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ABSTRACT
We present the first attempt to fit the light curve of the interstellar visitor ‘Oumuamua using
a physical model that includes optional torque. We consider both conventional (Lommel–
Seeliger triaxial ellipsoid) and alternative (‘black-and-white ball’, ‘solar sail’) brightness
models. With all the brightness models, some torque is required to explain the timings of
the most conspicuous features – deep minima – of the asteroid’s light curve. Our best-fitting
models are a thin disc (aspect ratio 1:6) and a thin cigar (aspect ratio 1:8) that are very close
to being axially symmetric. Both models are tumbling and require some torque that has the
same amplitude in relation to ‘Oumuamua’s linear non-gravitational acceleration as in Solar
system comets whose dynamics is affected by outgassing. Assuming random orientation of the
angular momentum vector, we compute probabilities for our best-fitting models. We show that
cigar-shaped models suffer from a fine-tuning problem and have only 16 per cent probability
to produce light-curve minima as deep as the ones present in ‘Oumuamua’s light curve. Disc-
shaped models, on the other hand, are very likely (at 91 per cent) to produce minima of the
required depth. From our analysis, the most likely model for ‘Oumuamua is a thin disc (slab)
experiencing moderate torque from outgassing.

Key words: methods: numerical – minor planets, asteroids: general – minor planets, aster-
oids: individual: ‘Oumuamua.

1 I N T RO D U C T I O N

1I/2017 ‘Oumuamua is the first and only known interstellar minor
body to pass through the Solar system. It was detected by Pan-
STARRS1 survey on 2017 October 19, and by October 22 was
determined to have by far the largest known hyperbolic eccentricity
of 1.2 (Meech et al. 2017). Unfortunately, it was discovered when
it was already on its way out of the Solar system, after passing
its perihelion (0.25 au from the Sun) on September 9, and having
a close approach (0.16 au) to Earth on October 14. This severely
limited the number of observations that could be acquired. Most
of observations of ‘Oumuamua were done during the 5-d interval
between October 25 and October 30 (Drahus et al. 2018; Fraser
et al. 2018), with a few more observations over the next 2 months
until its final sighting on 2018 January 2 (Micheli et al. 2018). The
observations were primarily done in visible light, though two very
interesting non-detections in other wavelengths were also reported:
in infrared by Spitzer (Trilling et al. 2018) and in radio by SETI
(Harp et al. 2019).

The second unique feature of ‘Oumuamua (in addition to
its interstellar nature) was its extreme brightness variability. At
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2.6 ± 0.2 mag, the amplitude of the brightness changes was larger
than that for any Solar system minor body, suggesting an extreme
geometry (Drahus et al. 2018). The early suggestion was that
‘Oumuamua has a very prolate (cigar-like) shape (Meech et al.
2017), which was later accepted by most of the literature on this
object, though very oblate (disc-like) shapes would work as well
(Belton et al. 2018). The idea that ‘Oumuamua’s large brightness
variations are not geometric in nature, but are primarily driven by
large albedo variations across the asteroid’s surface, was briefly
entertained and dismissed as unlikely due to the absence of any
sign of volatiles (Meech et al. 2017).

‘Oumuamua’s light curve was also unusual for another reason.
While early papers based on limited data suggested that the asteroid
is a simple rotator with the rotation period between 7.3 and 8.1 h
(Jewitt et al. 2017; Meech et al. 2017; Bolin et al. 2018), later papers
that analysed more complete data sets concluded (by analysing
the periodograms for the light curve) that the asteroid is in an
excited (non-principal axis (NPA), or tumbling) rotational state
(Belton et al. 2018; Drahus et al. 2018; Fraser et al. 2018). It is
important to note that periodograms of noisy and patchy data of a
limited size can produce fake dominant frequencies (Samarasinha &
Mueller 2015). Also, such an analysis assumes there is no torque.
Dominant frequencies found in periodograms should be treated
as suggestive only, and should be ideally verified (confirmed or
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disproved) by means of physical modelling of the light curve (Pravec
et al. 2005).

The third unique feature of ‘Oumuamua is its non-gravitational
acceleration, discovered by Micheli et al. (2018), combined with the
lack of any signs of outgassing (Drahus et al. 2018; Trilling et al.
2018; Sekanina 2019b). In Solar system comets, non-gravitational
acceleration is usually associated with active outgassing. This
conundrum spurred some non-orthodox explanations, such as the
solar sail idea of Bialy & Loeb (2018).

As evidenced by Solar system comets and expected on theoretical
grounds, the same agent (e.g. outgassing), which drives linear non-
gravitational acceleration of a minor body, should also produce
torque, whose amplitude should correlate with the amplitude of the
linear acceleration (Rafikov 2018a). Seligman, Laughlin & Batygin
(2019) showed that their physical model of ‘Oumuamua, where
the outgassing point tracks the subsolar spot on the asteroid’s
surface, can reproduce the magnitude of the non-gravitational
linear acceleration and some features of the light curve. (We have
to emphasize that the authors did not carry out computationally
expensive fitting of the observed light curve.) On the other hand,
recently Rafikov (2018b), based on the frequency analysis of the
light curve by Belton et al. (2018), claimed that ‘Oumuamua should
have experienced negligible torque. We critically assess this claim
in our paper.

Despite significant research efforts, the nature of ‘Oumuamua
remains a puzzle. Perhaps it is a comet, which would be in line
with the theoretical expectations predicting 200–104 times more icy
objects than rocky objects among interstellar minor bodies (Meech
et al. 2017), and because it exhibited strong non-gravitational
acceleration. Or perhaps it is an asteroid, judging from the non-
detection of any signs of outgassing, but then the non-gravitational
acceleration remains unexplained. Or it could be something else,
e.g. a solar sail. Clearly, more efforts are needed to bring some
clarity to this issue.

This paper represents the first attempt to fit a physical model
to the observed light curve of ‘Oumuamua, with all free model
parameters recovered by means of multidimensional optimization.
The paper is organized as follows. Section 2 describes the two main
components of the model: the kinematic part (spin evolution of a
tumbling asteroid with optional constant torque) and the brightness
model part (can be either a geometric one – Lommel–Seeliger (LS)
triaxial ellipsoid – or a variable albedo one – ‘black-and-white
ball’). Section 3 presents our Graphics Processing Unit (GPU)-
based numerical code, describes the numerical set-up, and details
code validation tests. Section 4 describes the observational data used
for modelling and presents the results of fitting ‘Oumuamua’s light
curve with our physical model (with and without torque). The paper
ends with discussion (Section 5) and conclusions and future work
(Section 6).

2 MO D EL

2.1 Overview

Our model consists of two major components: kinematic model and
brightness model.

In terms of kinematics, ‘Oumuamua is assumed to be a rigid
body with an arbitrary shape and arbitrary density distribution,
which rotates in an NPA mode; in other words, it is tumbling.
As the simplest non-inertial extension, the model can optionally
account for arbitrary torque that is fixed in time and space (in

the asteroidal co-moving coordinate system). Physically, this might
correspond to semi-steady outgassing from a specific point on
the asteroid’s surface. We describe the equations of motion in
Section 2.2, the initial conditions in Section 2.3, and the model’s
coordinate transformations in Section 2.4.

Our main brightness model (described in Section 2.5) assumes
that the asteroid is a triaxial ellipsoid with uniform albedo surface
with LS light scattering properties. The ellipsoid can be either self-
consistent (with the semi-axis lengths taken from the kinematic
part of the model) or relaxed (with the semi-axis lengths not
linked to the kinematic model). Relaxing the brightness ellipsoid
parameters can help to account for potential deviations of the aster-
oid’s properties (e.g. shape) from the model assumptions (Pravec
et al. 2005).

We also explore the simplest non-geometric explanation for the
large brightness variations of ‘Oumuamua: a spherical body with the
two hemispheres having different albedo values, which is oriented
arbitrarily relative to the diagonal components of the inertia tensor.
This model is described in Section 2.5.2.

2.2 Equations of motion

We adopt a co-moving right-handed Cartesian coordinate system
with the three principal axes – b, c, and a – coinciding with the
three diagonal components of the asteroid’s inertia tensor, Ib, Ic,
and Ia, respectively. The axes are chosen in a way that the following
inequalities are always true: Ia

<= Ib
<= Ic. (Our axes b, c, and a are

equivalent to the axes i, s, and l of Samarasinha & A’Hearn (1991).)
If the asteroid’s shape can be described as a triaxial ellipsoid, the
corresponding semi-axes of the ellipsoid would follow the a >= b >=
c relations.

We adopt the units where a = 1 and Ia = 1; the time unit is a day.
In these units, the three diagonal components of the inertia tensor
of a triaxial ellipsoid are

Ib = 1 + c2

b2 + c2
, Ic = 1 + b2

b2 + c2
, Ia = 1. (1)

In the co-moving coordinate system, Euler’s equations for rigid
body rotation can be written as

Ib�̇b + (1 − Ic) �c�a = Kb,

Ic�̇c + (Ib − 1) �a�b = Kc,

�̇a + (Ic − Ib) �b�c = Ka (2)

(Landau & Lifshitz 1976, p. 115). Here, �b, �c, �a and Kb, Kc,
Ka are the components of the angular velocity vector and the
torque pseudo-vector, respectively, in the co-moving (asteroidal)
coordinate system. The angular velocity vector components can
be expressed in terms of the three Euler angles (nutation angle θ ,
precession angle ϕ, and rotation angle ψ) and their derivatives:

�b = ϕ̇ sin θ sin ψ + θ̇ cos ψ,

�c = ϕ̇ sin θ cos ψ − θ̇ sin ψ,

�a = ϕ̇ cos θ + ψ̇

(3)

(Landau & Lifshitz 1976, p. 111).
Equations (2) and (3) can be rewritten to form a system of six

ordinary differential equations (ODEs) for the three � components
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and the three Euler angles:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̇b = �c�a (Ic − 1) /Ib + Tb,

�̇c = �a�b (1 − Ib) /Ic + Tc,

�̇a = �b�c (Ib − Ic) + Ta,

ϕ̇ = (�b sin ψ + �c cos ψ) / sin θ,

θ̇ = �b cos ψ − �c sin ψ,

ψ̇ = �a − ϕ̇ cos θ.

(4)

Here, Tb = Kb/Ib, Tc = Kc/Ic, and Ta = Ka are the components
of the torque vector normalized by the corresponding diagonal
components of the inertia tensor.

System (4) is the one we need to integrate numerically to describe
the rotation of a rigid body in the presence of torque. If torque is
zero, there is a trick allowing one to bypass the Euler equations,
and reduce the problem to only three ODEs, for the three Euler
angles (Kaasalainen 2001). Specifically, in the torque-free regime
the angular momentum vector L of a rotating rigid body is fixed in
all inertial coordinate systems (angular momentum conservation),
which lets us write the following equations:

�b = LI−1
b sin θ sin ψ,

�c = LI−1
c sin θ cos ψ,

�a = L cos θ (5)

(Landau & Lifshitz 1976, p. 119). As shown by Kaasalainen (2001),
combining equations (3) and (5) results in the following system of
three ODEs, for the three Euler angles:

⎧⎪⎨
⎪⎩

ϕ̇ = L(I+ − I− cos 2ψ),

θ̇ = LI− sin θ sin 2ψ,

ψ̇ = cos θ (L − ϕ̇).

(6)

Here I− = (1/2)
(
I−1
b − I−1

c

)
and I+ = (1/2)

(
I−1
b + I−1

c

)
.

Kaasalainen (2001) set the principal axes of the co-moving
coordinate system differently for short axis mode (SAM) and
long axis mode (LAM) rotators, which allowed them to simplify
many model equations, with only one form of an equation for
both SAM and LAM cases. In our testing, this worked well for
mildly flattened objects. Unfortunately, for the shortest-to-longest
ellipsoid axis ratios (c/a) smaller than ≈0.2, we observed the ODE
integration errors to quickly become significant (necessitating much
smaller time-steps, which would make simulations much longer). At
some point (around c/a � 0.15), the ODE integration completely
breaks down due to some numerical instability. No such issues were
observed when we used the same co-moving axis assignment (with
c and a always corresponding to the smallest and largest ellipsoid’s
semi-axes, respectively), for both SAM and LAM objects, as in
Samarasinha & A’Hearn (1991). Using this latter approach allowed
us to use a fairly large integration time-step without noticeably
affecting the accuracy of integration. Crucially, this also allowed
us to fully explore the range of c/a ratios needed to explain
‘Oumuamua’s extreme brightness variations.

In our model, we solve equation (6) for torque-free runs, and
equation (4) for runs with torque (which is assumed to be constant
in the co-moving coordinate system). It is important to emphasize
that the equations are applicable to any rigid body (not just triaxial
ellipsoids), described by the three diagonal components of its inertia
tensor – Ib, Ic, and Ia.

