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Perisomatic ultrastructure efficiently 
classifies cells in mouse cortex
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Mammalian neocortex contains a highly diverse set of cell types. These cell types have 
been mapped systematically using a variety of molecular, electrophysiological and 
morphological approaches1–4. Each modality offers new perspectives on the variation 
of biological processes underlying cell-type specialization. Cellular-scale electron 
microscopy provides dense ultrastructural examination and an unbiased perspective 
on the subcellular organization of brain cells, including their synaptic connectivity 
and nanometre-scale morphology. In data that contain tens of thousands of neurons, 
most of which have incomplete reconstructions, identifying cell types becomes a 
clear challenge for analysis5. Here, to address this challenge, we present a systematic 
survey of the somatic region of all cells in a cubic millimetre of cortex using quantitative 
features obtained from electron microscopy. This analysis demonstrates that  
the perisomatic region is sufficient to identify cell types, including types defined 
primarily on the basis of their connectivity patterns. We then describe how this 
classification facilitates cell-type-specific connectivity characterization and locating 
cells with rare connectivity patterns in the dataset.

Electron microscopy volumes provide a unique perspective on neu-
ral circuits by enabling dense tracing of individual axons, dendrites 
and synaptic connections. Recent progress in data acquisition and 
dense segmentation has markedly increased the capability to acquire 
large-scale datasets5–11. The size of these volumes allows for large num-
bers of cells to be analysed with reconstructions of entire dendrites 
and local axons of mammalian neurons. However, it raises the chal-
lenge of accurately classifying tens or hundreds of thousands of cells. 
Doing so is necessary for many basic investigations, from co-registering 
neurons, to studying specific cell populations (including neuronal 
and non-neuronal cells), to characterizing cell-type-specific connec-
tivity at scale. Just as experimental systems require genetic tools to 
provide inexpensive access to rare cell populations that would oth-
erwise be difficult to study with non-selective techniques, large-scale 
electron microscopy requires computational tools to provide inex-
pensive access to specific cell types to facilitate further analyses. 
Existing methods for automated cell-typing based on morphology 
or connectivity often necessitate near-complete axonal or dendritic 
reconstructions2,12–14. Such reconstructions require manual correc-
tion to the segmentation, often referred to as proofreading, which is 
prohibitively time-consuming at scale. This means that classifying cells 
on the basis of specific output connectivity profiles is difficult in the 
dataset. Moreover, after it is proofread, a single neuron reconstruction 

contains thousands of pre- and postsynaptic targets to identify (Fig. 1). 
A method that could identify cell types in the dataset in a way that is 
insensitive to changes in proofreading and truncation is therefore of 
high utility, both to automate the classification of targets and to help 
guide proofreading to cells that have connectivity patterns of interest.

Here we describe a fast, scalable and computationally inexpensive 
approach that can address these problems. We first analysed the 
somatic region of nearly 100,000 cells in the MICrONS dataset5, a cellu-
lar compartment that contains morphological and connectivity-based 
biological properties that, as we will present, differentiate cell types. 
By analysing only the somatic region of a cell, our analysis was robust 
to segmentation errors, unique per cell and thus insensitive to most 
proofreading changes. We included well-established features known 
to differentiate cells, such as somatic size and cortical depth, as well 
as features whose cell-type distinctions are less well recognized such 
as nuclear folding and soma synapse density. We further developed an 
unsupervised approach to describe the fine-scale morphology of the 
perisomatic region of inhibitory cells, and demonstrate that it varies 
across major inhibitory subclasses. With these features, we address the 
need for dataset-wide cell-type labels outlined above, by training a hier-
archical classifier to identify basic cell classes across the entire dataset. 
Last, we demonstrate the utility of perisomatic features to facilitate 
the targeted search for rare cell types across a dataset. This method is 
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already being used to reveal fundamental aspects of cell-type-specific 
wiring of mammalian cortex5,15–17.

Quality of neuronal arbour segmentation
We analysed the larger segmentation portion of the MICrONS data-
set, a 1.1 mm × 800 μm × 600 μm volumetric serial-section electron 
microscopy dataset from mouse visual cortex5, that contains a dense 
segmentation of cells, a nucleus segmentation and dataset-wide syn-
apse detection7,18 (Fig. 1a). This dataset includes 94,010 high-quality 
nuclear detections enclosed within the boundaries of the volume 
(Methods) and spans cortical layer 1 to the white matter. For most cells, 
high-quality cellular segmentation requires proofreading to clean and 
complete the reconstructions, particularly axons (Fig. 1b,c). Most false 
mergers are of axonal fragments, leading most outputs of unproofread 
axons to be incorrect (Fig. 1c). When axonal proofreading is invested 
in a cell, it creates an elaborate object to analyse with thousands of 
postsynaptic targets. To analyse the cell-type-specific connectivity 
pattern of that single reconstructed cell (examples in Figs. 5 and 6), 
each of those postsynaptic cells requires a cell-type label. Dendrites 
on the other hand are quite precise, as 75–95% of the 1,000 to 15,000 
synapses detected on reconstructed axons can be mapped to their 
soma in the MICrONS dataset with more than 99% accuracy (Fig. 1c). 
However, many of these target cells have incomplete reconstructions 
themselves since, even for volumes of cubic millimetre scale, about a 
third of the cells are close enough to the edge to have their dendrites 

truncated (Fig. 1d,e). This level of truncation across cells, whether due 
to segmentation errors or proximity to the volume border, led us to 
investigate alternative methods for cell-typing that would be insensi-
tive to a cell’s dendritic and axonal reconstruction status.

Perisomatic features across cortical cells
The somatic region of the cell is an attractive location for such a method 
as the automated reconstruction of the somatic region is typically 
precise and complete (Fig. 2a). Moreover, the soma also has unique 
biological processes occurring within it, which led us to investigate 
whether information within the perisomatic region could enable cell 
classification.

