmetries are associated with fermionic fields, their
doublets and triplets, and the Higgs field doublet, the sym-
metries of unified gravity are associated with the components
of the space-time dimension field as discussed in section 4.
It follows from these foundations that unified gravity does
not explicitly include internal degrees of freedom of quantum
fields and their symmetry properties in the description of grav-
ity. This limitation is common to all space-time-based formu-
lations of general relativity.

In flat space-time, the generating Lagrangian density of
gravity is equivalent to the known Lagrangian density of QED
as shown in section 3.7. Due to this equivalence, the space-
time dimension field is a mathematical, precisely defined tool,
which is associated with space-time but does not assume any
specific definition of the space-time metric tensor. The rela-
tion to the space-time metric tensor is obtained only after
applying separate geometric conditions, to be discussed in this
section and in sections 7.1 and 11.1. The gravitational interac-
tion, which determines the structure of space-time in general
relativity and TEGR, is shown to arise from symmetries of the
space-time dimension field as discussed in section 4 and in
sections thereafter.

9
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We have ended up to the concept of the space-time dimen-
sion field in a process of trial and error. Themain goal has been
to enable the gauge-theory description of gravity using a com-
pact, finite-dimensional gauge group, similar to those of the
fundamental interactions of the Standard Model. Without an
explicit, separate quantity, like the space-time dimension field,
the Lagrangian density of QED satisfies only the well-known
U(1) phase rotation symmetry of QED and external space-time
symmetries, which notoriously have a noncompact, infinite-
dimensional gauge group. Therefore, the space-time dimen-
sion field is added in the Lagrangian density to enable addi-
tional symmetries. The SEM tensor is the well-known source
of the gravitational field in general relativity. Thus, our goal is
to construct the generating Lagrangian density, for which the
variation with respect to the symmetry transformation para-
meters gives the SEM tensor. Through this procedure, the
SEM tensor appears analogously to the pertinent source terms
of the quantum fields of the Standard Model. The eight-spinor
representations of the SEM tensors of the Dirac and electro-
magnetic fields in terms of the kernel matrices, found in [55],
provided us the hint to use the kernel matrices, discussed in
section 3.1, in the construction of the space-time dimension
field. After investigating several alternatives, we have found a
singlemeaningful definition of the space-time dimension field,
to be given below.

We finally point out that the fundamental novelty of uni-
fied gravity is the addition of the space-time dimension field to
the Lagrangian density of the Standard Model without intro-
ducing any free physical parameters. Thus, the fundamental
hypothesis of unified gravity should sooner be considered to
be the symmetry properties of the space-time dimension field
and the way how it appears in the generating Lagrangian dens-
ity of gravity.

3.1. Kernel matrices of the eight-spinor theory

In the eight-spinor theory, we define four kernel matrices ta

as a mathematical tool to extract four-dimensional space-time
quantities from the eight-dimensional spinors. These matrices
are needed in the definition of the space-time dimension field
in section 3.3. The kernel matrices also play the role of the
symmetry transformation generators in the gauge theory of
unified gravity as shown in section 4.1. The space-time dimen-
sion field further enables an eight-spinor representation of
the Lagrangian density, whose unitary symmetries lead to the
gauge theory of unifed gravity. The kernel matrices ta can be
expressed in terms of the four bosonic gamma matrices as

ta =
(
γ0

Bγ
5
Bγ

a
B

)∗
. (28)

Here the superscript ∗ denotes the complex conjugate. The
matrices ta appear to be constant, traceless Hermitian, unit-
ary, and involuntary. The explicit expressions of ta in terms
of the Lorentz group generators of the four-vector represent-
ation are given in section 1.1 of the supplementary material.
The definition of ta through equation (28) is unique up to the
given representation of the bosonic gamma matrices. For the

Table 1. Restricted kernel, commutation, Hermiticity, unitarity, and
trace properties of the kernel matrices ta of the eight-spinor theory.
Here ΦL1 and ΦL2 are arbitrary four-vector-type eight-spinors [55],
VL denotes the group of such eight-spinors, εijk is the
three-dimensional Levi–Civita symbol, and δab is the Kronecker
delta. The commutation relation of the spatial kernel matrices ti is
the well-known commutation relation of SU(2). Therefore, the
matrices ta form the representation of U(1)⊗ SU(2) in the
eight-spinor theory.

Restricted kernel property
Φ̄L2taΦL1 = 0, for all ΦL1,ΦL2 ∈ VL

Mutual commutation relations
[t0, ti] = 0, [ti, tj] = 2iεijktk

Commutativity with bosonic gamma matrices
[ta,γ5

B] = 0, [ta,γb
Bγ

c
B] = 0

Hermiticity and unitarity
ta† = ta, (ta)−1 = ta†

Trace properties
Tr(ta) = 0, Tr(tatb) = 8δab

equivalence transformations of the bosonic gamma matrices,
see section 1.2 of the supplementary material. The kernel of
ta, with the restriction that the operation of ta is projected to
the space of four-vector-type eight-spinors, is the full space
of four-vector-type eight-spinors [55]. Therefore, we call the
matrices ta kernel matrices.

The restricted kernel, commutation, Hermiticity, unitarity,
and trace properties of ta are summarized in table 1. The com-
mutation relation of the spatial kernel matrices ti in table 1 is
the well-known commutation relation of SU(2). The relation
to the SU(2) structure is a feature that is common to our the-
ory and to the theory of Ashtekar variables for classical and
quantum gravity [14]. Detailed study of the relationship of the
theories is a topic of further work. In our case, we, furthermore,
observe that the four kernel matrices ta form the representation
of U(1)⊗SU(2) in the eight-spinor theory.

The main novelty of the kernel matrices ta in equation (28)
is that their properties in table 1 reveal the connection between
the CartesianMinkowski four-vectors and the unitary and spe-
cial unitary groups on which the Standard Model is based on.
The present work is founded on this insight.

3.2. Using kernel matrices to obtain four-dimensional
space-time quantities

The kernel matrices can be used to extract four-dimensional
space-time quantities from the eight-dimensional spinors. For
example, the Minkowski inner product correspondence is
given by xaxa = Φ̄Xγ

5
Bt

0ΦX = c2t2 − x2 − y2 − z2, where the
eight-spinor corresponding to the Cartesian Minkowski pos-
ition four-vector xa = (ct,x,y,z) is given by ΦX = xaea =
[0,x,y,z,ct,0,0,0]T. In the relation above, only the zeroth
kernel matrix t0 is needed together with the fifth bosonic
gamma matrix. Since Φ̄Xγ

5
Bt
iΦX = 0, we can write the

Minkowski inner product correspondence also as a sum xaxa =

10
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∑
a Φ̄Xγ

5
Bt
aΦX, where the right-hand side must contain an

explicit summation sign since there are no repeated indices.
This relation is implicitly utilized in the definition of the space-
time dimension field as the fundamental geometric object of
space-time in section 3.3 below. Examples of relations, where
all four kernel matrices are relevant, are the expressions of the
SEM tensors of the Dirac and electromagnetic fields, studied
in section 4.5.

3.3. Space-time dimension field

Here we define the fundamental object associated with
space-time, which we call the space-time dimension field.
Postulating this quantity, denoted by Ig, enables us to rewrite
the conventional Lagrangian density of QED in an eight-
spinor form, which we call the generating Lagrangian dens-
ity of gravity, discussed in section 3.6. The space-time dimen-
sion field Ig = [I0g,I

x
g,I

y
g,I

z
g]
T is described by four space-time-

dependent 8× 8 matrix-valued fields Iag, defined in terms of
the kernell matrices ta of equation (28) by the relations

∂⃗νI
(a)
g =−igg

(
∂νX(a)

)
t(a)I(a)g ,[

t(a),I(a)g

]
= 0, I(a)†g I(a)g = I8/gg. (29)

HereXa, for the four values of the index a, are called the space-
time-dependent phase factors of Ig, and gg is the scale constant
of unified gravity, to be discussed in more detail below. The
parentheses around the Latin indices in equation (29) indicate
that these indices are not summed over. From equation (29), it
follows that I†g∂⃗νIg =−i(∂νXa)ta, where the summation over
the index a is carried out on the right as conventional.

Solving equation (29) for the fields Iag and arranging a four-
component vector from the four Iag fields, we then have

Ig =


I0g
Ixg
Iyg
Izg

=


1√
gg
e−iggt0X0

1√
gg
e−iggtxXx

1√
gg
e−iggtyXy

1√
gg
e−iggtzXz

 . (30)

The form of Ig in this equation explains why Xa are called the
phase factors of Ig.

The space-time dimension field Ig is related to geometry
and it is not a dynamical field itself. Therefore, we must fix
the phase factors, Xa, so that they are not free functions of
space-time. Consequently, we fix Xa in terms of the Cartesian
Minkowski space-time coordinates so that

∂νXa = ∂νxa. (31)

This is the geometric condition that is applied whenever Ig
is used in calculations. We return to the geometric condition
of equation (31) in section 3.7, where we prove the equival-
ence of the generating Lagrangian density of gravity and the
Lagrangian density of QED. In the presence of gravity, we
return to the geometric condition in section 7.1 for UGM and
in section 11.1 for TEGRW.

The main novelty of the definition of Ig above is that
it makes the generating Lagrangian density of gravity, to
be defined in section 3.6, consistently equal to the known
Lagrangian density of QED. It also enables a hierarchy of sym-
metries separate from the fermionic and Higgs field internal
symmetries of the StandardModel. The symmetry transforma-
tions of Ig, studied in section 4, lead to the gauge theory of uni-
fied gravity. The conservation law of the SEM tensor is shown
to be obtained in accordance with Noether’s theorem, which
states that each generator of a continuous symmetry is associ-
ated with a conserved current [79, 139].

In the introduction of the generating Lagrangian density of
gravity in section VIII of [55], the matrix Ig was assumed to
be equal to I8/

√
gg, where we have accounted for the differ-

ent scaling of Ig by the constant
√
gg in the present work. This

assumption led to the special-unitary-symmetry-based deriva-
tion of the SEM tensors of the Dirac and electromagnetic fields
starting from the form of the generating Lagrangian density
of gravity used in [55]. With Ig = I8/

√
gg and ∂⃗νIg = 0, the

form of the generating Lagrangian density of gravity presented
in [55] is, however, not equal to the well-known Lagrangian
density of QED, which includes all other fields of the the-
ory except the gravitational field. Such an equality is desired
on the basis of how the Lagrangian density of the free Dirac
field, which excludes the electromagnetic field, generates the
Lagrangian density of QED in the conventional electrodynam-
ics gauge theory, see section 2 of the supplementary material.

3.4. Scale constant of unified gravity

The scale constant of unified gravity, gg, appearing in the
definition of the space-time dimension field in equation (29),
is given in terms of the fundamental physical constants h̄ and c,
and the constant Eg, called the energy scale constant of unified
gravity, as

gg =
Eg

h̄c
. (32)

The value of the energy scale constant Eg depends on the
energy scale. The scale invariance of the dynamical equations
of unified gravity means that these equations are independ-
ent of the values of gg and Eg. For a particle with a four-
momentum p, the energy scale constant is defined as

Eg = c
√
p2. (33)

By this definition, Eg is Lorentz invariant. Thus, gg is also
Lorentz invariant. The energy scale constant Eg is used to
define the energy-scale-dependent gravity fine-structure con-
stant in section 6.4. As a scale constant, Eg does not need to
be fixed to any specific energy scale. For example, the natural
energy scale in the case of the Dirac electron–positron field is
provided by the electron rest energy. In this special case, we
have p2 = m2

ec
2, and thus, Eg = mec2. In this work, we use me

to denote the inertial mass of the electron and m ′
e denotes the

gravitational mass. According to Einstein’s equivalence prin-
ciple, these masses are equal as discussed in section 3.5. In
natural units with h̄= c= me = 1, the values of gg and Eg for
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the electron become simply equal to 1. However, in the present
work, we choose to use the SI units so that the appearance of
different constants in equations is easier to follow.

3.5. Equivalence principle in unified gravity

In the sections below, the Lagrangian density of unified grav-
ity is formulated by usingme to denote the inertialmass of the
electron and m ′

e to denote the gravitational mass. According
to Einstein’s equivalence principle, these masses are equal.
Accordingly, in the classical theory, these masses could be set
equal in the first place. However, in the renormalization of uni-
fied gravity in section 9, we have found that me and m ′

e satisfy
different renormalization relations and only the renormalized
values of these quantities are required to be equal. This aspect
of the quantum theory of gravity is obviously absent in earlier
works on the equivalence principle in the quantum regime [25,
26]. Accordingly, we make distinction with me and m ′

e in the
formulation of the theory starting from the very beginning.

Unified gravity also has another equivalence relation that
is satisfied in the classical and quantum theories. It is related
to the scale invariance. When introducing the gauge-covariant
derivative of unified gravity in section 5.1, we define the coup-
ling constant of unified gravity, denoted by g ′

g. In the clas-
sical theory, the value of g ′

g is equal to the scale constant gg in
equation (32). In the quantum theory, the renormalized value
of g ′

g is equal to gg.
Therefore, the equivalence principle in unified gravity con-

tains two equalities. These equalities are written as

m ′
e = me, g ′

g = gg. (34)

The first equality in equation (34) is called the equival-
ence principle of mass, and the second equality is called
the equivalence principle of scale. The equivalence rela-
tions in equation (34) and the independence of the dynamical
equations of unified gravity on the exact value of gg funda-
mentally mean that unified gravity does not introduce any free
parameters beyond the physical constants determined in previ-
ous experiments. This is one of the most prominent properties
of the theory.

3.6. Generating Lagrangian density of gravity

The generating Lagrangian density of gravity is a Lagrangian
density that contains all other fields of the theory except
the gravitational field. Its requirements, such as diffeomorph-
ism invariance and the relations to symmetry and the SEM
tensor, are discussed in [55]. The original representation
of the generating Lagrangian density of gravity for QED
in section VIII of [55] contained a matrix-valued quantity Ig,
which was assumed a constant identity matrix in [55]. In the
present work, we generalize Ig into a four-component matrix-
valued space-time-dependent field as described in section 3.3
and as elaborated in a trial and error process discussed at the
beginning of this section. Using this generalized Ig, given in
equation (30), we write the generating Lagrangian density of
gravity for QED as

L0=

[
h̄c
4
ψ̄8

(
γ̄FĪgγ

5
Bγ

ν
B∂⃗νIgD

→
−D
←
Īgγ5

Bγ
ν
B∂⃗νIgγF

)
ψ8

+
im ′

ec
2

2
ψ̄8I

†
gγ

5
Bγ

ν
B∂⃗ν Ī

†
gψ8 − (2m ′

e −me)c
2ψ̄8ψ8

+ iΨ̄I†gγ
5
Bγ

ν
B∂⃗ν Ī

†
gΨ +Ψ̄Ψ

]
√
−g. (35)

Here m ′
e is the gravitational mass of the electron and me is

the inertial mass. The metric tensor gµν corresponding to
equation (35) is in any coordinates in flat Minkowski space-
time. The space-time can be called flat since the gravita-
tional field has not been introduced to define a space-time-
dependent metric. The explicitly shown partial derivatives ∂⃗ν
in equation (35) act on Ig and do not extend to the spinors
Ψ and ψ8. These partial derivatives couple the Dirac and
electromagnetic fields to gravity when generalized to gauge-
covariant derivatives in section 5.1. The constant gg, which
appears in the generating Lagrangian density of gravity in [55],
has been here absorbed in the definition of Ig, given through
equations (29) and (30).

The tensor gauge field of gravity, to be introduced in
section 5, arises from unitary symmetries of the generating
Lagrangian density of gravity in equation (35) in the same way
as the gauge fields of the other fundamental interactions of
the Standard Model arise from unitary symmetries. However,
the tensor gauge field is associated with a hierarchy of sym-
metries associated with the transformations of the space-time
dimension field, to be discussed in section 4. This hierarchy of
symmetries is separate from the symmetries of the Standard
Model related to the transformations of the fermionic and
Higgs fields.

3.7. Equivalence of the generating Lagrangian density of
gravity and the Lagrangian density of QED in flat space-time

Here we show that the generating Lagrangian density of grav-
ity in equation (35) is equivalent to the known Lagrangian
density of QED in flat space-time. The calculations of
this section justify the definition of the space-time dimen-
sion field in equation (29). Using equations (29) and (30),
the geometric condition in equation (31), and the com-
mutation relations of the matrices ta, given in table 1,
we obtain Īgγ5

Bγ
ν
B∂⃗νIg =−i(∂νxa)γ5

Bγ
ν
Bt
a =−iηabγ5

Bγ
b
Bt
a,

where we have used the tetrad relation of flat space-time,
given by ∂νxa = ηabe

◦ b
ν , and e

◦ b
ν γ

ν
B = γbB. Correspondingly, we

obtain I†gγ
5
Bγ

ν
B∂⃗ν Ī

†
g =−iηabγ5

Bγ
b
Bt̄
a. Using these identities,

the generating Lagrangian density of gravity in equation (35)
becomes

L0 =

[
ih̄c
4
ηabψ̄8

(
D
←
γ5

Bγ
b
Bt
aγF − γ̄Fγ

5
Bγ

b
Bt
aD
→)

ψ8

+
m ′

ec
2

2
ηabψ̄8γ

5
Bγ

b
Bt̄
a
ψ8 − (2m ′

e −me)c
2ψ̄8ψ8

+ ηabΨ̄γ5
Bγ

b
Bt̄
a
Ψ +Ψ̄Ψ

]
√
−g. (36)
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Next, we express equation (36) in terms of the electro-
magnetic field strength tensor and the conventional four-
component Dirac spinors using the expressions of the eight-
spinors in equations (17) and (18). Using the identities

ηabγ
5
Bγ

b
Bt
aD
→
= 2D

→
, ηabγ5

Bγ
b
Bt
aγF = 2γF, ηabψ̄8γ

5
Bγ

b
Bt̄
a
ψ8 =

−4ψ̄ψ, ψ̄8ψ8 =−ψ̄ψ, ηabγ5
Bγ

b
Bt̄
a
Ψ = 0, γ̄FD

→
= γνFD

→

ν , and

D
←
γF = D

←

νγ
ν
F , and rewriting the electromagnetic Lagrangian

density using equation (24), the Lagrangian density in
equation (36) becomes

L0=

[
ih̄c
2
ψ̄(γνFD

→

ν−D
←

νγ
ν
F)ψ−mec

2ψ̄ψ− 1
4µ0

FµνF
µν

]
√
−g

=

[
ih̄c
2
ψ̄(γνF∂

→

ν − ∂
←

νγ
ν
F)ψ −mec

2ψ̄ψ − Jνe Aν

− 1
4µ0

FµνF
µν

]
√
−g. (37)

Here we observe that the terms proportional to the gravita-
tional mass m ′

e have cancelled out and the inertial mass me is
the onlymass that remains. In the last form of equation (37), Jνe
is the well-known electric four-current density, which is also
the source of the electromagnetic field, given in terms of the
Dirac field by

Jνe = qecψ̄γ
ν
Fψ. (38)

Equation (37) is the well-known Lagrangian density of QED
[1, 136]. This calculation then justifies the definitions of the
generating Lagrangian density of gravity in equation (35)
and the space-time dimension field Ig, defined through
equations (29) and (30). Further support is provided by the
unitary symmetry transformations associated with Ig, dis-
cussed in section 4, which, by following the gauge theory
approach, lead to unified gravity, to the conservation law of
the SEM tensor, and to agreement with TEGRW as discussed
in sections 5–11.

4. Symmetries of the generating Lagrangian
density of gravity

In this section, we investigate the symmetries of the generating
Lagrangian density of gravity. Symmetries are termed to be
global when they are independent of the space-time coordin-
ates. Correspondingly, symmetries are local when they depend
on the space-time coordinates.

As fundamental interaction symmetries, we consider unit-
ary and special unitary symmetries associated with compact,
finite-dimensional symmetry groups. We follow the gauge
theory procedure to seek for global symmetries with respect
to which the generating Lagrangian density of gravity in
equation (35) is invariant. Then, we introduce gauge fields
to make global symmetries local. The generating Lagrangian
density in equation (35) trivially satisfies theU(1) symmetry of
QED. This symmetry is satisfied locally since the electromag-
netic gauge field is included and the electromagnetic-gauge-

covariant derivative D
→

is used. Unified gravity is shown to be

associated with four U(1) symmetries of the components of
the space-time dimension field. The associated gauge field is
introduced in section 5.

We also introduce chiral symmetries but leave their detailed
study as a topic of further work. Furthermore, we study the
Lorentz invariance. These investigations are followed by the
discussion on the Coleman–Mandula theorem, the variation
of the generating Lagrangian density of gravity with respect
to the parameters of the fundamental interaction symmetries,
and the derivation of the conservation law of the SEM tensor
of the Dirac and electromagnetic fields.

4.1. U(1) symmetries of unified gravity

Next, we investigate the invariance of the generating
Lagrangian density of gravity in equation (35) under the
unitary symmetry transformation of Ig. Our goal is that the
gauge field generated by the symmetries of Ig, discussed in
section 5, describes gravitational interaction. The symmetries
of Ig are independent of the internal symmetries of the Dirac
and electromagnetic fields. The symmetry transformation of
Ig is formed from four symmetries of its components, which
we call the U(1) symmetries of unified gravity, given by

Ig → UIg, U=
⊗
a

Ua, Ua = eiϕ(a)t
(a)

. (39)

Here Ua are the four U(1) symmetries with kernel matrix gen-
erators ta and symmetry transformation parameters ϕa, which
are real-valued constants for a global symmetry. Each of the
four U(1) symmetries operates on one of the four compon-
ents of Ig in equation (30) so that the symmetry transformation
Ua is associated with the component Iag. After observation of
the symmetries above, all that follows below is a direct con-
sequence of the gauge theory approach analogous to that in the
Standard Model.

From the expressions of the space-time dimension
field in equation (30) and the symmetry transformation in
equation (39), it follows that the transformed space-time
dimension field is given by

Ig → UIg =


1√
gg
e−iggt0(X0−ϕ0/gg)

1√
gg
e−iggtx(Xx−ϕx/gg)

1√
gg
e−iggty(Xy−ϕy/gg)

1√
gg
e−iggtz(Xz−ϕz/gg)

 . (40)

Thus, the effect of U on Ig is equivalent to the translation of
the space-time-dependent phase factors of Ig as

Xa → Xa−ϕa/gg. (41)

Therefore, the symmetry transformation of Ig in equation (39)
can be replaced by the translation of the phase factors of Ig
as given in equation (41). This is analogous to how the U(1)
gauge symmetry of QED is equivalent to the phase translation
of the Dirac field. In comparison with the conventional transla-
tion gauge theory of TEGRW, briefly reviewed in section 3 of
the supplementary material, unified gravity is fundamentally
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different since the translation symmetry in unified gravity only
applies to the phase factors of Ig and not to the tangent-space
coordinates of all fields in the Lagangian density. However,
in section 11, we show how TEGRW is derived from unified
gravity by applying the so-called Weitzenböck gauge fixing
approach.

TheU(1) symmetries of equation (39) are different from the
U(1) symmetry of QED. While the U(1) symmetry transform-
ation of QED operates on all components of the Dirac field by
a common phase factor, the four U(1) symmetries of unified
gravity in equation (39) operate on different components of Ig.
Another specialty of the U(1) symmetries of unified gravity is
that the generators ta are not identity matrices in contrast to
the generator of the U(1) symmetry of QED. This is related
to the definition of Ig through equations (29) and (30). That
the symmetry transformation matrices Ua in equation (39) are
noncommuting for different values of a reminds Yang–Mills
theories, but it has no influence on the operation of these sym-
metries since they operate on different components of Ig. Thus,
these operations trivially commute, and our gauge theory of
unified gravity is Abelian.

4.2. Chiral symmetries

We observe that the generating Lagrangian density of gravity
in equation (35) is invariant under the chiral symmetry trans-
formations, given by

Ig → ŨIg, Ũ=
⊗
a

Ũa, Ũa = eiθ(a)γ
5
Bt

(a)

. (42)

Here Ũa are the four chiral symmetries with chiral generat-
ors γ5

Bt
a and symmetry transformation parameters θa, which

are real-valued constants for a global symmetry. Each of the
four chiral symmetries operates on one of the four compon-
ents of Ig in equation (30) so that the symmetry transformation
Ũa is associated with the component Iag. There are also mixed

symmetry transformations in which Ua or Ũa is applied to an
arbitrary component of Ig other than I

a
g. In contrast to the U(1)

symmetries of unified gravity in equation (39), the chiral sym-
metries cannot be replaced by translations of the space-time-
dependent phase factors of Ig. The study of chiral and mixed
symmetry transformations is left as a topic of further work.

4.3. Lorentz invariance

Using the Lorentz transformations of the eight-spinor form-
alism, given in [55], it is relatively straightforward to show
that the generating Lagrangian density of gravity satisfies
the Lorentz invariance globally. For a related discussion on
the equivalence relation of the bosonic gamma matrices, see
section 1.2 of the supplementary material.

The local form of the Lorentz invariance is typic-
ally interpreted through the change of the tangent-space
coordinates [34]. In the present theory, this means the Lorentz
transformation of the Cartesian Minkowski coordinates xa is

given by

xa → Λa
b (x)x

b. (43)

Here Λa
b(x) = (e

1
2Ωcd(x)K

cd
)ab are components of the position-

dependent Lorentz transformation matrix Λ(x) = e
1
2Ωcd(x)K

cd
,

in which Ωcd(x) parametrizes the transformation, and
(Kcd)ab = ηcaδdb− ηdaδcb combines the representations of the
Lorentz generators of the four-vector representation, given in
section 1.1 of the supplementary material [55]. In the present
theory, the Lorentz transformation of xa in equation (43) is
accompanied by the invariance of the kernel matrices, which
also appear in the definition of Ig in equation (30), as

ta →ΛJ (x) taΛ
−1
J (x) = ta. (44)

Here ΛJ(x) = e
1
8Ωcd(x)[γ

c
B,γ

d
B] is the position-dependent

Lorentz transformation for 8× 8 matrix forms of the eight-
spinor theory [55]. Since [ta,ΛJ(x)] = 0, the transformation
in equation (44) preserves the kernel matrices unchanged.

The generating Lagrangian density of gravity in
equation (35) is manifestly invariant in the transforma-
tion of equation (44), but it satisfies the transformation of
equation (43) only if the Lorentz transformation matrixΛa

b(x)
is independent of the position, i.e. a global transformation.
Therefore, the generating Lagrangian density of gravity in
equation (35) does not satisfy local Lorentz invariance as
interpreted through equation (43). As is known from previous
studies of local Lorentz transformations in TEGR [140], theor-
ies that do not satisfy local Lorentz invariance do not, however,
directly imply any experimentally observable Lorentz viola-
tion. The closely related topic of spontaneous breaking of
local Lorentz symmetry has also attracted attention in recent
literature [141–145].

In the known Poincaré gauge theories of gravity [30, 36,
57, 75], the local Lorentz invariance is obtained by introducing
the spin connection, which is effectively a gauge field of local
Lorentz transformations. The spin connection is convention-
ally used to describe coupling of gravity to fermionic fields.
It is typically used in TEGR and its modifications [30–32, 34,
146–148], and the case of zero spin connection is called the
Weitzenböck gauge and abbreviated in this work by TEGRW.
In the present work, we do not choose to introduce the spin
connection, but use only the gauge fields associated with the
U(1) symmetries of unified gravity in equation (39). The intro-
duction of the spin connection in the present theoretical frame-
work as a separate field that enables local Lorentz invariance
is, nevertheless, possible. As we show in section 11, apply-
ing a particular Weitzenböck gauge fixing approach to unified
gravity, we can derive the field equations equivalent to those
of TEGRW.

4.4. Coleman–Mandula theorem

The Coleman–Mandula theorem is known to require that all
generators of internal symmetries must commute with the
Poincaré generators [77]. Therefore, the overall symmetry
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group can only be a direct product of the Poincaré group and
the internal symmetry groups. From the point of view of this
theorem, the four U(1) symmetries of the space-time dimen-
sion field in equation (39) are not internal symmetries separ-
ate from the Poincaré group since they are associated with the
translational degrees of freedom of the Cartesian Minkowski
coordinates xa. Therefore, instead of introducing new internal
symmetries considered by the Coleman–Mandula theorem, we
are dealing with degrees of freedom associated with Poincaré
symmetries. However, the way how the U(1) symmetries are
introduced in equation (39) is analogous to how the fermionic
and Higgs field internal symmetries of the Standard Model
are introduced. Therefore, one can call our U(1) symmetries
as internal symmetries of the space-time dimension field, but
one must keep in mind that these symmetries are not separate
from the Poincaré symmetries. For clarity, in this work, we
call these symmetries the U(1) symmetries of unified gravity
instead of internal symmetries.