2.3 Initial conditions

To solve either equation (6) or equation (4), one has to set the
initial values of the independent variables. In the adopted co-moving
coordinate system, bca, precession angle ϕ initially can have any
value: ϕ0 ∈ [0, 2π].

Angular momentum vector modulus L can have any positive value
initially, L ∈ [0, ∞[. Total allowed range for the model parameter
E′ ≡ 2E/L2 is I−1

c –1. (Here, E is the rotational kinetic energy of
the body.) In the SAM and LAM, the corresponding sub-ranges
are I−1

c –I−1
b and I−1

b –1, respectively (equations A30 and A54 in
Samarasinha & A’Hearn (1991)). Parameters L and E′ are fixed in
torque-free simulations, but change with time in runs with non-zero
torque. In the latter case, only the initial values of the two parameters
need to be provided; the ODEs (equation 4) do not explicitly use
them.

Rotation angle ψ can have any value (ψ0 ∈ [0, 2π ]) in LAM, but
is constrained to the following range in SAM (equations A63 and
A64 in Samarasinha & A’Hearn (1991)):

ψmin = − arctan

[√
Ib(Ic − 1/E′)
Ic(1/E′ − Ib)

]
,

ψmax = arctan

[√
Ib(Ic − 1/E′)
Ic(1/E′ − Ib)

]
. (7)

Combining the expressions for the components of the angular
momentum vector

Lb = L sin θ sin ψ,

Lc = L sin θ cos ψ,

La = L cos θ

(8)

(Landau & Lifshitz 1976, p. 119) with the kinetic energy equation

2E = L2
b

Ib

+ L2
c

Ic

+ L2
a (9)

(Landau & Lifshitz 1976, p. 116) allows us to write the expression
for the initial value of the nutation angle

θ0 = arcsin

[√
E′ − 1

sin2 ψ0(I−1
b − I−1

c ) + I−1
c − 1

]
. (10)

As one can see, θ0 is not a free parameter (unlike ϕ0 and ψ0): it
is fully determined by other model parameters (E′, ψ0, b, and c).
Nutation angle can vary between 0 and π .

Once we set the values for the parameters L, θ0, and ψ0, the
initial values of the three components of the angular velocity vector
� for simulations with non-zero torque can be computed using
equation (5).

When modelling light curves of asteroids, it is common to use
rotation period Pψ and precession period Pϕ (which can often be
deduced or guessed from observations) in place of the physical
parameters E (or E′ in our case) and L. This necessitates the
conversion (Pψ , Pϕ) → (E′, L) for each tested model that is
computationally expensive and can dramatically slow down the
simulations. We use a compromise approach in our model, which
can take either L or Pψ as a free parameter. We keep E′ (which is
relatively well constrained) as another free parameter. When Pψ is
a free parameter, we derive L from Pψ and E′ using the following
efficient computational routine.
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First, we compute the parameter k2 (equations A32 and A56 in
Samarasinha & A’Hearn (1991))

k2 =

⎧⎪⎪⎨
⎪⎪⎩

(Ic − Ib)(1/E′ − 1)

(Ib − 1)(Ic − 1/E′)
(LAM),

(Ib − 1)(Ic − 1/E′)
(Ic − Ib)(1/E′ − 1)

(SAM).
(11)

Next, we compute the elliptic integral

Ke =
∫ π/2

0

du√
1 − k2 sin2 u

(12)

(Landau & Lifshitz 1976, p. 118), using very efficient arithmetic–
geometric mean iterative method:1

for (int i = 0; i<N; i+ +)
{

a1 = (a + g)/2;
g1 = sqrt(a ∗ g);
a = a1; g = g1;

}
If initial values of the variables a and g are set to 1 and

√
1 − k2,

respectively, the aforementioned iterative loop quickly converges,
with π /(a + g) → Ke as N → ∞. In our testing, after only five
iterations the error in Ke is smaller than 10−10, for k2 = 0–0.9999998.

Now we can derive L from Pψ as follows:

L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4Ke

Pψ

√
IbIc

E′(Ib − 1)(Ic − E′−1)
(LAM),

4Ke

Pψ

√
IbIc

E′(Ic − Ib)(E′−1 − 1)
(SAM)

(13)

(equations A45 and A71 in Samarasinha & A’Hearn (1991)).

2.4 Coordinate transformations

Our model utilizes three different right-handed Cartesian coordinate
systems. The starting point is the inertial Solar system barycen-
tre (SSB) coordinate system, xyz. We used online NASA’s tool
HORIZONS2 (Giorgini et al. 1996) to generate SSB coordinates
for the centres of the Sun, Earth, and ‘Oumuamua for all the data
points in ‘Oumuamua’s light curve.

The second coordinate system, XYZ, is also inertial. The axis Z
coincides with the angular momentum vector L. (For runs with non-
zero torque, Z coincides with the angular momentum vector L at the
initial moment of time.) The axis X is arbitrarily chosen to coincide
with the vector y × Z. The axis Y complements the other two axes
to form a right-handed coordinate system: Y = Z × X. The three
axes of the XYZ coordinate system can be described as unit vectors
in the SSB (xyz) coordinate system as follows:

Zx,y,z =
{

sin θL cos ϕL, sin θL sin ϕL, cos θL

}
,

Xx,y,z =
{

Zz/

√
Z2

z + Z2
x, 0, −Zx/

√
Z2

z + Z2
x

}
,

Yx,y,z =
{

ZyXz, ZzXx − ZxXz, −ZyXx

}
. (14)

Here, free model parameters θL and ϕL are polar and azimuthal
angles, respectively, describing the (initial) orientation of the
angular momentum vector L in the SSB coordinate system.

1https://en.wikipedia.org/wiki/Arithmetic-geometric mean
2https://ssd.jpl.nasa.gov/horizons.cgi

Figure 1. Transformation from the inertial coordinate system XYZ (Z being
the initial orientation of the angular momentum vector L) to the co-moving
coordinate system bca using Euler angles θ , ϕ, and ψ .

Finally, the co-moving (asteroidal) coordinate system, bca, has
its three axes coinciding with the intermediate, largest, and smallest
diagonal components of the asteroidal inertia tensor. This coordinate
system is derived by rotating the XYZ coordinate system using three
Euler angles, θ , ϕ, and ψ (Fig. 1), which are derived by solving
the equations of motion (Section 2.2). If the mass distribution of
the asteroid can be well approximated as a homogeneous triaxial
ellipsoid, the three axes correspond to the intermediate (b), smallest
(c), and largest (a) semi-axes of the ellipsoid. The SSB components
of the three axes, b, c, and a, can be computed via a sequence of
geometric transformations as follows.

Components of the unit node vector N, derived by rotating vector
X towards vector Y by the Euler angle ϕ (see Fig. 1), with Z being
the rotation axis, in the SSB coordinate system are given by

Nx,y,z = {
Xx cos ϕ + Yx sin ϕ, Yy sin ϕ,

Xz cos ϕ + Yz sin ϕ
}
.

(15)

Using another auxiliary unit vector, p = N × Z,

px,y,z = {
NyZz − NzZy, NzZx − NxZz, NxZy − NyZx

}
, (16)

allows us to derive the axis a (a unit vector) components in the SSB
coordinate system by rotating Z by the Euler angle θ towards p,
with the node vector N being the rotation vector:

ax,y,z = {
Zx cos θ + px sin θ, Zy cos θ + py sin θ,

Zz cos θ + pz sin θ
}
.

(17)

Using yet another auxiliary unit vector, w = a × N,

wx,y,z = {
ayNz − azNy, azNx − axNz, axNy − ayNx

}
, (18)

allows us to derive the axis b (a unit vector) components in the SSB
coordinate system by rotating the vector N by the Euler angle ψ
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towards the vector w, with the vector a being the rotation vector:

bx,y,z = {
Nx cos ψ + wx sin ψ, Ny cos ψ + wy sin ψ,

Nz cos ψ + wz sin ψ
}
.

(19)

The SSB components for the third axis, c = a × b, can now be
computed as

cx,y,z = {
aybz − azby, azbx − axbz, axby − aybx

}
. (20)

Brightness models described in Section 2.5 require the knowledge
of the components of the unit vectors S and E connecting the asteroid
with the centres of the Sun and Earth, respectively, in the co-moving
coordinate system (bca). These vectors are readily obtainable in the
SSB coordinate system (based on HORIZONS’ data). Once the base
vectors of the co-moving coordinate system, b, c, and a, have been
computed (equations 17, 19, and 20), the components of the vectors
S and E in the bca coordinate system can be calculated as

Sb = bxSx + bySy + bzSz,

Sc = cxSx + cySy + czSz,

Sa = axSx + aySy + azSz, (21)

and

Eb = bxEx + byEy + bzEz,

Ec = cxEx + cyEy + czEz,

Ea = axEx + ayEy + azEz. (22)

From the equations listed in this subsection, only equation (14) is
computed once per model integration; the rest have to be computed
for each observed data point, as they depend on time-variable Euler
angles θ , ϕ, and ψ .

2.5 Brightness models

2.5.1 LS triaxial ellipsoid

We adopt the brightness model of Muinonen & Lumme (2015)
written for a triaxial ellipsoid with LS light scattering surface. We
consider the simplest case of the isotropic single-scattering function.
Disc-integrated absolute magnitude of such an object in our co-
moving coordinate system bca can be expressed as

H = �V − 2.5 log

{
b′c′ T�T⊕

T

[
cos(λ′ − α′) + cos λ′ + sin λ′

× sin(λ′ − α′) ln

(
cot

1

2
λ′ cot

1

2
(α′ − λ′)

)]}
, (23)

where

T� =
√

S2
b/b

′2 + S2
c /c

′2 + S2
a ,

T⊕ =
√

E2
b/b

′2 + E2
c /c

′2 + E2
a ,

cos α′ = (SbEb/b
′2 + ScEc/c

′2 + SaEa)/(T�T⊕),

sin α′ =
√

1 − cos α′2,

T =
√

T 2� + T 2⊕ + 2T�T⊕ cos α′,

cos λ′ = (T� + T⊕ cos α′)/T ,

sin λ′ = T⊕ sin α′/T (24)

(Muinonen & Lumme 2015; please note that the authors used abc
coordinate system, whereas we use bca coordinate system). Here,

Sb,c,a and Eb,c,a are components of the unit vectors in the directions of
the Sun and Earth, respectively, in the asteroidal coordinate system
bca (see equations 21 and 22), b′ and c′ are the intermediate and
smallest semi-axes of the brightness ellipsoid expressed as a fraction
of its largest semi-axis, and the constant �V absorbs two unknown
parameters – albedo and scale (largest semi-axis a′ in physical units)
of the asteroid.

Fitting the brightness model (equation 23) to the asteroid’s
observed light curve, transformed to absolute magnitudes, produces
the value of �V (offset between the model and observed light
curves). To get an estimate of the asteroid’s scale a′

m (the ellipsoid’s
largest semi-axis in metres), let us place the asteroid 1 au away
from the Earth and Sun, with zero phase angle. Equation (23) is
then reduced to

H = �V − 2.5 log(b′c′T�). (25)

As the projected area of the ellipsoid (in square metres) is
(Muinonen & Lumme 2015)

A = a′2
mπb′c′T�, (26)

equation (25) can be rewritten as

A = πa′2
m100.4(�V −H ). (27)

The standard asteroid diameter equation (Lamy et al. 2004; their
equation (5), written for a spherical body observed at zero phase
angle) can be expressed in terms of the asteroid’s projected area A
(in square metres) as

A = π
(1.49598 × 1011)2

p
100.4(m�−H ), (28)

where m� is the apparent magnitude of the Sun in the same spectral
filter as the one used to observe the asteroid, and p is the geometric
albedo of the asteroid. Equating equations (27) and (28) produces
the estimate of the physical scale of the ellipsoid:

a′
m = 1.49598 × 1011

√
p

100.2(m�−�V ). (29)

In our code, the triaxial ellipsoid brightness model can be used
in two different ways:

(i) Self-consistent case: Semi-axes of the brightness ellipsoid, b′

and c′, are equal to the corresponding semi-axes of the kinematic
ellipsoid, b and c. No additional free parameters.

(ii) Relaxed case: Semi-axes of the brightness ellipsoid are not
equal to the corresponding semi-axes of the kinematic ellipsoid.
Two additional free parameters: b′ and c′.

2.5.2 Black-and-white ball

As the simplest case of a non-geometric explanation for the large
brightness variations of ‘Oumuamua, we consider a toy brightness
model consisting of a spherical body with two hemispheres with
different albedo values. As ‘Oumuamua’s phase angle is relatively
small (α = 19–25◦ in the time interval covered by our analysis), we
ignore phase effects for simplicity.