We extracted geometric properties of the nucleus and soma 
within 15 µm from the centre of the nucleus (Fig. 2b). For nuclei, this 
included volume, surface area and depth from the pial surface. The 
three-dimensional (3D) nuclear segmentations provide a detailed view 
of an notable feature of neuronal nuclei, their tendency to form infold-
ings of their membranes, sometimes also referred to as invaginations. 
We quantified the fraction of nucleus membrane area that was within an 
infolding (Fig. 2c and Methods). Similar geometric properties were cal-
culated for the somatic region including the total volume, surface area, 
the ratio of the nucleus volume to the soma volume, and the distance 
from the centroid of the nucleus to the centroid of the soma. We also 
measured the number and surface density of synaptic inputs detected 
on the somatic region of the cell. Together these somatic and nucleus 
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Fig. 1 | Large-scale automated segmentations necessitate proofreading 
insensitive cell classifications. a, Rendering of a small fraction of neurons 
from the MICrONS dataset (1.1 mm × 800 μm × 600 μm) covering all layers of 
cortex and several visual areas, with 1,207 rendered and then cut away to reveal 
the full morphology of 2 selected neurons on the right portion of the dataset.  
b, Example neuronal morphologies before and after proofreading. Left, 
excitatory neuron; right, inhibitory neuron. c, Fraction of input and output 
synapses removed (left), added (middle) and maintained (right) after 
proofreading for 1,347 neurons. For all box plots: centre line, median; box limits, 

upper and lower quartiles; whiskers, 1.5× interquartile range; outliers not shown 
(visible in the adjacent scatter plots). d, Neurons near the volume borders will 
have truncated morphologies. e, Top: histogram of the radial extent of dendrites 
from a sample of 1,347 proofread neurons15 (left) and the cumulative distribution 
of those cells (right). Bottom: histogram of the minimum distance from a 
volume border for all high-quality nuclear detections (n = 94,010; left) and  
the cumulative distribution of those distances (right). The grey shading 
indicates the portion of cells less than the median radial extent (33% of cells), 
shown in teal.
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features represent a feature space that was extracted for most cells 
(75% of nuclei detections; Methods). For a subset of neurons, we also 
analysed the nanoscale structure of the postsynaptic compartments, 
what we are terming a postsynaptic shape (PSS; Methods) within 60 µm 
of the nucleus centre (Fig. 2d).

We used a densely reconstructed and manually annotated column 
of 1,619 cells across all layers of primary visual cortex as the refer-
ence dataset for all subsequent analyses5,15 (Fig. 2e and Methods). 
This column included excitatory neurons (1,115), inhibitory neurons 
(143) and non-neurons (361) with expert-annotated labels for cellular 
classes and neuronal subclasses (excitatory: layer 2/3; layer 4; layer 5 
inter-telencephalic (IT), near-projecting (NP) and extra-telencephalic 
(ET); and layer 6 IT and cortico-thalamic (CT); inhibitory: Martinotti/
non-Martinotti distal targeting cell (MC); basket cell (BC); bipolar cell 
(BPC); and neurogliaform cell (NGC); non-neurons: astrocyte; oligo-
dendrocyte precursor cell (OPC); oligodendrocyte; microglia; and 
pericyte; Fig. 2e and Methods). Although we used the above cell-typing 
scheme throughout our analyses, it should be noted that our approach 
can incorporate alternative labels as cell-type definitions evolve.

To investigate the efficacy of different features in separating cells, 
we plotted the variability of individual features and trained classifi-
ers to distinguish cells at different levels of granularity. Nucleus fea-
tures alone were sufficient to separate neurons from non-neuronal 
cells as non-neuronal cells had smaller nuclei compared to neuronal 

cells (cross-validated classification accuracy 90%; Extended Data 
Table 1). Each non-neuronal cell class exhibited a distinct range and 
consistency in the nucleus volume of its cells (Fig. 3a, left), and thus a 
nucleus-only classifier was able to identify non-neuronal subclasses 
with a cross-validated accuracy of 94% (Extended Data Table 1). Nucleus 
features of excitatory neurons recapitulated expected laminar organi-
zation, wherein the borders between layer 2/3 (L2/3), layer 4 (L4),  
layer 5 (L5) and layer 6 (L6) are all demarcated by shifts in the dis-
tribution and variation of nucleus volumes (Fig. 3a, left). Inhibitory 
cells, on the other hand, had less striking laminar patterns, but had a 
wider variation of nucleus volumes, overlapping with excitatory cells, 
with the exception of the larger layer 5 excitatory neurons (Extended  
Data Fig. 1).

The fraction of membrane inside an infolding also varied depending 
on depth (Fig. 3a, middle, and Fig. 3e). Neurons in layer 2/3 had smooth 
nuclear membranes, whereas there was a clear gradient of infolding 
in layer 4. All layer 5 excitatory cells had high degrees of infolding, 
despite the notable diversity of cell types and sizes in that population19. 
The degree of infolding decreased again in layer 6 (Fig. 3a, middle). By 
contrast, inhibitory nuclei had 15–30% of their membrane within an 
infolding, regardless of their position within cortex. This made them 
quite distinct from excitatory neurons in layer 2/3, 4 and 6 of cortex, 
but highly similar to those in layer 5 (Fig. 3a, middle, and Extended Data 
Fig. 1). Non-neuronal cells generally did not have infoldings, although 
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Fig. 2 | Perisomatic region of cortical cells. a, A measure of the distance from 
the soma for each edit that was made to the segmentation during proofreading 
of 1,347 cells. The teal line denotes the average and the shading marks the  
10th–90th percentile across all cells. The arrow marks 15 µm. b, Example  
cell demonstrating the extent of mesh information used to extract somatic, 
nuclear and synapse features. All cell meshes were restricted to 15 µm from the 
centre of the nucleus. c, Representative example of nuclear infolding in a single 
electron microscopy image. The soma is highlighted in grey, black represents 
the nuclear envelope and orange marks the areas classified as infolded on the 

basis of the shrink-wrap method (Methods). d, Example cell demonstrating  
the extent of mesh information used to extract postsynaptic features (left)  
and three example PSSs (right). All synapses included in the PSS analyses  
were within 60 µm from the centre of the nucleus. e, A 3D rendering of the 
somatic cutouts from all the cells from a 100-µm column that was densely 
reconstructed for which manual labels were given (n = 1,619). Cells rendered  
are organized by their cell class and coloured by their cell subclass according  
to the colour scheme displayed. Scale bars, 5 µm (b), 2 µm (c) and 20 µm (d).
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microglia, OPCs and oligodendrocytes had less spherical and convex 
shapes (Fig. 3e). Pericytes had the smallest overall volumes with shapes 
dominated by their close apposition to the vascular walls (Fig. 3e).

Two features alone, nucleus volume and soma cutout area, revealed 
a striking separation between the main cell classes found in the brain 
(Fig. 3b). Neurons were separated from all non-neuronal classes and 
each non-neuronal class occupied distinct portions of this 2D space. 
The large surface-area measurement for astrocytes was explained by the 
high density of their processes near the soma. Moreover, the high preva-
lence of segmentation mergers of pericytes with cortical vasculature 
resulted in variability in their soma size features as represented by the 
range in soma cutout area (Fig. 3b). Including the somatic features along 
with the nucleus features, we trained a classifier to distinguish neurons, 
non-neurons and erroneous segmentations from each other with a 
cross-validated accuracy of 95.6%, and a classifier on non-neuronal 
classes with 97.5% accuracy (Extended Data Table 1).