4.5. Variation of the generating Lagrangian of gravity in the
symmetry transformation of the space-time dimension field

Here we calculate the variation of the generating Lagrangian
density of gravity in equation (35) with respect to the sym-
metry transformation parameter ϕa of the space-time dimen-
sion field in equation (39). We note that only the component Iag
of Ig contributes to the variation with respect to ϕa. The infin-
itesimal variation of Iag in the U(1) symmetry transformation
of equation (39) with respect to the transformation parameter
ϕa is given by

δIag = it(a)Iagδϕ(a). (45)

Using the infinitesimal variation in equation (45), the vari-
ation of the generating Lagrangian density of gravity in
equation (35) with respect to ϕa is then given by

δL0

=
∑
a

[
h̄c
4
ψ̄8

(
γ̄FδI

(a)
g γ5

Bγ
ν
B∂⃗νI

(a)
g D
→
+γ̄FI

(a)
g γ5

Bγ
ν
B∂⃗νδI

(a)
g D
→

−D
←
δI(a)g γ5

Bγ
ν
B∂⃗νI

(a)
g γF−D

←
I(a)g γ5

Bγ
ν
B∂⃗νδI

(a)
g γF

)
ψ8

+
im ′

ec
2

2
ψ̄8

(
δI(a)†g γ5

Bγ
ν
B∂⃗νI

(a)
g

†
+I(a)†g γ5

Bγ
ν
B∂⃗νδI

(a)
g

†)
ψ8

+iΨ̄

(
δI(a)†g γ5

Bγ
ν
B∂⃗νI

(a)
g

†
+I(a)†g γ5

Bγ
ν
B∂⃗νδI

(a)
g

†)
Ψ

]√
−g

=

√
−g
gg

[
ih̄c
4
ψ̄8

(
γ̄Fγ

5
Bγ

ν
Bt
aD
→
−D
←
γ5
Bγ

ν
Bt
aγF

)
ψ8

− m ′
ec

2

2
ψ̄8γ

5
Bγ

ν
B t̄
a
ψ8 − Ψ̄γ5

Bγ
ν
B t̄
a
Ψ

]
∂⃗νδϕa

=

√
−g
gg

[
ih̄c
4
ψ̄8

(
γ̄Fγ

5
Bγ

ν
Bt
aD
→
−D
←
γ5
Bγ

ν
Bt
aγF

)
ψ8

+
m ′

ec
2

2
ψ̄8t

aγνBγ
5
Bψ8 +Ψ̄taγνBγ

5
BΨ

]
∂⃗νδϕa

=

√
−g
gg

Taνm ∂⃗νδϕa. (46)

In the second equality, we have used equation (45), the com-
mutativity of I(a)g with γµBγ

ν
B, γ

5
B, and ta, and the normaliz-

ation condition I(a)†g I(a)g = I8/gg. The only terms that are not
cancelled by other terms are those where the partial derivat-
ive operates on δϕa. In the third equality of equation (46),
we have used the identity γ5

Bγ
ν
Bt̄
a
=−taγνBγ

5
B. The last equal-

ity of equation (46) defines the quantity Taνm = eaµT
µν
m , which

is the symmetric SEM tensor of the Dirac and electromag-
netic fields. The SEM tensor Tµνm is written in terms of the
Dirac field SEM tensor TµνD and the electromagnetic field SEM
tensor Tµνem as [55]

Tµνm = TµνD +Tµνem ,

TµνD =
ih̄c
4
ψ̄8

(
γ̄Fγ

5
Bγ

ν
Bt
µD
→
−D
←
γ5

Bγ
ν
Bt
µγF

)
ψ8

+
m ′

ec
2

2
ψ̄8tµγνBγ

5
Bψ8

=
c
2
Pµν,ρσ

[
ih̄ψ̄
(
γFρD

→

σ −D
←

ργFσ

)
ψ−m ′

ecgρσψ̄ψ
]

=
ih̄c
4
ψ̄
(
γµFD
→
ν +γνFD

→
µ−D

←
νγµF −D

←
µγνF

)
ψ

− 1
2
gµν

[
ih̄c
2
ψ̄
(
γρFD
→

ρ−D
←

ργ
ρ
F

)
ψ−m ′

ec
2ψ̄ψ

]
,

Tµνem = Ψ̄tµγνBγ
5
BΨ =

1
µ0

(
FµρF

ρν +
1
4
gµνFρσF

ρσ

)
=

1
µ0
Pµν,ρσ,ηλ∂ρAσ∂ηAλ. (47)

In the second form of Tµνem in equation (47), Fµν is the
electromagnetic field strength tensor, whose Cartesian
Minkowski coordinate form Fab is given in equation (26).
In the last two forms of TµνD in equation (47), we have used

the identities γ̄Fγ
5
Bγ

ν
Bt
µD
→
=−2Pµν,ρσγFρD

→

σ =−γµFD
→
ν −

γνFD
→
µ+ gµνγρFD

→

ρ, D
←
γ5

Bγ
ν
Bt
µγF =−D

←

ργFσ2P
µν,ρσ =

−D
←
µγνF −D

←
νγµF +D

←

ργ
ρ
Fg
µν , ψ̄8tµγνBγ

5
Bψ8 =−gµνψ̄8ψ8,

and Pµν,ρσgρσ =−gµν and the definition of the Dirac eight-
spinor ψ8 in terms of ψ in equation (18). The quantity Pµν,ρσ

is defined as

Pµν,ρσ =
1
2
(gµσgρν + gµρgνσ − gµνgρσ) . (48)

This quantity satisfies the symmetry relations Pµν,ρσ =
Pνµ,ρσ = Pµν,σρ = Pρσ,µν and the multiplicative identity
Pµν,αβPαβ,ρσ = Iµνρσ , where Iµνρσ is the identity tensor, defined
as

Iµνρσ =
1
2

(
δµρ δ

ν
σ + δµσδ

ν
ρ

)
. (49)

The last two forms of Tµνem in equation (47) follow from the
definition of the bosonic gammamatrices, the electromagnetic
spinor in equation (17), and the electromagnetic field strength
tensor in equation (26).We have defined the quantityPµν,ρσ,ηλ

in equation (47) as
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Pµν,ρσ,ηλ

= gησgλµgνρ− gηµgλσgνρ− gηρgλµgνσ + gηµgλρgνσ

− gµσgνλgρη + gµσgνηgρλ+ gµρgνλgση − gµρgνηgσλ

+
1
2
gµν

(
gηρgλσ − gησgλρ− gρλgση + gρηgσλ

)
. (50)

This quantity satisfies the symmetry relations Pµν,ρσ,ηλ =
Pνµ,ρσ,ηλ = Pµν,ηλ,ρσ and the antisymmetry relations
Pµν,ρσ,ηλ =−Pµν,σρ,ηλ =−Pµν,ρσ,λη.

In theMinkowski space-time, where the last term of the last
form of TµνD in equation (47) is zero when the Dirac equation is
satisfied and the equivalence principle applies with m ′

e = me,
the SEM tensor terms TµνD and Tµνem of equation (47) agree,
respectively, with the well-known symmetric SEM tensors of
the Dirac and electromagnetic fields [1, 9]. However, in com-
parison with the Dirac field SEM tensor in [1], our TµνD has
both left and right derivatives, which makes it always symmet-
ric, which is not the case with the SEM tensor in [1], e.g. for
spherical electron states. We also note that the SEM tensor of
the electromagnetic field is traceless since photons are mass-
less. See section 11.3.1 for further discussion on the SEM
tensors.

Our approach of deriving the SEM tensor in equation (46)
is fundamentally different from the conventional derivation of
the canonical SEM tensor of the field and matter. The conven-
tional derivation is based on varying the Lagrangian density
with respect to the space-time coordinates [9, 149], and the
resulting canonical SEM tensor is typically asymmetric if no
additional symmetrization procedures are introduced, such as
the Belinfante–Rosenfeld symmetrization [150–154]. In con-
trast, in our equation (46), the generating Lagrangian dens-
ity of gravity is varied with respect to the symmetry trans-
formation parameters of equation (39). Being associated with
the transformation parameters of a continuous symmetry of
the generating Lagrangian density, our derivation of the SEM
tensor is analogous to the derivations of the conserved currents
in the gauge theories of the Standard Model [1]. The compar-
ison with the case of QED is discussed in more detail below.

The variation of the generating Lagrangian density of grav-
ity in equation (46) is analogous to the variation of the gener-
ating Lagrangian density of QED, i.e. the Lagrangian dens-
ity of the free Dirac field, with respect to the electromagnetic
U(1) symmetry transformation parameter θ. This variation is
discussed in section 2.3 of the supplementary material, and
it is given by δLQED,0 =−

√
−g h̄
e Jνe ∂νθ. In the case of QED,

the conserved current is the electric four-current density Jνe ,
appearing in this variation. In the case of the U(1) symmet-
ries of unified gravity in the present work, the corresponding
conserved current is the SEM tensor of the Dirac and elec-
tromagnetic fields, appearing in the variation of equation (46),
as derived in section 4.6 below. However, note that gravity can
also contribute to the total SEM tensor if the gravitational field
is associated with the definition of the space-time metric as is
the case in the Weitzenböck gauge fixing approach discussed
in section 11.3.1.

When the tensor gauge field is added in the present the-
ory through the gauge-covariant derivative, to be introduced in

section 5.1 below, and through the kinetic term of the gauge
field, we obtain the gauge-invariant Lagrangian density L, to
be given in section 6, for which the variation with respect to
ϕa gives

δL= 0. (51)

Thus, the addition of the gauge field cancels the variation of
the generating Lagrangian density of gravity in equation (46)
so that the total variation of the gauge-invariant Lagrangian
density is zero.

4.6. Conservation law of the SEM tensor

Here we show that the variation of the generating Lagrangian
density of gravity with respect to the U(1) symmetry trans-
formation parameters ϕa, given in equation (46), leads to
the conservation law of the SEM tensor in accordance with
Noether’s theorem [79, 139]. The variation of the action integ-
ral, corresponding to L0, with respect to ϕa is given by

δS0

=

ˆ
δL0d

4x=
ˆ √

−g
gg

Taνm ∂νδϕad
4x

=

ˆ
∂ν

(√
−g
gg

Taνm δϕa

)
d4x−

ˆ
∂ν

(√
−g
gg

Taνm

)
δϕad

4x

=−
ˆ
e◦ µa ∂ν

(√
−g
gg

Taνm

)
δϕµd

4x

=−
ˆ [

∂ν

(
e◦ µa

√
−g
gg

Taνm

)
−

√
−g
gg

Taνm
(
∂νe

◦ µ
a

)]
δϕµd

4x

=−
ˆ [

∂ν

(√
−g
gg

Tµνm

)
−

√
−g
gg

Tσνm

(
e◦aσ∂νe

◦ µ
a

)]
δϕµd

4x

=−
ˆ [

∂ν

(√
−g
gg

Tµνm

)
+

√
−g
gg

Γ
◦µ
σνT

σν
m

]
δϕµd

4x

=−
ˆ √

−g
gg

(
∂νT

µν
m +Γ

◦µ
σνT

σν
m +Γ

◦ν
σνT

µσ
m

)
δϕµd

4x

=−
ˆ √

−g
gg

(
∇
◦
νT

µν
m

)
δϕµd

4x. (52)

In the second equality, we have applied equation (46). In
the third equality, we have applied partial integration. In the
fourth equality, we have set the first term to zero since it is
a total divergence, which can be transformed to a boundary
integral, and the fields are assumed to vanish at the bound-
ary. We have also used the identity δϕa = e◦ µa δϕµ. In the
fifth equality, we have applied the product rule of differen-
tiation. In the sixth equality, we have applied Tµνm = e◦ µa T

aν
m

and Taνm = e◦aσT
σν
m . In the seventh equality, we have applied

Γ
◦
µ
σν =−e◦aσ∂νe

◦ µ
a following from equation (3). In the eighth

equality of equation (52), we have used the definition of the
operator ∇̃ρ in equation (10). Finally, in the ninth equality of
equation (52), we have applied the well-known definition of

the Levi–Civita coordinate-covariant derivative ∇
◦
ν , given in

equation (11).
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The final result of equation (52) shows that the variation of
the action integral vanishes for arbitrary δϕµ when

∇
◦
νT

µν
m = 0. (53)

This is the well-known conservation law of the SEM tensor
of all fields and matter except the gravitational field. Since
Tµνm is symmetric, angular momentum is also conserved. With
the pertinent Levi–Civita coordinate-covariant derivative, the
conservation law in equation (53) also holds in a space-time
curved by the gravitational field as is well known from general
relativity [8]. The derivation of equation (53) above is fully
analogous to the well-known derivation of the conservation
law of the electric four-current density reviewed in section 2.4
of the supplementary material. For general reference, we also
finally give the local Lorentz scalar, which is the trace of the
SEM tensor of QED in equation (47), given by

Tm
ν
ν = (2m ′

e −me)c
2ψ̄ψ. (54)

Since the SEM tensor of the electromagnetic field is traceless,
it does not contribute to equation (54).

5. Gravity gauge field

Until this point, we have assumed flat space-time, where the
gravitational field is nonexistent. In this section, we intro-
duce the tensor gauge field of gravity following the stand-
ard gauge theory approach of quantum field theory. The
tensor gauge field is introduced without reference to the local
Poincaré invariance of the theory. This highlights the gauge
theory nature of unified gravity based on the invariance of the
Lagrangian density in the gauge symmetry transformations of
the space-time dimension field, discussed in section 4. This
also makes unified gravity fundamentally different from pre-
vious gauge theory approaches to gravity. Later, in section 11,
we show that it is also possible to define the space-time
dependent tetrad and metric tensor in the framework of the
present theory, in which case unified gravity leads to TEGRW.

5.1. Gauge-covariant derivative

The generating Lagrangian density of gravity in equation (35)
is globally gauge-invariant in the symmetry transformation
of equation (39) for constant values of ϕa. To promote this
global symmetry to a local symmetry, we allow ϕa to depend
on the space-time coordinates xµ. As mentioned in section 4.1,
the symmetry transformation matrices Ua are noncommuting
for different values of a, but this noncommutativity has no
influence on the applicability of the U(1) symmetries, which
operate on different components of the space-time dimen-
sion field Ig in equation (30). Following the gauge theory
approach [1, 2], the generating Lagrangian density of gravity
in equation (35) can be made locally gauge-invariant in the
symmetry transformation of equation (39) when we general-
ize the partial derivative that acts on Ig into a gauge-covariant
derivative D⃗ν , given by

D⃗ν = ∂⃗ν − ig ′
gHaνta. (55)

Here g ′
g is the coupling constant of unified gravity, whose

renormalized value is defined to be equal to the scale constant
gg in equation (32). The Hermitian gauge fieldHaνta combines
the four U(1) gauge fields and it is given in terms of real-valued
components Haν , which describe gravitational interaction as
shown below. The gauge theory allows us to obtain a locally
gauge-invariant Lagrangian density independent of the choice
of the constant in the gauge field term of equation (55). The
use of the coupling constant g ′

g in equation (55) allows us to
define Haν as a dimensionless quantity, which enables easy
comparison of the present theory with TEGR as discussed in
section 13.

In the symmetry transformation of equation (39), the
gauge-covariant derivative transforms as D⃗νIg → UD⃗νIg. It
follows that the transformation of Haνta is given by Haνta →
(UHaνta− i

g ′g
∂νU)U

† = (Haν +
1
g ′g
∂νϕa)ta. Thus, the trans-

formation of Haν is written as

Haν → Haν +
1
g ′
g
∂νϕa. (56)

Using the gauge-covariant derivative operator D⃗ν in place of
the partial derivatives ∂⃗ν makes the generating Lagrangian
density of gravity in equation (35) gauge-invariant with
respect to the local form of the symmetry transformation in
equation (39).

5.2. Gravity gauge field strength tensor

To write the complete gauge-invariant Lagrangian density, we
must include a gauge-invariant term that depends only on the
gauge fieldHaν . However, in the case of gravity, wemust apply
the soldered character of the gauge theory as discussed below.
Utilizing the gauge theory, one obtains an unambiguous form
for the gauge field strength tensor from the commutator of the
gauge-covariant derivatives [1, 2]. The commutation relation
[D⃗µ,D⃗ν ] =−ig ′

gHµν defines the antisymmetric gravity field
strength tensor Hµν as

Hµν = Haµνta, Haµν = ∂µHaν − ∂νHaµ. (57)

This equation does not contain commutator terms of ta since
the symmetry generators operate on different degrees of free-
dom of the space-time dimension field and, thus, these opera-
tions trivially commute as discussed in section 4.1. Therefore,
the gauge theory is Abelian, and the gravity field strength
tensor in equation (57) is a gauge-invariant quantity as in
electromagnetism. That Haµν in equation (57) is invariant in
the transformation of Haν in equation (56) follows directly
from the commutativity of partial derivatives. The redund-
ant degrees of freedom in Haν are analogous to those of the
electromagnetic four-potential. To treat redundant degrees of
freedom, one must fix the gauge as in conventional gauge
theories [1]. The gauge fixing in unified gravity is discussed in
section 7.2. In comparison with TEGR [30, 34, 38], the form
of the gravity gauge field strength tensorHaµν in equation (57)
is seen to be equivalent to the form of the torsion in the
Weitzenböck gauge, i.e. in the absence of the spin connection.
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The generic inverse tetrad eaρ allows us to obtain a three-
space-time-index form of the gravity gauge field strength
tensor in equation (57) as

Hρµν = eaρHaµν . (58)

This is a necessary property of unified gravity and any gauge
theories describing a tensor gauge field. In previous literat-
ure, this property is known as the soldered character [29,
34]. It makes unified gravity fundamentally different from the
gauge theories of the Standard Model, which all describe vec-
tor fields. We use the generic inverse tetrad symbol eaρ in
equation (58) and below to indicate that this tetrad can be the
tetrad of the Minkowski manifold or it can have a different
definition, such as that of TEGRW, discussed in section 11.

5.3. Dual gravity gauge field strength tensor

Next, we present the dual gravity gauge field strength tensor,
which is a quantity needed to form the Lagrangian density of
gravity field strength in section 6. In analogy with the gauge
theories of the Standard Model, the dual gravity gauge field
strength tensor H̃a

σλ is given by

H̃a
σλ =

1
2
εσλµνS

aµν . (59)

Here Saµν is called the superpotential, and it is antisymmetric
in its last two indices as Saµν =−Saνµ. In vector-field gauge
theories, i.e. in the absence of soldered character of the gauge
theory, the superpotential is trivially given by the gauge-field
strength tensor itself, e.g. see equation (27) for QED. This is
not the case in soldered gauge theories. Therefore, following
the definition of the superpotential for soldered gauge theories,
e.g. in [34], we obtain

Saµν=eaρ

[
1
2

(
Hνµρ+Hµρν −Hρνµ

)
+ gρµHσνσ − gρνHσµσ

]
.

(60)

This superpotential is shown to appear under the derivative of
the dynamical equation of unified gravity, in the case of UGM
in section 7, and in the case of TEGRW in section 11.

6. Locally gauge-invariant Lagrangian density of
unified gravity

In this section, we present the locally gauge-invariant
Lagrangian density of unified gravity. In section 6.1, we write
the kinetic Lagrangian density term, which depends on the
gravity gauge field only, and is necessary for the descrip-
tion of the dynamics of gravity. Then, we write the complete
locally gauge-invariant Lagrangian density of unified gravity
in section 6.2, and elaborate the reduced form of the gauge-
invariant Lagrangian density in section 6.3.

6.1. Lagrangian density of gravity gauge field strength

In analogy with the gauge theories of the Standard Model [1],
the Lagrangian density of the gravity gauge field strength does
not follow from the gauge invariance alone without further
assumptions. In the gauge theories of the Standard Model,
restrictions are set by parity and time-reversal symmetries and
renormalizability of the interactions [1]. However, the gauge
field Lagrangian densities in all gauge theories of the Standard
Model are of the same well-established form. Therefore,
following the gauge theories of the Standard Model, the
Lagrangian density of the gravity gauge field strength is writ-
ten in terms of the field strength tensor and the dual field
strength tensor, and the constant prefactor is determined by
experiments. Thus, the Lagrangian density of the gravity
gauge field strength is written as

Lg,kin =
1
8κ
HaµνH̃

a
σλε

µνσλ√−g= 1
4κ
HaµνS

aµν√−g.
(61)

Here κ= 8πG/c4 is Einstein’s constant, where G is the grav-
itational constant. The prefactor of equation (61) has been
determined by comparison of the theoretical prediction of
the strength of the gravitational interaction to experiments on
gravitation. The Lagrangian density of the gravity gauge field
in equation (61) is also seen to be of the same mathematical
form as the Lagrangian density of gravity in previous works
on TEGR [30, 34, 35, 38]. Using the Weitzenböck gauge fix-
ing approach, TEGRW is derived from the present theory in
section 11. In comparison with QED, the determination of the
constant prefactor in equation (61) is analogous to the determ-
ination of the permeability of vacuum in the Lagrangian dens-
ity of the electromagnetic gauge field based on related exper-
iments or known Maxwell’s equations as discussed in section
2.7 of the supplementary material. Comparison of Lg,kin in
equation (61) with the Einstein–Hilbert Lagrangian density of
general relativity is discussed in the case of the Weitzenböck
gauge fixing approach leading to TEGRW in section 6 of the
supplementary material.

The second form of the Lagrangian density of the gravity
field strength in equation (61) is obtained from the first form
as follows:

HaαβH̃
a
σλε

αβσλ =
1
2
HaαβS

aµνεσλµνε
αβσλ

= HaµνS
aµν −HaνµS

aµν = 2HaµνS
aµν . (62)

In the first equality of equation (62), we have used the defin-
ition of the dual field strength tensor in equation (59). In
the second equality, we have used the identity εσλµνεαβσλ =
2δαµδ

β
ν − 2δβµδ

α
ν . In the third equality, we have used the anti-

symmetry of Haµν in its space-time indices.
As discussed in section 5.3, the superpotentials of vector-

field gauge theories, such as all gauge theories of the Standard
Model, are trivially given by the field strength tensors them-
selves. Therefore, in formulating vector-field gauge theor-
ies, one typically jumps over the definition of the dual field
strength tensor and writes the Lagrangian density of the gauge
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field directly as the field strength tensor contracted with itself.
Thus, despite being more general, the forms of Lagrangian
densities corresponding to the first form of equation (61)
are not conventionally used in representations of vector-field
gauge theories.

6.2. Locally gauge-invariant Lagrangian density of unified
gravity

Using the gauge-covariant derivative in equation (55) and
adding the gauge field term of gravity in equation (61) to the
generating Lagrangian density of gravity in equation (35), we
obtain the locally gauge-invariant Lagrangian density of uni-
fied gravity. This Lagrangian density satisfies locally the elec-
tromagnetic [U(1)] gauge-invariance in the same way as the
conventional Lagrangian density of QED discussed in sup-
plementary section 2. Furthermore, this Lagrangian density
satisfies locally the gravity [4×U(1)] gauge-invariance with
respect to the symmetry transformation of equation (39). We
recall that, in the locally gauge-invariant Lagrangian dens-
ity, to be defined below, we do not assume any particu-
lar definition of the space-time metric or tetrad. The locally
gauge-invariant Lagrangian density of unified gravity is, thus,
given by

L=

[
h̄c
4
ψ̄8

(
γ̄FĪgγ

5
Bγ

ν
BD⃗νIgD

→
−D
←
Īgγ5

Bγ
ν
BD⃗νIgγF

)
ψ8

+
im ′

ec
2

2
ψ̄8I

†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
gψ8−(2m ′

e −me)c
2ψ̄8ψ8

+iΨ̄I†gγ
5
Bγ

ν
B
¯⃗D†
ν Ī

†
gΨ +Ψ̄Ψ +

1
4κ
HaµνS

aµν

]√
−g. (63)

If we set Haν to zero in equations (55), (300) and (57), the
locally gauge-invariant Lagrangian density in equation (63)
becomes equivalent to the generating Lagrangian density of
gravity in equation (35), which is shown to be equivalent to
the Lagrangian density of QED in section 3.7. In the gen-
eral case, the gauge field Haν is obtained as a solution of
the Euler–Lagrange equations. The pertinent Euler–Lagrange
equations of gravity are discussed in section 7.6.1 for UGM
and in section 11.3.1 for TEGRW.

6.3. Reduced form of the locally gauge-invariant Lagrangian
density of unified gravity

Here we apply the definition of the space-time dimension field
in equations (29) and (30) to obtain a reduced form of the loc-
ally gauge-invariant Lagrangian density of unified gravity in
equation (63). In the reduced Lagrangian density, to be derived
below, the space-time dimension field Ig does not appear expli-
citly but there is an explicit dependence on the derivative ∂νXa
of the phase factors of Ig instead. Accordingly, the symmetry
transformation of Ig in equation (39) is replaced by the trans-
lation of Xa in equation (41).

To write out the terms of the gauge-invariant Lagrangian
density in equation (63) in reduced forms, we first derive

expressions for Īgγ5
Bγ

ν
BD⃗νIg and I†gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
g. The calcula-

tion for Īgγ5
Bγ

ν
BD⃗νIg is given by

Īgγ5
Bγ

ν
BD⃗νIg =

∑
a

Ī(a)g γ5
Bγ

ν
B

(
∂⃗ν − ig ′

gH(a)νt
(a)
)
I(a)g

=−igg
∑
a

(
∂νX(a) +

g ′
g

gg
H(a)ν

)
Ī(a)g γ5

Bγ
ν
Bt

(a)I(a)g

=−i
(
∂νXa+

g ′
g

gg
Haν

)
γ5

Bγ
ν
Bt
a. (64)

Correspondingly, for I†gγ
5
Bγ

ν
B
¯⃗D†
ν Ī

†
g, we obtain

I†gγ
5
Bγ

ν
B
¯⃗D†
ν Ī

†
g =

∑
a

I(a)†g γ5
Bγ

ν
B

(
∂⃗ν − ig ′

gH(a)ν t̄
(a)
)
Ī(a)†g

=−igg
∑
a

(
∂νX(a) +

g ′
g

gg
H(a)ν

)
I(a)†g γ5

Bγ
ν
Bt̄

(a)Ī(a)†g

=−i
(
∂νXa+

g ′
g

gg
Haν

)
γ5

Bγ
ν
Bt̄
a

= i

(
∂νXa+

g ′
g

gg
Haν

)
taγνBγ

5
B. (65)

In the first equalities of equations (64) and (65), we have
used the definition of the gauge-covariant derivative in
equation (55) and the representation of Ig in terms of Iag
in equation (30). In the second equalities, we have applied
equation (29). In the third equalities, we have applied the
commutativity of Iag with γµBγ

ν
B, γ

5
B, and ta and the nor-

malization condition I(a)†g I(a)g = I8/gg. In the last equality of
equation (65), we have used the identity γ5

Bγ
ν
Bt̄
a
=−taγνBγ

5
B.

Substituting the quantities of equations (64) and (65) to the
locally gauge-invariant Lagrangian density in equation (63),
we obtain

L=

{(
∂νXa+

g ′
g

gg
Haν

)
×
[
ih̄c
4
ψ̄8

(
D
←
γ5

Bγ
ν
Bt
aγF − γ̄Fγ

5
Bγ

ν
Bt
aD
→)

ψ8

−m ′
ec

2

2
ψ̄8taγνBγ

5
Bψ8 − Ψ̄taγνBγ

5
BΨ

]
−(2m ′

e −me)c
2ψ̄8ψ8 +Ψ̄Ψ +

1
4κ
HaµνS

aµν

}√
−g

=

[
−
(
∂νXa+

g ′
g

gg
Haν

)
Taνm − (2m ′

e−me)c
2ψ̄8ψ8 +Ψ̄Ψ

+
1
4κ
HaµνS

aµν

]√
−g. (66)

We call this Lagrangian density the reduced form of the loc-
ally gauge-invariant Lagrangian density of unified gravity. In
the last equality of equation (66), we have used the definition
of the SEM tensor of the Dirac and electromagnetic fields in
equation (47). The gauge-invariance of the Lagrangian dens-
ity in equation (66) means that it remains invariant when Xa
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is transformed by the transformation law in equation (41) and
Haν is transformed by the transformation law in equation (56).

The locally gauge-invariant Lagrangian density of unified
gravity in equation (66) allows the use of different definitions
of the tetrad and gauge fixing. The Weitzenböck gauge fix-
ing, which leads to TEGRW, is discussed in section 11. The
use of the tetrad of the Cartesian Minkowski manifold and
the harmonic gauge fixing, which lead to UGM, are studied
in section 7. The Weitzenböck gauge fixing, which leads to
TEGRW, is discussed in section 11.

6.4. Scaled representation of unified gravity and the
dimensionless coupling constant

Next, we discuss the scaled representation of unified gravity,
which is analogous to the scaled representation of QED dis-
cussed in section 2.9 of the supplementarymaterial. The scaled
representation of unified gravity enables transparent compar-
ison with the gauge theories of the Standard Model and the
conventional translation gauge theory of TEGRW as presen-
ted here and in section 13.

In the scaled representation of unified gravity, the gravity
gauge field is scaled so that the Lagrangian density of the grav-
ity gauge field in equation (61) no longer contains Einstein’s
constant in the prefactor. The scaling of the gravity gauge field
is given by

Haν →
√
κH ′

aν . (67)

The gravity gauge field strength tensor and the dual field
strength tensor become then replaced by scaled quantities as

Haµν →
√
κH ′

aµν , (68)

H̃a
σλ →

√
κH̃ ′a

σλ. (69)

This scalingmakes the Lagrangian density of the gravity gauge
field in equation (61) to become

Lg,kin →
1
8
H ′
aµνH̃

′a
σλε

µνσλ√−g. (70)

Here, in comparison with equation (61), Einstein’s constant is
no longer present in the prefactor.

In analogy with QED, discussed in section 2.9 of the sup-
plementary material, we next define the dimensionless coup-
ling constant of unified gravity, E ′

g, by scaling the dimension-
ful coupling constant g ′

g = Eg/(h̄c). Here we set the coup-
ling constant of unified gravity equal to the scale constant in
equation (32). With further scaling, we then write

E ′
g = Eg

√
κ

h̄c
=
√

8παg. (71)

In analogy with the electric fine-structure constant αe in
section 2.9 of the supplementary material, equation (71)
defines the gravity fine-structure constant αg. Solving
equation (71) for αg and using equation (33), we obtain

αg =
κcp2

8πh̄
=
Gp2

h̄c3
. (72)

The gravity fine-structure constant depends on the energy scale
through p2. In the special case of the electron, we have p2 =
m2

ec
2. Using equation (72), this gives the gravity fine-structure

constant of the electron as

αg =
κm2

ec
3

8πh̄
=
Gm2

e

h̄c
. (73)

Using the experimental value of the gravitational constant, the
numerical value of αg is given by αg ≈ 1.75181× 10−45. This
small value characterizes the weakness of the gravitational
interaction in comparison with the fundamental interactions of
the Standard Model. The ratio of αg in equation (73) and the
well-known electric fine-structure constant αe = e2/(4πε0h̄c)
is equal to the known ratio of the strengths of the gravitational
and electromagnetic forces or potential energies between two
electrons, i.e. |Fg|/|Fe|= |Vg|/|Ve|= 4πε0Gm2

e/e
2. This res-

ult justifies the physical meaningfulness of the gravity fine
structure constantαg in characterizing the strength of the grav-
itational interaction. The term gravity fine-structure constant
has also appeared in previous literature. In [155, 156], its for-
mula, similar to equation (73), has been expressed in terms
of the proton mass. The analogy with QED in section 2.9 of
the supplementary material suggests that the dimensionful and
dimensionless coupling constants Eg and E ′

g are subject to the
phenomenon known as the running of the coupling constant
[157–160]. Detailed study of this effect in unified gravity is
left as a topic of further work.