Position of the darker hemisphere (with the albedo described by
a free model parameter κ ∈ [0, 1[) is specified via a unit vector
h (described by two free model parameters: polar angle θh and
azimuthal angle ϕh) in the asteroidal coordinate system bca. The
opposite (brighter) hemisphere is considered to have albedo = 1.

MNRAS 489, 3003–3021 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/3/3003/5556541 by guest on 21 M
ay 2025



3008 S. Mashchenko

Ignoring phase effects (phase angle α = 0), integrated absolute
magnitude of such an object is given by

H = �V − 2.5 log

[
κ

1 + cos ζ

2
+ 1 − cos ζ

2

]
. (30)

Here, ζ is the angle between the vector in the direction of the
observer, E (see equation 22), and the vector h.

In total, this brightness model is specified by three free parame-
ters: κ , θh, and ϕh.

2.6 Free parameters

Our model can be used with different numbers of free parameters.
The most basic model (tumbling self-consistent ellipsoid with zero
torque) has eight free parameters: L or Pψ , θL, ϕL, ϕ0, ψ0, E′, b,
and c. Here, L is the modulus of the angular momentum vector,
Pψ is the rotation period, θL and ϕL are the polar and azimuthal
angles, respectively, for the angular momentum vector, ϕ0 and ψ0

are the initial values of the precession and rotation Euler angles,
respectively, E′ = 2E/L2, where E is the rotational kinetic energy,
and b and c (used in both kinematic and brightness models) are the
intermediate and smallest semi-axes of the ellipsoid expressed in
units of the largest semi-axis a.

Multiple expanded models (with larger numbers of free param-
eters) are supported. In particular, relaxing the brightness ellipsoid
model adds two free parameters (brightness ellipsoid’s semi-axes
b′ and c′), bringing the total to 10. Non-zero-torque models add
three more free parameters – normalized torque pseudo-vector
components in the co-moving coordinate system Tb, Tc, and Ta.
This brings the total to 11 and 13 free model parameters, for self-
consistent and relaxed brightness ellipsoid models, respectively.

Finally, the black-and-white ball brightness model adds three
free parameters (dark-to-bright side albedo ratio κ and polar and
azimuthal angles for the dark side in the co-moving coordinate
system, θh and ϕh, respectively) on top of the 8 parameters of the
basic model, bringing the total to 11 free parameters. In the presence
of torque, the number grows to 14.

One more parameter, �V, is present implicitly (see equations
23 and 30). It is the offset between the observed and model light
curves, in brightness magnitudes. It is a by-product of χ2 fitting of
the model brightness curve to the observed one, and can be used to
assign physical units to the model (equation 29).

Our code can also utilize other free parameters that we did not
use for the current project. In particular, our ‘detrending’ parameter
A is designed to approximate the gradual change of the average
asteroid’s brightness with the phase angle α. Preliminary tests
showed that this additional parameter does not improve the quality
of fit for our models, which is not surprising given that we analyse a
very short time interval, where ‘Oumuamua’s phase angle changes
only slightly (from 19.2◦ to 24.7◦).

3 C O D E

3.1 Overview

We present our code,3 which fits different models of tumbling
asteroids, described in Section 2, to observed light curves. It
is written in C++ utilizing CUDA framework, and consists of
more than 3000 lines of code. With the exception of the brief

3The code is publicly available here: https://github.com/pulsar123/Asteroid

initialization and finalizing steps, and infrequent checkpointing
steps, the entire code runs on a GPU as tens of thousands of
independent parallel threads, each exploring different optimization
paths through multidimensional free model parameter space. The
code runs best on Pascal P100 GPUs (CUDA capability 6.x), but
can also be used on older Tesla GPUs (CUDA capability 2.0 or
larger). The massive computational power of modern GPUs makes
it realistic to reliably find global minima in the 8+-dimensional
free model parameter space using a Monte Carlo style optimization
strategy. As the optimization engine, we use downhill simplex
(Nelder–Mead) method4 that works well for a large number of
dimensions and does not require the knowledge of the partial
derivatives of the function to optimize, which in our case is the χ2

function produced by fitting the model light curve to the observed
one.

Each GPU thread repeatedly goes through the following steps:

(i) A random initial point is generated in the scale-free model
parameter space, using CURAND library. The library allows for
generation of tens of thousands of independent quasi-random
number sequences, one for each parallel thread. In the optimization
scale-free space, each model parameter is normalized to have
the initial range of [0, 1] (for periodic angle parameters, the [0,
1] scale-free range corresponds to the [0, 2π ] radians). Strongly
non-linear parameters are first linearized. For example, kinematic
and brightness ellipsoid semi-axis ratios, b, c, b′, and c′, utilize
logarithmic scale, to provide a comparable sampling coverage for
each decade of the full parameter’s range. Parameter Pψ (rotation
period) is sampled uniformly in the 1/Pψ (frequency) space. Some
parameters (like c, c′, and Pψ ) have static limits for the allowed
range of the initial random values, while other parameters (b, b′, ψ0,
E′, etc.) have limits that change during optimization (they depend
on the values of other parameters). The way the initial value of E′

is generated is such that SAM and LAM have equal probabilities.
During optimization, the values of parameters are allowed to drift
beyond the initial range (‘soft limits’), as long as they stay within
the physically allowed hard limits.

(ii) The initial simplex is constructed, using a small (typically
0.001 in scale-free units) initial step in each dimension.

(iii) Every time the optimization (χ2) function value needs to be
computed, the following substeps are performed:

(a) Free model parameters are converted from scale-free to
physical units.

(b) Initial values of the independent variables in the equations
of motions (either equation 4 or equation 6) are computed
(Section 2.3).

(c) The ODEs (equations of motions; see Section 2.2) are
solved using the fourth-order Runge–Kutta method. The integra-
tion starts at the time corresponding to the earliest observed point,
and proceeds with steps not larger than 0.01 d (which in our tests
provides sufficient accuracy for ‘Oumuamua’s modelling) from
one observed point to the next one, covering all the observed
points. This produces model values of the Euler angles θ , ϕ, and
ψ (plus the values of the angular velocity vector components, �b,
�c, and �a, for models with non-zero torque) for each observed
point.

(d) For each observed point, the directions of the unit vectors
S and E connecting the asteroid with the centres of the Sun

4https://en.wikipedia.org/wiki/Nelder-Mead method
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Modelling the light curve of ‘Oumuamua 3009

and Earth, respectively, are computed via a series of geometric
transformations as described in Section 2.4.

(e) Using one of the brightness models (Section 2.5), the model
absolute magnitude of the asteroid is computed for each observed
point. χ2 value is computed, along with the offset �V between
the observed and modelled light curves. Each point uses the
weight of 1/σ 2

i , where σ i is the measurement error for this data
point. If the observed data were produced using more than one
spectral filter, separate values of �V are computed for each filter,
independently.

(iv) The downhill simplex algorithm is used to descend to a
nearby local χ2 minimum. The descent is stopped when either
the simplex has shrunk below the smallest allowed size (a sign of
being in a local minimum) or a maximum number of simplex steps
(typically 5000) were taken, whichever comes first.

3.2 Numerical runs

We tried several multistage optimization strategies. The one we
adopted performed the best overall in our validation tests (see later),
and consists of the following steps:

(i) Random search stage: Eight instances of the code are run on
eight P100 GPUs for 24 h. There are ∼30 000 threads running in
parallel on each GPU. Each GPU thread starts at a random point
in the free model parameter space. Once all the threads in a block
of 256 threads converge to local χ2 minima or hit the simplex
step limit, the best model (lowest χ2) of the block is chosen. It
is then used to seed the second search phase (searching in the
neighbourhood of the best model), where the same 256 threads
would start at points that are randomly and slightly offset from
the best model, with randomized initial simplex steps for each
dimension. The second phase ends using the same criteria: all the
block threads either converge to local minima or hit the simplex
step limit. The best model of the block in the second phase is
stored in a file. At the end, about 105 best models are written to
files.

(ii) Re-optimization stage: Eight instances of the code running
on eight P100 GPUs for 24 h are launched after the first stage is
completed. The GPU farm goes through the sorted list of the models
found in the first stage, starting from the best (smallest χ2) model.
Each code instance searches in the neighbourhood of a model from
the first stage in multiple (typically 20) global re-optimization steps.
Each global step consists of all parallel threads on a GPU (typically
∼30 000) searching for the best χ2 minimum in the neighbourhood
of the globally best model found by all the parallel threads in the
previous step. Around 1 per cent of the best models from stage
1 are processed in stage 2, resulting in ∼103 highly optimized
models.

(iii) Fine-tuning stage: Finally, a few best models from stage
2 are subjected to additional global re-optimization steps, us-
ing higher (double, versus single in prior stages) floating point
precision and much smaller minimum simplex diameter (10−10

versus 10−5, in scale-free units), until a numerical convergence is
achieved. For models where some light-curve minima still have
an obvious offset from the observed ones in the time dimen-
sion, an attempt to drive all the major model minima towards
nearest observed ones is made. This is achieved by means of
progressively decreasing the optimization (χ2) function value as
the model minima converge to the observed ones in the time
dimension.

Figure 2. Artificial data set test. t is the number of days since MJD =
58050, and V is the absolute magnitude in the r spectral filter. Artificial data
points with 1σ error bars are shown in green (grey in the printed version
of the journal). Black line depicts the light curve of the underlying model.
Orange (grey in the printed version of the journal) line corresponds to the
best-fitting model.

3.3 Code validation: artificial data set test

We performed two different kinds of validation tests with our code.
The first one, described in this subsection, is designed to test the
internal self-consistency of the code, using fake light-curve data
that were created to be as close to the observed light-curve data for
‘Oumuamua as possible.

To generate the fake data, we used one of our best-fitting
models for ‘Oumuamua (see Section 4.1) that consists of a relaxed
brightness ellipsoid model and a tumbling rotation model subject
to fixed torque (13 free model parameters in total; see Section 2.6).
This model is for a thin (1:6 ratio) disc-like object that is close to
being self-consistent (brightness ellipsoid semi-axes b′ and c′ are
close to the corresponding kinematic ellipsoid semi-axes, b and c).
To generate fake light-curve data based on this model, we computed
the model absolute magnitudes for the same number of observations
at exactly the same moments of time as in ‘Oumuamua’s data set.
Next, we degraded the data using Gaussian noise with the standard
deviation (std) following the same trend as the observational
uncertainties: σ ≈ 100.323H − 8.416. (Here, H is the absolute magnitude
of the asteroid, and units for σ are magnitudes.) The same values
of σ were later used as fake observational uncertainties during χ2

model fitting. Fig. 2 shows the fake data as dots with error bars, and
the underlying model as a black curve.

We next performed a full set of model numerical runs (as de-
scribed in Section 3.2) on the fake data, using the same optimizations
parameters and the same soft limits for free model parameters as
in ‘Oumuamua runs (Section 4.3). The free model parameters were
the same 13 parameters used to generate the underlying model. At
the end, we did find a few very good model matches; the best one
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is shown as an orange (grey in the printed version of the journal)
curve in Fig. 2. Despite the significant noise present in the data and
its patchiness, the recovered model is very close to the underlying
model.

Full details of the underlying and best-fitting models are listed
in Table 1 in Fake ini and Fake fit columns, respectively. The only
obvious difference between the two models is the opposite direction
of the angular momentum vector, which affected the angles θL,
ϕL, and ϕ0. The rest of the recovered parameters are close to
their original values, including the three normalized torque vector
components, Tb, Tc, and Ta. The χ2 value for the best-fitting model
(1.011) is close to 1, as expected.

The artificial data set test demonstrated the following:

(i) The code is internally self-consistent (it can recover its own
models from noisy data).

(ii) The underlying model can be recovered for models as
complex as the one used for testing (13 free model parameters,
including 3 torque parameters), and for data as patchy and noisy as
‘Oumuamua’s light-curve data set.

3.4 Code validation: tumbling asteroid 2002 TD60

The artificial data set test described in the previous subsection
validated many important aspects of our code and numerical
procedure, but it lacks physical validation of the code and model.
(Being internally self-consistent does not mean the model is correct
and physical.) We addressed this shortcoming by using our code to
recover the parameters of a well-studied tumbling asteroid, 2002
TD60 (Pravec et al. 2005).

The Amor asteroid 2002 TD60 is one of the best studied
NPA rotators. It was observed on multiple telescopes during the
observational campaign in 2002 November–December, producing
a significant number (1914) of high-accuracy measurements of the
asteroid’s brightness (Pravec et al. 2005). Around 30 per cent of
the measurements (544 points) are calibrated (R spectral filter); the
rest consist of eight uncalibrated subsets. This necessitates the use
of nine independent fitting parameters �V (one for each internally
self-consistent subset of the data) when fitting a model to the full
data set.