Excitatory neurons showed a consistent synapse density that varied 
in a linear fashion with depth through the cortical volume. There was 
a notable increase in variation in layer 5 that correlated with the three 
subclasses found there with ET cells having larger synapse densities, 
NP cells with low synapse densities and IT cells in between (Fig. 3a, 
right, and Fig. 3e). Inhibitory cells had a much larger density of somatic 
innervation than excitatory cells, but also have a much wider degree 
of variation, reflecting previously recorded diversity of inhibitory 

subclasses18,20–23 (Fig. 3a, right, and Fig. 3e). Classifier accuracy for 
excitatory subclasses was high (90% Extended Data Table 1). Most of 
the confusion surrounded IT cells located at laminar borders, which 
corresponds with general areas of disagreement among expert annota-
tors. Notably, accuracy was high across the layer 5 cell types (99% for 
NP, 85% for IT and 87% for ET).

To gain a broader understanding of the perisomatic feature land-
scape, we computed a low-dimensional embedding based on both 
nucleus and somatic features (Fig. 3c). Consistent with the diversity 
observed in individual features, the variations observed from the 
manually labelled cortical column (cell class colors, n = 1,619) were 
reflected in the low-dimensional embeddings of the feature space 
across all of the cells in the dataset (grey, n = 92,391). Non-neuronal cell 
classes occupied distinct areas of the feature space whereas excitatory 
neurons were primarily organized by cortical layers (Extended Data 
Fig. 1). Inhibitory neurons were largely restricted to distinct clusters 
within this space, with some cells overlapping with cortical layer 5 cells 
owing to the increase in nuclear infolding in those excitatory neurons. 
Although there were broad differences in the nucleus and somatic 
features between the main interneuron subclasses (accuracy of 90%; 
Fig. 3d and Extended Data Table 1), on inspection, it was clear that the 
ultrastructure of the perisomatic regions of inhibitory neurons was 
diverse in ways that the soma and nucleus features did not capture 
(Fig. 4a).
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neurons, 361 non-neurons). For all plots, manually labelled cell classes are 
represented in colour (1,619) and unlabelled examples are shown in light grey 
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Proximal PSSs across inhibitory neurons
Proximal inhibitory branches varied in calibre and surface texture, from 
smooth and uniform to being covered in small spine-like protrusions 
(Fig. 4a). To take advantage of this, we developed a method to sum-
marize these fine shape statistics of the proximal arbour24. We used 
the automated synapse detections to identify areas on the dendrites 
where changes in fine structure (for example, spines) may occur. This 
approach gave us the added advantage of combining information 
about synaptic innervation with the fine morphological structure of 
the postsynaptic neuron surrounding any given synapse.

We computationally segmented the compartment on the postsyn-
aptic side of each synapse, which we refer to as the PSS24. This shape, 
computed as a variable-sized mesh, represented a portion of the soma, 
the shaft of a dendrite or a spiny protrusion, although it could also 
be an axon or axon initial segment (AIS). To model the diversity of 
these shapes, we needed to be able to quantitatively compare them. 
We therefore trained a PointNet autoencoder that allowed us to gener-
ate a fixed-size representation of each shape (Fig. 4b).

To measure the distribution of shapes present in a cell, we collected 
236,000 PSSs from a variety of neurons and applied a 2D reduction to 
visualize their distribution. This resulted in a continuous latent space 
in which PSS objects of similar morphological character were closer 
together (Extended Data Fig. 2). We summarized this PSS space into a 
30D histogram using k-means, to describe the distribution of shapes 
within a cell (Methods).

We observed that the location of the PSS could further distinguish 
between cells. For example, although spiny protrusions were most 
often found on the dendrites of cells, some cells also had them on the 
soma (Fig. 4a and Extended Data Fig. 3). Therefore, we took a second 
step to summarize a cell’s distribution of PSSs by adding distance 
from the nucleus centre. For distance binning, we used four 15-µm 
bins between 0 and 60 µm from the soma (Methods). Combining the 
shape and distance binning resulted in a 120D spatial shape histogram 
(Fig. 4c) that summarizes information about the spatial organization 
of dendritic shapes and synapse densities near the soma, similar to 
a multi-dimensional Sholl analysis25. There were clear visual differ-
ences in the spatial histograms of different cell types (Fig. 4d,e and 
Extended Data Fig. 3). For example, a Martinotti cell had a greater 
density of synapses onto small protrusions on its proximal dendrites 
than the basket or bipolar cell, but similar numbers to the neuroglia-
form cell. However, the neurogliaform cell had very few synapses on 
its soma, whereas the Martinotti had many, both onto smaller pro-
trusions and smoother compartments of its somatic compartment  
(Fig. 4d).

We extracted these features on most putative inhibitory neurons in 
the dataset (as predicted by perisomatic features; Methods). Append-
ing these features to the soma features increased the accuracy of the 
inhibitory subclass classifier to 94% (Extended Data Table 1). This was 
also reflected in the 2D uniform manifold approximation and projec-
tion (UMAP) embedding, in which inhibitory subclasses were more 
separable (Fig. 4f).
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Dataset-wide classification
To enable dataset-wide classification, we developed a hierarchical 
model that used a cascade of classifiers to sort cells at increasingly 
finer distinctions. Classifiers were integrated into a comprehensive 
model in which individual cells are sorted down the hierarchical tree 
(Fig. 5a). We used a collection of classification models (support vector 
machines or multilayer perceptrons) on different feature sets (nucleus 
alone; nucleus and soma; nucleus, soma and PSS) and found an optimal 
combination of classifiers that predicted cell types labelled within the 
column with an overall accuracy of 91% (Fig. 5b and Extended Data 
Table 1). All classifiers were trained using the labels from the manually 
labelled cortical column (see Methods for more detail). Notably, this 
provided classifications for 88% of the cellular objects in the dataset 
(94,010/106,761 cells). To further validate this classification, we ran-
domly sampled 100 cells from each subclass predicted by the hierarchi-
cal model and had anatomical experts assess the labels (Extended Data 
Fig. 4). For many classes, the average classification in this validation 
was consistent with performance accuracy within the column. The 
lower validation accuracy in the inhibitory subclasses as well as 5P-ET 
and 5P-NP was related to the sparse sample sizes in the training data 
from the column. The largest single confusion between types here was 

between adjacent layers of similar pyramidal classes, for which strict 
laminar boundaries separating manual classes are less confident. This 
demonstrates that these features are indeed useful for separating cell 
types on the basis of local somatic reconstructions of cortical cells, con-
sistent with the structure of the low-dimensional embedding (Fig. 5c). 
Furthermore, predictions of cell density and overall cell counts per 
subclass across the dataset (Extended Data Fig. 5) corroborate the sam-
pling rates we would expect from previous studies26–29. This approach 
can be adapted to accommodate new cell-type labels derived from 
more detailed or expansive studies of the dataset, creating a scalable 
platform for extending labels derived on smaller numbers of cells to 
dataset-wide coverage. For example, we have trained models on the 
basis of the unsupervised clustering labels of morphological and con-
nectivity properties of the same column cells as described previously15 
(Extended Data Fig. 6).