The scaling of the gravity gauge field in equation (67) and
the definition of the dimensionless coupling constant of unified
gravity in equation (71)make the gauge-covariant derivative in
equation (55) to become

D⃗ν → ∂⃗ν − i
E ′
g√
h̄c
H ′
aνt

a. (74)

This form of the gauge-covariant derivative of unified gravity
allows easy comparison with the gauge-covariant derivative of
the scaled representation of QED, discussed in section 2.9 of
the supplementary material, and the gauge-covariant derivat-
ive of the StandardModel, discussed in section 12.2. In natural
units with h̄= c= 1 complemented with κ= 1, the scaled rep-
resentation above is trivial since these units imply Haν = H ′

aν
and Eg = E ′

g.
It is well known from previous literature that the coupling

constant of a theory must be either dimensionless or have a
positive mass dimension for the theory to be renormalizable
[3, 4, 79]. In the latter case, the theory is called super-
renormalizable. If the coupling constant has negative mass
dimension, the theory is nonrenormalizable. Therefore, the
dimensionless coupling constant of unified gravity strongly
suggests that the theory is renormalizable. The renormalizab-
ility of unified gravity is studied at one-loop order in section 9.

7. Unified gravity in the Minkowski metric

It is especially interesting to study unified gravity in the
Cartesian Minkowski metric, i.e. UGM, since the Minkowski
metric is the obvious starting point for the quantization of
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gravitational interaction [161]. When the space-time metric is
equal to the Cartesian Minkowski metric, there is no differ-
ence between the Latin and Greek indices. Therefore, since it
is conventional to use Greek letters for space-time indices, in
UGM, we choose to use Greek indices exclusively.

7.1. Geometric conditions of UGM: tetrad and metric tensor

Unified gravity allows freedom in the definition of the tetrad
and the space-time metric tensor. Thus, in unified gravity, we
can use a gauge-field-independent tetrad and a metric tensor
as done for UGM in this section or a gauge-field-dependent
tetrad and a metric tensor as done for TEGRW in section 11.
In UGM, we use the geometric condition in equation (31)
together with the tetrad of the Cartesian Minkowski manifold,
given by

e◦ νµ = ∂νxµ = ∂νXµ = δνµ. (75)

Since the two indices of e◦ νµ in equation (75) are of the same

type, e◦ νµ becomes equal to δνµ. Therefore, in the Cartesian
Minkowski manifold, ∂νxµ = ∂νXµ is equal to the Cartesian
Minkowski metric tensor as

ηµν = ∂νxµ = ∂νXµ. (76)

Accordingly, in UGM, we set the metric tensor determinant
associated factor

√
−g to unity in the Lagrangian densities

since g= det(ηµν) =−1. Equations (75) and (76) together
with equation (31) are called the geometric conditions of
UGM.

If one applies the geometric condition in equation (31) to
the reduced form of the gauge-invariant Lagrangian density
of unified gravity in equation (66), the Lagrangian density
loses its explicit dependence on Xµ and one can no longer per-
form local gauge transformations on Xµ using equation (41).
Therefore, the gauge invariance of the Lagrangian dens-
ity of unified gravity in equation (63) or (66) with respect
to the four U(1) symmetry transformations of gravity in
equation (39) or (41) must be interpreted before the applica-
tion of equation (31) to the Lagrangian density. The gauge fix-
ing of UGM in section 7.2 below is also performed before the
geometric conditions of UGM are applied to the Lagrangian
density.

In the conventional TEGRW, the translation gauge field has
been particularly introduced to make the tetrad independent
of translations of the tangent-space coordinates xa. Hence, the
translation gauge field is, by definition, included in the expres-
sion of the tetrad in TEGRW, which is thus different from the
tetrad of the Minkowski manifold. This highlights the funda-
mental difference in the foundations of unified gravity and the
conventional formulation of TEGRW [30, 34].

7.2. Gauge fixing in UGM

As is well known, the path integral formulation of the field
theory and the gauge field propagators cannot be consistently
formulated without fixing the gauge [1, 4]. This is because,

by definition, gauge theories represent each distinct field con-
figuration of the physical system as an equivalence class of
field configurations. The equivalence classes of field con-
figurations are defined by gauge transformations. Therefore,
they are associated with redundant degrees of freedom in
gauge field variables. Gauge fixing must be applied to effect-
ively remove the redundant degrees of freedom [1, 4]. The
relation of gauge fixing to the determination of gauge field
propagators of field theories is discussed in more detail in
section 8 below and in section 4 of the supplementarymaterial.

In analogy with the gauge theories of the Standard Model
[1, 4], the starting point for gauge fixing in UGM is the non-
gauge-fixed functional integral, given by

ˆ
eiS[ψ̄,ψ,A,H]/(h̄c)Dψ̄DψDADH. (77)

Here S[ψ̄,ψ,A,H] is the action integral, i.e. the integral of the
locally gauge-invariant Lagrangian density of unified gravity
in equations (63) and (66) over the space-time coordinates,
written as

S
[
ψ̄,ψ,A,H

]
=

ˆ
Ld4x. (78)

The functional integral in equation (77) is over the compon-
ents of the Dirac spinor ψ and adjoint spinor ψ̄, over the
four components of the electromagnetic four-potential Aµ as
DA=

∏
µDAµ, and over all components of the gravity gauge

fieldHµν asDH=
∏
µ,νDHµν . The gauge fixing is performed

by the Faddeev–Popov method as explained below.

7.2.1. QED gauge fixing. Gauge fixing must be carried out
for all gauge fields of the theory. We start with the well-known
gauge fixing of QED. A particularly convenient gauge is the
Feynman gauge, whose gauge condition is in QED equivalent
to the Lorenz gauge condition, given by ∂νAν = 0 [162]. The
Feynman gauge condition is written as

Cem (A)≡ ∂νA
ν =

√
2µ0 ē0γ

ν
B∂νΘ= 0. (79)

Equation (79) defines the gauge-fixing function Cem(A). The
Feynman gauge condition in equation (79) is satisfied in the
electromagnetic gauge transformation of the form Aν → Aν −
h̄
e ∂νθ when the gauge function θ is a solution of the wave
equation ∂2θ = 0. Thus, the Feynman gauge does not determ-
ine the electromagnetic four-potential uniquely. The remain-
ing residual degrees of freedom are called the residual gauge
symmetry [55, 163]. Consequently, it is not sufficient to use
the Feynman gauge condition alone, but also an integral over
the electromagnetic gauge function is necessary. The com-
plete gauge fixing is formally obtained by the Faddeev–Popov
method [1, 4, 164], to be applied below.

In the Faddeev–Popov method for gauge fixing in QED,
one inserts 1 under the non-gauge-fixed functional integral of
equation (77) in the following form [1, 4]:

1=
ˆ
δ
[
Cem

(
A(θ)

)]
det

[
δCem

(
A(θ)

)
δθ

]
Dθ. (80)
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Here the functional integral is over the electromagnetic gauge
function θ and A(θ) is the gauge-transformed field, given by

A(θ)
ν = Aν −

h̄
e
∂νθ. (81)

The term δ[Cem(A(θ))] in equation (80) is the functional delta
function and det[δCem(A(θ))/δθ] = det(− h̄

e ∂
2) is called the

Faddeev–Popov determinant.
Due to the local gauge invariance of the Lagrangian density

in equation (63) or (66), the action integral in equation (78) sat-
isfies S[ψ̄,ψ,A,H] = S[ψ̄,ψ,A(θ),H]. Therefore, after insert-
ing the Faddeev–Popov unity from equation (80) under
the functional integral of equation (77) and performing the
shift Aν → Aν + h̄

e ∂νθ, DA→DA, the functional integral in
equation (77) becomes

ˆ
δ [Cem (A)]det

(
− h̄
e
∂2

)
× eiS[ψ̄,ψ,A,H]/(h̄c)DθDψ̄DψDADH. (82)

The functional delta function in equation (82) indicates that
only such field configurations, which satisfy the Feynman
gauge condition in equation (79), give nonzero contributions.

The remaining task is to express the functional delta func-
tion and the Faddeev–Popov determinant in equation (82) as
Lagrangian density functionals. The functional delta function
in equation (82) is rewritten as [1]

δ [Cem (A)]

= Nem

ˆ
exp

(
−i

2µ0h̄cξe

ˆ
w2d4x

)
δ [Cem (A)−w]Dw

= Nem exp

(
−i

2µ0h̄cξe

ˆ
[Cem (A)]2 d4x

)
= Nem exp

(
i
h̄c

ˆ
Lem,gfd

4x

)
. (83)

Here ξe is the electromagnetic gauge-fixing parameter, Nem is
an unimportant normalization constant, and w is an arbitrary
scalar function. The gauge-fixing parameter ξe is generally any
finite real-valued constant. In this picture, the choice of ξe = 1
corresponds to the Feynman gauge condition in equation (79)
[1, 4]. For a discussion of this correspondence, see section 4.1
of the supplementary material. The choice ξe = 0 is known as
the Landau gauge [1] but there is varying terminology in the
literature as this choice is in some works called the Lorenz
gauge [4]. In the second equality of equation (83), we have
used the functional delta function to integrate over w. The last
equality of equation (83) defines the gauge-fixing Lagrangian
density of QED, given by

Lem,gf =− 1
2µ0ξe

[Cem (A)]2 =− 1
2µ0ξe

(∂νA
ν)

2

=− 1
ξe
Θ̄∂
←

ργ
ρ
Be0ē0γ

σ
B∂
→

σΘ. (84)

The last form of equation (84) is written using the eight-spinor
notation. For a discussion on the relation between the gauge-
fixing Lagrangian density of QED in equation (84) and the
definition of the photon propagator, see section 8.2.

Next, we turn on to the Faddeev–Popov determinant part of
the functional integral in equation (82). The Faddeev–Popov
determinant is rewritten as [1]

det

(
− h̄
e
∂2

)
=

ˆ
exp

(
i
ˆ
c̄em∂

2cemd
4x

)
DcemDc̄em

=

ˆ
exp

(
i
h̄c

ˆ
Lem,ghostd

4x

)
DcemDc̄em. (85)

In the first equality of equation (85), we have followed the
conventional Faddeev–Popov method to represent the determ-
inant as a functional integral over anticommuting fields cem
and c̄em belonging to the adjoint representation and called the
Faddeev–Popov ghosts [1, 4, 164]. The coefficient h̄/e has
been absorbed in the normalization of cem and c̄em. The last
equality of equation (85) defines the Faddeev–Popov ghost
Lagrangian density of QED, given by

Lem,ghost = h̄cc̄em∂
2cem =−h̄cc̄em8∂

2cem8. (86)

In the last form of equation (86), we have used cem8 = ceme0
and c̄em8 = c̄emē0. Since Lem,ghost in equation (86) does not
contain the electromagnetic gauge field, Lem,ghost is typically
absorbed in the unimportant normalization constant of the
functional integral of QED [1]. Consequently, in the Standard
Model, the Faddeev–Popov ghosts are important only in the
Yang–Mills gauge theories.

7.2.2. Gravity gauge fixing. Next, we discuss gravity gauge
fixing following the analogywith the QED gauge fixing above.
In the case of general relativity, the corresponding gauge fix-
ing analog has been applied in previous literature [80, 88]. The
gravity gauge fixing to be introduced below fundamentally dif-
fers from theWeitzenböck gauge fixing of TEGRW, discussed
in section 11, and the gauge fixing of general relativity [80,
165–167] since here we do not relate the gauge field to the
definition of the tetrad or metric. Consequently, UGM treats
the gravity gauge field on the same formal footing with the
gauge fields of the Standard Model.

We fix the gravity gauge field by the gravitational analog of
the Feynman gauge fixing of QED, discussed in section 7.2.1.
In general relativity, a particularly convenient gauge is the har-
monic gauge, also known as the de Donder gauge [88, 90, 115,
119, 165, 168, 169]. In unified gravity, the gauge field Hµν is
not assumed symmetric by definition, which leads to modific-
ation of the harmonic gauge condition. The harmonic gauge
condition is generalized to unified gravity as

Cµg (H)≡ ∂ρH
µρ+ ∂ρH

ρµ− ∂µHρρ

= 2Pαβ,ρµ∂ρHαβ = 0. (87)
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Equation (87) defines the gauge-fixing four-vectorCµg (H). The
gauge condition in equation (87) is satisfied in the gauge trans-
formation of the form in equation (56) when the gravity gauge
function ϕµ is a solution of the wave equation ∂2ϕµ = 0. Thus,
the harmonic gauge does not determine the gravitational gauge
field Hµν uniquely. The remaining residual degrees of free-
dom are analogous to the residual gauge symmetry of QED,
discussed in section 7.2.1.

In analogy with the case of QED in section 7.2.1, we apply
the Faddeev–Popovmethod to gravity gauge fixing. Therefore,
we insert 1 under the non-gauge-fixed functional integral of
equation (77) in the following form:

1=
∏
µ

ˆ
δ
[
C(µ)

g

(
H(ϕ)

)]
det

[
δC(µ)

g
(
H(ϕ)

)
δϕ(µ)

]
Dϕ(µ). (88)

Here the functional integrals are over the gravity gauge
functions ϕµ, and H(ϕ) is the gauge-transformed field,
given by

H(ϕ)
µν = Hµν +

1
g ′
g
∂νϕµ. (89)

The term δ[C(µ)
g (H(ϕ))] in equation (88) is the functional

delta function and det[δC(µ)
g (H(ϕ))/δϕ(µ)] = det( 1

g ′g
∂2) is the

Faddeev–Popov determinant of unified gravity.
Due to the local gauge invariance of the Lagrangian

density in equation (63) or (66), the action integral in
equation (78) satisfies S[ψ̄,ψ,A,H] = S[ψ̄,ψ,A,H(ϕ)]. Since
Lem,gf and Lem,ghost in equations (84) and (86) are locally
gauge invariant with respect to the U(1) symmetries of unified
gravity, the equality S[ψ̄,ψ,A,H] = S[ψ̄,ψ,A,H(ϕ)] remains
satisfied after the QED gauge fixing discussed in section
7.2.1 above. Therefore, after inserting the Faddeev–Popov
unity from equation (88) under the functional integral of
equation (77) and performing the shiftHµν → Hµν − 1

g ′g
∂νϕµ,

DH→DH, the functional integral in equation (77) becomes

ˆ {∏
µ

δ
[
Cµg (H)

]
det

(
− 1
g ′
g
∂2

)}
× eiS[ψ̄,ψ,A,H]/(h̄c)DϕDψ̄DψDADH. (90)

Here we have defined the functional measure of the gravity
gauge functions as Dϕ =

∏
µDϕµ.

Next, we express the functional delta functions and the
Faddeev–Popov determinants in equation (90) as Lagrangian
densities. The functional delta functions in equation (90) are
rewritten as∏

µ

δ
[
Cµg (H)

]
= Ng

∏
µ

ˆ
exp

(
i

4κh̄cξg

ˆ
w(µ)w(µ)d

4x

)
× δ
[
C(µ)

g (H)−w(µ)
]
Dw(µ)

= Ng exp

(
i

4κh̄cξg

ˆ
Cµg (H)Cgµ (H)d

4x

)

= Ng exp

(
i
h̄c

ˆ
Lg,gfd

4x

)
. (91)

Here ξg is the gravity gauge-fixing parameter, Ng is an
unimportant normalization constant, and wµ are arbitrary
scalar functions. In analogy with the QED gauge fixing
in section 7.2.1, the gravity gauge-fixing parameter ξg is
any finite real-valued constant. The choice of ξg = 1 cor-
responds to the harmonic gauge condition in equation (87).
For a discussion of this correspondence, see section 4.2
of the supplementary material. In the second equality of
equation (91), we have used the functional delta function
to integrate over wµ. The last equality of equation (91)
defines the gauge-fixing Lagrangian density of unified gravity,
given by

Lg,gf =
1

4κξg
Cµg (H)Cgµ (H)

=
1

4κξg

(
∂ρH

µρ+ ∂ρH
ρµ− ∂µHρρ

)
×
(
∂ηH

η
µ + ∂ηH

η
µ− ∂µH

η
η

)
=

1
κξg

ηγδP
αβ,λγPρσ,ηδ∂λHαβ∂ηHρσ. (92)

For a discussion on the relation between the gauge-fixing
Lagrangian density of unified gravity in equation (92) and the
definition of the graviton propagator, see section 8.3.

Next, we turn on to the Faddeev–Popov determinant part
of the functional integral in equation (90). In analogy with
the case of QED in section 7.2.1 above, the Faddeev–Popov
determinants are rewritten as∏

µ

det

(
1
g ′
g
∂2

)

=

ˆ
exp

(
−i
ˆ
c̄g∂

2cgd
4x

)
DcgDc̄g

=

ˆ
exp

(
i
h̄c

ˆ
Lg,ghostd

4x

)
DcgDc̄g. (93)

In the first equality of equation (93), we have represented
the determinant as a functional integral over anticommut-
ing fields cg = [c0g,c

x
g,c

y
g,czg]

T and c̄g = [c̄0g, c̄
x
g, c̄

y
g, c̄zg] belonging

to the adjoint representation and called the Faddeev–Popov
ghost fields of unified gravity. We have also defined Dcg =∏
µDc

µ
g and Dc̄g =

∏
µDc̄

µ
g . The coefficient 1/g ′

g has been
absorbed in the normalization of cg and c̄g. The last equality
of equation (93) defines the Faddeev–Popov ghost Lagrangian
density of unified gravity, given by

Lg,ghost =−h̄cc̄g∂2cg = h̄cc̄g8∂
2cg8. (94)

In the last form of equation (94), we have used cg8 = cge0 and
c̄g8 = c̄gē0. Since Lg,ghost in equation (94) does not contain the
gravity gauge field,Lg,ghost can be absorbed in the unimportant
normalization constant of the functional integral in analogy
with the case of QED [1].
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7.3. Faddeev–Popov Lagrangian density of UGM and the
BRST invariance

Here we conclude the Faddeev–Popov gauge fixing approach
of UGM by presenting the complete locally gauge-fixed
Lagrangian density of UGM. This Lagrangian density is
a sum of the locally gauge-invariant Lagrangian density
in equation (63) or (66) and the gauge-fixing and ghost
Lagrangian densities in equations (84), (86), (92) and (94).
Thus, the locally gauge-fixed Faddeev–Popov Lagrangian
density of UGM is given by

LFP = L+Lem,gf +Lem,ghost +Lg,gf +Lg,ghost. (95)

The Faddeev–Popov Lagrangian density of UGM in
equation (95) is found to satisfy an exact global symmetry,
which is known in the case of the gauge theories of the
Standard Model as BRST invariance, named after Becchi,
Rouet, Stara and Tyutin [1, 4, 124–126]. In the BRST
method, the local electromagnetic U(1) gauge transforma-
tion parameter is defined to be proportional to the electro-
magnetic ghost field as θ = θ ′cem, where θ ′ is a space-time-
independent anticommuting Grassmann number satisfying
θ ′2 = 0. Correspondingly, the four U(1) transformation para-
meters of unified gravity are defined to be proportional to
the four components of the gravitational ghost field as ϕµ =
ϕ ′cgµ, where ϕ ′ is a space-time-independent anticommuting
Grassmann number satisfying ϕ ′2 = 0. Then, the Faddeev–
Popov Lagrangian density of UGM in equation (95) is
invariant under the following transformations associated with
electromagnetism [4]:

ψ → eiθ
′cemQψ, (96)

Aν → Aν −
h̄
e
θ ′∂⃗νcem, (97)

c̄em → c̄em − 1
µ0ceξe

θ ′Cem (A) , (98)

cem → cem, (99)

and under the following transformations associated with
gravity:

Ig →

(⊗
µ

eiϕ
′cg(µ)t

(µ)

)
Ig, (100)

Xµ → Xµ−
1
gg
ϕ ′cgµ, (101)

Hµν → Hµν +
1
g ′
g
ϕ ′∂⃗νcgµ, (102)

c̄µg → c̄µg −
1

κh̄cg ′
gξg

ϕ ′Cµg (H) , (103)

cµg → cµg . (104)

The BRST symmetry transformations in equations (96)–(104)
are global since the Grassmann numbers θ ′ and ϕ ′ are inde-
pendent of the space-time coordinates.

In previous literature [1, 4], the BRST symmetry is under-
stood to elucidate the introduction of the Faddeev–Popov
ghosts. In Yang-Mills gauge theories, where ghost fields
appear in virtual states, it also explains the exclusion of
the ghosts from physical asymptotic states when perform-
ing quantum field theory calculations. The BRST symmetry
of the path integral is known to be preserved at each loop
order [4]. Therefore, the BRST symmetry of unified grav-
ity, observed above, strongly suggests that unified gravity is
a renormalizable gauge theory like the gauge theories of the
Standard Model. This conclusion is further supported by the
successful renormalization of unified gravity at one-loop order
in section 9. The BRST symmetry of unified gravity differs
from symmetries of conventional theories of gravity, where
the gauge transformation generators are not constant matrices,
and thus, the BRST symmetrymust be replaced by amore gen-
eral Batalin–Vilkovisky formalism [2, 170–174].

7.4. Dynamical equations of the ghost fields

Here we investigate the dynamical equations of the ghost
fields. The starting point is the Lagrangian density of the
electromagnetic ghost field in equation (86) and that of the
gravitational ghost field in equation (94). The Euler–Lagrange
equations for cem and c̄em are given by

∂Lem,ghost

∂cem
− ∂ρ

[
∂Lem,ghost

∂ (∂ρcem)

]
+ ∂ρ∂σ

[
∂Lem,ghost

∂ (∂ρ∂σcem)

]
= 0,

∂Lem,ghost

∂c̄em
− ∂ρ

[
∂Lem,ghost

∂ (∂ρc̄em)

]
+ ∂ρ∂σ

[
∂Lem,ghost

∂ (∂ρ∂σ c̄em)

]
= 0.

(105)

Using the Lagrangian density in equation (86), for the deriv-
atives with respect to cem, we obtain ∂Lem,ghost/∂cem =
0, ∂Lem,ghost/∂(∂ρcem) = 0, and ∂Lem,ghost/∂(∂ρ∂σcem) =
h̄cc̄emηρσ. For the derivatives with respect to c̄em, we
obtain ∂Lem,ghost/∂c̄em = h̄c∂2cem, ∂Lem,ghost/∂(∂ρc̄em) = 0,
∂Lem,ghost/∂(∂ρ∂σ c̄em) = 0. Substituting these terms into
equation (105) and dividing the equations by h̄c, we obtain

∂2c̄em = 0, ∂2cem = 0. (106)

Similar equations are obtained for the gravitational ghost
fields, written as

∂2c̄g = 0, ∂2cg = 0. (107)

Equations (106) and (107) are the dynamical equations of
the electromagnetic and gravitational ghost fields in UGM.
The solutions for cem, c̄em, cg, and c̄g are arbitrary harmonic
functions.

From now on, in UGM, we assume that the degrees of
freedom of the electromagnetic and gravitational ghost fields
have been integrated out of the path integral in equation (77).
Accordingly, we drop out the ghost field Lagrangian dens-
ities from the considerations below. In analogy with the
conventional QED, we do not need to study the dynamics of
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the ghost fields to investigate the dynamics of the physical
fields. Since the BRST invariance is known to be preserved
at each loop order [1], one does not either need to study the
ghost fields when performing higher-order quantum field the-
ory calculations in Abelian gauge theories, such as QED. This
must extend to the theory of gravity in UGM.

7.5. Geometric Lagrangian density of UGM

Next, we present the geometric Lagrangian density of UGM.
We call the Lagrangian density geometric after the tetrad and
metric relations in equations (75) and (76) have been applied.
The geometric Lagrangian density of UGM is obtained from
the locally gauge-fixed Faddeev–Popov Lagrangian density
of UGM in equation (95) by dropping out the ghost field
terms and by applying the Minkowski metric relation in
equation (76). The geometric Lagrangian density of UGM is
then given by

LUGM = LD,kin +Lem,kin +Lem,int +Lg,kin +Lg,int

+Lem,gf +Lg,gf. (108)

This Lagrangian density is the starting point for the derivation
of the Feynman rules of UGM in section 8. The terms of the
geometric Lagrangian density of UGM in equation (108) are
given by

LD,kin =
ih̄c
2
ψ̄
(
γνF∂
→

ν − ∂
←

νγ
ν
F

)
ψ−mec

2ψ̄ψ,

Lem,kin =− 1
4µ0

FµνF
µν = Ψ̄Ψ

= Θ̄∂
←

ργ
ρ
B (I8 + e0ē0)

2
γσB∂
→

σΘ,

Lem,int =−Jνe Aν =−qecψ̄γνFψAν = Φ̄Θ+ Θ̄Φ,

Lg,kin =
1
4κ
HρµνS

ρµν ,

Lg,int =−
g ′
g

gg
Tµνm Hµν

=−
g ′
g

gg

{
c
2
Pµν,ρσ

[
ih̄ψ̄
(
γFρ∂

→

σ − ∂
←

ργFσ

)
ψ

−qeψ̄
(
γFρAσ +AργFσ

)
ψ −m ′

ecgρσψ̄ψ
]

+
1
µ0
Pµν,ρσ,ηλ∂ρAσ∂ηAλ

}
Hµν ,

Lem,gf =− 1
2µ0ξe

(∂νA
ν)

2
=− 1

ξe
Θ̄∂
←

ργ
ρ
Be0ē0γ

σ
B∂
→

σΘ,

Lg,gf =
1
κξg

ηγδP
αβ,λγPρσ,ηδ∂λHαβ∂ηHρσ. (109)

In equation (109), Jνe is the electric four-current density, given
in equation (38), and Tµνm is the symmetric SEM tensor of
the Dirac and electromagnetic fields, given in equation (47).
Note that, in equation (109), the SEM tensor Tµνm is the
source of gravity in analogy to how the electromagnetic four-
current density Jνe is the source of electromagnetism in QED.
Correspondingly, −(g ′

g/gg)T
µν
m Hµν of equation (109) is the

interaction term of gravity analogous to the electromagnetic
interaction term−Jνe Aν of QED.With a different prefactor, the

interaction term of gravity of the form −(g ′
g/gg)T

µν
m Hµν can

also be found from previous literature [175]. In the sections
below, we use the kinetic and gauge-fixing Lagragian dens-
ity terms of the electromagnetic and gravitational fields in
equation (109) to define the gauge-fixed kinetic Lagrangian
densities of the electromagnetic and gravitational fields.

7.5.1. Gauge-fixed kinetic Lagrangian density of the
electromagnetic field. We find that the Feynman gauge
fixing in the eight-spinor formulation of UGM with ξe = 1
corresponds to dropping out the term e0ē

a∂aΘ of the defini-
tion of the electromagnetic spinor in equation (17). When this
dropping is performed, Ψ is replaced by Ψ ′, given by

Ψ ′ =−γρB∂ρΘ. (110)

Consequently, instead of the electromagnetic Lagrangian
density Lem,kin = Ψ̄Ψ in equation (109), we obtain L ′(ξe=1)

em,kin ,
given by

L ′(ξe=1)
em,kin = Ψ̄ ′Ψ ′ = Lem,kin +L(ξe=1)

em,gf

=− 1
4µ0

FµνF
µν − 1

2µ0
(∂νA

ν)
2
. (111)

Equation equation (111) is the standard form of the gauge-
fixed electromagnetic Lagrangian density of QED in the
Feynman gauge [1]. The second equality of equation (111)
shows that using Ψ ′ provides a simple expression for the sum
of the non-gauge-fixed electromagnetic Lagrangian density
Lem,kin and the gauge-fixing Lagrangian densityL(ξe=1)

em,gf , given
by equation (109) for ξe = 1.

The generalization of L ′(ξe=1)
em,kin in equation (111) is given

for arbitrary ξe by

L ′
em,kin = Lem,kin +Lem,gf

=− 1
4µ0

FµνF
µν − 1

2µ0ξe
(∂νA

ν)
2
. (112)

The Lagrangian densityL ′(ξe=1)
em,kin in equation (111) and its gen-

eralization L ′
em,kin in equation (112) enable the determination

of the photon propagator as discussed in section 8.2 below and
in section 4 of the supplementary material.

7.5.2. Gauge-fixed kinetic Lagrangian density of the
gravitational field. The gauge-fixed Lagrangian density
of the gravity gauge field in UGM in the harmonic gauge
with ξg = 1 is given by the sum of the non-gauge-fixed
gravity Lagrangian density Lg,kin and the harmonic gauge-

fixing Lagrangian density L(ξg=1)
g,gf , given by equation (109)

for ξg = 1, as

L ′(ξg=1)
g,kin = Lg,kin +L(ξg=1)

g,gf

=
1
4κ
HρµνS

ρµν +
1
κ
ηγδP

αβ,λγPρσ,ηδ∂λHαβ∂ηHρσ.

(113)
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This equation is analogous to the corresponding equation of
the electromagnetic field in UGM in equation (111).

The generalization of L ′(ξg=1)
g,kin in equation (113) is given

for arbitrary ξg by

L ′
g,kin = Lg,kin +Lg,gf

=
1
4κ
HρµνS

ρµν +
1
κξg

ηγδP
αβ,λγPρσ,ηδ∂λHαβ∂ηHρσ.

(114)

The Lagrangian densityL ′(ξg=1)
g,kin in equation (113) and its gen-

eralizationL ′
g,kin in equation (114) enable the determination of

the graviton propagator as discussed in section 8.3 below and
in section 4 of the supplementary material.

7.6. Dynamical equations of UGM

The dynamics of all fields in the Lagrangian density of
equation (108) are described by the Euler–Lagrange equations.
In the sections below, we derive the dynamical equations for
the gravity gauge field, the electromagnetic gauge field, and
the Dirac field in UGM.

7.6.1. Field equation of gravity in UGM. Here we derive the
dynamical equation of gravity in UGM. The starting point is
the Lagrangian density of UGM in equation (108) in the har-
monic gauge with ξg = 1. The Euler–Lagrange equation for
Hµν in UGM is given by

∂LUGM

∂Hµν
− ∂ρ

[
∂LUGM

∂ (∂ρHµν)

]
= 0. (115)

Using the Lagrangian density in equation (108) with g ′
g = gg

according to the equivalence principle in equation (34),
we obtain ∂LUGM/∂Hµν = ∂Lg,int/∂Hµν = Tµνm and
∂LUGM/∂(∂ρHµν) =− 1

κS
µνρ+ 1

κP
µν,ρσ(∂λH λ

σ + ∂λHλσ −
∂σHλλ). Substituting these terms into equation (115), mul-
tiplying the equation by κ, and rearranging the terms, we
obtain

−Pµν,ρσ∂2Hρσ = κTµνm . (116)

This equation is the dynamical equation of the gravitational
field in UGM. The source term of the gravitational field is
the SEM tensor of the Dirac and electromagnetic fields in
equation (47).