Pravec et al. (2005) obtained good model fits to the light curve of
2002 TD60. In many respects, their approach is similar to ours;
in particular, their brightness model is a triaxial ellipsoid with
LS reflectance law, and the optimization engine is the simplex
downhill method. However, there are some non-trivial differences.
Importantly, their brightness model is a numerical one (the triaxial
ellipsoid is represented by 2292 flat triangles), whereas we use a
more accurate and reliable (and much faster to compute) analytical
formulation of Muinonen & Lumme (2015). (One has to note
that the numerical approach is more flexible as one can easily
modify the reflectance law.) Another significant difference is the
fact that Pravec et al. (2005) had to estimate many of the model
parameters (main frequencies, brightness ellipsoid axis ratio) before
performing the simplex downhill optimization, whereas we employ
a brute force optimization approach in which no model parameter
estimates are used. The brute force approach is more advantageous
as it explores the whole free model parameter space, including the
regions that may be overlooked in a constrained approach. Our
approach was made possible by the dramatically faster computing
hardware available today, and also thanks to the brightness model
being analytical.

We carried out a full suite of numerical runs, as described in
Section 3.2, to fit our model to the light-curve data for 2002 TD60

(generously provided by the author; Pravec, private communica-
tion). Most of our analysis was restricted to the second half of the
full data set (993 out of 1914 points; MJD = 52609.7–52617.1;
five independent �V parameters). As TD60 observations span a
significantly longer time interval (11–35 d) than ‘Oumuamua’s data
set (5 d), we had to use a shorter ODE integration time-step (0.005 d
versus 0.01 d) to achieve a good numerical convergence. As Fig. 3
shows, our best-fitting model fits very well the observed light curve
for the asteroid. Full details for this model are listed in the TD60B

column of Table 1. The quality of the fit is substantially better than
that for the best-fitting model of Pravec et al. (2005): the rms values
are 0.075 and 0.18 mag, respectively. We should caution that these
rms values are for different subsets of the data set. To make a more
meaningful comparison, we re-optimized our model TD60B for the
full data set (1914 points), which produced a slightly worse fit, with
the rms of 0.10 mag (model TD60C in Table 1) – still almost factor
of 2 better than the best-fitting model of Pravec et al. (2005).

Interestingly, our best-fitting model is substantially different from
the one derived by Pravec et al. (2005). The rotation and precession
periods are essentially identical (our model: Pψ = 6.783 h and Pϕ =
2.852 h; model of Pravec et al. (2005): Pψ = 6.787 h and Pϕ =
2.851 h), but the models are rather different otherwise. Importantly,
our best-fitting model is in a SAM tumbling motion, whereas the
model of Pravec et al. (2005) is a LAM rotator.

To get more clarity, we used our code to search for a best-fitting
model in the neighbourhood of the best-fitting model of Pravec
et al. (2005), using the same data set as for our model TD60B (993
points). We did find a local χ2 minimum that corresponds to a
model (column TD60A in Table 1) that is much closer to the best-
fitting model of Pravec et al. (2005). Importantly, both models are
LAM rotators. The periods are again almost identical, but now other
model parameters are close as well: c = {0.56, 0.54}, b = {0.65,
0.70}, c′ = {0.32, 0.36}, b′ = {0.68, 0.64} (for our model and that
of Pravec et al. (2005), respectively; using our notation). The rms
for TD60A is 0.124 mag, which is 1.7 times larger than that for our
globally best-fitting model, TD60B.

Our light-curve model fitting for the tumbling asteroid 2002
TD60 appears to be largely consistent with the previously published
results (Pravec et al. 2005). The small differences in the best-fitting
model parameters can likely be attributed to numerical (Pravec
et al. 2005) versus analytical (this paper) implementations of the
LS triaxial ellipsoid integrated brightness model. The biggest factor
appears to be our brute force optimization approach that allowed
us to thoroughly explore the free model parameter space and as a
consequence to discover a substantially better solution.

At the end, the second (physical) code validation test proved to
be not as clear-cut as we hoped. Nevertheless, we did gain extra
confidence in the code and model correctness, and again confirmed
the code’s power to discover good model fits for realistic (noisy
and patchy) light-curve data sets, for asteroids whose shape is not
exactly a triaxial ellipsoid.

4 M O D E L L I N G ‘ O U M UA M UA ’ S L I G H T C U RV E

4.1 Observational data

We used two sources of ‘Oumuamua’s light-curve data, together
covering 5 d of observations, from MJD = 58051.0 (2017 October
25) to MJD = 58056.3 (2017 October 30). This is the only time
interval when the asteroid’s brightness measurements were very
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Modelling the light curve of ‘Oumuamua 3011

Table 1. Models.

Parameter Fake ini Fake fit TD60A TD60B TD60C INERT DISC CIGAR SAIL BALL

Fitting parameters
χ2 – 1.011 6.275 2.283 4.135 18.40 9.963 10.84 11.50 7.859
rms, mag – 0.116 0.124 0.075 0.101 0.299 0.220 0.230 0.236 0.195
�V, mag 22.6720 22.5066 18.8774 18.3002 18.2139 19.3378 22.5287 20.2872 22.0703 22.5523

Free model parameters
θL, rad 2.235 73 1.054 33 0.974 59 1.913 59 2.507 70 0.905 22 2.276 61 2.023 59 1.421 07 1.572 72
ϕL, rad 1.623 70 4.962 08 5.825 97 2.684 32 2.681 63 3.003 12 1.611 85 1.968 10 2.369 17 4.679 14
ϕ0, rad 6.258 39 3.946 04 2.918 95 0.086 83 0.176 13 5.129 12 6.245 57 2.960 16 3.237 46 4.589 48
Tb −4.026 58 −4.083 95 – – – – −3.975 79 2.556 50 47.8356 15.4057
Tc −1.119 09 −1.047 47 – – – – −1.124 70 −7.438 45 0.400 40 −2.236 78
Ta −5.850 03 −5.220 63 – – – – −5.828 52 1.012 62 −21.4239 5.752 93
c 0.164 35 0.187 66 0.562 95 0.521 70 0.532 68 0.009 99 0.162 93 0.129 72 0.000 01 0.523 18
b 0.964 83 0.963 32 0.647 39 0.782 11 0.808 60 0.060 14 0.964 27 0.131 44 0.806 83 0.930 90
E′

0 0.982 70 0.979 23 0.652 02 0.580 23 0.601 40 0.008 20 0.982 04 0.033 53 0.423 20 0.865 37
L0 17.0921 16.9094 97.9840 93.5938 90.4275 293.884 17.0497 525.649 51.4673 42.4590
ψ0, rad 1.972 76 1.918 11 1.702 36 −0.482 06 −0.288 08 6.141 66 1.997 45 0.089 55 0.073 24 0.528 39
c′ 0.174 88 0.141 39 0.318 44 0.207 57 0.193 53 0.013 75 – – – –
b′ 0.999 41 0.873 02 0.675 47 0.781 47 0.762 91 0.063 46 – – – –
θh – – – – – – – – – 2.932 79
ϕh – – – – – – – – – 1.969 26
κ – – – – – – – – – 0.030 83

Derived parameters
Pψ ,0, h 52.01 52.70 6.784 6.783 6.788 7.670 51.81 80.84 7.750 23.92
Pϕ,0, h 10.75 10.89 2.850 2.852 2.851 138.3 10.79 8.557 7.163 4.509
MODE0 LAM LAM LAM SAM SAM LAM LAM SAM SAM SAM
Pψ ,1, h 32.37 33.98 – – – – 32.28 29.45 8.194 20.12
Pϕ,1, h 10.83 10.52 – – – – 10.81 8.895 7.685 3.930
MODE1 SAM SAM – – – – SAM LAM SAM LAM

Note: Different columns correspond to different models. The units for free model parameters are set by a = 1 and Ia = 1; the time unit is a day. For models
with torque, E′

0 and L0 values are the initial values; for zero-torque models, they are fixed in time. For the derived parameters Pψ , Pϕ , and MODE, both the
initial (subscript 0) and final (subscript 1; only for models with torque) values are provided. Models TD60A and TD60B are for the second half of the full data
set for 2002 TD60 (993 points); model TD60C is for the full data set (1914 points). For the three 2002 TD60 models, only one value of �V (corresponding
to the observations calibrated to R filter) is provided. In χ2 computations, we arbitrarily assumed the 2002 TD60 brightness measurements to have the std of
0.05 mag. The initial MJD moments of time in the asteroidal coordinate system are 58053.31317 (all fake and ‘Oumuamua models), 52609.73185 (TD60A

and TD60B models), and 52585.01840 (TD60C model).

frequent (but still rather patchy, with large gaps between individual
observational runs; see Fig. 4), resulting in reliable detection of
multiple features (minima and maxima). The few other existing
observations excluded from our analysis (Belton et al. 2018) are very
sparse, lack any obvious features (significantly reducing their value
for model fitting), and span a much longer time interval (1 month),
which would make model computations a factor of 5 slower. Over
the course of these 5 d, the asteroid–Sun distance ranged from 1.36
to 1.49 au, the asteroid–Earth distance ranged from 0.40 to 0.58 au,
and the phase (Earth–asteroid–Sun) angle ranged from 19.2◦ to
24.7◦. The small range of the phase angle change is particularly
helpful, as it minimizes the need for sophisticated light scattering
formulations in our brightness models.

The first source of data (Fraser et al. 2018) is itself a compilation
of optical photometry of ‘Oumuamua from multiple publications
(Bannister et al. 2017; Jewitt et al. 2017; Knight et al. 2017; Meech
et al. 2017; Bolin et al. 2018). It consists of 339 ‘Oumuamua
brightness measurements, converted to the same spectral filter (r′)
using known spectral properties of the asteroid. Some of these
observations have very large 1σ uncertainties; the full range is 0.02–
2.4 mag, with the geometric mean of 0.19 mag. The data set of Fraser
et al. (2018) is corrected for light travel (times correspond to the
asteroidal coordinate system), and converted to absolute magnitudes
(corresponding to both asteroid–Earth and asteroid–Sun distances
of 1 au).

The second source of data is a homogeneous set of 431 high-
quality ‘Oumuamua’s brightness measurements carried out in the
r spectral band using Gemini Multi-Object Spectrograph over the
course of two nights, 2018 October 27–28 (Drahus et al. 2017,
2018). The times are light travel corrected to the standard epoch
of MJD = 58054; we had to subtract 0.002 8662 d from all times
to convert them to the asteroidal coordinate system. The brightness
values are geometry corrected to MJD = 58054; to convert them
to absolute magnitudes, we had to add 0.74 mag to the published
values. 1σ brightness measurement uncertainties range from 0.02
to 0.5 mag, with the geometric mean of 0.08 mag. The full data
set is not publicly available, but was generously provided by the
authors (Drahus, private communication). The full data set only
became available recently, in the final stages of this research project.
Most of our numerical runs used a shorter version of the data set,
consisting of 51 points manually scanned from fig. 4 of Drahus et al.
(2017). Once the full data set became available, we made sure that
our reduced data set is fully consistent with the actual data. The
final re-optimization steps in our analysis presented here are based
on the full data set (431 points).

Merging the two data sets together produced a list of either
390 (when using the scanned version of Drahus et al. (2017) data
set) or 770 (when using the full data set of Drahus et al. (2018))
‘Oumuamua’s absolute magnitude values in the r/r′ spectral filter
with the corresponding 1σ uncertainties, with the times corrected
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3012 S. Mashchenko

Figure 3. Our best-fitting tumbling asteroid model (TD60B, see Table 1)
for the asteroid 2002 TD60. t is the number of days since MJD = 52500,
and V is the absolute magnitude in the R spectral filter. Dots are the 993
observational data points from Pravec et al. (2005). The top and bottom
panels correspond to the panels (c) and (d) of fig. 4 of Pravec et al. (2005).

for light travel. These are the data we used in all our light-curve
modelling efforts for this asteroid. The data are plotted in Fig. 4 as
black and red (grey in the printed version of the journal) points with
1σ error bars.