Dataset-wide classifications enable a range of subsequent analyses. 
The typical axon of a well-proofread neuron has hundreds or thousands 
of postsynaptic targets5. To quantify the cell-type-specific connectivity 
of such cells, each of those targets should have a cell-type label. Doing 
so manually is a practical bottleneck in analysing these data. With these 
predictions, scientists can analyse the most numerous postsynaptic 
targets, the weight of these synapses with respect to predicted synapse 
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inhibitory subclasses in model 5 (Extended Data Table 1). Oligo, oligodendrocyte. 
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the manually labelled column. Note that classifiers for excitatory neurons, 
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Fig. 4. c, 2D UMAP embedding inferred from depth, nucleus and soma features 
of all cells in the dataset coloured by the hierarchical model predictions 

(n = 94,010). d, Left: 2D rendering of a representative 23P cell morphology, with 
dendrite in black and axon in grey. Points represent the somatic position of all 
downstream target cells coloured by the hierarchical model subclass prediction. 
Right: synapse count (top), total synapse area (middle; voxels are 4 × 4 × 40 nm) 
and number of synapses per connection (bottom) displayed by the model- 
predicted subclasses illustrating the local targeting profile of this individual 
cell. e, Similar information as in d but for an inhibitory bipolar cell that is 
predicted to preferentially target basket cells. This unique population of 
bipolar cells has been further characterized15. For all box plots: centre line, 
median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile 
range; outliers shown.
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area, and the number of synapses between proofread cells and cell 
subclasses across thousands of synapses (Fig. 5d,e). For example, a 
given layer 2/3 pyramidal neuron made the most synapses onto other 
23P neurons (Fig. 5d). However, when we looked at the total predicted 
synapse size, 5P-ET neurons receive some of the largest average syn-
apses. Some examples were more unexpected than that of the 23P cell. 
For example, bipolar cells (which largely overlap with a VIP subclass) 
have been described as the only disinhibitory specialist interneuron 
class, and are described as making synapses primarily onto SST (soma-
tostatin) cells (which are thought to overlap with the Martinotti cell 
definition used here)30–33. Although the dataset contains cells consist-
ent with that view, a companion study on extensively proofread cells 
identified a collection of disinhibitory multipolar neurons that exhibit 
strong targeting preferences for basket cells15. This unique connectivity 
profile is observed in the dataset-wide classifications as well (Fig. 5e).

Efficient search for rare cells
Studying the connectivity patterns of cell types requires identifying 
many example cells of a particular connectivity profile. With more than 

70,000 neurons sampled across a millimetre scale there should be many 
examples of any individual cell type. However, locating those exam-
ples can be challenging for rare subclasses because of their infrequent 
appearance and the need for axonal proofreading to use connectivity 
to suggest their subclass.

Given that the main inhibitory neuron subclasses differ in their con-
nectivity profiles, we already had some evidence that connectivity 
profile correlates with the perisomatic features we extracted (Fig. 4e), 
but we conjectured that they could be useful for finding rarer types with 
specific connectivity patterns for which we did not yet have labels. One 
well-known rare cell type in mouse visual cortex is the chandelier cell, 
which synapses onto the AIS of excitatory neurons20,34–38. We used a sin-
gle proofread chandelier cell to determine whether we could facilitate 
finding other cells like it using the perisomatic features. We selected 
the top 20 nearest neighbours of the perisomatic feature space (Fig. 6a) 
and assessed what fraction of them were chandelier cells on the basis 
of their connectivity profiles after cleaning them of false mergers and 
modest axonal extension (Methods). The chandelier cell’s connec-
tivity profile is easy to recognize, both from its morphology where it 
makes vertical strings of synapses (Fig. 6b), and the unique targeting of 
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Fig. 6 | Perisomatic feature space enables more efficient search for unique 
cells. a, 2D UMAP embedding highlighting a chandelier cell (orange dot),  
a 5P-NP-targeting cell (blue dot) and their respective 20 nearest neighbours  
in the high-dimensional perisomatic feature space. Note, UMAP nonlinearly 
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angle and distance distribution of the chandelier cell shown in b as well as two 
non-Chandelier inhibitory examples. Colour denotes the normalized synapse 

density for each cell. Synapses located at an angle >160° were considered onto 
the AIS of the target cell (shown by the dashed line). e, Angular distribution 
histogram of the chandelier cell (top row), 20 nearest neighbours in the 
perisomatic feature space, and 20 random inhibitory cells (P < 0.00001).  
f, Example cell that preferentially targets the rare 5P-NP subclass (dendrite in 
black, axon in grey); points represent target cell soma locations coloured by 
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cells. For all box plots: centre line, median; box limits, upper and lower quartiles; 
whiskers, 1.5× interquartile range; outliers shown. g, Fraction of output 
connectivity onto neuronal subclasses of the 5P-NP-targeting cell (top row),  
20 nearest neighbours in the perisomatic feature space, and 20 random 
inhibitory cells (P < 0.00001). All P values reported and asterisks represent 
significance by two-tailed Fisher exact test.
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synapses onto the AIS of excitatory neurons. As the AIS is located just 
below the soma of excitatory cells in the cortex, the angular distribution 
of synapses relative to somatic targets can be used as a spatial proxy 
for AIS-targeting (Fig. 6c,d). A histogram of the angular distribution 
of synapses relative to the target soma demonstrates that 16 of the 20 
nearest-neighbour cells have connectivities consistent with chandelier 
cells (Fig. 6d,e). By contrast, none of the 20 random interneurons we 
sampled from the inhibitory neurons in the dataset, or any of the 143 
interneurons sampled in the column, was a chandelier cell, reflecting 
a significant enrichment (P < 0.00001 by two-tailed Fisher exact test). 
On the basis of this success, we tried to find more examples of cells with 
a less well-known connectivity profile. We selected an undescribed but 
proofread interneuron that made most of its synapses in layer 5 onto 
5P-NP neurons, despite those pyramidal neurons themselves being 
rare and with few input synapses39 (Fig. 6f). Picking the top 20 nearest 
neighbours of this cell, we found 13 cells that made at least 30% of their 
synaptic targets onto 5P-NP cells (on the basis of classifier predictions). 
This stands in contrast to the case of 0 of the 20 random interneurons 
we sampled, or 2 cells of the other 143 sampled in the column, again a 
significant enrichment (P < 0.00001; Fig. 6g). This application dem-
onstrates how these perisomatic features can facilitate the search for 
rare cell types in the cortex.