7.6.2. Maxwell’s equations in UGM. Here we derive the
dynamical equation of the electromagnetic field in UGM in
the eight-spinor notation. As discussed in [55], the electromag-
netic potential spinors Θ and Θ̄ can be treated as independent
dynamical variables. The Euler–Lagrange equation for Θ̄ is
given by [55]

∂LUGM

∂Θ̄
− ∂ρ

[
∂LUGM

∂
(
∂ρΘ̄

)]= 0. (117)

We use the Lagrangian density of UGM in equation (108),
set g ′

g = gg according to the equivalence principle in
equation (34), and assume the Feynman gauge with
ξe = 1 to obtain ∂LUGM/∂Θ̄ = Φ+ 1

2Hµνγ
5
Bγ

ν
Bt
µΦ and

∂LUGM/∂(∂ρΘ̄) =−γρB(I8 + e0ē0)(Ψ−HµνtµγνBγ
5
BΨ)−

γρBe0ē0γ
σ
B∂σΘ. Substituting these derivatives into

equation (117), using ē0Ψ = 0, equation (17), and the identity
γρBγ

σ
B∂ρ∂σ = I8∂2, and rearranging the terms, we obtain

∂2Θ=Φ+γρB (I8 + e0ē0) tµγνBγ
5
B (I8 + e0ē0)

× ∂ρ (Hµνγ
σ
B∂σΘ)+

1
2
γ5

Bγ
ν
Bt
µΦHµν . (118)

This equation is the eight-spinor representation of the wave
equation of the electromagnetic four-potential in UGM in
the presence of sources. As a consistency check, if we had
started from the Euler–Lagrange equation for Θ, we would
have ended up to a dynamical equation that is equivalent to
equation (118).

Next, we derive the dynamical equations of the electromag-
netic field in UGM using the electromagnetic four-potential as
the dynamical variable. These equations are equivalent to the
eight-spinor equations above. The Euler–Lagrange equation
for the electromagnetic four-potential is given by [9, 149]

∂LUGM

∂Aσ
− ∂ρ

[
∂LUGM

∂ (∂ρAσ)

]
= 0. (119)

Using the Lagrangian density of UGM in equation (108),
setting g ′

g = gg according to the equivalence principle
in equation (34), and assuming the Feynman gauge
with ξe = 1, we obtain ∂LUGM/∂Aσ = −qecψ̄γσFψ +
qecPµν,ρσψ̄γFρψHµν = −Jσe + Pµν,ρσJeρHµν and
∂LUGM/∂(∂ρAσ) = − 1

µ0
Fρσ − 1

µ0
ηρσ∂λAλ −

2
µ0
Pµν,ρσ,ηλHµν∂ηAλ. Substituting these terms into

equation (119), multiplying the equation by µ0, and rearran-
ging the terms, we obtain

∂2Aσ = µ0J
σ
e − 2Pµν,ρσ,ηλ∂ρ (Hµν∂ηAλ)

−µ0P
µν,ρσJeρHµν . (120)

This equation is thewave equation of the electromagnetic four-
potential in UGM in the presence of sources. To the best know-
ledge of the authors, equation (120) has not been presented in
previous literature. The same naturally applies to the eight-
spinor form in equation (118).

The right-hand sides of equations (118) and (120) represent
the sources of the electromagnetic field. The first terms on the
right in equations (118) and (120) are associated with the well-
known electron–photon vertex, the second terms on the right
are associated with the photon–graviton vertex, and the third
terms on the right are associated with the electron–photon–
graviton vertex. The interaction vertices are discussed in more
detail in section 8.

7.6.3. Dirac equation in UGM. Next, we derive the dynam-
ical equation of the Dirac field in UGM. As conventional, we
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treat ψ and ψ̄ as independent dynamical variables. The Euler–
Lagrange equation for ψ̄ is given by [1]

∂LUGM

∂ψ̄
− ∂ρ

[
∂LUGM

∂
(
∂ρψ̄

)]= 0. (121)

Using the Lagrangian density of UGM in equation (108)
and setting g ′

g = gg and m ′
e = me according to the equival-

ence principle in equation (34), we obtain ∂LUGM/∂ψ̄ =
i
2 h̄cγ

ρ
F∂⃗ρψ− qecγ

ρ
FAρ−mec2ψ−Hµν [ ih̄c4 (ηνργµF +

ηµργνF − ηµνγρF)∂⃗ρψ+ mec
2

2 ηµνψ− qec
2 (ηνργµF + ηµργνF −

1
2η
µνγρF)Aρψ] and ∂LUGM/∂(∂ρψ̄) =− i

2 h̄cγ
ρ
Fψ+

ih̄c
4 Hµν(η

νργµF + ηµργνF − ηµνγρF)ψ. Substituting these deriv-
atives into equation (121), we obtain

ih̄cγρF∂⃗ρψ−mec
2ψ= qecγ

ρ
FψAρ

+Pµν,ρσ
(
ih̄cγFσ∂⃗ρψ− mec2

2
ηρσψ+

ih̄c
2
γFσψ∂⃗ρ

−qecγFσψAρ+
qec
4
ηρσγ

λ
FAλψ

)
Hµν . (122)

Herewe have used the definition ofPµν,ρσ in equation (48) and
the identity ηµν =−Pµν,ρσηρσ . Equation (122) is the Dirac
equation in UGM. To the best knowledge of the authors, this
form of the Dirac equation has not been presented in previous
literature. As a consistency check, if we had started from the
Euler–Lagrange equation for ψ, we would have ended up to a
dynamical equation that is equivalent to equation (122).

The left-hand side of equation (122) is equivalent to all
terms of the Dirac equation in free space. The right-hand side
of equation (122) represents the source terms. The first term on
the right in equation (122) corresponds to the electron–photon
vertex, and the second term on the right in equation (122)
corresponds to the electron–graviton and electron–photon–
graviton vertices, which are discussed in section 8.

8. Feynman rules and their application in UGM

Above, we have unambiguously fixed the electromagnetic and
gravitational gauges. Therefore, the resulting form of unified
gravity allows us to perform quantum field theory calcula-
tions using the Feynman diagrams. In this section, we formu-
late the Feynman rules for UGM. Instead of eight-spinors, we
use the conventional Dirac spinors and the electromagnetic
four-potential as dynamical variables to enable direct com-
parison with the Feynman rules of QED and gravity in pre-
vious literature [1, 4, 88, 121, 123, 176–178]. For complete-
ness, we also briefly review the derivations of the electron
and photon propagators and the electron–photon vertex [1, 4].
These derivations are presented to highlight the complete ana-
logy with the derivations of the graviton propagator and the
vertices associated with gravity, which are given below. The
Feynman diagrams and rules for unified gravity in the SI units
are summarized in table 2.

8.1. Electron propagator

To derive the electron propagator, we consider the functional
integral [1]

ˆ
eiSD,kin[ψ̄,ψ]/(h̄c)Dψ̄Dψ. (123)

Here SD,kin[ψ̄,ψ] is the action integral of the Lagrangian dens-
ity of the Dirac field, LD,kin in equation (109). Thus, we
write [1]

SD,kin
[
ψ̄,ψ

]
=

ˆ
LD,kind

4x= c
ˆ
ψ̄ (x)(ih̄∂/−mec)ψ (x)d4x.

(124)

Here we have applied partial integration to transform the integ-
ral in a form, where all derivatives apply to the Dirac spinor on
the right. The electron propagator, denoted by DD(x1 − x2), is
defined to be the Green’s function of the operator ih̄∂/−mec,
obtained from equation (124). Thus, it is the solution of the
eigenvalue equation of this operator for a delta function source
term, written as [1]

(ih̄∂/−mec)DD (x1 − x2) = iI4δ4 (x1 − x2) . (125)

Here the derivative in ∂/ operates on x1. Applying the
Fourier transform f̃(p)=

´
f(x)eip·x/h̄d4x with x= x1 − x2 to

equation (125), we obtain

(p/−mecI4)DD (p) = iI4. (126)

The solution of this equation, the momentum-space electron
propagator D̃D(p), is given by [1]

D̃D (p) =
i(p/+mecI4)
p2 −m2

ec2 + iϵ
. (127)

Here the infinitesimal constant ϵ displaces the poles above and
below the real axis so thatDD(x1 − x2) is consistently obtained
as the inverse Fourier transform of D̃D(p).

8.2. Photon propagator

To derive the photon propagator, the Faddeev–Popov method
leads us to use the gauge-fixed Lagrangian density of the elec-
tromagnetic field in the functional integral of the path integ-
ral formulation of QED [1]. Thus, we consider the functional
integral, given by

ˆ
eiS
′(ξe=1)
em,kin [A]/(h̄c)DA. (128)

The Feynman gauge-fixed electromagnetic action integral
S ′(ξe=1)
em,kin [A] in equation (128) is an integral of L ′(ξe=1)

em,kin in
equation (111) over the Cartesian Minkowski coordinates,
rewritten as [1]

S ′(ξe=1)
em,kin [A] =

ˆ
L ′(ξe=1)

em,kin d4x

=
1

2µ0h̄2

ˆ
Aµ (x)

(
ηµν h̄2∂2

)
Aν (x)d

4x. (129)
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Table 2. Feynman diagrams and the corresponding momentum-space rules for unified gravity in the SI units. The photon and graviton
propagators are given in gauges defined by arbitrary gauge-fixing parameters ξe and ξg. Each propagator and vertex has a corresponding
counterterm presented below the pertinent propagator or vertex. The red crosses at the end of external lines of vertices and counterterms
indicate that these lines are not included in the expressions. In the application of the Feynman rules, the inertial and gravitational masses are
set equal according to Einstein’s equivalence principle as m ′

e = me, and we furthermore set the coupling constant of unified gravity equal to
the scale constant as g ′

g = gg.
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Here we have applied partial integration to transform the
integral in a form, where all derivatives apply to the elec-
tromagnetic four-potential on the right. The photon propag-
ator corresponding to the applied Feynman gauge, denoted by
D(em,ξe=1)
νρ (x1 − x2), is defined to be the Green’s function of

the operator ηµν h̄2∂2, obtained from equation (129). Thus, it
is the solution of the eigenvalue equation of this operator for
a delta function source term, written as [1]

ηµν h̄2∂2D(em,ξe=1)
νρ (x1 − x2) = iδµρ δ

4 (x1 − x2) . (130)

Here the derivative ∂2 operates on x1. Applying the
Fourier transform, f̃(p)=

´
f(x)eip·x/h̄d4x with x= x1 − x2, to

equation (130), we obtain

−ηµνp2D̃(em,ξe=1)
νρ (p) = iδµρ . (131)

The solution of this equation is the well-known momentum-
space photon propagator D̃(em,ξe=1)

νρ (p) in the Feynman gauge,
given by [1]

D̃(em,ξe=1)
νρ (p) =

−iηνρ
p2 + iϵ

. (132)

As in the case of the electron propagator in section 8.1, the
infinitesimal constant ϵ in equation (132) displaces the poles
above and below the real axis so that D(em,ξe=1)

νρ (x1 − x2)
is consistently obtained as the inverse Fourier transform of
D̃(em,ξe=1)
νρ (p).
Finally, we note that the general expression of the photon

propagator for an arbitrary gauge-fixing parameter ξe is given
by [4]

D̃(em)
νρ (p) =

−i
p2 + iϵ

[
ηνρ− (1− ξe)

pνpρ
p2 + iϵ

]
. (133)

This form is obtained by usingL ′
em,kin, given in equation (112),

in place of L ′(ξe=1)
em,kin in equation (129).

8.3. Graviton propagator

To derive the graviton propagator, we follow the analogy with
the derivation of the photon propagator in QED, discussed
in section 8.2. Correspondingly, the Faddeev–Popov method
leads us to use the gauge-fixed Lagrangian density of the grav-
ity gauge field in the functional integral of the path integral
formulation of UGM. Therefore, we consider the functional
integral, given by

ˆ
eiS
′(ξe=1)
g,kin [H]/(h̄c)DH. (134)

The harmonic gauge-fixed gravity action integral S ′(ξe=1)
g,kin [H]

in equation (134) is an integral of L ′(ξe=1)
g,kin in equation (113),

written as

S ′(ξe=1)
g,kin [H] =

ˆ
L ′(ξe=1)

g,kin d4x

=
1
κh̄2

ˆ
Hµν (x)

(
−Pµν,αβ h̄2∂2

)
Hαβ (x)d

4x.

(135)

The graviton propagator corresponding to the applied har-

monic gauge, denoted by D(g,ξg=1)
αβ,ρσ (x1 − x2), is defined to be

the Green’s function of the operator −Pµν,αβ h̄2∂2, obtained
from equation (135). Thus, it is the solution of the eigen-
value equation of this operator for a delta function source term,
written as

−Pµν,αβ h̄2∂2D
(g,ξg=1)
αβ,ρσ (x1 − x2) = iIµνρσδ

4 (x1 − x2) . (136)

Here the derivative ∂2 operates on x1 and the identity tensor Iµνρσ
is defined in equation (49). Applying the Fourier transform,
f̃(p)=

´
f(x)eip·x/h̄d4x with x= x1 − x2, to equation (130), we

obtain

Pµν,αβp2D̃
(g,ξg=1)
αβ,ρσ (p) = iIµνρσ . (137)

The solution of this equation, the momentum-space graviton

propagator D̃(g,ξg=1)
αβ,ρσ (p), is given by

D̃
(g,ξg=1)
αβ,ρσ (p) =

iP(D)
αβ,ρσ

p2 + iϵ
. (138)

Here the infinitesimal constant ϵ has the same role as discussed
in the case of the electron and photon propagators above. The
graviton propagator in equation (138) is equal to the well-
known graviton propagator of linearized general relativity in
the harmonic gauge [4, 88, 165, 168].

The quantity P(D)
µν,ρσ, which we have used in writing the

graviton propagator in equation (138), is defined as the D-
dimensional space-time generalization of the quantity Pµν,ρσ ,
given in equation (48). This generalization is known to be
given by [179]

P(D)
µν,ρσ =

1
2

(
ηµσηρν + ηµρηνσ −

2
D− 2

ηµνηρσ

)
. (139)

If we set the space-time dimension to D= 4, P(D)
µν,ρσ in

equation (139) becomes equivalent to Pµν,ρσ in equation (48).
Defining theD-dimensional form of the graviton propagator is
essential for dimensional regularization, used in the renormal-
ization of unified gravity in section 9 .

Finally, we note that the general expression of the graviton
propagator for an arbitrary gauge-fixing parameter ξg is given
by

D̃(g)
αβ,ρσ (p) =

i
p2+iϵ

[
P(D)
αβ,ρσ −

1− ξg
p2 + iϵ

(ηαρpβpσ

+ηασpβpρ+ ηβρpαpσ + ηβσpαpρ)

]
. (140)
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This form is obtained by using L ′
g,kin, given in equation (114),

in place of L ′(ξg=1)
g,kin in equation (135). The general graviton

propagator in equation (140) can also be derived using the con-
ventional effective field theory of gravity as shown in recent
previous literature [180].

8.4. Electron–photon vertex

Next, we determine the electron–photon vertex. The elec-
tromagnetic interaction term of the Lagrangian density in
equation (109) is rewritten as

Lem,int =−Jµe Aµ =−i

√
h̄c
µ0
ψ̄

(
−iqeγµF√
ε0h̄c

)
ψAµ

=−iũ20Ã0

√
h̄c
µ0
ū(p ′)

(
−iqeγµF√
ε0h̄c

)
u(p)ϵµ (k) . (141)

The last form of equation (141) is written assuming
momentum eigenstates ψ = ũ0u(p), ψ̄ = ũ0ū(p ′), and Aµ =
Ã0ϵµ(k), where ũ0 and Ã0 are normalization constants and
ϵµ(k) is the photon polarization vector. Then, we identify
the electron–photon vertex from equation (141) as the term
between the Dirac spinors.

8.5. Electron–graviton, photon–graviton, and
electron–photon–graviton vertices

Here we use the gravitational interaction terms of the
Lagrangian density in equation (108) to obtain vertex func-
tions associated with the coupling of gravitons to electromag-
netic and Dirac fields. The approach is analogous to how the
standard electron–photon vertex is obtained from the inter-
action Lagrangian density of QED in section 8.4. The grav-
itational interaction term Lg,int of the Lagrangian density in
equation (109) is rewritten as

Lg,int =−
g ′
g

gg
Tµνm Hµν

=−i
√
h̄c
κ

{
− i
2

√
κc
h̄

g ′
g

gg
Pµν,ρσ

×
[
ih̄ψ̄γFρ

(
∂
→
σ − ∂

←
σ

)
ψ−m ′

ecηρσψ̄ψ
]}

Hµν

− ih̄
√
µ0κ

ψ̄

{
iqe
h̄

√
κ

ε0

g ′
g

gg
Pµν,ρσγFσ

}
ψAρHµν

−iϵ0h̄c
√

c
κh̄

{
−i
√
κc
h̄

g ′
g

gg
Pµν,ση,ρλ∂ηAσ∂λAρ

}
Hµν

=−iũ20H̃0

√
h̄c
κ
ū
(
p ′){− i

2

√
κc
h̄

g ′
g

gg
Pµν,ρσ

×
[
γFρ

(
p+ p ′)

σ
−m ′

ecηρσI4
]}

u(p)ϵµν (q)

− ih̄ũ20Ã0H̃0√
µ0κ

ū
(
p ′){iqe

h̄

√
κ

ε0

g ′
g

gg
Pµν,ρσγFσ

}
u(p)ϵρ (k)ϵµν (q)

− iÃ2
0H̃0

√
ϵ20c

3

κh̄3
ϵ∗σ

(
k ′
){

−i
√
κc
h̄

g ′
g

gg
Pµν,ση,ρλk ′ηkλ

}
× ϵρ (k)ϵµν (q) . (142)

In analogy with equation (141), the last form of equation (142)
is written assuming momentum eigenstates ψ = ũ0u(p), ψ̄ =
ũ0ū(p ′), Aρ = Ã0ϵρ(k), Aσ = Ã0ϵ

∗
σ(k

′), and Hµν = H̃0ϵµν(q).
Here H̃0 is the normalization constant and ϵµν is the graviton
polarization tensor known from previous literature [4,120].
The quantities Pµν,ρσ and Pµν,ρσ,ηλ in equation (142) are
given in equations (48) and (50).

In analogy with the well-known case of the electron–
photon vertex in QED, discussed in section 8.4, we identify
the electron–graviton, electron–photon–graviton, and photon–
graviton vertices from equation (142) as the terms in the wave
brackets. In the application of the Feynman rules, we set
m ′

e = me and g ′
g = gg according to the equivalence principle

in equation (34). In this work, we additionally assume the
Feynman gauge of QED with ξe = 1 and the harmonic gauge
of unified gravity with ξg = 1. The tree-level calculations of
section 8.6 show that these vertices lead to physically mean-
ingful scattering amplitudes consistent with previous literat-
ure. The calculations at 1-loop order in section 9 show how
the vertices lead to consistent renormalization of the theory.
More detailed comparison of the vertices of UGM to those of
the effective field theory quantization of general relativity [88,
121, 123, 176–178] is a topic of further work.

8.6. Gravitational interaction potential and scattering
processes

8.6.1. Gravitational interaction potential. Here we show
how the electron–graviton vertex and the graviton propagator,
given in table 2, can be used to derive the known classical
limit of the gravitational interaction potential energy between
two electrons. Our calculation is completely analogous to how
the electron-photon vertex and the photon propagator are used
to derive the classical Coulomb interaction potential energy
limit of QED as summarized in section 2.10 of the supple-
mentary material. In previous literature [123, 178, 181, 182],
the gravitational scattering of two electrons is also called the
gravitational Møller scattering since it is analogous to the con-
ventional electromagnetic Møller scattering [1, 4, 183, 184].
The gravitational Møller scattering is studied in more detail in
section 8.6.2.

In analogy with QED, there are two leading-order Feynman
diagrams, and the processes are called the t- and u-channels.
In the classical consideration, the effect of the indistinguishab-
ility of electrons vanishes, and thus, it is sufficient to con-
sider the t-channel scattering. The scattering amplitude of the
t-channel is given by
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In the last equality of equation (143), we have applied the
identity Pαµ,βνPαµ,ρσP

βν,
λη = Pρσ,λη.

To derive the classical expression of the gravitational inter-
action potential energy, we use the nonrelativistic limit of the
Dirac spinors, in which case we have

ūs
′
(p ′)γρFu

s (p)→ 2mecδ
ss′δρ0, ūs

′
(p ′)us (p)→ 2mecδ

ss′,

ūr
′
(k ′)γλFu

r (k)→ 2mecδ
rr′δλ0, ūr

′
(k ′)ur (k)→ 2mecδ

rr′.
(144)

Here s, s′, r, and r′ denote spin states. As in the case of QED,
discussed in section 2.10 of the supplementary material, the
spin is conserved in the nonrelativistic limit. Furthermore, in
the nonrelativistic limit, we have

(p+ p ′)
σ
= (k+ k ′)

σ
= 2mecδ

σ0 +O (|p ′′|) ,

(p− p ′)
2
= (k ′ − k)

2
=−|p ′′|2 +O

(
|p ′′|4

)
. (145)

Here p ′′ is the three-dimensional momentum vector com-
ponent of p ′′ = p− p ′ = k ′ − k= (p ′′0,p ′′). Therefore, in the
nonrelativistic limit, the scattering amplitude in equation (143)
becomes

iM=
iκm4

ec
5

h̄
δss
′
δrr
′
Pρσ,λη

|p ′′|2 − iϵ

(
2δρ0δσ0−ηρσ

)(
2δλ0δη0−ηλη

)
=

2iκm4
ec

5

h̄
δss
′
δrr
′

|p ′′|2 − iϵ
. (146)

This result is compared with the Born approximation in nonre-
lativistic quantum mechanics, according to which the scatter-
ing amplitude is proportional to the Fourier transform Ṽ(p ′′)
of the potential function V(r), where r is the position vec-
tor whose length is the distance between the particles [1].

Accounting for the same coefficient of proportionality as in the
case of deriving the Coulomb interaction potential energy of
QED in section 2.10 of the supplementary material, and sum-
ming over the final spin states, we then obtain

Ṽg (p ′′) =− h̄3

4m2
ec

∑
s′,r ′

M=− κh̄2m2
ec

4

2(|p ′′|2 − iϵ)
. (147)

Then, performing the inverse Fourier transform from the
momentum space to the position space gives

Vg (r) =
ˆ
Ṽg (p ′′)eip

′′·r/h̄ d3p ′′

(2πh̄)3

=− κm2
ec

4

2(2π)3 h̄

ˆ
eip
′′·r/h̄

|p ′′|2 − iϵ
d3p ′′

=−κm
2
ec

4

8π|r|
ei|r|

√
iϵ/h̄. (148)

The intermediate steps of the calculation of this integral are
given in section 7 of the supplementary material.

In the limit of ϵ approaching zero as ϵ→ 0, we obtain the
gravitational interaction potential energy from equation (148)
as

Vg (r) =−κm
2
ec

4

8π|r|
=−Gm2

e

|r|
=−

h̄cαg

|r|
. (149)

Here αg is the gravity fine structure constant, defined in
equation (73). The negative sign of equation (149) is asso-
ciated with the fact that the gravitational force is attract-
ive. The gravitational interaction potential energy formula in
equation (149) is equivalent to Newton’s law of gravitation
written for two electrons. Therefore, it is the correct nonre-
lativistic limit of general relativity. In the case of nonzero
momenta, one must account for radiative corrections. For
scalar particles, such radiative corrections have been studied
using the previous effective field theory quantization of grav-
ity in [167, 185–187]. In our case of UGM, the radiative cor-
rections to the Newtonian potential are studied in section 10.2.

8.6.2. Gravitational Møller scattering. Next, we investigate
the momentum dependence of the gravitational Møller scatter-
ing in the nonrelativistic limit. Accounting for both the t- and
u-channel scattering processes, in analogy to the electromag-
netic Møller scattering [1, 4], the total scattering amplitude of
the gravitational Møller scattering is given by
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(150)

In the last equality of equation (150), we have applied the
identity Pαµ,βνPαµ,ρσP

βν,
λη = Pρσ,λη. We have also used the

Mandelstam variables, defined as [1, 4, 188]

s= (p+ k)2 = (p ′ + k ′)
2
= E2

cm/c
2,

t= (p− p ′)
2
= (k ′ − k)

2
=−2p2r (1− cosθr) ,

u= (p− k ′)
2
= (p ′ − k)

2
=−2p2r (1+ cosθr) . (151)

Here Ecm = 2Er is the total energy of the electrons in the center
of mass frame. The last forms of the Mandelstam variables in
equation (151) correspond to the parametrization of the four-
momenta of the incoming and outgoing electrons, given by

pµ = (Er/c,0,0,pr) ,

kµ = (Er/c,0,0,−pr) ,
p ′µ = (Er/c,pr sinθr,0,pr cosθr) ,

k ′µ = (Er/c,−pr sinθr,0,−pr cosθr) . (152)

Using equation (150), we obtain the square of the scattering
amplitude as

|M|2 = κ2c2

16h̄2
Pρσ,ληPαβ,γδ

×
(

1
t2
Tr
{[
γρF (p+ p ′)

σ −mecη
ρσI4

]
up

×
[
γαF (p+ p ′)

β −mecη
αβI4

]
up′
}

×Tr
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γλF (k+ k ′)

η −mecη
ληI4

]
uk

×
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γγF (k+ k ′)

δ −mecη
γδI4

]
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}

+
1
u2

Tr
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σ −mecη
ρσI4

]
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×
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αβI4

]
uk′
}
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η −mecη
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]
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×
[
γγF (k+ p ′)
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γδI4

]
up′
}

− 1
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Tr
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σ −mecη
ρσI4

]
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×
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γαF (p+ k ′)

β −mecη
αβI4

]
uk′
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γλF (k+ k ′)

η −mecη
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]
uk

×
[
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γδI4
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− 1
tu

Tr
{[
γρF (p+ k ′)

σ −mecη
ρσI4
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γαF (p+ p ′)

β −mecη
αβI4
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η −mecη
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×
[
γγF (k+ k ′)

δ −mecη
γδI4

]
uk′
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. (153)

In equation (153), we have expressed the terms in terms of
traces and applied the cyclicity of the trace to write all depend-
encies on the Dirac spinors using the shorthand notation up =
u(p)ū(p).

To calculate the unpolarized scattering cross section, we
average |M|2 in equation (153) over the initial spins, sum over
the final spins, apply the completeness relations of the Dirac
spinors, given by

∑
su

s
p =

∑
s u

s(p)ūs(p) = γρFpρ+mecI4 [1],
and finally use the trace relations of the Dirac gamma matrices
[1, 4] to obtain

⟨|M|2⟩= 1
4

∑
s,s ′,r,r ′

|M|2

=
κ2c2

64h̄2t2u2

{
(s− t)2 t2

(
5s2 − 6st+ 5t2

)
− tu

(
−9s4 + 12s3t− 4st3 + t4

)
+ u2

(
5s4 − 12s3t+ 8s2t2 + 4st3 − 3t4

)
+ 2u3

(
−8s3 + 2st2 + t3

)
+ u4

(
22s2 + 4st− 3t2

)
− u5 (16s+ t)+ 5u6 + 4m2

ec
2
[
−2s3

(
t2 + 7tu+ u2

)
− (t+ u)

(
t2 + u2

)(
2t2 − 7tu+ 2u2

)
+ s2 (t+ u)

(
2t2 + 31tu+ 2u2

)
+2s

(
t4 − 12t3u− 13t2u2 − 12tu3 + u4

)]
− 16m4

ec
4 [−s(2t− 3u)(3t− 2u)(t+ u)

+
(
t2 + tu+ u2

)(
3s2 + 3t2 − 11tu+ 3u2

)]
−64m6

ec
6tu [5(t+ u)− 8s] + 256m8

ec
8
(
t2 − tu+ u2

)}
.

(154)

Using the last forms of the Mandelstam variables in
equation (151) and the equation for the unpolarized scattering
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cross section of particles with equal masses in the center-of-
mass frame in terms of ⟨|M|2⟩ [4], we then obtain(

dσ
dΩ

)
cm

=
h̄2c2

64π2E2
cm

⟨|M|2⟩

=
h̄2α2

g

4m4
ec2E2

cmp4r sin
4 θr

[
16
(
m4

ec
4 + 8m2

ec
2p2r + 8p4r

)2
− 4
(
3m8

ec
8+53m6

ec
6p2r +270m4

ec
4p4r +456m2

ec
2p6r

+240p8r
)
sin2 θr + p4r

(
61m4

ec
4+240m2

ec
2p2r

+186p4r
)
sin4 θr − p8r sin

6 θr
]
. (155)

Equation (155) is the scattering cross section of the unpolar-
ized gravitational Møller scattering in unified gravity. In the
nonrelativistic limit, pr ≪ mec, the unpolarized gravitational
Møller scattering cross section in equation (155) becomes(

dσ
dΩ

)
cm

=
h̄2α2

gm
4
ec

6

E2
cmp4r sin

4 θr

(
4− 3sin2 θr

)
. (156)

In comparison with the nonrelativistic limit of the unpolarized
electromagnetic Møller scattering cross section, summarized
in section 2.11 of the supplementary material, the only differ-
ence of equation (156) is that the gravity fine structure constant
appears in place of the electromagnetic fine structure constant.
This is as expected in the nonrelativistic limit. The same res-
ult follows from the somewhat different scattering amplitudes
calculated in previous works [178]. For larger momenta, in
analogy with the electromagnetic Møller scattering, one must
account for the radiative corrections. This is left as a topic of
further work.

9. Renormalization of unified gravity

9.1. Introduction to renormalization of quantum gravity

To obtain finite values for physical quantities in quantum
field theories, one often needs to apply the renormalization
procedure [1, 4]. This procedure removes infinities that arise
in the description of self-energies and higher-order scattering
processes involving loops in the Feynman diagrams. The gen-
eral complexity of this procedure is compounded by the need
to renormalize different types of interactions and to account
for the perturbative and nonperturbative regimes of the theor-
ies. Further subtleties follow from possible spontaneous sym-
metry breaking, anomalies, and nonrenormalizable interac-
tions. Despite these challenges, renormalization is essential in
making quantum field theories physically predictive andmath-
ematically consistent.

In the case of gravity, it is known that general relativity does
not fit the paradigm of describing fundamental interactions
by renormalizable quantum field theories [4, 80–84]. This is
because the gravitational interactions in general relativity are
of such a form that the induced divergences cannot be absorbed
by the redefinition of the parameters of the theory. Therefore,
general relativity is considered inherently nonrenormalizable

[3, 4, 79]. In the conventional effective-field-theory-based
quantization of gravity, this problem is circumvented by intro-
ducing an infinite series of new coupling constants and higher-
order gravitational terms in the Lagrangian density to absorb
the divergences. The infinite number of free parameters, how-
ever, ruins the predictivity of the theory. Thus, only the lead-
ing low-energy, long-distance quantum corrections can be reli-
ably calculated using the effective-field-theory-based quantum
gravity [88, 167].