As noted by many authors earlier, the most striking feature
of ‘Oumuamua’s light curve is the presence of multiple very
deep minima (see Fig. 4). Some of the minima are defined by
few points with large measurement errors, so may not appear
very significant individually (e.g. minima A, B, I, and L in
Fig. 5), but taken together they present a very convincing case
for an object undergoing extreme brightness variations (with the
amplitude up to 2.5–2.6 mag – larger than any known Solar
system asteroid; Jewitt et al. 2017) on a quasi-regular basis. The
conventional interpretation of these brightness variations is that
they are caused by extremely elongated (if it is cigar-like) or
flattened (if it is disc-like) shape of ‘Oumuamua (Meech et al.
2017), though non-geometric interpretations (e.g. extreme albedo
variations across the object’s surface) cannot be ruled out. Assuming
the geometric interpretation and ignoring phase effects, the light-
curve amplitude of 2.5 mag would correspond to the cigar or
disc largest-to-smallest axis ratio of 10:1 (Meech et al. 2017).
When taking into account phase effects, the shape constraints

Figure 4. Observed light curve for ‘Oumuamua (770 points) based on the
data sets of Fraser et al. (2018, black points) and Drahus et al. (2018, red
points; grey points in the printed version of the journal). t is the number
of days since MJD = 58050, and V is the absolute magnitude in the r/r′
spectral filter. The error bars are 1σ uncertainties.

are not as extreme (>5:1; Fraser et al. 2018), though still quite
remarkable.

4.2 Inertial ellipsoid models

The first class of models we used to simulate the light curve
of ‘Oumuamua is a 10-parameter inertial (zero torque) relaxed
LS triaxial ellipsoid model (see Section 2.6). The 10 free model
parameters had the following soft (hard) limits: θL ∈ [0, π [ (same),
ϕL ∈ [0, 2π ] (any), ϕ0 ∈ [0, 2π ] (any), c ∈ [0.01, 1[ (]0,1[), b ∈
[c, 1[ (same), E′ ∈ [0, 1] (same), Pψ ∈ [2, 4800] h (Pψ > 0), ψ0 ∈
[ψmin, ψmax] for SAM (same; see equation 7) and ψ0 ∈ [0, 2π ] for
LAM (any), c′ = c (]0,1[), b′ = b ([c′, 1[). (Soft limits are used when
generating initial random values of the parameter; hard limits are
enforced during optimization; see Section 2.6 for the explanation
of the parameters.)

Early attempts of model fitting produced completely unsatisfac-
tory results, with hundreds of lowest χ2 models failing to reproduce
the quantity and locations of the major features (minima and
maxima) of the observed light curve. This did not occur in our
artificial data set tests (Section 3.3), despite the fact that the fake
data were as noisy and patchy as ‘Oumuamua’s data, and the ‘fake’
model being more complex (three additional model parameters –
the three normalized torque vector components). This was an early
indication that the inertial ellipsoid model was not the right one for
this asteroid. To try to match at least the quantity and locations of
the obvious observed minima, we started to reduce the std for some
of the data points, which define the major light-curve features, to a
small value of 0.05 mag (comparable to the best real std in the data).
At the end of this rather lengthy iterative process, we ended up with
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Modelling the light curve of ‘Oumuamua 3013

Figure 5. Our best-fitting inertial model (column INERT in Table 1) for
‘Oumuamua. t is the number of days since MJD = 58050, and V is the
absolute magnitude in the r/r′ spectral filter. The dots are the observational
data (error bars were omitted to make trends more obvious). Blue dots
(open circles in the printed version of the journal) are the anchor points
with the std reduced to 0.05 mag, whose purpose is to define major features
(primarily deep minima) in the observational data. Capital letters A–L mark
the positions of major features in the observational data.

28 ‘anchor’ points (see Fig. 5). (It is important to note that we only
used the ‘anchor’ points with fake std values during the stages 1
and 2 of our optimization procedure; during the final – fine-tuning
– stage, we used correct std values for all the data points.)

We also employed another trick during the fine-tuning stage
(Section 3.2), when the model minima located close to the seven
most obvious observed minima (features A, B, C, D, E, I, and L
in Fig. 5) would be gradually ‘nudged’ towards the corresponding
observed minima in the time dimension. This is accomplished by
multiplying the χ2 values by a parameter β that is equal to 1 when
the minima are far apart, and becomes significantly smaller than
1 when all seven model minima converge on to the corresponding
observed minima.

The aforementioned tricks allowed us to produce somewhat better
model fits. However, even the best of them (our model INERT;
see Fig. 5 and Table 1) was completely unsatisfactory: some of
the model minima (especially feature B, also features A and L)
were offset in the time dimension from the corresponding observed
minima by a non-trivial amount. The fact that relaxing of the
brightness ellipsoid model (by means of adding two more free
model parameters) failed to produce models that would be at least
in a qualitative agreement with the observed light curve is highly
suggestive of significant issues with the current model. The possible
explanations for the model failures are the following:

(i) The shape of ‘Oumuamua is dramatically different from the
assumed triaxial ellipsoid shape. This explanation cannot be ruled
out based on our analysis, but we consider it to be very unlikely.

As our 2002 TD60 test case shows, the triaxial ellipsoid brightness
model has no issues in fitting the observed minima of a real (i.e.
not with a perfect triaxial ellipsoid shape) asteroid in the time
dimension. It does not do as well in terms of explaining the detailed
shape of minima and maxima, but relaxing the brightness model (by
means of adding two more free parameters, c′ and b′) improves the
quality of the fit substantially, to a large degree taking care of the
shape mismatch. (This is fully consistent with much more extensive
results of Cellino et al. (2009) and Muinonen et al. (2015).) A
significantly different reflection law would also unlikely fix the
significant offsets between the model and observed light-curve
minima in the time dimension (Samarasinha & Mueller 2015).

(ii) In light of the discovery of ‘Oumuamua’s non-gravitational
acceleration (Micheli et al. 2018), a natural expansion of our model
would be to assume the presence of some torque. We consider the
simplest prescription for torque (fixed in time and spatially, in the
asteroidal coordinate system) in our ellipsoid models with torque
simulations (see Section 4.3).

(iii) The large brightness variations of ‘Oumuamua are not
geometric in nature (caused by extreme shape of the object). An
alternative explanation would be an object with a more conventional
shape (say, roughly spherical), but with extreme albedo variations
across the surface. We explore this alternative explanation via our
‘black-and-white ball’ model (see Section 4.5).

4.3 Ellipsoid models with torque

The most obvious (in light of the detected non-gravitational accel-
eration of ‘Oumuamua; Micheli et al. 2018) and simplest extension
to our inertial tumbling rotation model is to add constant torque
(fixed in the asteroidal coordinate system). This adds three more
free parameters (normalized torque vector components Tb, Tc, and
Ta), and doubles the number of ODEs (from 3 to 6) in the equations
of motion (equation 4).

We carried out the standard suite of numerical runs (Section 3.2)
to find best-fitting ‘Oumuamua models for both self-consistent and
relaxed LS ellipsoid brightness models (11 and 13 free model
parameters, respectively). We used the same soft and hard limits
for the basic model parameters as in our inertial model runs
(Section 4.2); for the three components of the normalized torque
vector, we ended up using the soft limits [−10, 10] (no hard limits)
in the model physical units (where a = 1 and Ia = 1; the time
unit is a day). Preliminary tests showed that with a factor of 10
larger soft limits, the vast majority of best-fitting models end up
spinning unphysically fast (periods less than 1 h) at the end of the 5-
d simulated time interval, producing light curves that looked totally
wrong. A factor of 10 smaller soft limits, [−1, 1], produced best-
fitting models similar to our best-fitting inertial models, suggesting
that in these models torque was too weak to make an obvious impact.

In what we consider to be the main result of this paper, we found
that adding the simplest (constant) torque prescription to the inertial
tumbling asteroid model significantly improves the quality of model
fits to ‘Oumuamua’s light curve. Importantly, the timings of the
well-defined and sharp observed brightness minima can now be
matched very well by the models (Figs 6 and 7). In both relaxed and
self-consistent brightness ellipsoid runs, we identified two classes
of models that were consistently in the top 5–10 best models in
terms of the lowest χ2 values, had model minima matching well
the timings of the observed minima, and also reproduced well other
major features of the observed light curve (e.g. features J and K).

The first class of models has the best overall χ2 values, and is
comprised of thin discs that are almost self-consistent and close to
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3014 S. Mashchenko

Figure 6. Our best-fitting disc model with torque (column DISC in Table 1)
for ‘Oumuamua. See the caption of Fig. 5 for details.

Figure 7. Our best-fitting cigar model with torque (column CIGAR in
Table 1) for ‘Oumuamua. See the caption of Fig. 5 for details.

being axially symmetric. An interesting point is that making the
brightness model relaxed (by adding two shape parameters – b′

and c′) does not improve the quality of fit (in terms of χ2, rms,
and matching the timings of the observed minima) for this class

of models. As a result, here we present only the self-consistent
version of this model (Fig. 6; column DISC in Table 1). As one
can see, it is still far from being perfect. In particular, the large
observed depth of the minimum D is not correctly reproduced, the
shape of the minimum G is not well matched, and the model feature
L is systematically raised relative to the observed one (Fig. 6).
Also, the χ2 and rms values (10.0 and 0.22 mag, respectively) are
still fairly large, albeit much smaller than those for our best-fitting
inertial model INERT (18.4 and 0.30 mag, respectively; see Table 1).
Despite all of this, the ability of our torque models to match all the
main features of the observed light curve of ‘Oumuamua is quite
remarkable. The remaining deviations of the model light curve from
the observed one can be plausibly ascribed to non-ellipsoidal shape,
non-homogeneous albedo, and/or more complex light scattering
properties of the asteroid.

Our best-fitting model DISC (Table 1) is a thin (1: 6.1) disc that
is very close to being axially symmetric (b/a = 0.96) and that is in
a LAM rotation initially (with the rotation and precession periods
of 51.8 and 10.8 h, respectively). It is interesting that by the end
of the simulated time interval of 5 d, constant torque turns the
asteroid into a SAM rotator, reducing the rotation period by a factor
of 1.6, but keeping the precession period essentially unchanged.
Assuming geometric albedo p = 0.1 and adopting the Sun’s visual
magnitude in r filter m� = −27.04 mag from Willmer (2018), we
estimate the physical dimensions (full diameters) of the model as
115 m × 111 m × 19 m (from equation 29).

The second class of best-fitting models has slightly larger (which
is likely statistically insignificant) values of χ2 and rms, and is
comprised of narrow (1: 7.7) cigar-shaped objects that are close
to being axially symmetric (c/b = 0.99). The best representative
of this class – model CIGAR (Fig. 7, Table 1) – has comparable
χ2 and rms values for both self-consistent and relaxed brightness
ellipsoid models (same as with our DISC model), so again we only
report here the self-consistent version of the model. The rotational
state evolution here is the opposite to that of the DISC model: it
starts as a SAM rotator (rotation and precession periods of 80.8 and
8.56 h, respectively), and spins up to become a LAM rotator, with
2.7 times shorter rotation period and almost unchanged precession
period at the end of simulations. Assuming p = 0.1 albedo, the
physical dimensions are estimated as 324 m × 42 m × 42 m.

Following Bartczak & Dudziński (2019), we used our code to
estimate the uncertainties in DISC and CIGAR model parameter
determination. Specifically, we computed weighted root-mean-
square deviation (RMSD) of the model curve from the observed
one, for models in the vicinity of our best-fitting models. Only the
models whose RMSD value was no more than E above the RMSD
value for the best-fitting model were considered to be acceptable.
(Here, E = RMSD/

√
N − n, where N is the number of data points

and n is the number of the model’s degrees of freedom.) In the
simplest (and easiest to compute) application of this method, we
estimated confidence intervals for model parameters by varying
one parameter at a time, while keeping the rest of parameters fixed
at their best-fitting values (from Table 1). Table 2 lists these intervals
next to the optimal values of the model parameters. As one can see,
with the possible exception of the angles θL, ϕL, and ϕ0, constrained
confidence intervals for our model parameters are very small.

Situation is very different for full (unconstrained) confidence
intervals, which were derived by varying all model parameters
simultaneously (values in square brackets in Table 2). This differ-
ence stems from significant degeneracies between different param-
eters present in our model. The unconstrained case computations
are dramatically more computationally expensive as they involve
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Modelling the light curve of ‘Oumuamua 3015

Table 2. Confidence intervals for model parameters.