Discussion
Our analysis of the perisomatic region of cells in the mouse visual cortex 
demonstrates that a substantial amount of cell-type information can 
be extracted from the somatic regions of brain cells. Our approach has 
already been used to characterize the connectivity of distinct types 
of layer 5 Martinotti cell16, the inter-related connectivity motifs of 
layer 5 thick tufted cells (5P-ET) and the surrounding inhibitory sub-
network17, and to confirm the connectivity profiles of interneurons 
outside the manually labelled column15. Future work in this dataset 
and others will leverage iterations of dataset-wide cell classifiers to 
discover new aspects of cell-type-specific wiring of cortical circuits. 
Other cell classification approaches have been applied to this dataset, 
including unsupervised clustering of morphological features, and 
supervised approaches based on morphological graphs40,41. All of these 
approaches have focused on smaller subsets of the data that contained 
higher-quality or complete reconstructions, reducing their effective 
coverage in the datasets to less than half the cells.

The breadth of cells in large-scale electron microscopy data makes 
it an attractive modality to study cell types. Our approach provides 
an example of how computational methods are an important practi-
cal tool for directing study to small subsets of cells within large data-
sets. This is particularly apparent for diverse and rare inhibitory cells 
(Figs. 5 and 6); however, this approach can be applied to other diverse 
cell classes such as glia. One such example is the difference between 
OPCs and premyelinating oligodendrocyte cells, which are thought to 
be differentiated OPCs that are in transitional states to oligodendro-
cytes42. The structural diversity of cells predicted as OPCs within the 
low-dimensional embedding space (Fig. 5c) suggests that searching 
within the perisomatic feature space, as illustrated in Fig. 6, could be 
used to facilitate further scientific discovery across brain cell types. 
More broadly, some of the features described here can be measured 
with other techniques, such as X-ray tomography or light microscopy, 
and can be used to separate cells into different subclasses in a manner 
similar to what has been presented here.

Many studies of anatomical diversity of cortical cells have focused 
on the diversity of dendritic and somatic morphologies, axonal projec-
tion patterns and synaptic connectivity patterns3,4,21,43. Fewer studies 
have focused on differences of somas44–46; in particular, there have 
been few quantitative studies of the 3D ultrastructure of the soma 
with large single-cell sample sizes across all layers of cortex. Laminar 
differences in cell body size distributions are well known, and serve as 

the basis for cyto-architectural definitions of layers, which corresponds 
with cell-type-specific shifts in size, specifically excitatory ones47. For 
example, pyramidal layer 5 ET projection neurons are characterized 
by their large somas. This probably reflects differing demands for 
gene expression and metabolic load1. Also, 5P-NP neurons have been 
recognized before as having smaller rounder somas on average19,39. 
Further, anecdotal descriptions of variations in nucleus infolding have 
been reported, although only in two dimensions within a narrower 
range of types48,49. Notably, differences in nucleus infoldings have been 
reported to be modulated by activity in some brain areas50. The results 
we present here not only corroborate the variability of these features 
across cells but indicate that the perisomatic region may hold greater 
cell-type-specific information than previously recognized.

There are a few limitations to this work that should be kept in mind 
when interpreting its results. Our most detailed analysis has been com-
pleted on only one dataset that comes from a single animal. That said, 
some patterns are consistent with what was found in a smaller published 
dataset from layer 2/318,20,51, and the basic patterns found in these fea-
tures across mouse visual cortex are reproduced in a second smaller 
dataset (Extended Data Fig. 7). Our approach is not the final word in 
cell-type predictions in this dataset, or large-scale electron microscopy 
in general, and there are a number of directions for potential improve-
ment. Further, cell-type labels will continue to evolve as more cells 
are classified by either human experts or quantitative methods with 
increasing specificity and sophistication. In particular, our validation 
results are consistent with there being a larger diversity of inhibitory 
cells than exist within the column; thus, expanding the number of 
class labels could improve performance. However, the dataset-wide 
framework we have presented here should continue to be valuable, 
as we expect any new labels to be available for only a subset of cells. 
Finally, this model does not use all of the information present at the 
soma of neurons. For example, the detailed ultrastructure visible in the 
imagery is not fully utilized. Other methods have utilized the underly-
ing imagery of cells to distinguish cell types, either through detection 
of more subcellular organelles such as cilia or by using imagery more 
directly to define abstract embeddings52–54.

Outside the somatic region, there are a large variety of studies have 
shown how local features visible in the ultrastructure contain infor-
mation about cell types, including neurotransmitters of fly synapses, 
identity of neuromodulatory axons, or cutouts of local dendrite and 
axons52,55. These results all support the view that large-scale quantita-
tive measurements of ultrastructure provide a rich basis for identifying 
cellular properties of cells. The efficacy of these approaches provides 
a roadmap for how to develop a scalable platform for leveraging local 
features of cells to infer cell-type classifications. Beyond neuroscience, 
this approach illustrates how large-scale ultrastructural imaging of cells 
can facilitate the study of diverse and rare cell populations if paired 
with appropriate quantitative analysis.
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Methods

MICrONS dataset
This dataset consists of a 1.1 mm × 800 µm × 600 µm segmentation of 
a volumetric serial-section electron microscopy dataset from mouse 
visual cortex of a male postnatal day 87 (P87) mouse. The dataset cov-
ers all layers of cortex and spans primary visual cortex and two higher 
visual areas. The dataset has been described in detail elsewhere5. Briefly, 
two-photon imaging was carried out on the mouse, which was subse-
quently prepared for electron microscopy. The specimen was then 
sectioned and imaged using transmission electron microscopy6. The 
images were then stitched, aligned and processed through a deep learn-
ing segmentation algorithm, followed by manual proofreading5–7,15.

Cortical column
In this manuscript, we leveraged proofreading that was carried out 
and labels that were prepared as part of a separate study of a 100-µm 
columnar region of primary visual cortex within the larger dataset15. 
For clarity and completeness, we repeat some aspects of the methods 
that define that column here.