The goal of renormalizing quantum gravity is to develop a
consistent theory unifying the principles of general relativity
with quantum mechanics. Many previous approaches, such as
string theory [11–13] and loop quantum gravity [14–17], have
been developed but they have not led to the ultimate success.
Thus, a complete and widely accepted renormalizable theory
of quantum gravity remains unknown.

Below, we present a restricted investigation of the renor-
malizability of unified gravity. We aim at showing that,
because of the different gauge symmetries, the renormaliz-
ability properties of unified gravity are fundamentally differ-
ent from those in the conventional nonrenormalizable effect-
ive field theory of gravity. We prove that the theory is renor-
malizable at one-loop order and leave the complete proof of
renormalizability to all loop orders as a topic of further work.
In comparison, conventional gravity is well known to be non-
renormalizable already at one-loop order [80–83].

9.2. Renormalization of unified gravity in the UGM
formulation

In this section, we study the renormalization of unified grav-
ity in the Minkowski metric (UGM) at one-loop order. As
in previous sections, we limit our study to the system of the
Dirac electron–positron field, the electromagnetic field, and
the gravitational field. The renormalized theory is expressed
in terms of the renormalization factors, to be presented and
discussed in section 9.3.

In this work, we use the on-shell renormalization scheme
[1, 4], also known as the pole scheme or the physical scheme.
The on-shell scheme is especially suitable for particles that
can travel over asymptotically large distances, such as elec-
trons, photons, and gravitons, studied in this work. The on-
shell scheme also has an advantage that its mass parameters
straightforwardly correspond to the physical masses and no
separate corrections of the parameters are needed [4].

We present the relevant Feynman diagrams and calcu-
late all one-loop contributions to the on-shell renormalization
factors of the theory. The calculations are found to be ana-
logous to those of the renormalization of the gauge theories
of the Standard Model [4]. The radiative corrections of selec-
ted physical quantities are calculated in section 10. Here we
use the unscaled representation of unified gravity and QED,
instead of the scaled representations discussed in section 6.4
above and in section 2.9 of the supplementary material. The
one-loop contributions to the on-shell renormalization factors
of UGMusing the conventional dimensional regularization are
collected from the sections below and summarized in table 3.
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Table 3. One-loop contributions of the renormalization factors of unified gravity in the on-shell renormalization scheme obtained by using
dimensional regularization. The electromagnetic part of the renormalization factors follows from electromagnetic interactions through the
electron–photon and electron–photon–graviton vertices. The gravitational part follows from gravitational interactions through the
electron–graviton, photon–graviton, and electron–photon–graviton vertices.

Renormalization factor Electromagnetic part of δZ(1)i Gravity part of δZ(1)i

Zψ = 1+ δZ(1)ψ + . . . −αe
4π

[
1
ϵUV

+ 2
ϵIR

+ 4+ 3log
(

4πµ2e−γ

m2
ec

2

)]
− κcp2

64π2 h̄

[
7
ϵUV

− 4
ϵIR

+ 10+ 3log
(

4πµ2e−γ

m2
ec

2

)]
Zm = 1+ δZ(1)m + . . . − 3αe

4π

[
1
ϵUV

+ 4
3 + log

(
4πµ2e−γ

m2
ec

2

)]
κcp2

16π2 h̄

[
1
ϵUV

+ 1+ log
(

4πµ2e−γ

m2
ec

2

)]
ZA = 1+ δZ(1)A + . . . −αe

3π

[
1
ϵUV

+ log
(

4πµ2e−γ

m2
ec

2

)]
− κcp2

24π2 h̄

[
1
ϵUV

+ 1
6 + log(4πµ2e−γ)

]
Zgψ = 1+ δZ(1)gψ + . . . −αe

4π

[
1
ϵUV

+ 2
ϵIR

+ 4+ 3log
(

4πµ2e−γ

m2
ec

2

)]
κcp2

192π2 h̄

[
11
ϵUV

+ 12
ϵIR

+ 172
3 + 23log

(
4πµ2e−γ

m2
ec

2

)]
Zgm = 1+ δZ(1)gm + . . . − 3αe

4π

[
1
ϵUV

+ 4
3 + log

(
4πµ2e−γ

m2
ec

2

)]
5κcp2

192π2 h̄

[
1
ϵUV

− 31
30 + log

(
4πµ2e−γ

m2
ec

2

)]
ZgA = 1+ δZ(1)gA + . . . −αe

3π

[
1
ϵUV

+ log
(

4πµ2e−γ

m2
ec

2

)]
κcp2

8π2 h̄

[
1
ϵUV

+ 43
12 + log

(
4πµ2e−γ

(m2
ec

2)4/3

)]
Renormalization factor Electron-loop part of δZ(1)H Photon-loop part of δZ(1)H

ZH = 1+ δZ(1)H + . . . − κcp2

192π2 h̄

{
37
15 −

4m2
ec

2

p2 − 24m4
ec

4

p4 + log(m2
ec

2) − κcp2

96π2 h̄

[
1
ϵUV

+ 29
30 + log(4πµ2e−γ)

]
+
(
1− 4m2

ec
2

p2 − 16m2
ec

2

p4

)[
1
ϵUV

+ log
(

4πµ2e−γ

m2
ec

2

)]}

9.3. Dressed states and renormalization factors

We start our study of the renormalization of unified grav-
ity with the discussion of the bare and dressed states and
the renormalization factors. The renormalization is based on
recognizing that the fields and physical constants in the clas-
sical Lagrangian density, in the absence of quantum-field-
theoretical interactions, are bare quantities. In the presence of
interactions, the bare particles, like electrons, interact through
the gauge fields, leading to the creation of particle-antiparticle
pairs, virtual photons, and other excitations that modify the
bare states to become dressed states. Thus, a dressed state
refers to a quantum state that is the fundamental excitation
of the theory in the presence of interactions. Therefore, the
bare quantities neglect the quantum-field-theoretical virtual
particle corrections associated with the Feynman loop dia-
grams. The bare fields and the bare physical constants are typ-
ically infinite and written in terms of the renormalized quant-
ities as follows:

ψbare=
√
Zψψ, Aµbare=

√
ZAAµ,

me,bare=Zmme, ebare=Zee,

ξe,bare=Zξ eξe, Hµνbare=
√
ZHHµν ,

m ′
e,bare=Zgmm ′

e, g ′
g,bare=Zgg ′

g,

ξg,bare=Zξ gξg.

(157)

The renormalization relations for ψ, Aµ, me, e and ξe in
equation (157) are well known in QED [1, 4]. In unified grav-
ity, these relations are complemented with the renormaliza-
tion of the gravity gauge field Hµν , the gravitational mass m ′

e,
the gravity coupling constant g ′

g, and the gravity gauge-fixing
parameter ξg.

That the gravitational and inertial masses are associated
with different renormalization factors in equation (157) does

not mean that the gravitational and inertial masses are not
equal. According to the equivalence principle in equation (34),
we assume that the renormalized values of these masses are
equal. Together with the generally different renormalization
factors, the equivalence principle thus means that the bare val-
ues of the gravitational and inertial masses are generally differ-
ent. This is not in conflict with any experiments since the bare
masses have anyway infinite values and they are not experi-
mental observables.

For convenience, we define the scaled renormalization
factors Zeψ, Zgψ, and ZgA by the following relations:

Ze =
Zeψ

Zψ
√
ZA
, Zg =

Zgψ

Zψ
√
ZH

=
ZgA

ZA
√
ZH
. (158)

As is well known, the electromagnetic gauge invariance of
QED implies via the Ward–Takahashi identity that the renor-
malization factors Zeψ and Zψ are equal as [1, 4]

Zeψ = Zψ. (159)

The violation of this equality would be an indication of a gauge
anomaly breaking the gauge symmetry of QED. Consistent
theories, such as the Standard Model, are known to be free
from gauge anomalies [4]. In the sections below, we show at
one-loop order that equation (159) is satisfied in unified grav-
ity in the presence of gravitational interactions. This derivation
provides one strong argument for the consistency of unified
gravity.

Furthermore, the renormalization factors of the gauge-
fixing parameters are set equal to the renormalization factors
of the gauge fields as

Zξ e = ZA, Zξ g = ZH. (160)
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These equations imply that the gauge-fixing Lagrangian dens-
ities do not obtain counterterms as shown in section 9.4 below.

In perturbation theory, the renormalization factors Zi
are expanded in powers of the expansion parameter λ
according to

Zi = 1+λδZ(1)i +λ2δZ(2)i + . . . . (161)

Accordingly, at one-loop order, we expand Zi up to the first
power in λ and set λ→ 1. The higher-order terms in λ are
dropped out. Order by order, the renormalization factor terms,
δZ(1)i , δZ(2)i , . . ., become determined by the renormalization
conditions, to be discussed in the sections below.

9.4. Geometric Lagrangian density of UGM in terms of
renormalized quantities

Next, we present the Lagrangian density of UGM in terms of
the renormalized quantities. First, we recognize that the quant-
ities of the Lagrangian density of UGM in equations (108)
and (109) are bare quantities, even though this has not been
indicated by any subscripts in these equations. Using the
expressions of the bare quantities in terms of the renormal-
ized quantities in equation (157) and applying the renormaliz-
ation factor equalities in equations (158)–(160), the terms of
the Lagrangian density of UGM in equation (109) become
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ih̄c
2
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(
γνF∂
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ν − ∂
←

νγ
ν
F

)
ψ−mec

2ψ̄ψ
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2
ψ̄
(
γνF∂
→

ν − ∂
←

νγ
ν
F

)
ψ

− (Zψ Zm− 1)mec
2ψ̄ψ,

Lem,kin =− 1
4µ0

FµνF
µν − (ZA− 1)

1
4µ0

FµνF
µν ,

Lem,int =−qecψ̄γνFψAν − (Zψ − 1)qecψ̄γ
ν
FψAν ,

Lg,kin =
1
4κ
HρµνS

ρµν +(ZH− 1)
1
4κ
HρµνS

ρµν ,

Lg,int =−
g ′
g

gg

{
c
2
Pµν,ρσ

[
ih̄ψ̄
(
γFρ∂

→

σ − ∂
←

ργFσ

)
ψ

−qeψ̄
(
γFρAσ +AργFσ

)
ψ −m ′

ecηρσψ̄ψ
]

+
1
µ0
Pµν,ρσ,ηλ∂ρAσ∂ηAλ

}
Hµν

−
g ′
g

gg

{
c
2
Pµν,ρσ

[
(Zgψ−1) ih̄ψ̄

(
γFρ∂

→

σ−∂
←

ργFσ

)
ψ

− (Zgψ − 1)qeψ̄
(
γFρAσ +AργFσ

)
ψ

−(ZgψZgm− 1)m ′
ecηρσψ̄ψ

]
+(ZgA− 1)

1
µ0
Pµν,ρσ,ηλ∂ρAσ∂ηAλ

}
Hµν ,

Lem,gf =− 1
2µ0ξe

(∂νA
ν)

2
,

Lg,gf =
1
κξg

ηγδP
αβ,λγPρσ,ηδ∂λHαβ∂ηHρσ. (162)

The terms of the Lagrangian density in equation (162)
involving the renormalization factors are called the coun-
terterms. When the renormalization factors are set equal to
unity, the counterterms become zero and the Lagrangian dens-
ity terms in equation (162) become identical in their form
to the terms of equation (109). The gauge-fixing Lagrangian
densities Lem,gf and Lg,gf in equation (162) do not obtain
counterterms due to the renormalization relations of the
gauge-fixing parameters, given in equation (160). The coun-
terterm Feynman diagrams follow unambiguously from the
Lagrangian density in equation (162). These counterterm dia-
grams are presented together with the other Feynman diagrams
in table 2.

9.5. Computational approach

In the study of the renormalization of unified gravity at one-
loop order, we need to calculate several one-loop Feynman
diagrams. The literature on the computation of Feynman loop
diagrams is extensive [189–191]. For all loop integrals of uni-
fied gravity, the so-called Passarino–Veltman reduction can be
applied to transform the more complicated integrals into sim-
pler ones, which can be solved by standard techniques known
from previous literature. For both the Passarino–Veltman
reduction and the calculation of the simpler loop integrals,
there are highly automated tools available. In this work, after
writing the loop integrals, we systematically reduce and cal-
culate them using Wolfram Mathematica packages FeynCalc
[192] and Package-X [193].

To regularize the divergences that are obtained in the cal-
culation of Feynman loop diagrams, we follow FeynCalc
and Package-X to use dimensional regularization with the
space-time dimension set to D= 4− 2ϵ, where ϵ is a small
positive number. In the regularization of UV divergences, ϵ is
denoted by ϵUV, and in the regularization of IR divergences, ϵ
is denoted by ϵIR. The use of these notations clarifies the ori-
gin of the divergences in our results for the renormalization
factors in table 3.

9.6. Renormalization of the electron self-energy

We start the calculations of the renormalization of unified
gravity from the electron self-energy. The electron self-energy
refers to the quantum corrections to the electron propagator
due to its interaction with the electromagnetic field. In QED,
the electron self-energy correction arises from virtual photon
exchanges between the electron and the vacuum, which leads
to a modification of the electron’s mass and wavefunction. In
unified gravity, the electron self-energy becomes also contrib-
uted by the virtual graviton exchanges.

The one-photon-loop, one-graviton-loop, and counterterm
contributions to the electron propagator are, respectively,
given by the following irreducible Feynman diagrams:
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(163)

Here µ is the arbitrary scale constant of the dimensional reg-
ularization, and γ is the Euler–Mascheroni constant. The red
crosses on the external lines highlight that these lines are not
included in the expressions. The renormalized electron self-
energy one-loop amplitude is given by the sum of the terms in
equations (163)–(165) as

Σ1L =Σ1L,photon +Σ1L,graviton +Σ1L,CT. (166)

The renormalization conditions for the electron self-energy
in the on-shell renormalization scheme are well known to be
given by [1, 4]

Σ1L

∣∣
p/=mecI4

= 0,
dΣ1L

dp/

∣∣∣∣
p/=mecI4

= 0. (167)

The zero values of these renormalization conditions mean that,
at the physically meaningful on-shell renormalization point,

the renormalized electron propagator has the same form as in
the free-particle theory in the absence of loop corrections.

Using the renormalization conditions in equation (167), the
one-photon-loop and one-graviton-loop contributions to the
renormalization factors Zm and Zψ, in the on-shell renormal-
ization scheme, are determined to be

δZ(1)m,photon =−3αe

4π

[
1
ϵUV

+
4
3
+ log

(
4πµ2e−γ

m2
ec2

)]
, (168)

δZ(1)ψ,photon =−αe

4π

[
1
ϵUV

+
2
ϵIR

+ 4+ 3log

(
4πµ2e−γ

m2
ec2

)]
, (169)

δZ(1)m,graviton =
κcp2

16π2h̄

[
1
ϵUV

+ 1+log

(
4πµ2e−γ

m2
ec2

)]
, (170)

δZ(1)ψ,graviton =− κcp2

64π2h̄

[
7
ϵUV

− 4
ϵIR

+ 10+ 3log

(
4πµ2e−γ

m2
ec2

)]
.

(171)

The pole parts of equations (168)–(171) are proportional to
1/ϵUV and 1/ϵIR and they appear in some form in all renormal-
ization schemes [4]. The physical observables of a renormal-
ized theory are independent of the renormalization scheme, the
scale constant, the Euler–Mascheroni constant, and the regu-
larization parameters, such as ϵUV and ϵIR. This independence
is shown for selected radiative corrections in section 10.

9.7. Renormalization of the photon self-energy

Next, we study the photon self-energy. In QED, the photon
self-energy correction arises from the creation and annihil-
ation of virtual electron–positron pairs. It is also called the
electromagnetic vacuum polarization. In unified gravity, the
photon self-energy becomes also contributed by the virtual
graviton exchanges.

The one-electron-loop, one-graviton-loop, and counterterm
contributions to the photon propagator are described by the
following irreducible Feynman diagrams:

(172)
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(173)

(174)

The one-loop photon propagator correction is equal to
iΠµν1L multiplied by the tree-level photon propagator from
the left and right. Thus, the corrected photon propagator is
given by

(175)

Here Π1L is the scalar one-loop photon self-energy renormal-
ization factor, whose value is given below. In the S-matrix ele-
ment calculations, at least one end of the renormalized photon
propagator in equation (175) connects to a fermion line. In the
summation over all places along the line where it could con-
nect, one finds, according to the Ward identity, that the terms
proportional to pµ or pν vanish [1]. Therefore, in the calcula-
tion of the S-matrix elements, the last term in the last line of
equation (175) can be dropped out.

The scalar one-loop renormalization factor Π1L of photon
self-energy and its electron-loop, graviton-loop, and coun-
terterm parts following from equations (172)–(175) are given
by

Π1L =Π1L,electron +Π1L,graviton +Π1L,CT, (176)

Π1L,electron =−αe

3π

{
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)
+

5
3
+

4m2
ec

2

p2

+

(
1+

2m2
ec

2

p2

)√
1− 4m2

ec2

p2

× log

[
1+

p2

2m2
ec2

(√
1− 4m2

ec2

p2
−1

)]}
,

(177)

Π1L,graviton =− κcp2

24π2h̄

[
1
ϵUV

+
1
6
+ log

(
−4πµ2e−γ

p2

)]
,

(178)

Π1L,CT =Π1L,CT,electron +Π1L,CT,graviton, (179)

Π1L,CT,electron =−δZ(1)A,electron, (180)

Π1L,CT,graviton =−δZ(1)A,graviton. (181)

In the on-shell renormalization scheme, the renormaliza-
tion conditions for the photon self-energy are given by

Π1L

∣∣
p2=0

= 0,
Π1L

p4

∣∣∣∣
p2=∞

= 0. (182)

The first condition in equation (182) is the standard on-
shell renormalization condition for the photon self-energy in
quantum field theory [1, 4]. It means that, at the physically
meaningful on-shell renormalization point, the renormalized
photon propagator has the same form as in the free-particle
theory in the absence of loop corrections. The second condi-
tion in equation (182) is imposed to guarantee that the loop
corrections to the Coulomb potential are integrable functions.
Through the renormalization constants, one could easily add
to the quantity Π1L arbitrary analytic terms proportional to p2

or its higher powers so that the first condition in equation (182)
remains satisfied. Therefore, to avoid the addition of arbit-
rary terms that ruin the integrability of the Coulomb poten-
tial corrections studied in section 10.1, the second condition
in equation (182) is imposed.

The one-electron-loop and one-graviton-loop contributions
to the renormalization factor ZA, in the on-shell renormaliza-
tion scheme, are determined to be

δZ(1)A,electron =−αe

3π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
, (183)

δZ(1)A,graviton =− κcp2

24π2h̄

[
1
ϵUV

+
1
6
+ log

(
4πµ2e−γ

)]
. (184)

Using the values of the renormalization factors in
equations (183) and (184), the one-loop renormalized scalar
amplitude factors of the photon self-energy become

Π
(r)
1L,electron =Π1L,electron +Π1L,CT,electron

=−αe

3π

{
5
3
+

4m2
ec

2

p2
+

(
1+

2m2
ec

2

p2

)√
1− 4m2

ec2

p2

× log

[
1+

p2

2m2
ec2

(√
1− 4m2

ec2

p2
−1

)]}
, (185)

Π
(r)
1L,graviton =Π1L,graviton +Π1L,CT,graviton

=
κcp2

24π2h̄
log
(
−p2

)
. (186)
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In section 10.1, these renormalized correction factors are
applied to calculate the radiative corrections to the Coulomb
potential.

9.8. Renormalization of the graviton self-energy

Next, we study the graviton self-energy. The graviton self-
energy correction arises from the creation and annihilation
of virtual electron–positron pairs. It is also contributed by
the virtual photon exchanges between the graviton and the
vacuum. In contrast to the previous effective field theory
quantization of general relativity [4, 78, 87, 88, 167], in uni-
fied gravity, the gravitons do not interact directly with each
other in the vertex interactions. The consistent renormaliza-
tion of the one-electron-loop correction to the graviton self-
energy in unified gravity is a substantial breakthrough since
the conventional gravity in the presence of matter is well
known to be nonrenormalizable starting from the one-loop
order [80–83].

The one-electron-loop, one-photon-loop, and counterterm
contributions to the graviton self-energy are given by the fol-
lowing irreducible Feynman diagrams:

(187)

(188)

(189)

The factor of 1
2 in front of the integral in equation (188)

comes from the division by the symmetry factor of the dia-
gram according to the standard Feynman rule. The quantities
P̂αβ,ηλa,b,c , P̂αβ,ηλA , P̂αβ,ηλB , and P̂αβ,ηλC in equations (187)–(189)
are defined below. First, the quantity Pµν,ρσa,b,c without a hat is a
generalization of Pµν,ρσ in equation (48) for the integer para-
meters a,b and c, defined as

Pµν,ρσa,b,c =
1
2c

(aηµσηρν + aηµρηνσ − bηµνηρσ) . (190)

Here ηαβ is the Minkowski metric tensor. Analogously, the
quantity P̂αβ,ηλa,b,c with a hat is defined as

P̂αβ,ηλa,b,c =
1
2c

(
aη̂αλη̂βη + aη̂αη η̂βλ− bη̂αβ η̂ηλ

)
. (191)

Here the quantity η̂αβ is a projection defined as

η̂αβ = ηαβ − pαpβ

p2
. (192)

The derived quantities P̂αβ,ηλA , P̂αβ,ηλB , and P̂αβ,ηλC in
equation (187) are defined as

P̂αβ,ηλA = 4P̂αβ,ηλ27,23,15 −
2m2

ec
2

p2
P̂αβ,ηλ19,86,3

− m4
ec

4

p4

(
64P̂αβ,ηλ1,−1,1 + 45Pαβ,ηλ1,0,1

)
, (193)

P̂αβ,ηλB = P̂αβ,ηλ3,2,1 − 10m2
ec

2

p2
P̂αβ,ηλ1,2,1 − 30m4

ec
4

p4
Pαβ,ηλ1,0,1 ,

(194)

P̂αβ,ηλC = P̂αβ,ηλ3,2,1 +
8m2

ec
2

p2
P̂αβ,ηλ1,−1,1. (195)

The one-graviton-loop propagator correction is equal to
iΞαβ,ηλ1L multiplied by the tree-level graviton propagator from
the left and right. Thus, the corrected graviton propagator is
given by

(196)

Here the renormalized scalar factor Ξ1L is formed from the
one-photon-loop, one-electron-loop, and counterterm contri-
butions as

Ξ1L = Ξ1L,electron +Ξ1L,photon +Ξ1L,CT, (197)
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Ξ1L,electron

=− κcp2

32π2h̄

{
37
15

− 20m2
ec

2

3p2
− 40m4

ec
4

p4

+

(
1− 4m2

ec
2

p2
− 16m4

ec
4

p4

)[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]

+

(
1− 2m2

ec
2

p2
− 8m4

ec
4

p4

)√
1− 4m2

ec2

p2

× log

[
1+

p2

2m2
ec2

(√
1− 4m2

ec2

p2
− 1

)]}
, (198)

Ξ1L,photon =− κcp2

16π2h̄

[
1
ϵUV

+
29
30

+ log

(
−4πµ2e−γ

p2

)]
,

(199)

Ξ1L,CT = Ξ1L,CT,electron +Ξ1L,CT,photon, (200)

Ξ1L,CT,electron =−6δZ(1)H,electron, (201)

Ξ1L,CT,photon =−6δZ(1)H,photon. (202)

In the on-shell renormalization scheme, the renormaliza-
tion conditions for the graviton self-energy in unified gravity
are analogous to the renormalization conditions for the photon
self-energy in section 9.7. The graviton self-energy renormal-
ization conditions are given by

Ξ1L

∣∣
p2=0

= 0,
Ξ1L

p4

∣∣∣∣
p2=∞

= 0. (203)

In analogy with the photon self-energy renormalization condi-
tions in equation (182), the second condition in equation (203)
is imposed to guarantee that the loop corrections to the
Newtonian potential are integrable functions. Through the
renormalization factors, one could easily add to the quantity
Ξ1L arbitrary analytic terms proportional to p2 or its higher
powers so that the first condition in equation (203) remains sat-
isfied. Therefore, to avoid the addition of arbitrary terms that
ruin the integrability of the Newtonian potential corrections
studied in section 10.2, the second condition in equation (203)
is imposed.

The renormalization conditions of the graviton self-energy
in equation (203) lead to the one-photon-loop and one-
electron-loop counterterms for the graviton self-energy, with
the one-loop contributions to the renormalization factors given
by

δZ(1)H,electron

=− κcp2

192π2h̄

{
37
15

− 4m2
ec

2

p2
− 24m4

ec
4

p4
+ log

(
m2

ec
2
)

+

(
1− 4m2

ec
2

p2
− 16m2

ec
2

p4

)[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]}
,

(204)

δZ(1)H,photon =− κcp2

96π2h̄

[
1
ϵUV

+
29
30

+ log
(
4πµ2e−γ

)]
. (205)

The renormalized one-photon and one-electron loop cor-
rection factors to the graviton propagator are given by

Ξ
(r)
1L,electron = Ξ1L,electron +Ξ1L,CT,electron

=− κcp2

32π2h̄

{
−8m2

ec
2

3p2

(
1+

6m2
ec

2

p2

)
− log

(
m2

ec
2
)

+

(
1− 2m2

ec
2

p2
− 8m4

ec
4

p4

)√
1− 4m2

ec2

p2

× log

[
1+

p2

2m2
ec2

(√
1− 4m2

ec2

p2
− 1

)]}
,

(206)

Ξ
(r)
1L,photon = Ξ1L,photon +Ξ1L,CT,photon

=
κcp2

16π2h̄
log
(
−p2

)
. (207)

In section 10.2, these renormalized correction factors are used
to calculate radiative corrections to the Newtonian potential.

9.9. Photon–graviton two-point function

Next, we study the photon–graviton two-point function, which
describes possible transformation between photons and grav-
itons. At the tree level, such a process is nonexistent. At
the one-loop order, the photon–graviton two-point function is
formed by the Feynman diagrams with a single electron loop.
The explicit calculations of such loop diagrams, however, give
zero as

(208)

(209)

Therefore, the one-electron-loop contribution to the photon–
graviton two-point function vanishes, and we do not need to
account for such a process in the renormalization of the ver-
tices, discussed in the sections below.

9.10. Renormalization of the electron–photon vertex

The renormalization of the electron–photon vertex is well
known to be associated with the Ward–Takahashi identity
[1, 4]. In writing the Lagrangian density in terms of the
renormalized quantities in section 9.4, we used the renor-
malization factor Zψ both in the counterterm of the elec-
tron propagator and in the electron–photon vertex. This is
in agreement with equation (159). Therefore, in the renor-
malization of the electron–photon vertex in this section,
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we do not obtain any new relations for the renormaliz-
ation factors. Instead, we use the renormalization factors
obtained in previous sections to verify that the renormal-
ization condition of the electron–photon vertex is satisfied
identically.

The photon index is assumed to be µ but, for compactness,
we do not show it in the diagrams below. Accordingly, the
one-photon-loop, one-graviton-loop, and counterterm contri-
butions to the electron–photon vertex are given by

(210)

(211)

(212)

Apart from the counterterm, we only give the Feynman dia-
grams since there are many diagrams and the integral expres-
sions are straightforward to write using the Feynman rules
presented in table 2.

The total one-loop contribution to the electron–photon ver-
tex is given by

Γµ1L = Γµ1L,photon +Γµ1L,graviton +Γµ1L,CT. (213)

The counterterm can also be split into photon and graviton
parts Γµ1L,CT,photon and Γµ1L,CT,graviton based on substituting the
renormalization factors of equations (169) and (171) into
equation (212).

The on-shell renormalization condition of the electron–
photon vertex is imposed by requiring that Γµ1L and any higher-
order-loop terms do not lead to corrections of the tree-level
vertex for p= p ′ [1, 4]. For on-shell electrons, we additionally
have p2 = m2

ec
2. Therefore, the matrix element of Γµ1L must be

zero for p= p ′ as

ū(p ′)Γµ1Lu(p)
∣∣
p=p ′

= 0. (214)

The vanishing of the quantum corrections of the electron–
photon vertex for p= p ′ effectively means that the clas-
sical form of the Coulomb law applies at asymptotically long
distances [4].

The general structure of the one-loop radiative correction
to the electron–photon vertex matrix element is well known to
be of the Lorentz-invariant form, given by [4]

ū(p ′)Γµ1Lu(p)

= ū(p ′)

[
F(eγ)
1,1L

(
q2
)
γµF +F(eγ)

2,1L

(
q2
) iqν
h̄mec

ŜµνF

]
u(p) .

(215)

Here q= p ′ − p is the photon four-momentum, ŜµνF =
ih̄
4 [γ

µ
F ,γ

ν
F ] is the spin operator for fermions [55], and the

quantities F(eγ)
1,1L(q

2) and F(eγ)
2,1L(q

2) are the 1-loop radiative
corrections of the total electron–photon-vertex form factors
F(eγ)
1 (q2) and F(eγ)

2 (q2), which are generally written as series
over all loop orders as

F(eγ)
1

(
q2
)
= F(eγ)

1,0L +F(eγ)
1,1L

(
q2
)
+ . . . , (216)

F(eγ)
2

(
q2
)
= F(eγ)

2,0L +F(eγ)
2,1L

(
q2
)
+ . . . . (217)

Here the leading order terms, F(eγ)
1,0L = 1 and F(eγ)

2,0L = 0, corres-
pond to the tree-level diagram.