Parameter DISC CIGAR

θL, deg 130+33
−22

[
+41
−22

]
115.9+6.3

−1.5

[
+51
−64

]

ϕL, deg 92.4+1.9
−8.6

[
+24
−66

]
112.8+3.1

−3.1

[
+68
−64

]

ϕ0, deg 357.8+1.6
−8.4

[
+37
−57

]
169.6+2.0

−2.5

[
+69
−97

]

K 7.572+0.022
−0.080

[
+5.2
−4.8

]
234.6+1.6

−1.3

[
+402
−208

]

θK, deg 140.33+0.44
−0.09

[
+19
−61

]
89.753+0.003

−0.137

[
+6.1
−6.8

]

ϕK, deg 208.00+0.24
−0.26

[
+26
−68

]
288.959+0.102

−0.044

[
+46
−65

]

c 0.1629+0.0019
−0.0041

[
+0.165
−0.057

]
0.129 719+0.000 040

−0.000 077

[
+0.173
−0.037

]

b 0.964 27+0.000 24
−0.000 54

[
+0.036
−0.107

]
0.131 436+0.000 056

−0.000 103

[
+0.193
−0.038

]

E′
0 0.982 04+0.000 38

−0.000 11

[
+0.018
−0.085

]
0.033 526+0.000 001

−0.000 001

[
+0.145
−0.016

]

L0 17.050+0.011
−0.039

[
+11.2
−2.0

]
525.65+0.35

−0.55

[
+434
−390

]

ψ0, deg 114.45+0.23
−0.73

[
+51
−44

]
5.13+0.18

−0.20

[
+31
−20

]

Note: For each model parameter, we show the optimal value (from Table 1),
and two confidence intervals: the constrained one and the unconstrained one
(in square brackets). The units are the same as in Table 1, except for angles
that were converted to degrees. Instead of the Cartesian normalized torque
vector components Tb, c, a, here we show optimal values and confidence
intervals for torque vector components in the co-moving spherical coordinate
system: K (absolute magnitude), θK (polar angle), and ϕK (azimuthal angle).

exploring the vicinity of a best-fitting model in 11-dimensional
model parameter space. From this analysis, zero-torque (K = 0)
models are ruled out for both disc and cigar cases. Torque vector
orientation in the co-moving coordinate system (angles θK and ϕK)
is constrained rather poorly, but it is not arbitrary. Same is true
for the rest of the angular parameters: θL, φL, ϕ0, and ψ0. For
DISC model, b = 1 value (corresponding to an axially symmetric
disc) is within the confidence interval. Confidence intervals for
parameter c correspond to the following ranges of the aspect ratios
of the models: 1:(3.1–9.5) and 1:(3.3–10.8), for DISC and CIGAR
models, respectively.

Assuming that the torque present in our models is generated by
outgassing from one point on the asteroid’s surface, we can identify
the locus of the plausible locations of this point as follows.

Applying steady force per unit mass f to a point on the aster-
oid’s surface will produce in a general case both constant linear
acceleration for the whole body, f r, and constant tangential (torque)
acceleration, f t. The linear component is derived by projecting the
vector f on to the asteroidal radius vector at this point, r; the torque
component f t is derived by projecting f on to the plane perpendicular
to the radius vector. Torque pseudo-vector is a cross-product of the
radius vector and the tangential component of the force vector,
K = r × f t, and as such is perpendicular to both. As a consequence,
the only points on the surface of the ellipsoid where a given torque
vector can be reproduced are the ones where the radius vector r
is perpendicular to K. These points lay along the intersection of
the plane that is passing through the centre of the ellipsoid and
is perpendicular to K. The intersection line is an ellipse on this
plane. (The full force vector f has to lay in the same plane, as its
both components – f r and f t – lay in that plane.) Points that are
closer to the centre of the ellipsoid would require larger tangential
acceleration, whereas points further from the centre would need
smaller tangential acceleration: ft = K/r. (Here, K is the modulus
of the torque vector.) Assuming that the source of the torque is the

Figure 8. Projection of two models – DISC (left-hand panel) and CIGAR
(right-hand panel) – on to bOa (top) and bOc (bottom) planes. Thin black
lines show the extent of the asteroid. Thick red (grey in the printed version of
the journal) lines correspond to possible locations of the outgassing point.
(The invisible – behind the asteroid’s body – parts are shown as dashed
lines.) The dots show the centre of asteroid. We assumed geometric albedo
p = 0.1.

rocket force from outgassing (which is directed inwards), only the
points where the angle between the torque vector K and the normal
to the surface is larger than 90◦ would be physically plausible.

In Fig. 8, we show the locus of physically plausible outgassing
points on the surface of the asteroid for both models (DISC and
CIGAR). As one can see, outgassing can be happening over a wide
range of the distances from the asteroid’s centre – from the central
area to the very edge of the object.

As one can see from Figs 6 and 7, torque-driven spin-up of
the asteroid is not very obvious in the model light curves. To
get a better idea whether the model torque values are physically
plausible, it is instructive to compare our best-fitting models with
the data on Solar system comets that had their both linear non-
gravitational acceleration and change of the spin (both caused by the
same mechanism – outgassing) measured. Rafikov (2018a) showed
that these comets (there are seven in total) show a clear correlation
between torque K (deduced from the rate of change of the spin) and
observed linear non-gravitational acceleration ar:

K = ζDar. (31)

(Here, D is the characteristic size of the object – for a sphere it
would be its radius, and ζ is a small proportionality coefficient that
the authors call a ‘lever arm’ parameter.) The log-average value
for ζ is 0.006, with the full range 0.0007–0.03. Rafikov (2018a)
deduced torque values for Solar system comets based on some
simplifying assumptions, but in our case we can get K values directly
from the model. Micheli et al. (2018) showed that the linear non-
gravitational acceleration of ‘Oumuamua can be described as ar

∼ 5 × 10−6 m s−2/R2
� (here R� is the distance from the Sun in

au). Our analysis covers a narrow range of R� = 1.36–1.49 au.
Using the average value for R�, 1.43 au, we estimate the linear
non-gravitational acceleration to be ar = 2.45 × 10−6 m s−2 within
the time interval of interest. Using our model’s semi-major axis a in
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3016 S. Mashchenko

place of D, the model’s torque value K, and ‘Oumuamua’s value of
ar derived earlier, we can satisfy equation (31) if we set ζ = 0.0046
and ζ = 0.014 for DISC and CIGAR models, respectively. This
is well within the range of the ζ values deduced for Solar system
comets, with the DISC value of 0.0046 being close to the log-
average ζ value of 0.006. Based on our analysis, our model torque
values are consistent with being produced by the same outgassing
that presumably drives the linear non-gravitational acceleration of
‘Oumuamua.

There is an important caveat in the aforementioned analysis:
taking our model torque assumptions (torque being fixed in time
and space, in the asteroidal coordinate system) literally, one cannot
produce cumulative linear acceleration for the asteroid: as the
asteroid spins (with the outgassing point attached to its surface),
the contributions to ar at different rotation phases would all cancel
out. However, there are ways to relax our model assumptions
somewhat to circumvent this difficulty. For example, if we make
a reasonable assumption that outgassing is the most active when
the outgassing point is facing the Sun, the kinematic model will not
change significantly (with our K parameter now representing a time-
averaged value of the torque vector), but the linear acceleration can
now gradually accumulate, with the acceleration vector pointing in
the right (anti-Sun) direction.

4.4 Cigar or disc?

The analysis presented in Section 4.3 demonstrated that the two
most promising candidates for a model of ‘Oumuamua are either
a thin disc-shaped or a thin cigar-shaped object subject to some
torque. Unfortunately, it is not possible to differentiate between
these two very different cases based solely on the quality of fit of
the model light curve to the observed one.

This model degeneracy can be broken by performing a statistical
analysis of a different kind, based on the following simple geo-
metric considerations, under the assumption that the initial angular
momentum orientation is random (which is a sensible assumption
for an interstellar visitor). Specifically, to produce large brightness
fluctuations (comparable to the asteroid’s largest-to-shortest axis
ratio), a cigar-shaped object spinning around its shortest axis would
need to have its longest axis repeatedly pointing at the observer
with a high accuracy. As a consequence, such an object would
require a high degree of fine-tuning for its angular momentum vector
orientation to produce the desired effect. The opposite is true for a
disc-like object (at least for the case when it is a LAM rotator): there
is a fairly narrow range of the angular momentum vector orientations
(when the vector is pointing towards the observer) when the observer
would not see large brightness fluctuations.

This effect can be easily quantified for the idealistic situation
when the object (either a LAM disc or a SAM cigar) is not tumbling,
is not subject to torque, and when we ignore phase effects (by
assuming the phase angle is equal to zero). Let us assume that the
cosine of the angular momentum polar angle θL is equal to zero
when the vector is in the plane of the sky (this will result in largest
brightness fluctuations for both disc and cigar). Fig. 9 shows how
the amplitude of the brightness fluctuations changes as a function
of cos θL for 1:10 ratio disc and cigar. (We used the LS ellipsoid
brightness model to compute the brightness; see Section 2.5.1.) For
a randomly oriented angular momentum vector L, described by its
polar angle θL and azimuthal angle ϕL, equal intervals in cos θL

correspond to equal probabilities. From Fig. 9, one can see that the
disc model is much more likely to produce brightness fluctuations
larger than a given amplitude than the cigar model. For example,

Figure 9. Amplitude of the brightness fluctuations for a 1:10 ratio disc
(dashed line) and cigar (solid line), as a function of the cosine of the polar
angle θL for the angular momentum vector.

amplitudes equal to or larger than 9 (horizontal dotted line) will
occur in 44 per cent of all disc model cases (the length of the
interval A − A′ divided by 2 – the full range of cos θL), whereas for
an equally thin cigar this will be the case in less than 5 per cent of
random angular momentum orientations (the length of the interval
B − B′ divided by 2).

This effect should manifest itself to a similar degree in more
realistic models, which are tumbling, subject to torque, and have
phase effects, though it is more difficult to quantify. We designed the
following statistical analysis pipeline that computes probabilities for
our models, by answering the following question: ‘Given that the
initial angular momentum vector orientation and initial precession
angle are random, how likely is it that a given model can produce
light-curve minima as deep as the observed ones?’

(i) As a starting point, we use one of our best-fitting models –
either DISC or CIGAR (see Table 1).

(ii) We relax the LS ellipsoid brightness model, by assigning a
given ‘thickness’ to either c′ parameter (for disc models) or both c′

and b′ (for cigar-shaped models).
(iii) In our numerical code ran on a GPU, we concurrently

generate 2563 models that have the same model parameters (except
for the parameters θL, ϕL, and ϕ0) and the same physical scale
(parameter �V) as our initial model. The three variable parameters
– initial angular momentum vector orientation angles (θL, ϕL) and
initial precession angle ϕ0 – are sampled with 256 different values
each. The sampling is equidistant for azimuthal angles (ϕL and ϕ0),
and equidistant for the cosine of the polar angle θL. As a result, each
of the 2563 models has equal probability.

(iv) For each of the 2563 models, we perform the following steps:

(a) We compute the model light curve in absolute magnitudes,
and measure the depth (largest magnitude) of the model bright-
ness minima located within the following time intervals: t =
1.045–1.118, t = 1.978–2.185, t = 3.079–3.529, t = 4.093–4.514,
t = 5.234–5.355, and t = 6.181–6.278. (Here, t is the number
of days since MJD = 58050.) These time intervals correspond
to the observed ‘Oumuamua light-curve intervals that are wide
enough and have enough of observed points to make it possible
to resolve a minimum if it happens to be there.

(b) We rank the model minima starting with the deepest
(largest absolute magnitude) one.

(c) We set the counter of ‘good’ model minima Nmin to zero.
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Modelling the light curve of ‘Oumuamua 3017

Table 3. Ranked observed brightness minima.

Rank Depth (mag) Feature

1 25.715 D
2 25.254 E
3 25.234 C
4 25.212 A
5 24.940 B
6 24.846 F
7 24.834 L

Note: Higher rank corresponds to deeper mini-
mum. ‘Depth’ describes the largest absolute mag-
nitude of the brightness minimum. Observed light-
curve features A–L are marked in Fig. 5.

Table 4. Probabilities for different models.

Model Thickness 〈Nmin〉 Probability

DISC 0.139 5.89 0.50
0.10 6.84 0.91
0.05 6.86 0.92
0.01 6.87 0.92

CIGAR 0.10 1.37 0.16
0.05 1.55 0.20
0.01 1.60 0.21

Note: Thickness parameter describes c′ in the disc model, and
both c′ and b′ in the cigar model. 〈Nmin〉 is the average number
of ranked model minima that are deeper than the seven observed
ranked minima (the allowed range is 0–7).

(d) We compare the depth of the deepest model minimum
(model rank #1) with the depth of the deepest observed minimum
(observed rank #1; see Table 3). If the model minimum is deeper
(i.e. if the absolute magnitude is larger), we increment Nmin by 1.

(e) We compare the model rank #2 minimum to the observed
#2 minimum (Table 3), and increment Nmin by 1 if the model
minimum is deeper.

(f) We repeat the previous step for ranks #3–7.
(g) At the end, each of the 2563 equally likely models will

have a value of Nmin ∈ [0, 7]. If Nmin = 0, then none of the
model minima were as deep as the corresponding rank observed
minima. If Nmin = 7, then all of the model minima were deeper
than the corresponding rank observed minima.