Column selection. The column borders were found by manually iden-
tifying a region in the primary visual cortex that was as far as possible 
from both the volume boundaries and the boundaries with higher-order 
visual areas. A 100 × 100 µm box was placed on layer 2/3 and was  
extended along the y axis of the dataset. While analysing the data, it 
was observed that deep-layer neurons had apical dendrites that were 
not oriented along the most direct pia-to-white-matter direction, and 
thus we adapted the definition of the column to accommodate these 
curved neuronal streamlines. Using a collection of layer 5 ET cells, 
points were placed along the apical dendrite to the cell body and then 
along the primary descending axon towards the white matter. The 
slant angle was computed as two piecewise linear segments, one along 
the cortical depth to lower layer 5 where little slant was observed, and 
one along the direction defined by the vector-averaged direction of 
the labelled axons.

Using these boundaries and nucleus centroids5, all cells were identi-
fied inside the columnar volume. Coarse cell classes (excitatory, inhibi-
tory and non-neuronal) were assigned on the basis of brief manual 
examination and rechecked by subsequent proofreading and confu-
sion analysis with early versions of the classifiers described here. To 
facilitate concurrent analysis and proofreading, all false merges that 
connected any column neurons to other cells (as defined by detected 
nuclei) were split.

Proofreading. Proofreading was carried out by five expert neuro-
anatomists using the Connectome Annotation Versioning Engine56,57 
and a modified version of Neuroglancer58. Proofreading was aided by 
on-demand highlighting of branch points and tips on user-defined 
regions of a neuron based on rapid skeletonization (https://github.
com/AllenInstitute/Guidebook). This approach quickly directed proof-
reader attention to potential false merges and locations for extension, 
as well as allowing a clear record of regions of an arbour that had been 
evaluated.

For dendrites, all branch points were checked for correctness and 
all tips were examined to determine whether they could be extended.

False merges of simple axon fragments onto dendrites were often 
not corrected in the raw data, as they could be computationally filtered 
for analysis after skeletonization (see below). Detached spine heads 
were not comprehensively proofread, and previous estimates place 
the rate of detachment at approximately 10–15%.

For inhibitory axons, axons were ‘cleaned’ of false merges by look-
ing at all branch points. Axonal tips were extended until either their 
biological completion or data ambiguity, particularly emphasizing all 
thick branches or tips that were well suited to project to new laminar 

regions. For axons with many thousands of synaptic outputs, some 
but not all tips were followed to completion once main branches were 
cleaned and established. For smaller neurons, particularly those with 
bipolar or multipolar morphology, most tips were extended to the 
point of completion or ambiguity. Axon proofreading time differed 
substantially by cell type, not only because of differential total axon 
length, but also because of axon thickness differences that resulted in 
differential quality of auto segmentations, with thicker axons being of 
higher initial quality. Typically, inhibitory axon cleaning and extension 
took 3–10 h per neuron. Expert neuroanatomists further labelled excita-
tory and inhibitory neurons into subclasses. Layer definitions were 
based on considerations of cell body density (in analogy with nuclear 
staining) supplemented by identifying kinks in the depth distribution 
of nucleus size near expected layer boundaries.

Cell labelling. For excitatory neurons, the categories used were: layer 
2/3 IT, layer 4 IT, layer 5 IT, layer 5 ET, layer 5 NP, layer 6 IT and layer 6 
CT cells. Layer 2/3 and upper layer 4 cells were defined on the basis of 
dendritic morphology and cell body depth. Layer 5 cells were similarly 
defined by cell body depth, with projection subclasses distinguished 
by dendritic morphology following ref. 2 and classical descriptions 
of thick (ET) and thin-tufted (IT) cells. Layer 5 ET cells had thick api-
cal dendrites, large cell bodies, numerous spines and a pronounced 
apical tuft, and deeper ET cells had many oblique dendrites. Layer 5 IT 
cells had more slender apical dendrites and smaller tufts, fewer spines 
and fewer dendritic branches overall. Layer 5 NP cells corresponded 
to the ‘spiny 10’ subclass described in ref. 2; these cells had few basal 
dendritic branches, each very long and with few spines or intermediate 
branch points. Layer 6 neurons were defined by cell body depth, but 
only some cells were able to be labelled as IT or CT by human experts. 
Layer 6 pyramidal cells with stellate dendritic morphology, inverted 
apical dendrites or wide dendritic arbours were classified as IT cells. 
Layer 6 pyramidal cells with small and narrow basal dendrites, an apical 
dendrite ascending to layer 4 or layer 1, and a myelinated primary axon 
projecting into white matter were labelled as CT cells.

Basket cells were recognized as cells that made more than 20% of 
their synaptic inputs onto the soma or proximal dendrites of cells. 
Neurogliaform cells were recognized by having a low density of output 
synapses, and boutons that often had synaptic vesicles but no post-
synaptic structures. Bipolar cells were labelled by having only 2 or  
3 primary dendrites, and primarily making synapses with other inhibi-
tory neurons. Note that the Martinotti/non-Martinotti subclass label 
was given to cells that have previously been described in the literature 
to primarily target the distal dendrites of excitatory neurons without 
exhibiting hallmark features of bipolar or neurogliaform cells.

Owing to high levels of proofreading in the column, there were very 
few errors; thus, the training set was augmented with manually labelled 
errors from the entire dataset.

Proofreading and truncation analysis
For every proofread cell in the cortical column (described above), we 
compared the cellular volume of the initial reconstruction from the 
automated segmentation to the cleaned and completed reconstruc-
tion. To measure the precision connectivity for each cell, we noted the 
number of synapses that got removed with proofreading, the number 
of synapses that were added, and the number of synapses that were 
maintained with each cell before and after proofreading.

To estimate the likelihood of truncation, we measured the distribu-
tion of dendritic extents from the proofread column cells. For each cell, 
we measured the radial distance of each input synapse from the cell’s 
soma. For each cell, the distance from the soma of every input synapse 
was calculated and the radial extent was defined as the 97th percen-
tile of this distribution. From a distribution of these measurements 
across all cells, we used the median value of 121 µm as a threshold for 
dendritic truncation, although closer to 250 µm would be required 
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to guarantee no truncation for any cell. For the rest of the cells in the 
dataset, we measured the distance of the soma from the volume borders 
in x and z. The overlap in these distributions relates to the probability 
of truncation, leading to our conclusion that roughly one-third of the 
cells have some degree of dendritic truncation.

Generating nucleus and soma features
We analysed nuclei using the results of a deep neural network segmenta-
tion5, extracted the mesh using marching cubes and obtained the largest 
component of the detected mesh. Nuclear features were then extracted 
on the remaining meshes. These features included nucleus volume, 
nucleus area, the area-to-volume ratio, nucleus surface area within an 
infolding, the fraction of the total surface area within an infolding, and 
cortical depth (measured as the distance from the pial surface). Nucleus 
fold features were extracted by creating a shrink-wrapped47 mesh for 
each nucleus mesh. We then calculated the distance of each vertex on 
the nucleus mesh from the shrink-wrapped mesh. After visual inspec-
tion of cells across all of the reported subclasses, any vertex further 
than 150 nm was considered to be within an infolding.