Since the renormalization condition in equation (214) is
determined at p= p ′, we have q= p ′ − p= 0, and thus, the
second term of equation (215) is zero. Therefore, the renormal-
ization condition considers the form factor F(eγ)

1 (q2) stating

that F(eγ)
1 (q2) is determined to be F(eγ)

1 (q2) = 1 for q2 = 0 at

all loop orders. Consequently, F(eγ)
1,1L(q

2) = 0. The second form

factor F(eγ)
2 (q2) is associated with the anomalous magnetic

moment of the electron, discussed in section 10.3. Since the
one-photon-loop and one-graviton-loop radiative corrections
and the associated counterterm parts are proportional to differ-
ent physical constants, the quantity F(eγ)

1,1L(q
2) can be split into

the one-photon-loop and one-graviton-loop associated parts,
which are separately zero for q2 = 0 as

F(eγ)
1,1L,photon = F(eγ)

1,1L,photon +F(eγ)
1,1L,CT,photon = 0, (218)

F(eγ)
1,1L,graviton = F(eγ)

1,1L,graviton +F(eγ)
1,1L,CT,graviton = 0. (219)
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The explicit calculation of the one-photon-loop, one-
graviton-loop, and counterterm contributions to the
form factors following from the Feynman diagrams in
equations (210)–(212) show that equations (218) and (219)
are satisfied identically. The one-photon-loop contribution
to equation (218) following from equation (210) and the
associated counterterm contribution part following from
equations (169) and (212) are given for q2 = 0 by

F(eγ)
1,1L,photon =

αe

4π

[
1
ϵUV

+
2
ϵIR

+ 4+ 3log

(
4πµ2e−γ

m2
ec2

)]
,

(220)

F(eγ)
1,1L,CT,photon =−αe

4π

[
1
ϵUV

+
2
ϵIR

+ 4+ 3log

(
4πµ2e−γ

m2
ec2

)]
.

(221)

The one-graviton-loop contributions to equation (219) fol-
lowing from each Feynman diagram in equation (211) and
the associated counterterm contribution part following from
equations (171) and (212) are given for q2 = 0 by

F(eγ,diag1)
1,1L,graviton =−αg

8π

[
7
ϵUV

+
4
ϵIR

+ 18+ 11log

(
4πµ2e−γ

m2
ec2

)]
,

(222)

F(eγ,diag2)
1,1L,graviton = F(eγ,diag3)

1,1L,graviton = F(eγ,diag6)
1,1L,graviton = 0, (223)

F(eγ,diag4)
1,1L,graviton = F(eγ,diag5)

1,1L,graviton

=
7αg

8π

[
1
ϵUV

+ 2+ log

(
4πµ2e−γ

m2
ec2

)]
, (224)

F(eγ)
1,1L,CT,graviton =−αg

8π

[
7
ϵUV

− 4
ϵIR

+ 10+ 3log

(
4πµ2e−γ

m2
ec2

)]
.

(225)

The exact cancellation of the terms in equations (220)
and (221) when substituted into equation (218) is a con-
sequence of the electromagnetic gauge invariance via the
Ward–Takahashi identity [1, 4]. The exact cancellation of the
different nonzero terms in equations (222), (224) and (225)
when substituted into equation (219) is likewise a result of the
electromagnetic gauge symmetry, and it shows that the Ward–
Takahashi identity of QED is satisfied in unified gravity at one-
loop order. This is considered to be a necessary requirement
for the consistency of the theory and it should extend to all
loop orders.

9.11. Renormalization of the electron–graviton vertex

Next, we study the renormalization of the electron–graviton
vertex, which is related to the renormalization factors Zgψ

and Zgm in the Lagrangian density terms of equation (162).
Through the on-shell renormalization conditions, we obtain
unambiguous values for the one-loop contributions to these
renormalization factors.

The graviton indices are assumed to be µ and ν but,
for compactness, we do not show them in the diagrams
below. Accordingly, the one-photon-loop, one-graviton-loop,

and counterterm contributions to the electron–graviton vertex
are given by the following Feynman diagrams:

(226)

(227)(227)

(228)

The total one-loop contribution to the electron–graviton
vertex is given by

Γµν1L = Γµν1L,photon +Γµν1L,graviton +Γµν1L,CT. (229)

The counterterm can also be split into photon and graviton
parts Γµν1L,CT,photon and Γ

µν
1L,CT,graviton based on the different con-

tributions to the renormalization factors obtained below.
In analogy with the on-shell renormalization condition of

the electron–photon vertex in equation (214), we define the
on-shell renormalization condition for the electron–graviton
vertex as

ū(p ′)Γµν1,1Lu(p)
∣∣
p=p ′

= 0. (230)
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The vanishing of the quantum corrections of the electron–
graviton vertex for p= p ′ effectively means that the classical
form of the Newtonian potential applies to the strength of the
gravitational interaction at asymptotically long distances.

The one-loop radiative correction to the electron–graviton
vertex matrix element can be written in a Lorentz-invariant
form as

ū(p ′)Γµν1,1Lu(p)

= ū(p ′)

{
F(eg)
1,1Lmecη

µνI4+F
(eg)
2,1L

(p+p ′)
µ
(p+p ′)

ν

2mec
I4

+F(eg)
3,1L

iqρ
h̄mec

[
(p+ p ′)

µ
ŜνρF +(p+ p ′)

ν
ŜµρF

]
+F(eg)

4,1Lq
µqνI4

}
u(p) . (231)

Here F(eg)
1,1L, F

(eg)
2,1L, F

(eg)
3,1L, and F(eg)

4,1L are the one-loop radiat-
ive corrections to the electron-graviton vertex form factors.
Through the Gordon identity [1], there is some freedom in the
representation of the terms of equation (231).

At q= p ′ − p= 0, the last terms of equation (231), asso-
ciated with F(eg)

3,1L and F(eg)
4,1L, are zero. Therefore, the renor-

malization condition in equation (230) implies that F(eg)
1,1L and

F(eg)
2,1L must be zero at the renormalization point. Since the one-

photon-loop and one-graviton-loop radiative corrections and
the associated counterterm parts are proportional to different
physical constants, the quantities F(eg)

1,1L and F(eg)
2,1L can also be

split into the one-photon-loop and one-graviton-loop associ-
ated parts, which are separately zero for q2 = 0 as

F(eg)
1,1L,photon = F(eg)

1,1L,photon +F(eg)
1,1L,CT,photon = 0, (232)

F(eg)
2,1L,photon = F(eg)

2,1L,photon +F(eg)
2,1L,CT,photon = 0, (233)

F(eg)
1,1L,graviton = F(eg)

1,1L,graviton +F(eg)
1,1L,CT,graviton = 0, (234)

F(eg)
2,1L,graviton = F(eg)

2,1L,graviton +F(eg)
2,1L,CT,graviton = 0. (235)

The one-photon-loop contributions to the form factor F(eg)
1,1L

following from each diagram in equation (226) when com-
pared with the structure of the vertex matrix element in
equation (231) are given by

F(eg,diag1)1,1L,photon =
αe

12π

[
1
ϵUV

− 22
3

+ log

(
4πµ2e−γ

m2
ec2

)]
, (236)

F(eg,diag2)1,1L,photon =−αe

3π

[
1
ϵUV

− 1
3
+ log

(
4πµ2e−γ

m2
ec2

)]
, (237)

F(eg,diag3)1,1L,photon = F(eg,diag4)1,1L,photon

=
αe

2π

[
1
ϵUV

+
3
2
+ log

(
4πµ2e−γ

m2
ec2

)]
. (238)

The corresponding contributions to the form factor F(eg)
2,1L, fol-

lowing from each diagram in equation (226) and the structure
of the vertex matrix element in equation (231), are given by

F(eg,diag1)2,1L,photon =
αe

12π

[
1

ϵUV
+

6

ϵIR
+

56

3
+ 7 log

(
4πµ2e−γ

m2
ec2

)]
, (239)

F(eg,diag2)2,1L,photon =
2αe

3π

[
1

ϵUV
+

17

12
+ log

(
4πµ2e−γ

m2
ec2

)]
, (240)

F(eg,diag3)2,1L,photon = F(eg,diag4)2,1L,photon

=−
αe

4π

[
1

ϵUV
+ 3+ log

(
4πµ2e−γ

m2
ec2

)]
. (241)

Based on equations (236)–(241) and the form-factor renor-
malization conditions in equations (232) and (233), the form-
factor counterterm parts F(eg)

1,1L,CT,photon and F(eg)
2,1L,CT,photon are

determined to be

F(eg)
1,1L,CT,photon =−3αe

4π

[
1
ϵUV

+
4
3
+ log

(
4πµ2e−γ

m2
ec2

)]
,

(242)

F(eg)
2,1L,CT,photon =−αe

4π

[
1
ϵUV

+
2
ϵIR

+ 4+ 3log

(
4πµ2e−γ

m2
ec2

)]
.

(243)

Using the counterterm in equation (228) and the electron–
graviton vertex matrix element in equation (231), we then
obtain the one-photon-loop contributions to the renormaliza-
tion factors Zgm and Zgψ as

δZ(1)gm,photon =−3αe

4π

[
1
ϵUV

+
4
3
+ log

(
4πµ2e−γ

m2
ec2

)]
, (244)

δZ(1)gψ,photon =−αe

4π

[
1
ϵUV

+
2
ϵIR

+ 4+ 3log

(
4πµ2e−γ

m2
ec2

)]
.

(245)

The comparison of these equations with the one-photon-loop
contributions to the renormalization factors Zm and Zψ in
equations (168) and (169), we observe that the contribu-
tions are identical as δZ(1)gm,photon = δZ(1)m,photon and δZ

(1)
gψ,photon =

δZ(1)ψ,photon. This means that electromagnetic interaction makes
no difference between the inertial and gravitational masses.
Below, we show that a similar equivalence is not satisfied for
one-graviton-loop contributions.

The one-graviton-loop contribution to the form factor F(eg)
1,1L

following from the Feynman diagram in equation (227) when
compared with the structure of the vertex matrix element in
equation (231) is given by

F(eg)
1,1L,graviton =− 5κcp2

192π2h̄

[
1
ϵUV

− 31
30

+ log

(
4πµ2e−γ

m2
ec2

)]
.

(246)

The corresponding contribution to the form factor F(eg)
2,1L fol-

lowing from equation (227) and the structure of the vertexmat-
rix element in equation (231) is given by

F(eg)
2,1L,graviton

=− 3κcp2

576π2h̄

[
11
ϵUV

+
12
ϵIR

+
172
3

+ 23log

(
4πµ2e−γ

m2
ec2

)]
.

(247)
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Based on the renormalization conditions in equations (234)
and (235), the one-graviton-loop form-factor contributions
F(eg)
1,1L,CT,graviton and F(eg)

2,1L,CT,graviton are given by

F(eg)
1,1L,CT,graviton =

5κcp2

192π2h̄

[
1
ϵUV

− 31
30

+ log

(
4πµ2e−γ

m2
ec2

)]
,

(248)

F(eg)
2,1L,CT,graviton

=
3κcp2

576π2h̄

[
11
ϵUV

+
12
ϵIR

+
172
3

+ 23log

(
4πµ2e−γ

m2
ec2

)]
.

(249)

Using the counterterm in equation (228) and the electron–
graviton vertex matrix element in equation (231), we then
obtain the one-graviton-loop contributions to the renormaliz-
ation factors Zgm and Zgψ as

δZ(1)gm,graviton =
5κcp2

192π2h̄

[
1
ϵUV

− 31
30

+ log

(
4πµ2e−γ

m2
ec2

)]
,

(250)

δZ(1)gψ,graviton

=
κcp2

192π2h̄

[
11
ϵUV

+
12
ϵIR

+
172
3

+ 23log

(
4πµ2e−γ

m2
ec2

)]
.

(251)

In contrast to the case of the one-photon-loop contributions in
equations (244) and (245), the one-graviton-loop contributions
to Zgm and Zgψ in equations (250) and (251) are not equivalent
to the one-graviton-loop contributions to the renormalization
factors Zm and Zψ in equations (170) and (171). This shows
that the different renormalization factors of the inertial and
gravitational masses are necessary for the renormalizability of
unified gravity.

9.12. Renormalization of the photon–graviton vertex

Next, we study the renormalization of the photon–graviton
vertex. In unified gravity, the renormalization of this vertex
is related to the renormalization factor ZgA in the Lagrangian
density terms of equation (162). The one-loop contribution
to the renormalization factor ZgA can already be determ-
ined based on the equality ZgA = ZAZgψ/Zψ, following from
equation (158), and the one-loop contributions to the renor-
malization factors ZA, Zgψ, and Zψ, determined in the previ-
ous sections. Using equations (169), (171), (183), (184), (245)
and (251) we then obtain

δZ(1)gA,electron = δZ(1)A,electron

=−αe

3π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
, (252)

δZ(1)gA,graviton = δZ(1)A,graviton + δZ(1)gψ,graviton − δZ(1)ψ,graviton

=
κcp2

8π2h̄

[
1
ϵUV

+
43
12

+ log

(
4πµ2e−γ

(m2
ec2)

4/3

)]
.

(253)

Therefore, in the renormalization of the photon–graviton ver-
tex below, we do not obtain any new relations for the renor-
malization factors but only verify that the renormalization con-
dition of the photon–graviton vertex is satisfied identically.

We assume the same indices for the fields as in the photon–
graviton vertex in table 2 but, for compactness, do not show
them in the diagrams below. Accordingly, the one-electron-
loop, one-graviton-loop, and counterterm contributions to the
photon–graviton vertex are given by

(254)

(255)

(256)

The total one-loop contribution to the photon–graviton ver-
tex is given by

Γµν,σ,ρ1L = Γµν,σ,ρ1L,electron +Γµν,σ,ρ1L,graviton +Γµν,σ,ρ1L,CT . (257)

The counterterm can also be split into the electron and grav-
iton parts Γµν,σ,ρ1L,CT,electron and Γ

µν,σ,ρ
1L,CT,graviton based on substituting

the renormalization factors of equations (252) and (253) into
equation (256).
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The on-shell renormalization condition of the photon–
graviton vertex is imposed by requiring that Γµν,σ,ρ1L and any
higher-order-loop terms do not lead to corrections of the
tree-level vertex for p= p ′. This requirement is analogous
to the renormalization conditions of the electron–photon and
electron–graviton vertices above. For on-shell photons, we
naturally have p2 = 0. Therefore, the matrix element ofΓµν,σ,ρ1L
must be zero for on-shell states with p= p ′ as

ϵ∗σ (p
′)Γµν,σ,ρ1L ϵρ (p)

∣∣
p=p ′

= 0. (258)

The vanishing of the quantum corrections of the photon–
graviton vertex for p= p ′ effectively means that the photon–
graviton interactions do not modify the classical forms of
the Coulomb and Newtonian potentials, which apply to the
strengths of the electromagnetic and gravitational interactions
at asymptotically long distances.

The scalar product of Γµν,σ,ρ1L with the photon polarization
vectors in equation (258) effectively means that the terms of
Γµν,σ,ρ1L proportional to p ′σpρ do not contribute. This is due
to the transversality of the photon momentum and polariza-
tion vectors, i.e., pρϵρ(p) = 0. In more complex calculations
of the S-matrix elements, the photon polarization vectors can
be replaced by the photon propagators, which connect to fer-
mion lines. In this case, through the summation over all places
along the fermion line where the photon propagator could con-
nect, one obtains that the terms proportional to pρ or p ′σ van-
ish. This is due to the Ward identity and is analogous to the
discussion on the last term of the photon propagator below
equation (175).

The one-electron-loop contributions to the photon–graviton
vertex resulting from each Feynman diagram in equation (254)
are given for p= p ′ by

Γ
(diag1)µν,σ,ρ
1L,electron

∣∣
p=p ′

= Γ
(diag2)µν,σ,ρ
1L,electron

∣∣
p=p ′

=− αe

12π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
(4pµpνηρσ

−pµpρηνσ − pνpρηµσ − pµpσηνρ− pνpσηµρ)

+
αe

15πm2
ec2

pµpνpρpσ, (259)

Γ
(diag3)µν,σ,ρ
1L,electron

∣∣
p=p ′

=
αe

6π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
× pρ (pµηνσ + pνηµσ − pσηµν) , (260)

Γ
(diag4)µν,σ,ρ
1L,electron

∣∣
p=p ′

=
αe

6π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
× pσ (pµηνρ+ pνηµρ− pρηµν) . (261)

The summation of the contributions of all diagrams, given
in equations (259)–(261), results in the total one-electron-loop

contribution to the photon–graviton vertex without the coun-
terterm as

Γµν,σ,ρ1L,electron

∣∣
p=p ′

=
αe

3π

[
1
ϵUV

+ log

(
4πµ2e−γ

m2
ec2

)]
Pµν,ση,ρλp ′

ηpλ

+
αe

15πm2
ec2

pµpνpρpσ. (262)

The coefficient of the first term of equation (262) is found to be
equal in magnitude and opposite in sign to the one-electron-
loop contribution to the renormalization factor ZgA, given in
equation (252). Therefore, this term becomes cancelled by the
electron-loop part of the counterterm in equation (256). The
contribution of the second term of equation (262) vanishes in
the S-matrix element calculations according to the discussion
below equation (258). Therefore, this term can be dropped
out, and we conclude that the renormalization condition in
equation (258) is satisfied.

Correspondingly, the one-graviton-loop contribution to the
photon–graviton vertex resulting from the Feynman diagram
in equation (255) is given for p= p ′ by

Γµν,σ,ρ1L,graviton

∣∣
p=p ′

=− κc
8π2h̄

[
1
ϵUV

+
11
6
+log

(
−4πµ2e−γ

p2

)]
pµpνpρpσ.

(263)

Here we have used the on-shell condition of photons, p2 = 0,
apart from the logarithm, where p2 appears in the denomin-
ator. By the same argument as discussed in the case of the
electron-loop contribution below equations (230) and (262),
the terms proportional to pρ or p ′σ do not contribute to the
S-matrix elements. Therefore, we conclude that the renormal-
ization condition in equation (258) is satisfied, and the one-
graviton loop does not contribute to the renormalization of the
photon–graviton vertex. The counterterm in equation (256) is
in agreement with this result since the one-graviton-loop con-
tribution to ZgA is zero at the physically meaningful on-shell
renormalization point as seen from equation (253) with p2 = 0.

9.13. Renormalization of the electron–photon–graviton vertex

Finally, we study the renormalization of the electron–photon–
graviton vertex. This vertex is related to the renormalization
factor Zgψ in the Lagrangian density terms of equation (162).
Since the one-loop contributions to this renormalization factor
is already determined in equations (245) and (251), in this
section we do not obtain any new relations for the renormaliz-
ation factors but only verify that the renormalization condition
of the electron–photon–graviton vertex is satisfied identically.

We assume the same indices for the fields as in the electron–
photon–graviton vertex in table 2 but, for compactness, do
not show them in the diagrams below. Accordingly, the one-
photon-loop, one-graviton-loop, and counterterm contribu-
tions to the electron–photon–graviton vertex are given by the
following Feynman diagrams:
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(264)

(265)

(266)
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(267)

Equation (266) represents the Feynman diagrams, which
are already renormalized by the counterterms of the two-
point and three-point functions discussed in the previous
sections. Accordingly, each 1L-blob in the Feynman diagrams
of equation (266) contains the one-loop diagrams and coun-
terterms associated with the pertinent propagator or vertex.

The total one-loop contribution to the electron–photon–
graviton vertex corresponding to the Feynman diagrams in
equations (264), (265) and (267) is given by

Γµ1L = Γµν,ρ1L,photon +Γµν,ρ1L,graviton +Γµν,ρ1L,CT. (268)

The counterterm can also be split into photon and graviton
parts Γµν,ρ1L,CT,photon and Γ

µν,ρ
1L,CT,graviton based on the different con-

tributions to the renormalization factors obtained below.
In analogy with the on-shell renormalization conditions of

the electron–photon vertex in equation (214), the electron–
graviton vertex in equation (230), and the photon–graviton
vertex in equation (258), we define the on-shell renormal-
ization condition for the electron–photon–graviton vertex.
Since it is a four-point vertex, following previous literature
[4], the renormalization condition is defined in terms of the
Mandelstam variables. Accordingly, we write the renormaliz-
ation condition as

ū(p ′)Γµν,ρ1,1L u(p)ϵµν (q
′)ϵρ (q)

∣∣∣
s=u=m2

ec
2

t=0

= 0. (269)

Here the photon and graviton four-momenta q and q′ satisfy
q ′ − q= p ′ − p. For theMandelstam variables, we use the val-
ues s= u= m2

ec
2 and t= 0.

The Mandelstam variable t= 0 implies p= p ′ and q= q ′.
We consider the rest frame of the electron where p= p ′ =
(mec,0,0,0). The Mandelstam variables s= u= m2

ec
2 then

imply q= q ′ = (0,0,0,0). Through the use of the Gordon
identity, all terms of ū(p ′)Γµν,ρ1,1L u(p) resulting from the one-
photon and one-graviton loop diagrams in equations (264)
and (265) and from the counterterm in equation (267) are
found to be either zero or proportional to pµ, pν , or pρ at
the renormalization point. In the rest frame of the electron,
the only nonzero component of the electron four-momentum
is the time component. In contrast, since photons and grav-
itons are massless, the photon polarization four-vector ϵρ(0)
and the graviton polarization tensor ϵµν(0) are defined to
have only spatial components. Therefore, the scalar product
of the electron four-momentum and the photon polarization
four-vector is zero independently of the spatial orientation of
the photon polarization four-vector as pρϵρ(0) = 0. The same

applies to the contraction of the electron four-momentum with
either of the two indices of the graviton polarization tensor
as pµϵµν(0) = 0 and pνϵµν(0) = 0. Thus, the one-photon and
one-graviton loop diagrams in equations (264) and (265) do
not contribute to the S-matrix element calculations, and we
conclude that the renormalization condition in equation (269)
is satisfied.

10. Radiative corrections

In this section, we study the radiative corrections of unified
gravity in the UGM formulation. In quantum field theories,
radiative corrections refer to themodifications in particle inter-
actions and the related physical quantities due to the effects
of virtual particles [1, 4]. The virtual-particle interactions are
described by the Feynman diagrams as discussed in the previ-
ous sections. The radiative corrections follow from the loop-
order Feynman diagrams. The radiative corrections play a cru-
cial role in obtaining accurate quantum-field-theoretical pre-
dictions for scattering processes, which can be verified exper-
imentally. For example, the prediction of the Standard Model
for the electron magnetic moment has been experimentally
verified to an astonishing accuracy of one part in a trillion
[194]. In the sections below, we consider how unified grav-
ity leads to the radiative corrections to the Coulomb and
Newtonian potentials and to the electron magnetic moment.

10.1. Radiative corrections to the Coulomb potential

As an example of the radiative corrections to the Coulomb
potential, we calculate the one-electron-loop and one-
graviton-loop corrections resulting from the vacuum polariza-
tion diagrams and their counterterm in equations (172)–(174).
Detailed study of the contributions resulting from the box and
crossed box diagrams, the triangular diagrams, the circular
diagram, and the vertex corrections, similar to those studied
in [177], is left to a separate work.

In the nonrelativistic limit, for the four-momentum of the
exchanged photon, we have p2 →−|p|2, where p is the three-
dimensional momentum vector. Thus, the one-electron-loop
and one-graviton-loop renormalized scalar amplitude factors
of the photon self-energy in equations (185) and (186) become

Π
(r)
1L,electron

(
p2
)
≈Π

(r)
1L,electron

(
−|p|2

)
=−αe

3π

{
5
3
− 4m2

ec
2

|p|2
+

(
1− 2m2

ec
2

|p|2

)√
1+

4m2
ec2

|p|2

× log

[
1− |p|2

2m2
ec2

(√
1+

4m2
ec2

|p|2
−1

)]}
, (270)

Π
(r)
1L,graviton

(
p2
)
≈Π

(r)
1L,graviton

(
−|p|2

)
=−κc|p|

2

24π2h̄
log
(
|p|2
)
. (271)

The Fourier transform of the Coulomb potential obtains
correction terms, which are additions to the tree-level Fourier
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transform of the Coulomb potential in equation (S27) of the
supplementary material. Using equations (270) and (271), the
renormalized one-electron-loop and one-graviton-loop correc-
tion terms are given by

Ṽe,1L,electron (p) =
h̄2e2

ε0 (|p|2 − iϵ)
Π

(r)
1L,electron

(
−|p|2

)
, (272)

Ṽe,1L,graviton (p) =
h̄2e2

ε0 (|p|2 − iϵ)
Π

(r)
1L,graviton

(
−|p|2

)
. (273)

10.1.1. Renormalized one-electron-loop contribution. First,
we consider the renormalized one-electron-loop contribution
to the radiative correction of the Coulomb potential. This
radiative correction is known from QED [1, 136] and is
presented here for completeness and as a background for
the one-graviton-loop contribution calculated below and for
the radiative correction of the Newtonian potential studied in
section 10.2.

Using the renormalized one-electron-loop contribution to
the Fourier transform of the Coulomb potential correction in
equation (272), and performing the inverse Fourier transform,
we obtain the renormalized one-electron-loop contribution to
the Coulomb potential correction as

Ve,1L,electron (r)

=

ˆ
Ṽe,1L,electron (p)eip·r/h̄

d3p

(2πh̄)3

=
h̄2e2

(2πh̄)3 ε0

ˆ ∞

0

ˆ π

0

ˆ 2π

0

eiprrcosθr/h̄

(p2r − iϵ)
Π

(r)
1L,electron

(
−p2r

)
× p2r sinθrdϕrdθrdpr

=
h̄2e2

(2πh̄)3 ε0

2πh̄
r

ˆ ∞

0

∣∣∣π
0

ipreiprrcosθr/h̄

p2r − iϵ
Π

(r)
1L,electron

(
−p2r

)
dpr

=
e2

4π2ε0r

ˆ ∞

0

ipr
(
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(274)

In the second equality of equation (274), we have expressed the
momentum-space integral in spherical coordinates (pr,θr,ϕr).
In the third and fourth equalities, we have carried out the integ-
ration with respect to the angular variables θr and ϕr. In the last
equality of equation (274), we have applied the symmetry of
the integrand with respect to pr to change the lower bound of
the integral to the negative infinity.

As a complex function, the imaginary part of
Π

(r)
1L,electron(−p2r ) in the integrand of equation (274) has branch

cuts at the positive and negative imaginary axes starting at
pr =±2imec and extending to infinities. This must be accoun-
ted for when applying the residue theorem to the integral of
equation (274). Writing pr =±ϵ+ ipri, where pri = Im(pr),

we obtain

Im
[
Π

(r)
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(
−p2r

)]
=±αe

3

√
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ec2
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(
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2

p2ri

)
.

(275)

The positive and negative signs of equation (275) correspond
to Re(pr)> 0 and Re(pr)< 0, respectively.

Applying the residue theorem and the branch cuts of the
integrand to calculate the integral of equation (274), we obtain
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=
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(276)

In the second equality of equation (276), we have calculated
the residues and applied equation (275). In the limit of ϵ
approaching zero as ϵ→ 0, we obtain
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While taking the limit ϵ→ 0, we have used pr = ϵ+ ipri and
pr =−ϵ+ ipri to change the integration variables of the first
and second integrals, respectively. In the last two equalities

47



Rep. Prog. Phys. 88 (2025) 057802 M Partanen and J Tulkki

of equation (277), we have made a change of variables, pri →
−pri, to the first integral and used some algebra to obtain the
last form.

Next, we evaluate the integral in the last form of
equation (277) in the long distance limit of r≫ 1/(mec). In
this limit, the integral is dominated by the region where pri ≈
2mec. Approximating the integrand in this region and chan-
ging the variable to pt = pri − 2mec, we obtain

Ve,1L,electron (r)

≈ h̄cα2
e

π r

ˆ ∞

0

e−(pt+2mec)r/h̄

4m2
ec2

√
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√
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ee
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4
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. (278)

This radiative correction of the Coulomb potential is known
from QED, where the classical Coulomb potential corrected
with this term is known as the Uehling potential [1, 136].

10.1.2. Renormalized one-graviton-loop contribution. Next,
we calculate the one-graviton-loop correction to the Coulomb
potential. Using the renormalized one-graviton-loop contribu-
tion to the Fourier transform of the Coulomb potential correc-
tion in equation (273) together with equation (271), and per-
forming the inverse Fourier transform, we obtain the renormal-
ized one-graviton-loop contribution to the Coulomb potential
correction as

Ve,1L,graviton (r)

=

ˆ
Ṽe,1L,graviton (p)eip·r/h̄

d3p

(2πh̄)3

=−αeκc2

48π4h̄

ˆ |p|2 log
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)

|p|2 − iϵ
eip·r/h̄d3p

=
αeκh̄2c2

12π2|r|3
ei|r|

√
iϵ/h̄. (279)

In the third equality, we have applied the second Fourier trans-
form integral given in section 7 of the supplementary material.

In the limit of ϵ approaching zero as ϵ→ 0, the renormal-
ized one-graviton-loop contribution of the Coulomb potential
correction in equation (279) becomes

Ve,1L,graviton (r) =
κh̄2c2αe

12π2|r|3
=

2Gh̄2αe

3π c2|r|3
. (280)

This result corresponds to the conventional effective-field-
theory-based gravity quantization result for the vacuum polar-
ization term of the Coulomb potential correction, which can
be found from some works in previous literature [177].

10.1.3. Total vacuum-polarization-corrected Coulomb
potential. The sum of the classical Coulomb potential and
the one-electron-loop and one-graviton-loop vacuum polariz-
ation corrections to the Coulomb potential is given by

Ve (r) = Ve (r)+Ve,1L,electron (r)+Ve,1L,graviton (r)

=
h̄cαe
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+

h̄cα2
ee
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4
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]
.

(281)

The Uehling potential of QED corresponds to the first two
terms of this equation [1, 4, 136], and the last term is
the modification of the QED result by the gravitational
interaction.

10.2. Radiative corrections to the Newtonian potential

Next, we study the radiative corrections to the Newtonian
potential. As an example, we calculate the one-electron-
loop and one-photon-loop corrections resulting from the
vacuum polarization diagrams and their counterterm in
equations (187)–(189). Detailed study of the contributions res-
ulting from the other relevant Feynman diagrams, partly sim-
ilar to those studied in [167], is left to a separate work.

In the nonrelativistic limit, for the four-momentum of the
exchanged graviton, we have p2 →−|p|2, where p is the three-
dimensional momentum vector. Thus, the one-electron-loop
and one-photon-loop renormalized scalar amplitude factors of
the graviton self-energy in equations (206) and (207) become
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, (282)

Ξ
(r)
1L,photon

(
p2
)
≈ Ξ

(r)
1L,photon

(
−|p|2

)
=−κc|p|

2

16π2h̄
log
(
|p|2
)
. (283)

The Fourier transform of the Newtonian potential obtains
corrections, which are additions to the tree-level Fourier trans-
form of the Newtonian potential in equation (147). Using
equations (282) and (283), the renormalized one-electron-loop
and one-photon-loop correction terms are given by

Ṽg,1L,electron (p) =− κh̄2m2
ec

4

2(|p|2 − iϵ)
Ξ
(r)
1L,electron

(
−|p|2

)
, (284)

Ṽg,1L,photon (p) =− κh̄2m2
ec

4

2(|p|2 − iϵ)
Ξ
(r)
1L,photon

(
−|p|2

)
. (285)
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10.2.1. Renormalized one-electron-loop contribution. Here
we study the renormalized one-electron-loop contribution
to the radiative correction of the Newtonian potential.
Using the renormalized one-electron-loop contribution to the
Fourier transform of the Newtonian potential correction in
equation (284), and performing the inverse Fourier transform,
we obtain the renormalized one-electron-loop contribution to
the Newtonian potential correction as

Vg,1L,electron (r)

=
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(286)

The intermediate steps in obtaining the last form of
equation (286) are analogous to those in equation (274).