(v) By counting the number of models where Nmin = 7 and
dividing the number by the total number of models (2563), we
can estimate how likely the initial model is.

We performed the aforementioned analysis for our two best-
fitting torque models – DISC and CIGAR – for a few different
thickness values. The results are summarized in Table 4. The most
striking result here is that regardless of how thin the model is
(from the plausible value of 0.10 down to the extreme value of
0.01), disc models are very likely (in fact almost guaranteed, with
∼91 per cent probability) to produce brightness minima as deep as
observed ‘Oumuamua’s minima. Cigar models, on the other hand,
are very unlikely to reproduce the deep observed minima, with the
probability of only 16 per cent for the plausible thickness of 0.10
(which grows only slightly – to 21 per cent – for the implausible
thickness of 0.01). Based on this statistical analysis (which is
independent from the χ2 goodness-of-fit analysis we performed in
the previous section), the expected thickness of disc models is ∼0.14
(when the probability of the DISC model is around 50 per cent; the

first line in Table 4), which is slightly smaller than the value derived
by means of χ2 fitting (c = 0.16, from Table 1).

In addition to producing a single probability value for each model,
it is instructive to analyse detailed probability maps for the initial
angular momentum vector orientation (Fig. 10). As expected, the
disc model is very likely for almost any orientation of the angular
momentum vector, whereas the cigar model requires a high degree
of fine-tuning in terms of the angular momentum vector orientation.

Based on the statistical analysis presented in this section,
‘Oumuamua is most likely a disc-shaped object, though the cigar
shape cannot be ruled out. Interestingly, Sekanina (2019a) reached
a similar conclusion – that a disc shape is much more likely than a
cigar one – based on a completely different argument (non-detection
of ‘Oumuamua by the Spitzer Space Telescope).

4.5 Alternative models

In this section, we consider two additional auxiliary models for
‘Oumuamua.

The first auxiliary model is identical to our fiducial model (LS
ellipsoid brightness model + constant torque; Section 4.3) in
all aspects except for numerical values of some parameters – the
thickness (parameter c), which now has the initial range (soft limits)
between 10−4 and 10−2 (the range was [0.01, 1] in the fiducial
model), and the length of the intermediate semi-axis b (new soft
limits: [0.3, 1]). These numerical runs were an attempt to use our
model’s framework to explore the idea of Bialy & Loeb (2018) that
‘Oumuamua is a solar sail – an extremely thin object, with very low
surface density (∼0.1 g cm−2).

As we already demonstrated that there is no need to use relaxed
brightness ellipsoid with the models with constant torque to repro-
duce well ‘Oumuamua’s light curve (Section 4.3), we used the same
self-consistent brightness ellipsoid in the ‘solar sail’ simulations.
That means the total number of free parameters was 11 (8 basic
tumbling model parameters plus 3 torque component parameters).
We carried out our standard set of numerical runs (Section 3.2) for
the new model.

Our main finding here is that the quality of the light-curve fit for
the ‘solar sail’ models is noticeably worse than that for our best-
fitting fiducial models (DISC and CIGAR). As one can see from
Fig. 11, our best-fitting model (SAIL) struggles to reproduce the
brightness maximum features J and the one around t = 2.0, the depth
of the minimum H, and has timing issues with the minima C and L.
The model does require some torque (Table 1). It is interesting that
the model is degenerate in the sense that the light curve is essentially
unchanged starting from c ∼ 0.001 down to the smallest value we
tested (10−5; that is the value we use in Fig. 11 and Table 1). As
this is a self-consistent brightness ellipsoid model, the degeneracy is
present for both kinematic and brightness ellipsoids. As a result, our
SAIL model is consistent with the extremely low surface density
requirement of the solar sail hypothesis of Bialy & Loeb (2018).

It is easy to see why the model becomes degenerate in the c →
0 and c′ → 0 limits. The kinematic part of the model becomes
degenerate because as c is approaching zero, the three diagonal
components of the inertia tensor converge to constant values (see
equation 1): Ia = 1, Ib = b−2, Ic = (1 + b2)b−2. This in turn
ensures that the kinematic ODEs (equation 4) no longer depend
on c (become degenerate). Even stronger effect is observed in the
brightness model part. In the limit of c′ → 0, our triaxial ellipsoid
model degenerates into an extremely thin flat object. One can easily
show that neither different shapes nor variable albedo can affect the
light curve from such an object, as each individual element of the
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3018 S. Mashchenko

Figure 10. Probability maps for our best-fitting models (DISC on the left and CIGAR on the right). We set the thickness parameter to 0.1 for both models.
Polar (ϕL) and azimuthal (θL) angles describe the initial orientation of the angular momentum vector. Assuming that this vector is oriented randomly, each
pixel in these maps is equally likely. Each pixel of the map presents the model probability averaged over all values of the initial precession angle ϕ0. Black
corresponds to 100 per cent probability, whereas white corresponds to 0 per cent probability.

Figure 11. Our best-fitting alternative models: SAIL (orange line; dotted
line in the printed version of the journal) and BALL (green line; solid line
in the printed version of the journal). See the caption of Fig. 5 for details.

object’s surface would see exactly the same phase angle as other
elements on the same side of the sail. Changing the shape of the
object by moving the elements around (in the sail’s plane) will not
affect the integrated brightness at any given orientation of the sail.
Variable albedo is also incapable of changing the light-curve shape,
as at each orientation of the sail all elements (with different albedo)
would contribute to the integrated brightness in the same proportion.
The only factors that still can affect the shape of the light curve for a
solar sail (and hence can be potentially used to further improve the
quality of fit between the model and observed light curves) are (a) a
different torque model and (b) a different light scattering model. A
more fundamental change would be to assume that the thin sail is

not perfectly flat (it has some curvature or ripples). Modelling these
effects would go beyond the scope of this paper.

Assuming a fairly high albedo of 0.5 (which would be appropriate
for a solar sail), the size of the SAIL disc is 64 m × 51 m
(full diameters). The torque ‘lever arm’ parameter ζ is 0.017,
implying that less than 2 per cent of the linear non-gravitational
force experienced by ‘Oumuamua needs to be converted to torque.

How can radiation pressure produce the required torque? We
speculate that making the shape and/or mass distribution asymmet-
ric may not do the trick, as once the sail makes half a full rotation,
the opposite direction torque would be exerted, cancelling out the
original torque. Variable albedo seems to be a more promising agent.
Let us assume ‘Oumuamua is a flat disc-shaped sail of radius R with
one of the sides consisting of darker (albedo p1) and brighter (albedo
p2) halves. Radiation pressure can be computed as P = (1 + p)C,
where p is the albedo and C is a constant when the distance from the
Sun is fixed (Bialy & Loeb 2018). An element with the surface area
dS will experience force df = P dS. Integrating the product r df

over the darker half of the disc (r being the distance of the element
from the disc centre) gives us the torque applied to that side, K1 =
(1 + p1)CπR3/3; doing the same for the brighter side gives us
the second torque component, K2 = (1 + p2)CπR3/3. The global
torque is K = K2 − K1 = (p2 − p1)CπR3/3, while the global linear
acceleration due to solar radiation is ar = (1 + 〈p〉)CπR2. (Here,
〈p〉 = (p1 + p2)/2 is the average albedo of the side.) Substituting
the aforementioned expressions for K and ar into equation (31) (and
setting D = R), we derive the following expression for the difference
between the two albedos that will generate the required torque: p2 −
p1 = 3(1 + 〈p〉)ζ . Assuming 〈p〉 = 0.5, we can produce the required
torque (ζ = 0.017) if the albedos differ by a fairly small amount: p2

− p1 ∼ 0.08.
Our second auxiliary model uses a completely different bright-

ness model. Specifically, it explores an alternative (non-geometric)
explanation for the large brightness variations of ‘Oumuamua,
where the asteroid is assumed to be roughly spherical in shape but
with large albedo variations across its surface. We use the simplest
possible implementation of this idea – ‘black-and-white ball’
brightness model (Section 2.5.2), with only three free parameters
– polar coordinates θh and ϕh of the dark spot on the surface of
the asteroid (in the co-moving coordinate system bca), and the
dark/bright side albedo ratio κ . Both dark and bright sides are equal
in size (both are hemispheres) for simplicity. Also, we ignore phase
effects (phase angle is assumed to be zero).

MNRAS 489, 3003–3021 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/3/3003/5556541 by guest on 21 M
ay 2025



Modelling the light curve of ‘Oumuamua 3019

Our primary motivation to explore non-geometric explanations
for the large brightness variations of ‘Oumuamua was the fact that
this approach presents a completely different coupling between the
spinning/tumbling motion and the brightness variations. Specifi-
cally, in our ‘black-and-white ball’ model there is one maximum
and one minimum in the light curve per full rotation of the body.
This is in contrast with the geometric (ellipsoid) picture, where one
has two maxima and two minima per rotation. Our hope was that
this very different coupling might remove the need for torque when
trying to fit the observed light curve of ‘Oumuamua.

Our analysis showed this not to be the case. Running our full
suite of simulations for an inertial tumbling ‘black-and-white ball’
failed to produce light curves that were a noticeably better fit
to ‘Oumuamua’s observed light curve than with our inertial LS
brightness ellipsoid runs (Section 4.2). (For the model parameter κ ,
we used logarithmic scaling and soft limits [0.01, 0.1]; the kinematic
ellipsoid’s thickness c had soft limits [0.3, 1].) Crucially, similarly
to the inertial brightness ellipsoid case, the best-fitting zero-torque
‘black-and-white ball’ models had serious issues matching the
timings of the observed light-curve minima.

Adding constant torque to the aforementioned model rectified
the situation (the same way it helped in the LS brightness ellipsoid
simulations). We ran a full suite of numerical simulations for a
‘black-and-white ball’ with torque (14 free model parameters in
total: 8 basic tumbling model parameters plus 3 ‘black-and-white
ball’ brightness model parameters plus 3 torque components), and
show our best-fitting model BALL in Table 1 and Fig. 11. Now
the timings of the model minima match well those of the observed
minima, and overall quality of fit is decent (in fact better than that
for our models DISC and CIGAR). The model BALL starts as a
SAM rotator with the rotation period of 23.9 h and the precession
period of 4.5 h, and ends up as a LAM rotator with Pψ = 20.1 h and
Pϕ = 3.9 h after 5 d. The parameter κ (dark/bright side albedo ratio)
is 0.03. The kinematic ellipsoid is not exactly a ‘ball’, but with the
shape parameters c = 0.52 and b = 0.93 its geometry is much less
extreme than in our models DISC and CIGAR. Polar angle θh is
equal to 162◦, meaning that the dark hemisphere is fairly close to
the ‘southern polar region’ of the ‘ball’.

5 DISCUSSION

Prior attempts to interpret ‘Oumuamua’s light curve (Belton et al.
2018; Drahus et al. 2018; Fraser et al. 2018) were based on searching
dominant frequencies and interpreting them as a linear combination
of two frequencies – precessional and rotational. This approach
usually works very well for Solar system asteroids and comets, but
its fundamental assumption is that torque is zero. If that is not the
case, the dominant frequencies found in light curves can no longer
be used to find the rotational state of the asteroid: at best, they might
correspond to real frequencies present in some segments of the data
that are particularly well sampled; at worst, they are purely fake,
reflecting the patchiness of the data. Samarasinha & Mueller (2015)
provide one such example, when adding noise to the perfect model
data and making it patchy produced fake dominant frequencies.

Our research represents the first attempt to fit ‘Oumuamua’s
light curve using a physical model. (Recently published research
by Seligman et al.(2019) did use a physical model with torque
to explain ‘Oumuamua’s light curve, but they did not carry out
multidimensional model fitting, so their results are only suggestive;
the computational tasks are completely incomparable: where we
had to compute hundreds of millions of physical models, they only
computed a few.) The fundamental advantage of such an approach

is that torque can be modelled directly. In addition, other aspects
affecting the light curve (variable phase angle, different shapes,
spatially variable albedo, etc.) can also be directly modelled, which
removes a lot of guesswork from interpreting light curves.

We started this project fully expecting that given how limited,
noisy, and patchy ‘Oumuamua’s light curve is, we would be finding a
large number of very different inertial models that would all provide
a comparable quality and reasonable description of the data. The
first big surprise was when we realized that no inertial model we
tried (LS ellipsoid, ‘black-and-white ball’, ‘solar sail’) could match
the timings of the most conspicuous features of the observed light
curve – the multiple deep and narrow minima. The simplest non-
inertial extension of the model we tried (steady torque fixed in the
co-moving coordinate system) was sufficient to rectify this situation
for all of our brightness models. In all likelihood, our torque model,
with only three free parameters, is an oversimplification, as any
realistic mechanism producing torque would be significantly more
complicated (time variable, not firmly attached to the surface of the
object, etc.). The important point here is that any torque prescription,
even as simple as the one we used, should be able to fix the minima
matching issues that plagued all our inertial models.