For each nucleus detection, the somatic compartment was identified 
as the ID in the segmentation that surrounded >80% of the nucleus. 
Somatic segmentations (downloaded at 64 × 64 × 40 nm resolution) 
went through a heuristic cleaning procedure to remove missing slices 
of data and incorrectly merged fragments. As each soma was matched 
to its corresponding nucleus, 15 µm surrounding the nucleus’s centre 
of mass was cut out from the dense segmentation and converted into 
a binary mask. The value of 15 µm was chosen owing to the high quality 
of the segmentation (Fig. 2a) and it was large enough to encompass 
the entire soma of all cells from the smallest glial cell to the largest 
5P-ET neuron. Binary dilation by five voxels in three dimensions was 
carried out, followed by filling of all holes, and then binary erosion of 
three voxels. The resulting binary mask was meshed using marching 
cubes and connected component analysis was run on the result. The 
value of five voxels was deemed an appropriate dilation to remove 
merged fragments without creating additional holes in the mesh. The 
largest connected component mesh was retained, and any discon-
nected components were dropped. Somatic features were extracted 
for all nuclear detections that were not cut off by the volume boundary 
(see the section entitled Filtering procedure). These somatic features 
included soma area, soma volume, the area-to-volume ratio, the num-
ber of synapses on the somatic cutout and the soma synapse density. 
Using both the somatic and nucleus meshes, we calculated the ratio 
between the nucleus volume and soma volume and the offset between 
the two, measured as the Euclidean distance between the nuclear centre 
of mass and the soma centre of mass.

Filtering procedure. There were 133,580 nuclear detections in the 
dataset, and the filtering procedure consisted of three steps. First, any 
detected objects less than 25 µm3 were filtered out as errors as these 
largely consisted of small fragments of nucleoli. Second, after identify-
ing the segment IDs within a 15-μm bounding box around each nucleus, 
if more than 20% of these IDs corresponded to error ID 0, they were 
filtered out. Most of these error cases were cells close to the volume 
border or areas in the volume with higher segmentation errors such as 
those near blood vessels. Third, cells that were predicted as errors by 
the object classifier of the hierarchical model described below (model 1  
in Fig. 5a) were also removed from analysis. This resulted in a final set 
of 94,010 cells, neuronal and non-neuronal.

Feature normalization. Owing to differences in section thickness dur-
ing sample preparation, we noticed abrupt shifts in nucleus and soma 
size features along the sectioning axis (z plane). This presumably is 
due to changes in section thickness across the dataset. To account for 
these abrupt and systematic shifts, we binned the entire dataset by 
the longest length scale for which there did not seem to be systematic 

shifts in the distribution in the z plane (800 nm) and normalized each 
feature value by the average within each z bin.

For 2D UMAP embeddings and training of the classifiers, it was 
important to place all features in approximately similar scales. For 
this reason, we independently z-scored each feature across all cells 
and used that as the input for classifier training as well as the UMAP 
embeddings in Figs. 3–6.

Generating PSS features
Around each synapse, we extracted a 3,500-nm region to obtain the 
synapse region mesh. We experimented with region cutouts between 
1,000 and 5,000 nm; however, smaller cutouts led to ambiguities in 
the main shaft identification and thereby produced errors in the sub-
sequent skeletonization. At 3,500 nm, the skeletons were more stable 
and segmented as expected. This mesh was then segmented using the 
CGAL surface segmentation algorithm59, which splits regions on the 
basis of differences in thickness. We adapted our previously developed 
method24 to identify the PSS region by using a local skeleton calculated 
from the synapse region mesh, rather than a precomputed whole-cell 
mesh. This allowed us to adapt this method for cells in the dataset with-
out the need for proofreading.

Given a cell for which all PSSs have been extracted within a 60 µm 
radius from the nucleus centre, the objective was to build a descriptor 
that encapsulates the various properties of the PSS. In particular, we 
aim to capture two of these properties: the type of shape of the PSS and 
the distance of the PSS from the soma. Moreover, as different cells can 
have different numbers of shapes (synapses), we needed a fixed-size 
representation for each cell. To capture shape information, a dictionary 
of all shape types was built using a dictionary dataset from 236,000 
PSSs from a variety of neurons24. These shapes were rotationally nor-
malized and used to train a PointNet autoencoder60,61 to learn a latent 
representation of size 1,024. The high-dimensional latent space span-
ning all of these shapes is a continuous space (Extended Data Fig. 3), 
which was used to generate a bag of words model30 for the shapes. To 
ensure that we were sampling the entire embedding space, we carried 
out k-means clustering with k = 30 to estimate cluster centres. We manu-
ally reordered the bin centres for visualization purposes from shapes 
representing small spines, to those representing longer spines, to den-
dritic shafts of different shapes, and finally somatic compartments. The 
top row of the right panel of Fig. 4d shows the shape in the dictionary 
that is closest to each of these cluster centres. For distance from the 
soma, we split the 60 µm radius around the nucleus centre into four 
15-µm radial bins (Fig. 4c,d). All PSSs were then binned according to 
their shape and distance properties to generate a histogram of counts. 
Initially we extracted PSSs from within 120 µm radius. However, on 
inspection of the normalized histograms and the 2D UMAP embedding 
space, the additional radial bins did not increase our differentiability 
and did increase truncation effects near the dataset; thus, we reduced 
the radius to 60 µm. Finally, this histogram was z-scored and then added 
to the rest of the features as input to classifiers and the UMAP embed-
ding (Figs. 4 and 6).

Hierarchical model training and validation
Hierarchical framework. We defined an object as the segmenta-
tion associated with a predicted nucleus5 from which nucleus, soma 
and PSS features could be extracted. A hierarchical framework was  
designed to predict the cell type of any such object (Fig. 5c). To begin, 
there were 106,761 nuclear segmentations that passed the first 2 filters 
described above (see the section entitled Filtering procedure). The 
first level in the hierarchy predicted whether an object was a neuron 
(72,158), non-neuron (21,856) or an error (12,751). All objects predicted 
as errors were excluded from all subsequent analyses except for the 
hierarchical model evaluation. Non-neuronal cells were then classi-
fied as one of the following: astrocyte (7,850), microglia (2,638), oli-
godendrocyte (7,020), oligodendrocyte precursor cell (OPC; 1,703) or 



pericyte (2,645). For neurons, cells were predicted as either excitatory 
(64,195) or inhibitory (7,963) followed by a separate subclass classifier 
for each class type. Excitatory subclasses were layer 2/3 pyramidal 
(19,735), layer 4 pyramidal (14,777), layer 5 IT (7,949), layer 5 ET (2,215), 
layer 5 near-projecting (NP) pyramidal (970), layer 6 IT (11,734) and 
layer 6 CT pyramidal (6,815). After extracting PSS features from all 
predicted inhibitory neurons, a subset of neurons (n = 1,158) that 
were actually excitatory clearly separated from the rest of the cells in 
the perisomatic feature space (with PSS features). This was expected  
owing to known differences in proximal dendrite morphology between 
inhibitory and excitatory neurons. These neurons were then passed 
through the excitatory neuron classifier and labelled as excitatory 
for all subsequent analyses with a final set of 6,805 inhibitory cells 
with the following subclass counts: basket cells (3,239), bipolar cells 
(997), Martinotti/non-Martinotti cells (1,992) and neurogliaform  
cells (571).