As a complex function, the imaginary part of
Ξ
(r)
1L,electron(−p2r ) in the integrand of equation (286) has

branch cuts at the positive and negative imaginary axes
starting at pr =±2imec and extending to infinities. Writing
pr =±ϵ+ ipri, where pri = Im(pr), we obtain
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The positive and negative signs of equation (287) correspond
to Re(pr)> 0 and Re(pr)< 0, respectively.

Applying the residue theorem and the branch cuts of the
integrand to calculate the integral of equation (286), we obtain
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In the second equality of equation (288), we have calculated
the residues and applied equation (287). In the limit of ϵ
approaching zero as ϵ→ 0, we obtain
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While taking the limit ϵ→ 0, we have used pr = ϵ+ ipri and
pr =−ϵ+ ipri to change the integration variables of the first
and second integrals, respectively. In the last two equalitites
of equation (289), we have made a change of variables, pri →
−pri, to the first integral and used some algebra to obtain the
last form.

Next, we evaluate the integral in the last form of
equation (289) in the long distance limit of r≫ 1/(mec). In
this limit, the integral is dominated by the region where pri ≈
2mec. Approximating the integrand in this region and chan-
ging the variable to pt = pri − 2mec, we obtain
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This is the one-electron-loop contribution to the radiative cor-
rection of the Newtonian potential in unified gravity. The
exponential factor of equation (290) is equivalent to that in the
QED contribution to the radiative correction of the Coulomb
potential in equation (278) but, otherwise, these corrections
depend on different powers of |r|. The authors are not aware
of the appearance of the correction term in equation (290) in
previous literature. Previously, arguments have been presen-
ted in favor of omitting all the diagrams with internal lines
of massive particles in the calculations of quantum gravity
corrections [167, 187]. However, these arguments have been
constructed for scalar particles, and thus, they do not apply to
electron loops.

10.2.2. Renormalized one-photon-loop contribution. Next,
we calculate the one-photon-loop correction to the Newtonian
potential. Using the renormalized one-photon-loop contri-
bution to the Fourier transform of the Newtonian potential
correction in equation (285) together with equation (283),
and performing the inverse Fourier transform, we obtain the
renormalized one-photon-loop contribution to the Newtonian
potential correction as
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In the third equality, we have applied the second Fourier trans-
form integral given in section 7 of the supplementary material.

In the limit of ϵ approaching zero as ϵ→ 0, the renormal-
ized one-photon-loop contribution of the Newtonian potential
correction in equation (291) becomes

Vg,1L,photon (r) =−κ
2h̄m2

ec
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64π3|r|3
=− G2h̄m2

e

π c3|r|3
. (292)

Apart from the prefactor, the form of this term is identical to
the form of the quantum correction term of the Newtonian
potential obtained using the conventional effective field the-
ory in previous literature, where other Feynman diagramswere
also accounted for [167].

10.2.3. Total vacuum-polarization-corrected Newtonian
potential. The sum of the classical Newtonian potential and
the one-electron-loop and one-photon-loop vacuum polariza-
tion corrections to the Newtonian potential is given by

Vg (r) = Vg (r)+Vg,1L,photon (r)+Vg,1L,electron (r)
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(293)

10.3. Radiative corrections to the electron magnetic moment

The form factor Feγ
2 in the electron–photon vertex matrix

element in equation (215) is called the anomalous magnetic
moment since the total magnetic moment of an electron is
given by gs = 2+ 2Feγ

2 [4]. Order by order in perturbation
theory, we obtain more and more accurate approximation for
Feγ
2 . Experiments have verified the Standard Model prediction

for the electron magnetic moment to an astonishing accuracy
of one part in a trillion [194]. More experimental accuracy
is, however, needed to probe the corrections associated with
quantum gravity.

The one-photon-loop radiative correction of the form factor
Feγ
2 following from equation (210) is the famous result first

calculated by Schwinger [195], given by

Feγ
2,1L,photon =

αe

2π
. (294)

Correspondingly, the one-graviton-loop radiative correc-
tions of the form factor Feγ

2 following from equation (211) is
given by

Feγ
2,1L,graviton =

7αg

4π
. (295)

The one-graviton-loop contributions to equation (295) follow-
ing from each Feynman diagram in equation (211) are given
by
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, (297)

F(eγ,diag4)
2,1L,graviton = F(eγ,diag5)

2,1L,graviton

=−
33αg
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(298)

F(eγ,diag6)
2,1L,graviton = 0. (299)

Equation (295) agrees with the result first calculated by
Berends and Gastmans [196]. Since the counterterm does not
contribute to equation (295), this result was possible to cal-
culate without the renormalizable theory of quantum grav-
ity presented in this work. The exact cancellation of the UV
divergences and the scale and Euler–Mascheroni constants of
dimensional regularization in the terms of equations (296)–
(298) when substituted into equation (295) is necessary for
physical observables to be finite and independent of the reg-
ularization parameters. In previous literature, another method
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for the calculation of radiative corrections of the electron mag-
netic moment has been based on dimensional reduction of
supergravity [197–200]. The results of this approach differ
from our results.

11. Obtaining TEGR from unified gravity

In this section, we show that by an appropriate choice of the
tetrad and the metric tensor, we obtain the theory of TEGR
in the Weitzenböck gauge (TEGRW) [30–36] directly from
unified gravity presented above. The geometric conditions of
this section can be called the Weitzenböck gauge fixing. The
Weitzenböck gauge fixing does not fix the gauge unambigu-
ously since there are remaining redundant degrees of freedom
associated with the class of reference frames where the tele-
parallel spin connection vanishes [30, 34].

11.1. Geometric conditions of TEGRW: tetrad and metric
tensor

The form of the gauge-invariant Lagrangian density of uni-
fied gravity in equation (66) explicitly depends on the gauge
field Haν in analogy to how the Lagrangian density expli-
citly depends on the electromagnetic gauge field Aν when the
electromagnetic-gauge-covariant derivatives have been writ-
ten out using equation (13). In contrast to the gauge theor-
ies of the Standard Model, in the case of the gauge theory of
gravity, it is possible to absorb the explicit dependence of the
Lagrangian density on the gauge field into the definition of the
tetrad. This possibility is enabled by the equivalence principle
in equation (34). Using the equivalence principle of scale, g ′

g =
gg, with the reduced form of the Lagrangian density of unified
gravity in equation (66), we observe that the explicit depend-
ence on Haν can be absorbed in the generalized tetrad e•aν ,
defined as

e•aν = ∂νxa+Haν . (300)

Equations (31) and (300) and the resulting definition of the
metric tensor below are called in this work the geometric con-
ditions of TEGRW. The first term of e•aν in equation (300) is
related to inertial effects, and the second term describes grav-
itational effects. The division of the tetrad into ∂νxa and Haν

in equation (300) reminds to how one divides the tetrad into
trivial and nontrivial parts in TEGRW in previous literature
[34].

Even if the expression of the space-time-dependent tetrad
in equation (300) is qualitatively of the same form as that in the
conventional representation of TEGRW [30, 34], in the present
theory, it has been introduced in a fundamentally different
way. In the conventional gauge theory approach to TEGRW,
the gauge field is the translation gauge field, which is added
to make the expression of the tetrad invariant in translations
of the tangent-space coordinates xa. In contrast, in the present
theory, equation (300) is introduced as a geometric condition
that hides the explicit local gauge invariance of the Lagrangian
density with respect to the gauge symmetry transformations of
Xa and Haν in equations (41) and (56).

Having defined the space-time-dependent tetrad in
equation (300), we then write the general space-time-
dependent metric tensor in the conventional way in terms
of the tetrad as

gµν = ηabe•aµe
•
bν . (301)

As a consistency check, when the gauge field Haν is zero, the
definition of the tetrad in equation (300) and the metric tensor
in equation (301) straightforwardly simplify to thewell-known
representations of the tetrad and the metric tensor in flat space-
time in the chosen coordinates.

11.2. Geometric Lagrangian density of TEGRW

Next, we present the geometricLagrangian density of TEGRW
obtained from unified gravity. We call the Lagrangian dens-
ity geometric after the geometric condition of TEGRW in
equation (300) has been applied to the reduced form of the loc-
ally gauge-invariant Lagrangian density of unified gravity in
equation (66). We also present different forms of this geomet-
ric Lagrangian density. Using the definition of the tetrad in the
Weitzenböck gauge fixing in equation (300) and setting m ′

e =
me according to the equivalence principle in equation (34),
the Lagrangian density of unified gravity in equation (66)
becomes the Lagrangian density of TEGRW, given by

LTEGRW =

{
e•aν

[
ih̄c
4
ψ̄8

(
D
←
γ5

Bγ
ν
Bt
aγF − γ̄Fγ

5
Bγ

ν
Bt
aD
→)

ψ8

−mec2

2
ψ̄8taγνBγ

5
Bψ8 − Ψ̄taγνBγ

5
BΨ

]
−mec

2ψ̄8ψ8 +Ψ̄Ψ +
1
4κ
HaµνS

aµν

}√
−g.

(302)

Using the identities e•aνγ5
Bγ

ν
Bt
aD
→
= 2D

→
, e•aνγ5

Bγ
ν
Bt
aγF = 2γF,

e•aνψ̄8γ
5
Bγ

ν
Bt̄
a
ψ8 =−4ψ̄ψ, ψ̄8ψ8 =−ψ̄ψ, e•aνγ5

Bγ
ν
Bt̄
a
Ψ = 0,

Ψ̄Ψ = Θ̄∂
←

ργ
ρ
B(I8 + e0ē0)

2γσB∂
→

σΘ, and HaµνSaµν =
HρµνSρµν , and writing out the electromagnetic-gauge-
covariant derivatives using equation (23), the Lagrangian
density in equation (302) becomes

LTEGRW=

[
ih̄c
2
ψ̄
(
γ̄F∂
→
− ∂
←
γF

)
ψ−mec

2ψ̄ψ +Φ̄Θ+ Θ̄Φ

+ Θ̄∂
←

ργ
ρ
B (I8 + e0ē0)

2
γσB∂
→

σΘ

+
1
4κ
HρµνS

ρµν

]√
−g. (303)

Here the electromagnetic interaction Lagrangian density
Φ̄Θ+ Θ̄Φ is written using the charge-current spinor Φ, given
in equation (19). The form of the Lagrangian density of
TEGRW in equation (303) is used in the derivation of
Maxwell’s equations of TEGRW in the eight-spinor formal-
ism, discussed in section 11.3.2.

Using γ̄F∂
→
= γνF∂

→

ν , ∂
←
γF = ∂

←

νγ
ν
F , Φ̄Θ+ Θ̄Φ =−Jνe Aν =

−qecψ̄γνFψAν , and rewriting the electromagnetic Lagrangian
density in terms of the electromagnetic field strength tensor
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Fµν using equation (24), the Lagrangian density of TEGRW
in equation (303) becomes

LTEGRW=

[
ih̄c
2
ψ̄
(
γνF∂
→

ν − ∂
←

νγ
ν
F

)
ψ−mec

2ψ̄ψ − Jνe Aν

− 1
4µ0

FµνF
µν +

1
4κ
HρµνS

ρµν

]√
−g. (304)

This form of the Lagrangian density of TEGRW is used in the
derivations of the Maxwell’s equations in TEGRW in the four-
vector and tensor formalism, discussed in section 11.3.2, and
Dirac equation of TEGRW, discussed in section 11.3.3. Apart
from the last term of the Lagrangian density in equation (304)
describing the gravity gauge field, equation (304) is directly
seen to be equal to the Lagrangian density of QED, discussed
in section 2.8 of the supplementary material.

Writing the Lagrangian density in terms of the tetrad and
the inverse metric, and using again the electromagnetic-gauge-
covariant derivatives instead of the explicit electromagnetic
interaction term −Jνe Aν , we obtain

LTEGRW

=

{
ih̄c
4
ψ̄
[
e• νb
(
γbFD
→
ν+γFνD

→b
)
−
(
D
←
νγ

b
F+D
←bγFν

)
e• νb
]
ψ

−mec
2ψ̄ψ− 1

4µ0
gµρgνσFµνFρσ+

1
4κ
HρµνS

ρµν

}√
−g.

(305)

This form of the Lagrangian density of TEGRW is used as the
starting point of the derivation of the field equation of grav-
ity in TEGRW, discussed in section 11.3.1. The Lagrangian
density in equation (305) is found to be equivalent to the
Lagrangian density of TEGRW in previous literature [34].
Detailed comparison of equation (305) to the Lagrangian dens-
ity of TEGRW in previous literature, including also references
to pertinent equations of a well-known textbook of TEGR,
is presented in section 6 of the supplementary material. The
relation to the Lagrangian density of general relativity is also
discussed in section 6 of the supplementary material. Further
comparison of unified gravity with previous theories of gravity
can be found in section 13.2.

11.3. Dynamical equations of TEGRW

The dynamics of all fields appearing in the Lagrangian dens-
ity in equation (63) are described by the well-known Euler–
Lagrange equations. In the sections below, we derive the
dynamical equations for the gravity gauge field, the electro-
magnetic gauge field, and the Dirac field in TEGRW.

11.3.1. Field equation of gravity in TEGRW. Next, we present
the dynamical equation of the gravity gauge field, which we
call the field equation of gravity in TEGRW. Starting from the
Euler–Lagrange equation for Haν , after some algebra, presen-
ted in section 5.1 of the supplementary material, we obtain the
field equation of gravity in TEGRW, given by

∇̃ρS
aνρ =∇

◦
ρS

aνρ = κTaνTEGRW. (306)

The source term TaνTEGRW = e•aµT
µν
TEGRW in equation (306) is the

total SEM tensor of the Dirac, electromagnetic, and gravita-
tional fields in TEGRW, given by

TµνTEGRW = TµνD +TµνD,diff +Tµνem +Tµνg ,

TµνD =
ih̄c
4
ψ̄
(
γµFD
→
ν +γνFD

→
µ−D

←
νγµF −D

←
µγνF

)
ψ

− 1
2
gµν

[
ih̄c
2
ψ̄
(
γρFD
→

ρ−D
←

ργ
ρ
F

)
ψ−mec

2ψ̄ψ

]
,

TµνD,diff =−1
2
gµν

[
ih̄c
2
ψ̄
(
γρFD
→

ρ−D
←

ργ
ρ
F

)
ψ−mec

2ψ̄ψ

]
,

Tµνem =
1
µ0

(
FµρF

ρν +
1
4
gµνFρσF

ρσ

)
,

Tµνg =
1
κ

(
H µ
σρ S

σρν − 1
4
gµνHρσλS

ρσλ

)
. (307)

The terms TµνD and Tµνem of equation (307) are the SEM tensors
of the Dirac and electromagnetic fields, equal to those in
equation (47). The term TµνD,diff of equation (307) is an addi-
tional Dirac field SEM tensor contribution that is obtained
from the Euler–Lagrange equation of gravity in TEGRW. As
shown in section 5.4 of the supplementary material, this term
is, however, zero when the Dirac equation of TEGRW is sat-
isfied, i.e. for on-shell states. The term Tµνg of equation (307)
is the SEM tensor of the gravitational gauge field, which is
also known from previous literature on TEGR [30, 34, 43].
Similarly to the SEM tensor of the electromagnetic field,
the SEM tensor of the gravitational field is traceless. Thus,
the associated force carriers, the gravitons, are massless. The
trace of the total SEM tensor in equation (307), given by
TTEGRW

ν
ν = mec2ψ̄ψ, is then equal to the trace of the SEM

tensor of QED, given in equation (54).
By operating both sides of equation (306) by ∇̃ν , the

left-hand side becomes ∇̃ν∇̃ρSaνρ = 1√
−g∂ν∂ρ(

√
−gSaνρ) =

0 since ∂ν∂ρ is symmetric and Saνρ is antisymmetric with
respect to the indices ν and ρ. Therefore, the total SEM tensor
TaνTEGRW is conserved as

∇̃νT
aν
TEGRW =∇

◦
νT

aν
TEGRW = 0. (308)

This conservation law is necessary for the consistency of the
theory [30].

As shown in section 5.1 of the supplementary material, the
field equation of TEGRW in equation (306) can also be written
in a form showing only space-time indices as

∇̃ρS
µνρ = κTµνTEGRW. (309)

On the right-hand side of equation (309), the SEM
pseudotensor TµνTEGRW is given by

TµνTEGRW = TµνTEGRW +
1
κ
SσρνΓ

•
µ
σρ. (310)

By operating both sides of equation (309) by ∇̃ν , the left-hand
side becomes ∇̃ν∇̃ρSµνρ = 1√

−g∂ν∂ρ(
√
−gSµνρ) = 0 since

∂ν∂ρ is symmetric and Sµνρ is antisymmetric with respect to
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the indices ν and ρ. Therefore, the total SEM pseudotensor
Tµν is conserved as

∇̃νT
µν
TEGRW = 0. (311)

Due to the pseudotensor nature of TµνTEGRW, the conserva-
tion law of TµνTEGRW in equation (311) cannot be written in
terms of the Levi–Civita coordinate-covariant derivative in the
same way as the conservation laws of Tµνm and TaνTEGRW in
equations (53) and (308).

11.3.2. Maxwell’s equations in TEGRW. Next, we present
the dynamical equation of the electromagnetic field in
TEGRW. In the eight-spinor formalism, the dynamical
equation of the electromagnetic field is obtained from the
Euler–Lagrange equation forΘ or Θ̄ [55]. After some algebra,
presented in section 5.2 of the supplementary material, we
obtain the spinorial Maxwell equation, given by

∇̃ρ (γ
ρ
BΨ) = γρB

(
∂⃗ρ+ e•aρ∇̃σe

• σ
a

)
Ψ =−Φ. (312)

Equation (312) is corresponds to the spinorial Maxwell
equation, introduced in [55], generalized to include coupling
to gravity. The coupling to gravity comes through ∇̃σe

• σ
a . In

flat space-time, we have ∇̃σe
• σ
a = 0. In Cartesian coordinates,

this relation is trivial, but it also holds in curvilinear coordin-
ate systems, such as in spherical coordinates. Therefore, the
spinorial Maxwell equation in general coordinates in flat
space-time can be written as γρB∂ρΨ =−Φ. The only change
to the Cartesian Minkowski space-time form studied in [55] is
the use of general coordinates.

The derivation of the spinorial Maxwell equation in
equation (312) is equivalent but different from the con-
ventional electromagnetic four-potential-based derivation of
Maxwell’s equations. Starting from the Euler–Lagrange
equation for Aν and using also the Bianchi identity, after some
algebra, presented in section 5.2 of the supplementary mater-
ial, we obtain the conventional form of Maxwell’s equations
in general relativity as a set of two equations, given by [8]

∇̃ρF
ρν =∇

◦
ρF

ρν = µ0J
ν
e , (313)

∇
◦
ρFµν +∇

◦
µFνρ+∇

◦
νFρµ = 0. (314)

As shown in [55], the spinorial Maxwell equation, i.e.
equation (312), is equivalent to the full set of conventional
Maxwell’s equations. In contrast, in the four-vector and tensor
formalism, one obtains only Gauss’s law for electricity and
the Ampére–Maxwell law, i.e. equation (313), directly from
the Euler–Lagrange equations. Gauss’s law for magnetism and
Faraday’s law, i.e. equation (314), are obtained by using the
Bianchi identity of the electromagnetic field tensor [8].

By operating both sides of equation (313) by ∇̃ν , the left-
hand side becomes ∇̃ν∇̃ρFρν = 1√

−g∂ν∂ρ(
√
−gFρν) = 0

since ∂ν∂ρ is symmetric andFρν is antisymmetric with respect
to the indices ν and ρ. The right-hand side becomes µ0∇̃νJνe =

µ0∇
◦
νJνe . Therefore, the electromagnetic four-current density

is conserved as

∇̃νJ
ν
e =∇

◦
νJ
ν
e = 0. (315)

Another derivation of the conservation law in equation (315),
based on the U(1) symmetry of QED, is given in section 2.4
of the supplementary material. In the case of electromagnet-
ism in TEGRW, the two derivations lead to the same conserva-
tion law of the electric four-current density Jνe , whereas, in the
case of gravity in TEGRW, the derivations lead to conserva-
tion laws of different objects: the form Tµνm of the SEM tensor
of the Dirac and electromagnetic fields in equation (53) and
the form TaνTEGRW of the total SEM tensor including the grav-
itational field in equation (308). Furthermore, in the case of
gravity in TEGRW, we have the conservation law of the SEM
pseudotensor TµνTEGRW, given in equation (311).

11.3.3. Dirac equation in TEGRW. Next, we present the
dynamical equation of the Dirac field in TEGRW. Starting
from the Euler–Lagrange equation for ψ or ψ̄, after some
algebra, presented in section 5.3 of the supplementary mater-
ial, we obtain the dynamical equation of the Dirac field, given
by

ih̄cγρF

(
D⃗ρ+

1
2
e•aρ∇̃σe

• σ
a

)
ψ −mec

2ψ = 0. (316)

Equation (316) is the Dirac equation in TEGRW.We note that,
in flat space-time, we have ∇̃σe

• σ
a = 0. Therefore, the Dirac

equation in general coordinates in flat space-time simplifies
to its conventional form, given by ih̄cγρFD⃗ρψ−mec2ψ = 0, as
expected. Comparison of equations (312) and (316) shows that
the quantity that multiplies the term e•aρ∇̃σe

• σ
a is the spin since

it is S= 1 for vector bosons and S= 1
2 for Dirac fermions.

The Dirac equation of TEGRW in equation (316) can be
compared with previous formulations of the Dirac equation
in TEGRW. We write the term e•aρ∇̃σe

• σ
a in equation (316)

as e•aρ∇̃σe
• σ
a = e•aρ∂σe

• σ
a +Γ

◦
σ
ρσ =−K

•
σ
ρσ =−T

•
σ
σρ =−Vρ. In

the first equality, we have applied partial differentiation. In
the second equality, we have applied equation (6). In the
third equality, we have applied the definition of the con-
tortion tensor in equation (9) and the antisymmetry of the
torsion tensor in its last two indices. In the last equality,

we have defined Vρ = T
•
σ
σρ, which is the vector part of

the torsion decomposition [34]. Thus, the Dirac equation in
equation (316) becomes ih̄cγρF(D⃗ρ− 1

2Vρ)ψ−mec2ψ = 0. In

the absence of the electromagnetic coupling, we set D⃗ρ = ∂⃗ρ,
in which case, the Dirac equation above corresponds the Dirac
equation in equation (12.36) of [34] for zero spin connection.

12. Unified gravity and the full Standard Model

In this section, our goal is to explain how unified gravity
is extended to cover all quantum fields of the full Standard
Model. We start with a review of the representations of
quantum fields of different particle types. For the quantum
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fields of the Standard Model, we present two different but
mathematically equivalent representations. The first one of
these representations is the standard representation, and the
second one is the eight-spinor representation, which was ori-
ginally introduced in the case of the electromagnetic field
in [55]. Finally, we include the fields of all particle types
in the Lagrangian density, and thus, unify gravity with the
Lagrangian density of the Standard Model.

12.1. Fermions

12.1.1. Standard representation. The Standard Model fer-
mions have spin S= 1

2 . They are divided into quarks and
leptons. The quark fields are described by the conventional
Dirac spinors qi for SU(3) color charge i ∈ {r,g,b} and fla-
vor q ∈ {u,d,c,s, t,b}. For a given flavor, we write [1, 4]

q=

 qr

qg

qb

 . (317)

Using this notation, the color charge index of quark fields is
not shown in the equations below.

There are three generations of SU(2) doublet pairs of left-
handed quarks and leptons, indexed by i ∈ {1,2,3}, as [1, 4]

Qi
L ∈

{[
uL
dL

]
,

[
cL
sL

]
,

[
tL
bL

]}
,

LiL ∈
{[

νeL
eL

]
,

[
νµL
µL

]
,

[
ντL
τL

]}
, (318)

and there are three generations of SU(2) singlet right-handed
quarks and leptons, indexed by i ∈ {1,2,3}, as [1, 4]

uiR ∈ {uR,cR, tR} , diR ∈ {dR,sR,bR} , (319)

eiR ∈ {eR,µR, τR} , ν iR ∈ {νeR,νµR,ντR} . (320)

For simplicity, we introduce a notation combining the quark
and lepton fields, indexed by j ∈ {1,2, . . .,6}, as

ψij ∈
{
Qi

L,u
i
R,d

i
R,L

i
L,ν

i
R,e

i
R

}
. (321)

12.1.2. Eight-spinor representation. The eight-spinor rep-
resentation of fermions is obtained from the standard repres-
entation above in a simple way generalizing equation (18) as

ψi8j = ψije0 =
[
0,0,0,0,ψij ,0,0,0

]T
. (322)

Again, the transpose in equation (322) only operates on the
eight-spinor degree of freedom. For a discussion of selected
aspects of Dirac eight-spinors, see section 2.4.

12.2. Vector bosons

The vector bosons of the Standard Model, having spin S= 1,
are the force carriers of the fundamental interactions for
elementary fermions. They are introduced as gauge fields

through the gauge-covariant derivative acting on fermion
fields. Therefore, vector bosons are often called gauge bosons.
In the absence of vector bosons, the Lagrangian density of
the Standard Model satisfies the symmetries U(1), SU(2),
and SU(3) globally, i.e. for constant, space-time-independent,
symmetry transformation parameters. These global symmet-
ries are then promoted to local symmetries, with space-time-
dependent symmetry transformation parameters, by introdu-
cing the gauge-covariant derivative and utilizing gauge the-
ory. To describe dynamics of the gauge fields, the kinetic
field strength terms of each gauge field are also added in the
Lagrangian density.

12.2.1. Standard representation. The gauge-covariant
derivative, through which the vector bosons of the Standard
Model have been introduced, is given by [1, 4]

D
→

ν = ∂
→

ν − i
gs√
h̄c
Glν

λl

2
− i

gew√
h̄c
Wiν

σi
F

2
− i

g ′
ew√
h̄c
Bν

Yw

2
,

D
←

ν = ∂
←

ν + i
gs√
h̄c
Glν

λl

2
+ i

gew√
h̄c
Wiν

σi
F

2
+ i

g ′
ew√
h̄c
Bν

Yw

2
.

(323)

Here Gla, with l ∈ {1,2, . . .,8}, is the SU(3) gauge field of
eight gluons, and gs is the associated coupling constant of
strong interaction. The SU(3) generators are the Gell–Mann
matrices λl/2, which act on the SU(3) color charge degrees
of freedom in equation (317). The quantity W iν , with i ∈
{1,2,3}, is the SU(2) gauge field associated with weak isospin
and coupling constant gew. The canonically normalized SU(2)
generators σi

F/2 are given by the Pauli matrices, which act on
the SU(2) doublet degrees of freedom in equation (318) and in
the Higgs field described below. The quantity Bν is the U(1)Y
gauge field associated with weak hypercharge Yw and coup-
ling constant g ′

ew. In the matrix form, the gauge fields Gν and
Wν of the strong and weak interactions are written as [1, 4]

Gν = Glν
λl

2
, Wν =Wiν

σi
F

2
(324)

The commutator of the gauge-covariant derivative defines the
corresponding field strength tensors Gµν and Wµν , for which
we obtain [1, 4]

Gµν = ∂µGν − ∂νGµ− igs [Gµ,Gν ] = Glµν
λl

2
,

Glµν = ∂µGlν − ∂νGlµ+ gs ( fs)
mn
l GmµGnν , (325)

Wµν = ∂µWν − ∂νWµ− igew [Wµ,Wν ] =Wiµν
σi

F

2
,

Wiµν = ∂µWiν − ∂νWiµ+ gew ( fw)
jk
i WjµWkν . (326)

Here ( fs)
mn
l =− i

4Tr(λ
l[λm,λn]), with l,m,n ∈ {1,2, . . .,8},

are the totally antisymmetric structure constants of the
strong interaction, and ( fw)

jk
i =− i

4Tr(σ
i
F[σ

j
F,σ

k
F]) = εijk,

with i, j,k ∈ {1,2,3}, are the corresponding structure constants
of the weak interaction.
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The diagonal Lie algebra metric is determined to lower
and raise the Lie algebra indices. For strong interaction, the
Lie algebra metric is (ηs)mn = δmn. Correspondingly, for weak
interaction, we have (ηw)

jk = δjk. Therefore, the Lie algebra
indices of the strong and weak interactions can be written
lowered or raised without paying attention to it.

The electroweak unification is based on the symmetry
breaking of SU(2)⊗U(1)Y →U(1)em [4, 201–203]. The high-
energy U(1)Y is not to be confused with the low-energy
U(1)em. The U(1)em symmetry of QED is generated by a linear
combination the weak hypercharge and the third SU(2) gener-
ator of the weak isospin, i.e. Q= 1

2 (σ
3
F +YwI2). The neutral

W0 boson of the three vector bosons of the weak isospin (W+,
W−, W0) mixes with the weak hypercharge gauge boson (B).
This results in the observed Z0 intermediate vector boson and
the photon. Thus, there are three intermediate vector bosons
(W+, W−, Z0) and one photon.