We consider the finding that some torque is needed to model
well the light curve of ‘Oumuamua to be our main result. It
is quite remarkable that the torque required is in line with the
results for the Solar system comets for which both linear non-
gravitational acceleration and change of the spin (both effects driven
by outgassing) were measured (Rafikov 2018a). This could be
viewed as an important evidence supporting the comet hypothesis
for ‘Oumuamua. We should caution though that this does not prove
the non-gravitational acceleration of ‘Oumuamua and its torque are
driven by outgassing. Other mechanisms where a force is applied to
the asteroid’s surface can have a comparable relation between the
torque and the linear acceleration. For example, solar radiation can
drive primarily the linear acceleration of a thin object (‘solar sail’),
but can also generate some torque (e.g. if albedo varies across one
or both sides of the sail; see Section 4.5).

As a side note, we suggest here one mechanism that by design
will only produce linear non-gravitational acceleration (or rather an
appearance of such), with zero torque: if ‘Oumuamua happens to
be made of some sort of exotic matter for which the gravity law
deviates slightly from the canonical form. Indeed, if the gravity
constant G for ‘Oumuamua were only 0.0008 of fractional units
smaller than the standard value, this would completely reproduce
the effect discovered by Micheli et al. (2018): the appearance of an
additional force that is radially directed away from the Sun, scales
as r−2, and has the right magnitude. As this is not a real force, there
would be zero torque by design.

Both the discovery of the non-gravitational acceleration by
Micheli et al. (2018) and our current findings strongly suggest
that ‘Oumuamua should have experienced a fairly strong torque.
However, recently Rafikov (2018b) claimed that ‘Oumuamua expe-
rienced negligible torque, and hence cannot be a comet. We would
like to point out an internal inconsistency in the argument of Rafikov
(2018b). On one hand, it is true, as the author claimed, that given that
the periodogram analysis of ‘Oumuamua’s light curve (spanning
30 d) carried out by Belton et al. (2018) revealed the presence of
a dominant period of 8.67 ± 0.34 h, one possible explanation can
be the hypothesis that the frequency is physical (corresponding to
either precessional or rotational period, or some combination of the
two) and that the torque is so weak that the dominant frequency
did not change by more than the quoted uncertainty of 0.34 h over
the 30 d. On the other hand, once one assumes the torque is strong
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enough to affect the spin of ‘Oumuamua, one can no longer interpret
dominant frequencies recovered from the light curve as physical.
Non-negligible torque would smear out the physical frequencies in
the periodogram, leaving instead artefacts of the patchiness of the
data, or perhaps a dominant frequency present in the most sampled
segment(s) of the light curve. The latter may very well be the case
here, as the DISC model minima D and H are separated by three
times 8.54 h, and minima E and I are separated by three times 8.78 h
(see Fig. 6; all four minima are among the best sampled in the light
curve). The average of these two periods is 8.66 h (almost exactly
the dominant period of 8.67 h detected by Belton et al. (2018)),
and the deviations from the average are 0.12 h – well within the
uncertainty of 0.34 h of the detected period. This period could
conceivably show up in a periodogram for the model’s light curve,
despite the fact that the model lacks a well-defined period due to
the effects of steady torque.

Staying within the realm of conventional explanations for
‘Oumuamua (asteroid versus comet), both the presence and mag-
nitude of torque evidenced by the current research would appear
to tilt the scales towards the cometary nature of the object. One
has to emphasize though that the lack of any direct signs of
outgassing for ‘Oumuamua is highly troubling. Trying to reconcile
the cometary hypothesis with the lack of outgassing detections,
Micheli et al. (2018) had to assume a rather extreme composition of
the object in terms of the CN to H2O ratio and the dust properties,
leaving the H2O and CO as the most likely drivers of the non-
gravitational acceleration of the asteroid. The non-detection of
CO outgassing using the Spitzer Space Telescope (Trilling et al.
2018) and the argument of Sekanina (2019b) that H2O has much
lower abundance than what is needed to drive the non-gravitational
acceleration of ‘Oumuamua make the cometary explanation even
more problematic. If ‘Oumuamua is a comet in some sense, it must
be a very exotic one, with its properties (chemical composition and
geometry) being nothing like properties of Solar system comets.

This makes other (‘exotic’) explanations for ‘Oumuamua’s nature
quite competitive. Even though our model SAIL, designed to mimic
the solar sail hypothesis of Bialy & Loeb (2018), does not provide
as good fit to ‘Oumuamua’s light curve as our more conventional
models, DISC and CIGAR, relaxing some of our model assumptions
(e.g. changing the light scattering law, or assuming that the thin sail
has a curvature or ripples) could potentially make it a viable option.
Importantly, our model is degenerate, allowing the thickness of
the object to be arbitrarily small – even as small as the solar sail
requirement, ∼0.5 mm. The model does require some torque to
match the timings of the asteroid’s brightness minima reasonably
well, but as we argued earlier solar radiation can generate torque if
the albedo varies across the surface of the sail.

Another (semi)-exotic explanation for ‘Oumuamua we consid-
ered – a ‘black-and-white ball’ – was a failure in the sense that it
did not remove the need for torque. The model has a rather extreme
bright-do-dark side albedo ratio of 32. Given that ‘Oumuamua did
not exhibit obvious colour variations (with the possible exception
of a ‘red spot’, as noted by Fraser et al. (2018)), and that for Solar
system minor bodies shape is the main driver of large brightness
variations, this hypothesis should be treated as an interesting but
unlikely alternative explanation for the asteroid’s nature.

As our second main result, in this paper we presented the evidence
that by far the most likely shape for ‘Oumuamua is a disc (or slab, or
pancake). Making a reasonable assumption that ‘Oumuamua’s an-
gular momentum vector had no preferred direction, the requirement
for the model to produce light-curve minima as deep as the observed
ones sets the likelihood of the cigar shape, popular in the literature,

at only 16 per cent. A thin disc, on the other hand, is very likely
to produce brightness minima of the required depth. Disc-shaped
and cigar-shaped objects produce very similar-looking light curves
(compare Figs 6 and 7). It takes a statistical analysis of a different
kind (presented in Section 4.4) to break this model degeneracy. This
finding may have interesting implications for future discussions
about the nature of the asteroid. In particular, recent research
providing explanations for ‘Oumuamua’s cigar shape (e.g. Katz
2018; Sugiura, Kobayashi & Inutsuka 2019; Vavilov & Medvedev
2019) may need to be revisited.

Combining our physical model fitting of ‘Oumuamua’s light
curve with our statistical analysis of the model probability based on
the depth of the light curve-minima points to a tumbling thin disc
experiencing some torque as the most likely model for the asteroid.
The disc diameter is ∼110 m (assuming geometric albedo p = 0.1),
and it is very close to being axially symmetric. The model is self-
consistent (the same ellipsoidal shape explains both the kinematics
and the brightness variations). The disc thickness is estimated at
19 m (from the light-curve fitting) or 16 m (from the probabilistic
minima depth analysis; see Table 4). It requires a moderate amount
of torque over the 5 d covered by this analysis, consistent with
the amount of torque experienced by Solar system comets. The
remaining deviations of the model light curve from the observed
one suggest that the shape of the object is not exactly ellipsoidal
and/or there are some albedo variations across its surface.

Our analysis only covered a very short time interval (5 d). One
important question is: what is the longer term impact of torque in our
models? Will the asteroid spin up in a fairly short time to the point
that it breaks apart? To start with, our model assumption of steady
torque fixed in the asteroidal coordinate system is a significant
oversimplification. At the very least, it should go down as r−2 as
the object moves away from the Sun. Also, as we discussed earlier
(Section 4.3), real torque has to vary with the rotation phase (e.g. by
becoming stronger when the outgassing point is heated by the Sun),
otherwise the model will not produce the linear acceleration term.
As a worst case scenario, we ran our models DISC and CIGAR for
25 more days (bringing the total evolution time to 30 d), maintaining
the same fixed values of the torque pseudo-vector. During this time,
the light curves for both models remained fairly regular, extending
the trend from the first 5 d (see Figs 6 and 7). The effective rotation
period (interval between alternate minima) for the DISC model
changes from 9.6 to 2.3 h after 30 d. For the CIGAR model, the
change is much less steep (from 9.4 to 8.4 h), which suggests that for
this model the torque primarily impacts the direction of the angular
momentum vector. Even for the most affected model (DISC), the
rotation period after 30 d (2.3 h) is still short of what is needed to
break up the asteroid (<1 h; Rafikov 2018b). Once one takes into
account the r−2 dependence of the torque on the distance from the
Sun, the spin-up due to torque will be even more moderate.

Our model cannot tell us what was happening before the 5-
d interval we simulated. The asteroid was closer to the Sun, so
presumably the torque was stronger. It is very likely that as we
move backwards in time, if we simply assume the torque direction
in the asteroidal coordinate system is fixed, and its magnitude grows
as r−2, our model would quickly become unphysical. One way out of
this is to assume that over longer time intervals our assumptions that
torque is constant and the outgassing point is fixed in the co-moving
coordinate system can no longer be valid even in an approximate
sense. A more realistic picture would have multiple outgassing
points happening primarily in the Sun-lit parts of the asteroid. The
outgassing model of Seligman et al. (2019), where the outgassing
point is not fixed in the asteroidal coordinate system but instead
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tracks the subsolar point, may be more appropriate for longer time
interval simulations.

6 C O N C L U S I O N S A N D F U T U R E WO R K

We presented the first attempt to fit the light curve of the interstellar
asteroid ‘Oumuamua using a physical model, which consists of the
kinematic part (tumbling asteroid subject to constant torque) and
the brightness model part (either LS triaxial ellipsoid or ‘black-
and-white ball’). We performed exhaustive, Monte Carlo style,
multidimensional optimization of the models using our numerical,
GPU-based code, developed specifically for this project. We spent
approximately one GPU-year for this project, using NVIDIA P100
GPUs.

Here are our main findings:

(i) Some torque is needed to explain the exact timings of the deep
light-curve minima of ‘Oumuamua. This is true for all brightness
models we tried (LS ellipsoid – including the special case of a ‘solar
sail’ – and ‘black-and-white ball’).

(ii) The amplitude of the torque required by our best-fitting mod-
els is consistent with the torque measured for Solar system comets
whose spin and radial acceleration was affected by outgassing.

(iii) Our analysis produced two different best-fitting ellipsoidal
models for ‘Oumuamua: either a thin disc or a thin cigar. Both mod-
els are very close to being axially symmetric, and are self-consistent
(brightness ellipsoid is identical to the kinematic ellipsoid).

(iv) Assuming random orientation of the asteroid’s angular mo-
mentum vector, we computed the probability that our best-fitting
models can produce light-curve minima as deep as the observed
ones. This analysis demonstrated that the disc shape (probability
91 per cent) is much more likely than the cigar shape (probability
16 per cent).

(v) Our best overall model for ‘Oumuamua is a thin disc (115
m × 111 m × 19 m assuming geometric albedo p = 0.1) that is
initially a LAM rotator with the rotation and precession periods
of 51.8 and 10.8 h, respectively. After 5 d, it evolves into a SAM
rotator with the rotation period of 32.3 h (the precession period
remains essentially unchanged). The ‘lever arm’ parameter ζ (the
measure of the torque strength in relation to the non-gravitational
linear acceleration of the asteroid) for this model is 0.0046, which
is close to the log-average value of 0.006 for Solar system comets.

(vi) Though we consider the two alternative models we tried
(‘solar sail’ and ‘black-and-white ball’; both needed some torque)
less likely, we believe they are viable.
Our current research has definitely not exhausted the field of
physical modelling of ‘Oumuamua. The asteroid’s light curve
appears to be rich enough (with multiple sharp features) to sustain
even more advanced physical modelling. In particular, attempts
can be made to carry out a full light-curve inversion (like in
Kaasalainen & Torppa 2001), to try to recover the true shape (with no
assumptions of symmetry and convexity) of the asteroid. One could
also try to model both the variable shape (e.g. as a triaxial ellipsoid)
and albedo variations across the surface, or try different torque
prescriptions (e.g. the one used by Seligman et al. 2019). Finally,
more advanced solar sail models (with some curvature and variable
albedo) could be developed, with the hope that they can both explain
the observed light curve and have self-consistent torque and linear
non-gravitational acceleration (both driven by solar radiation).
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