12.2.2. Eight-spinor representation. In analogy to how the
electromagnetic spinor in equation (17) is formed from the
Cartesian Minkowski coordinate form of the electromagnetic
field strength tensor Fab in equation (26) [55], we form eight
gluon spinors Gl from the gluon field strength tensor Glab, one
for each l, three intermediate vector boson spinors Wi from
the field strength tensor W iab, one for each i, and one weak
hypercharge field spinor B from the field strength tensor Bab
as

Gl = [0,Gl0x,Gl0y,Gl0z,0, iGlzy, iGlxz, iGlyx]
T
, (327)

Wi = [0,Wi0x,Wi0y,Wi0z,0, iWizy, iWixz, iWiyx]
T
, (328)

B = [0,B0x,B0y,B0z,0, iBzy, iBxz, iByx]
T
. (329)

For simplicity, we introduce a notation combining the dif-
ferent eight-spinor gauge field strengths, indexed by i ∈
{1,2, . . .,12}, as

Ψi ∈ {G1,G2, . . .,G8,W1,W2,W3,B} . (330)

In analogy to the electromagnetic potential spinor in
equation (16) [55], we form the gluon potential spinorsGl, the
intermediate vector boson potential spinors Wi, and the weak
hypercharge potential spinor B. These spinors are four-vector-
type eight-spinors [55], formed from the components of G a

l ,
W a
i , and Ba as

Gl =
[
0,G x

l ,G
y
l ,G

z
l ,G

0
l ,0,0,0

]T
= [0,−Glx,−Gly,−Glz,Gl0,0,0,0]

T
, (331)

Wi =
[
0,W x

i ,W
y
i ,W

z
i ,W

0
i ,0,0,0

]T
= [0,−Wix,−Wiy,−Wiz,Wi0,0,0,0]

T
, (332)

B=
[
0,Bx,By,Bz,B0,0,0,0

]T
,

= [0,−Bx,−By,−Bz,B0,0,0,0]
T
. (333)

Using the eight-spinor gauge potentials above, we define
the eight-spinor gauge-covariant derivative operators as

D
→
= ∂
→
− i

gs√
h̄c
Gl

λl

2
− i

gew√
h̄c
Wi

σi
F

2
− i

g ′
ew√
h̄c
B
Yw

2

=
[
0,D
→

x,D
→

y,D
→

z,−D
→

0,0,0,0
]T
,

D
←
= ∂
←
+ i

gs√
h̄c
Gl

λl

2
+ i

gew√
h̄c
Wi

σi
F

2
+ i

g ′
ew√
h̄c
B
Yw

2

=
[
0,D
←

x,D
←

y,D
←

z,D
←

0,0,0,0
]
. (334)

The transpose in the last expression ofD
→

only makes this oper-
ator an eight-component column vector and it does not apply

to the component matrix operators D
→

a.

12.3. Scalar boson

12.3.1. Standard representation. The scalar boson of the
Standard Model is known as the Higgs boson with spin S= 0.
It is represented by an SU(2) doublet of complex-valued scalar
fields as [2]

φ =

[
φ+

φ0

]
. (335)

Here the superscripts + and 0 indicate the electric charge of
the components. Through the Higgs mechanism [204–206],
the nonzero vacuum expectation value of the Higgs field res-
ults in the electroweak symmetry breaking and the genera-
tion of masses for the intermediate vector bosons and the fer-
mions of the Standard Model [4]. Enabling the generation
of masses while preserving the gauge symmetry of the elec-
troweak theory [201–203], the Higgs mechanism became an
essential part of the Standard Model.

12.3.2. Eight-spinor representation. The eight-spinor rep-
resentation of the Higgs field is obtained from the standard
representation above in analogy to the eight-spinor represent-
ation of the fermionic fields in equation (322), as

φ8 = φe0 = [0,0,0,0,φ,0,0,0]T . (336)

Again, the transpose in equation (336) only operates on the
eight-spinor degree of freedom. The adjoint spinor is given by
φ̄8 = φ†

8γ
0
B = φ†ē0 = [0,0,0,0,−φ†,0,0,0].

12.4. Tensor boson

The Standard Model does not contain the tensor boson of spin
S= 2, the graviton, since it does not describe gravity. In the
present gauge theory of unified gravity, the tensor boson asso-
ciated with the four U(1) symmetry transformations of the
components of the space-time dimension field in equation (39)
is described by the tensor gauge field Haν and the related field
strength tensor Haµν , introduced in equations (55) and (57).
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12.5. Lagrangian density of the Standard Model extended to
include gravity

We can now generalize the Lagrangian density of unified grav-
ity, which involved the Dirac electron–positron field, elec-
tromagnetic field, and the gravitational field, to include all
quantumfields of the StandardModel. Herewe explicitly write
the extension of the locally gauge-invariant Lagrangian dens-
ity in equation (63). The pertinent gauge-fixed Lagrangian
density would follow from the gauge-invariant Lagrangian
density by the Faddeev–Popov gauge fixing method in ana-
logy to the discussion in section 7.2. An essential difference is
that the interactions of ghost fields take a more essential role
in the Yang-Mills gauge theories of the Standard Model as is
well known [1, 4].

The complete generalized gauge-invariant Lagrangian
density of the Standard Model including gravity can be con-
sidered as the master Lagrangian of the Universe since it con-
tains all known fundamental interactions of nature. It is written
as

L= LS=0 +LS= 1
2
+LS=1 +LS=2 +Lpot +LYukawa. (337)

Here LS=0, LS= 1
2
, LS=1, and LS=2 are the generalized derivat-

ive terms of the spin S= 0 Higgs boson field, spin S= 1
2 fer-

mion fields, spin S= 1 vector boson fields, and the spin S= 2
tensor boson gravitational field, respectively. The generalized
derivative terms are given by

LS=0 = h̄c
(
iφ̄8D
←
Īgγ5

Bγ
ν
BD⃗νIgD

→
φ8 − φ̄8D

←
D
→
φ8

)√
−g,

LS= 1
2
=
∑
i,j

h̄c
4
ψ̄i8j

(
γ̄FĪgγ

5
Bγ

ν
BD⃗νIgD

→

−D
←
Īgγ5

Bγ
ν
BD⃗νIgγF

)
ψi8j

√
−g,

LS=1 =
∑
i

(
iΨ̄iI

†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
gΨi +Ψ̄iΨi

)√
−g,

LS=2 =
1
4κ
HρµνS

ρµν√−g. (338)

The term Lpot of equation (337) is the Higgs field potential
term, and LYukawa is the Yukawa coupling term. These terms
are responsible for the generation of masses of the intermedi-
ate vector bosons and fermions. They are given by

Lpot = h̄c
(
iφ̄8I

†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
gφ8+3φ̄8φ8

)
×
(
λHφ̄8φ8+µ

2
H

)√
−g, (339)

LYukawa =
∑
i,j

[
− i

2
(Y ′

u)ij (Q̄L8)i φ̃I
†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
g (uR8)j

− i
2
(Y ′

d)ij (Q̄L8)iφI
†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
g (dR8)j

− i
2
(Y ′

e)ij (L̄L8)iφI
†
gγ

5
Bγ

ν
B
¯⃗D†
ν Ī

†
g (eR8)j

+(2Y ′
u −Yu)ij (Q̄L8)i φ̃(uR8)j

+(2Y ′
d −Yd)ij (Q̄L8)iφ(dR8)j

+(2Y ′
e −Ye)ij (L̄L8)iφ(eR8)j+ h.c.

]√
−g. (340)

Here φ̃ = iσ2
Fφ

∗ is the charge conjugate state of the Higgs
doublet, µH and λH are parameters of the Higgs potential, Yu,
Yd, and Ye are 3× 3 Yukawa coupling matrices correspond-
ing to the inertial masses, Y ′

u, Y
′
d, and Y

′
e are Yukawa coup-

ling matrices corresponding to the gravitational masses, and
h.c. denotes the Hermitian conjugate of the preceding terms.
The gravitational gauge field Haν enters the theory trough
the gravitational-gauge covariant derivative D⃗ν , defined in
equation (55). This derivative preserves its formwhen all inter-
actions of the Standard Model are included in the theory.
Thus the Lagrangian densities in equations (63) and (337) are
invariant in the same local U(1) symmetry transformation of
equation (39).

The relation between the Lagrangian density of the gauge
theory of gravity for QED in equation (63) and the com-
plete Lagrangian density of the Standard Model including
gravity in equation (337) is the following: The first term
of equation (63), the derivative term of the Dirac electron–
positron field, is described through LS= 1

2
, where the right- and

left-handed electron–positron fields eR and eL in ψij , defined
in equation (321), give the contribution of the Dirac electron–
positron field spinor ψ of equation (63). The second and third
terms of equation (63), the mass terms of the Dirac field, are
described through the Yukawa coupling LYukawa. The fourth
and fifth terms of equation (63), the derivative terms of the
electromagnetic field, are described through LS=1, where the
linear combination of W3 and B terms of Ψi, defined in
equation (330), forms the electromagnetic field spinor Ψ of
equation (63). The interaction between the Dirac and elec-
tromagnetic fields is described through the gauge-covariant
derivative. The sixth term of equation (63), the derivative term
of the gravitational gauge field, is equal toLg,kin = LS=2, given
in equation (61).

13. Discussion and comparison with previous
theories

13.1. Comparison with the gauge theories of the Standard
Model

Unified gravity is compared with QED and QCD as examples
of Abelian and Yang–Mills gauge theories of the Standard
Model in table 4. The use of unitary and special unitary gauge
symmetries is the clearest similarity between unified grav-
ity and the gauge theories of the Standard Model. All these
theories are based on compact, finite-dimensional symmetry
groups. However, there are also certain differences. The main
difference is the action of the gauge symmetry transformation
on the space-time dimension field in unified gravity. In con-
trast, the gauge symmetry transformations of QED and QCD
act on fermionic fields and their triplets, respectively. Thus,
the gauge symmetry of unified gravity belongs to a different
hierarchy in comparison with the Standard Model symmet-
ries related to fermionic and Higgs fields. A related differ-
ence is the soldered character of unified gravity, in which a
tetrad maps the indices of the four U(1) gauge symmetry gen-
erators of gravity to space-time indices. This is expected to be
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Table 4. Comparison of unified gravity with QED and QCD as examples of Abelian and Yang–Mills gauge theories of the Standard Model
and with the conventional TEGRW, which is the established gauge theory of space-time translations. For unified gravity, we use the scaled
representation given in section 6.4. For QED, we use the scaled representation discussed in section 2.9 of the supplementary material. For
QCD, we use its conventional representation. For TEGRW, we use the scaled representation given in section 3.5 of the supplementary
material. All representations are given in the SI units. The gauge-covariant derivative row shows only the relevant terms of the full
gauge-covariant derivative that is common to all gauge theories. The Lagrangian density row shows the Lagrangian density of the gauge
field strength.

Theory Unified gravity QED QCD Conventional TEGRW

Gauge symmetry 4×U(1) of Ig Fermionic U(1) Fermionic SU(3) Tangent-space translations
Dimension of
symmetry

4 1 8 ∞

Compactness of
symmetry

Compact Compact Compact Noncompact

Symmetry
transformation

⊗
a e

iϕ(a)t
(a)

of Ig eiθQ of fermions eiθlλ
l/2 of quark triplets eξ

a∂⃗a of tangent-space
coordinates

Symmetry
generators

ta (4 generators) Q (1 generator) λl/2 (8 generators) ∂⃗a (4 continuum
generators)

Symmetry generator
dimension

Dimensionless Dimensionless Dimensionless Mass dimension 1

Coupling constant E ′
g = Eg

√
κ
h̄c e ′ = e

√
µ0c
h̄ gs k=

√
κh̄c

Coupling constant
dimension

Dimensionless Dimensionless Dimensionless Mass dimension −1

Gauge field H ′
aν (gravity gauge field) A ′

ν (four-potential) Glν (8 gluon gauge fields) B ′a
ν (translation gauge

field)

Gauge-covariant
derivative

∂⃗ν − i
E ′g√
h̄c
H ′
aν t

a ∂⃗ν + i e ′√
h̄c
A ′
νQ ∂⃗ν − i gs√

h̄c
Glν

λl

2 ∂⃗ν + i k√
h̄c
B ′a

ν ∂⃗a

Gauge field strength H ′
aµν = ∂µH ′

aν − ∂νH ′
aµ F ′

µν = ∂µA ′
ν − ∂νA ′

µ Glµν = ∂µGlν − ∂νGlµ+
gs( fs)

mn
l GmµGnν

T
• ′
aµν = ∂µB ′a

ν − ∂νB ′a
µ

Lagrangian density 1
8H

′
aµνH̃

′a
σλε

µνσλ√−g − 1
8F

′
µν F̃

′
σλε

µνσλ√−g − 1
8GlµνG̃

l
σλε

µνσλ√−g 1
8T
• ′
aµνT

•̃ ′a
σλε

µνσλ√−g

necessary for the description of the tensor gauge field describ-
ing gravitational interaction.

As seen in table 4, the expressions of the gauge-covariant
derivatives in terms of the dimensionless coupling constants,
the gauge fields, and the dimensionless symmetry generators
in unified gravity are very similar to those of QED and QCD.
The expression of the gauge field strength tensor in unified
gravity is similar to that in QED due to the Abelian gauge the-
ory nature of these theories. The gauge field strength tensor
expression of QCD differs from those of unified gravity and
QED by the Lie algebra commutator term originating from the
Yang-Mills gauge theory nature of QCD. The expressions of
the gauge field Lagrangian densities of the three theories in
table 4 are similar apart from the different sign of the gravity
gauge field Lagrangian density in unified gravity. This sign
was found to be necessary for obtaining complete agreement
between unified gravity and TEGR.

13.2. Comparison with the conventional TEGRW

In table 4, unified gravity is also compared with the con-
ventional translation gauge theory formulation of TEGRW.
For selected technical aspects in the conventional TEGRW,
see section 3 of the supplementary material. The main differ-
ence between unified gravity and the conventional TEGRW

is the gauge symmetry. Unified gravity is based on four U(1)
symmetries, whose gauge symmetry groups are compact and
whose gauge symmetry transformations operate on the four
components of the space-time dimension field. In contrast, the
conventional gauge theory formulation of TEGRW is based on
the translation group, which is noncompact. The continuum
of tangent-space coordinates in TEGRW acts in the same role
as the discrete-valued index of finite number of field or field-
multiplet components in unified gravity and in the gauge the-
ories of the Standard Model. The gauge symmetry transform-
ations of TEGRW correspond to translations of the tangent-
space coordinates of all fields in the Lagrangian density. Based
on the points above, the foundations of the symmetry of uni-
fied gravity seem very different from those of the translation
gauge symmetry of the conventional TEGRW.

However, as discussed in section 4, the gauge symmetries of
unified gravity can be described as the translations of the phase
factors of Ig. Since Ig is only a single field in the Lagrangian
density, its gauge symmetry transformations are fundament-
ally different from how the translation gauge symmetry is
applied in TEGRW. Nevertheless, as discussed in section 11,
we observe that there is no difference at the level of classical
field equations between unified gravity and the conventional
TEGRW [30, 34, 38, 39]. Furthermore, even if teleparallel
gravity is based on torsion and general relativity is based on
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curvature, it is well known that their action integrals differ
only by a boundary term, and therefore, the theories have no
differences at the level of classical field equations. Therefore,
the predictions of unified gravity for classical fields also agree
with those of general relativity.

The gauge symmetry generators in the conventional
TEGRW are the four differential operators ∂⃗a, which can
be considered as dimensional continuum generators due to
their dependence on the space-time coordinates. In contrast,
in unified gravity, the gauge symmetry generators are the four
dimensionless 8× 8 kernel matrices ta. This property makes
unified gravity to resemble the gauge theories of the Standard
Model more than the conventional TEGRW. However, in cer-
tain aspects, the translation gauge field of the conventional
TEGRW resembles the gravity gauge field of unified grav-
ity. For example, the expressions of the gauge field strength
tensors and the gauge field Lagrangian densities are very sim-
ilar between unified gravity and the conventional TEGRW.
This is due to the Abelian gauge theory nature of these
theories.

As seen in table 4, the gauge-covariant derivative of the
scaled representation of the conventional TEGRW has a coup-
ling constant ofmass dimension−1. This contrasts to the cases
of dimensionless coupling constants of unified gravity and the
gauge theories of the Standard Model. A coupling constant
of negative mass dimension is typically interpreted to indic-
ate nonrenormalizability of the gravitational interaction [3, 4,
79]. In this perspective, the dimensionless coupling in uni-
fied gravity suggests that unified gravity is renormalizable in
the same sense as the gauge theories of the Standard Model.
Accordingly, it is expected that the one-loop renormalizability
studied in section 9 extends to all loop orders.

13.3. Comparison with Fermi’s theory of weak interaction
and the electroweak unification

Based on the conventional theory of gravity, it can be argued
that the theory of gravity is closer in similarities to Fermi’s
theory of the weak interaction than to QED and QCD. Both
the weak interaction and the conventional general relativity
or TEGRW have dimensionful coupling constants and this
is what makes these theories nonrenormalizable. Fermi’s ori-
ginal four-fermion description of the weak interaction works
well at low energies but leads to infinities if it is applied at
higher energies. This issue arises because the theory lacks the
self-consistency provided by the gauge symmetry present in
QED and QCD. Unlike these renormalizable theories, Fermi’s
theory does not possess a natural mechanism for cancelling the
infinities that arise in higher-order loop calculations, making it
nonrenormalizable. The solution to this problem camewith the
development of the electroweak theory [201–203], where the
weak interaction was unified with electromagnetism by utiliz-
ing the SU(2)⊗U(1)Y gauge symmetry group.

Based on the renormalization of the weak interaction, dis-
cussed above, one might think that gravity should be renor-
malized through a similar process of unification. However, in
the present theory of unified gravity, the process is entirely
different. The four U(1) symmetries of gravity are brought to

the theory by introducing the concept of the space-time dimen-
sion field, which does not exist in the original StandardModel.
Therefore, the four U(1) symmetries of gravity are not associ-
ated with the phase rotation symmetries of the quantum fields
of the Standard Model. Instead, these symmetries are associ-
ated with the phase rotations of the four components of the
space-time dimension field. These phase rotations effectively
describe space-time translations. One can conclude that the
introduction of the space-time dimension field and its gauge
symmetries is all that is needed to provide the self-consistency
for the theory enabling successful renormalization.

13.4. Potential in providing the ultimate quantum field theory
of gravity

Unified gravity provides a completely new approach to the
gauge theory of gravity. It inherits the mathematical elegance
of the Standard Model, and the following aspects indicate its
high potential of being the basis for the ultimate quantum field
theory of gravity:

13.4.1. Minimal addition to the Standard Model. The
Standard Model has been extremely successful in its predic-
tions on particle physics phenomena. Therefore, one of the
guiding principles of unified gravity is that there is no reason
to modify the description of the three fundamental interac-
tions of the Standard Model. In unified gravity, the description
of gravity is enabled by introducing an additional structure in
the Lagrangian density of the Standard Model in such a way
that the theory remains unchanged at first. This structure is
the spacetime dimension field. The spacetime dimension field
possesses global symmetries, which are made local, i.e. space-
time dependent, by introducing a tensor gauge field in analogy
with the introduction of the vector gauge fields in the Standard
Model. The tensor gauge field is the only actual addition to the
Standard Model in unified gravity.

13.4.2. Symmetries similar to those of the StandardModel. As
discussed in section 13.1, the use of finite-dimensional unitary
symmetries is the prominent similarity between unified gravity
and the gauge theories of the Standard Model. Through these
symmetries and the dimensionless coupling constant, unified
gravity circumvents the difficulties of the conventional effect-
ive field theory of gravity [4, 78, 87, 88], which is inherently
nonrenormalizable [3, 79]. The investigation of the renor-
malization of unified gravity in section 9 strongly indicates
that unified gravity provides a clear path to renormalizable
quantum gravity and provides a solid foundation for the theory
of all fundamental interactions of nature.

13.4.3. Absence of free parameters. One of themost prom-
inent features of unified gravity is that it is capable of being
a valid candidate as the ultimate theory of quantum gravity
without introducing a single free parameter that should be
fixed by experiments. In contrast, for example, string theory
involves a wide range of free parameters that have not yet
been experimentally measured. These parameters include the
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string coupling constant, compactification parameters of extra
dimensions, gauge group couplings, moduli fields, and para-
meters related to supersymmetry [11–13]. Therefore, being
expressed in terms of known physical constants, all results of
unified gravity are quantitative and can be directly compared
with the results of possible future laboratory experiments or
astronomical observations [18].

13.4.4. SEM tensor source term of gravity. Using the
concept of the spacetime dimension field and the kernel
matrices of the eight-spinor theory, it became possible to write
the Lagrangian density of the theory so that the symmetric
SEM tensor source term of gravity and its conservation law
can be derived in a new way: Following Noether’s theorem
and by performing differentiation of the Lagrangian density
with respect to the parameters of the symmetry transforma-
tion of the spacetime dimension field, the SEM tensor fol-
lows completely analogously to the four-vector source terms
of the three fundamental interactions of the Standard Model.
This provides direct evidence that the gauge symmetry of
the spacetime dimension field is key to improved under-
standing of gravitational interaction within the framework of
quantum field theory. Before this derivation, the symmetric
SEM tensor has been possible to derive only by utilizing
the conventional spacetime symmetries and the Belinfante–
Rosenfeld symmetrization [151, 152] or the related variation
of the Lagrangian density with respect to the classical metric
tensor [9].

13.4.5. Classical limit: TEGR. The spacetime metric tensor
enters in unified gravity through geometric conditions. Using
a space-time-dependent geometric condition, unified gravity
was shown to reproduce the TEGRW. Therefore, unified grav-
ity is consistent with all classical predictions of general relativ-
ity, such as the precession of the perihelion of Mercury, the
bending of light by the Sun, and the gravitational redshift of
light [8]. Accordingly, it is also consistent with the recent
measurements on the waveforms of gravitational waves [105–
107], on the shadow of black holes [108], and on the motion
of antimatter [109]. Any theory that can be considered a valid
candidate for a theory of quantum gravity must explain these
results.

13.4.6. Exact description of gravity in the Minkowski metric.
In UGM, one uses the geometric condition, in which the
spacetime metric tensor is independent of the gravity gauge
field. Consequently, one can investigate unified gravity in the
Minkowski metric in an exact way without dealing with an
infinite number of terms in the Lagrangian density. This dif-
fers from the use of metric in general relativity, where the
metric depends on the gravitational field by definition [8–10,
24]. In general relativity, the effective quantization requires
expansion of the metric about the flat or smooth background
[88, 115–118, 121]. The expansion of the metric about the flat
or smooth background introduces an infinite number of terms
in the Lagrangian density of the conventional effective field

theory of gravity. It is this expansion that makes the renormal-
ization of the conventional theory impossible by a finite num-
ber of counterterms. Thanks to its geometric condition, UGM
avoids this problem.

13.4.7. BRST invariance. The Lagrangian density of unified
gravity was shown to satisfy the BRST invariance. The BRST
invariance provides a rigorous framework for dealing with the
redundancies in gauge theories, allowing for consistent quant-
ization so that only gauge-invariant observables contribute to
physical predictions. It also ensures that quantum field theor-
ies respect the symmetries of the classical theory while they
extend to the description of quantum effects. The BRST invari-
ance of unified gravity strongly suggests that unified gravity
is a renormalizable gauge theory like the gauge theories of
the Standard Model. The BRST invariance also makes uni-
fied gravity simpler than the conventional theories of gravity,
where the BRST invariance must be replaced by a more gen-
eral Batalin–Vilkovisky formalism [2, 170–174].

13.5. Remaining challenges in quantum gravity

13.5.1. Lack of experimental data on quantum gravity. The
development of the Standard Model has been deeply inter-
twined with experimental discoveries, which have played a
crucial role in shaping and validating the theory [4]. Initially,
the Standard Model emerged as a theoretical framework
to describe the fundamental particles and their interactions.
However, it was through a series of groundbreaking experi-
ments that its predictions were tested, and the Standard Model
itself obtained its present form. In this respect, the lack of
experimental data on quantum gravity, due to the weakness of
the gravitational interaction, has so far been a notable chal-
lenge for the development of a well-functioning theory of
quantum gravity. Experimental advances can, however, take
place in the following years [18, 207–209]. Any experiments
must be planned carefully to clearly distinguish between the
classical and quantum effects [210]. For example, the grav-
itational Aharonov–Bohm effect [211, 212] has already been
measured [213], but it can be explained semiclassically using
the classical gravitational potential without requiring the full
quantization of the gravitational field.

13.5.2. Possibility of divergences in high-order loop
diagrams. In the conventional effective field theory
approach to quantum gravity [4, 78, 87, 88], the loop dia-
grams are problematic because they lead to divergences that
cannot be renormalized in the usual sense [80–83]. In the case
of unified gravity, one can speculate with the possibility that
some high-order loop diagrams could not be renormalized.
Even though the complete proof of the renormalizability of
unified gravity to all loop orders remains a topic for future
work, we have strong arguments against this scenario. One of
these arguments is the fact that the known gauge theories of the
Standard Model are based on similar unitary or special unitary
groups and also have dimensionless coupling constants, and
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Table 5. Summary of the key steps in the emergence of unified gravity.

(i) The generating Lagrangian density of gravity is written using the space-time dimension field to enable additional compact,
finite-dimensional symmetries similar to those of the Standard Model. The form of the space-time dimension field is strongly restricted by
the requirement that the generating Lagrangian density of gravity reduces to the Lagrangian density of the Standard Model. Without the
space-time dimension field, the Lagrangian density satisfies only the well-known symmetries of the Standard Model and the external
space-time symmetries, which have a noncompact, infinite-dimensional gauge group.
(ii) The theory is written using the inertial and gravitational masses and the scale and coupling constants. Einstein’s equivalence principle
is formulated by requiring that the renormalized values of the inertial and gravitational masses are equal. Equivalence is also required for
the scale and coupling constants of unified gravity. The equivalence principle and the scale invariance guarantee that the theory does not
introduce any free parameters beyond the physical constants determined in previous experiments.
(iii) The gauge symmetry is applied. The variation of the action integral of the theory with respect to the parameters of the four U(1) gauge
symmetry transformations of the space-time dimension field leads to the conservation law of the SEM tensor. The generating Lagrangian
density is made locally gauge-invariant by introducing a tensor gauge field through the gauge-covariant derivative. Apart from the soldered
character, the gauge theory of unified gravity follows from its symmetries analogously in comparison with the gauge theories of the
Standard Model.
(iv) The space-time metric tensor enters unified gravity through geometric conditions, which can either depend on or be independent of the
gravity gauge field. The gravity-gauge-field-independent geometric condition of UGM allows one to study unified gravity in the
Minkowski metric in an exact way. This differs from the use of metric in general relativity, where the metric depends on the gravitational
field by definition. Alternatively, the gravity-gauge-field-dependent geometric condition, called the Weitzenböck gauge fixing approach,
allows one to derive TEGRW from unified gravity. Thus, unified gravity is in perfect agreement with the known nonlinear field equations
of general relativity.
(v) The Faddeev–Popov gauge fixing approach in the path integral formulation of UGM leads to the locally gauge-fixed Lagrangian
density of UGM. This Lagrangian density satisfies the global BRST invariance in analogy with the gauge theories of the Standard Model.
This contrasts to conventional theories of gravity, where the BRST symmetry must be replaced by a more general Batalin–Vilkovisky
formalism. The BRST symmetry is satisfied at each loop order, which supports the renormalizability of the theory by forbidding
gauge-violating counterterms.
(vi) The Feynman rules for unified gravity are derived based on the Lagrangian density, including the counterterms needed in the
renormalization. Selected examples of the application of the Feynman rules at tree level indicate that the theory is physically meaningful.
The nonrelativistic limit of the gravitational scattering of electrons leads to Newton’s law of universal gravitation. In this limit, the only
difference of the gravitational scattering in comparison with the electromagnetic scattering is that the electromagnetic fine-structure
constant is replaced by the gravitational fine-structure constant.
(vii) The renormalizability of unified gravity is first proven at one-loop order using the conventional on-shell renormalization scheme and
dimensional regularization. The values of all renormalization factors are determined. Selected radiative corrections are calculated as
examples of the use of the renormalized theory. The general proof of the renormalizability of unified gravity at any loop order and in the
nonperturbative regime is left as a topic of further works.

they have turned out to be renormalizable [4]. Another, closely
related, argument is the BRST invariance.

13.5.3. Nonperturbative regime of the theory. One chal-
lenge for unified gravity is provided by its nonperturbat-
ive regime at high energies. Previous quantum field theories,
such as QCD at low energies [4], have shown that the non-
perturbative regime is theoretically challenging to approach.
This is primarily because, in the nonperturbative regime, the
coupling constant is large, and perturbative methods fail [4].
Therefore, alternative approaches, such as lattice gauge the-
ory simulations [214, 215] or functional methods [216], are
required. These methods are computationally very intensive.
Even after complete unification of all fundamental interactions
of nature, a comprehensive understanding of the nonperturb-
ative regimes of quantum field theories may still remain one
of the most challenging and important goals in theoretical
physics.

13.5.4. Eventual fundamental limitations of unified gravity.
Unified gravity is a powerful and mathematically transparent
framework with the potential of being an ultimate quantum

theory of all fundamental forces of nature. In the end, a phys-
ical theory must be grounded on experimental verification.
Unified gravity does not contain a single free parameter that
has not been measured in previous experiments. Since uni-
fied gravity contains the Standard Model, it is equally pre-
dictive in related phenomena. The classical limit of unified
gravity is equivalent to general relativity, and thus, consistent
with the observations on gravitational interaction. However,
the predictability of unified gravity in the explanation of
quantum gravity phenomena is yet to be proven by future
experiments [18].

14. Conclusion

We have investigated the possibility of formulating a gauge
theory of gravity using compact, finite-dimensional symmetry
groups instead of the noncompact, infinite-dimensional trans-
lation gauge group of conventional theories of gravity. The
resulting gauge theory, unified gravity, was made possible
without a single free parameter by introducing the concept of
the space-time dimension field and utilizing the recent eight-
spinor formulation of QED [55] extended to cover the full
Standard Model. Four U(1) symmetries of the components
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of the space-time dimension field lead to unified gravity in a
way that resembles the gauge theories of the Standard Model.
Thus, our theory differs from conventional theories of gravity,
which are typically based on external translation symmetry of
the Lagrangian density. Compactness of the gauge group of
unified gravity represents a fundamental change in the under-
standing of the structure of space-time and the emergence of
gravity. The key steps in the emergence of unified gravity are
summarized in table 5.

Within unified gravity, the entire dynamics of the known
particles and fields, including gravity, can be described by
a single master Lagrangian of the Universe through com-
pact, finite-dimensional unitary symmetries and the resulting
dynamical equations in a unified way. Therefore, our theory
brings the gauge theory of gravity closer to the gauge the-
ories of the Standard Model as compared with the conven-
tional gauge theories of gravity. Several aspects of unified
gravity, gauge theories of the Standard Model, and the con-
ventional translation gauge theory of TEGRWwere compared
in detail. We have also discussed the potential of unified grav-
ity in providing the ultimate quantum field theory of gravity as
well as the remaining challenges that persist in understanding
quantum gravity. After extending the proof of renormalizabil-
ity of the theory to all loop orders and obtaining further under-
standing of the nonperturbative regime of the theory, physi-
cists may finally have the long-sought tool for the investig-
ation of intense gravitational fields in black holes and at the
possible beginning of time. Full understanding of the implic-
ations of unified gravity on the field theories will be obtained
only after extensive further work.
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