Training. Soma and nucleus features were extracted from the 3D mesh 
of all objects and PSS features were extracted for all neurons predicted 
as inhibitory. For each level of the hierarchy, multiple classifiers were 
trained using either nucleus alone, nucleus and soma features, or 
nucleus, soma and PSS features. Within each level of the hierarchy, 
classifiers were trained using the cells and labels from the manually 
annotated cortical column. Owing to the sparsity of some of the cell 
classes, we augmented the training set in the following ways: 470 errors 
were added from within and around the column for the object model; 
11 proofread 5P-NP cells and 250 proofread 5P-ET cells were added to 
train the excitatory subclass model.

For each classifier, the model type was chosen using a randomized 
grid search for the following models: support vector machine with 
a linear kernel, support vector machine with a radial basis function 
kernel, nearest neighbours, random forest classifier, decision tree and 
neural network. For each type, 50 models were trained with varying 
parameters and the top-performing model was chosen. Individual 
models were further optimized using tenfold cross-validation evalu-
ated on the basis of accuracy and F1 score (a measure for precision and 
recall). Training and test examples were held consistent across models 
for direct performance comparison within each level.

Model performance and validation. The hierarchical model was  
defined as the sequential combination of the best-performing classi-
fiers at each level. To see the performance of all different feature sets 
at each level of the hierarchy, see Extended Data Table 1. The overall 
performance of the hierarchical model was measured with a test set that 
involved manual inspection of 100 examples of each of the neuronal and 
non-neuronal subclasses as well as errors. This resulted in a test set of 
1,700 cells. Cross-validation and test performance for the hierarchical 
model are reported below (Extended Data Fig. 4). Note that all scores 
reported are the weighted accuracy based on the sampling rate of each 
class within the column.

The top level of the hierarchy (the object model), distinguished 
neurons from non-neurons as well as erroneous detections. The 
cross-validated accuracy score on the column was 96% with a test score 
of 97%. The second level of the model simply distinguished excitatory 
from inhibitory neurons. Here, the column cross-validated accuracy 
score was 94% and the test set was 93%. Overall, across all subclasses, 
the hierarchical model on the column had a cross-validated accuracy 
of 91% and a dataset-wide test set accuracy of 82%.

Chandelier cell identification
Chandelier cells are characterized by their unique axo-axonal synapses 
onto the AIS of target pyramidal cells. As there were no chandelier cells 
within the densely reconstructed column, we sought to test whether 
the perisomatic feature space would facilitate an enriched dataset-wide 
search for these cells. After identifying and proofreading a chandelier 

cell, we selected the top 20 nearest neighbours by Euclidean distance 
using a KDTree search of the perisomatic feature space (nucleus, soma 
and PSS features) after z-score normalization of each feature across 
cells. We also selected 20 random cells from the predicted inhibitory 
neurons. For each of these 40 cells, we proofread the reconstructions to 
ensure that there were no extraneous neurites attached, and extended 
the axon until there were at least 100 output synapses. On average, 
each of the 20 nearest neighbours had 590 output synapses attached 
and the random cells had 809 synapses attached.

To quantify whether a given cell was a chandelier or not, we measured 
the angle (ϕ) and the distance (r) between every output synapse and the 
soma of the postsynaptic cell (Fig. 6c). A synapse with an angle value of 
0° would be considered to be directly above the target soma whereas 
one with an angle of 180° would be considered to be below it. Owing 
to variations in axon directionality with respect to the pial surface, 
we considered synapses with angle values between 160° and 180° and 
within 60 µm of the soma to be on the AIS of the target soma. In fact, 
because the specificity of chandelier targeting is so high, the density 
of synapse angle distributions alone was enough to identify other 
chandelier cells (Fig. 6e). On inspection of the proofread 20 nearest 
neighbours, we determined that cells with more than 40% of their 
synapses within 160–180° were chandelier cells. The average normal-
ized density for the identified cells was 62% as compared to 8% for the 
non-chandelier cells. A two-tailed Fisher exact test was carried out to 
test significance between the random cell population and the nearest  
neighbours.

Inhibitory neuron output targeting
After characterizing a single 5P-NP-targeting cell, we applied a similar 
strategy to the one above to search for more neurons in the dataset 
that had a similar connectivity pattern. We selected the top 20 nearest 
neighbours by Euclidean distance in the perisomatic feature space 
using a KDTree search. These cells were proofread to remove false 
mergers and the axon was extended to include at least 100 synapses. 
It should be noted that there were five cells for which the axons could 
not be extended owing to volume boundaries or segmentation errors, 
so they were replaced with the five nearest cells. On average, each of the 
20 nearest neighbours had 448 synapses attached.

To quantify whether a cell preferentially targeted 5P-NP neurons, we 
measured the fraction of total output that targeted different predicted 
subclasses. Cells that output more than 30% of their synapses onto 
5P-NP cells were considered to have this rare connectivity preference.  
A two-tailed Fisher exact test was carried out to test significance 
between the random cell population and the nearest neighbours.

Predicted subclass densities
To measure the predicted cell densities per subclass across the 
MICrONS dataset, we divided the dataset into 50-µm2 bins in the x–z 
plane. For each bin, we calculated the number of cells in each subclass 
and scaled that value to the number per square millimetre to facilitate 
direct comparisons to reported densities in the literature.

Dataset 2
The second dataset covers a millimetre-square cross-sectional area, 
and 50 µm of depth within the primary visual cortex of a P49 male 
mouse18,20,51. The largest available segmentation spans layer 2/3 of the 
cortex through to layer 6. After applying the nuclear detection model18 
and filtering out all nuclear objects below 25 µm3 and cells that were 
cut off by the volume border (see the section above entitled Filtering 
procedure), 1,944 cells were used for the analysis. The class type of 
each cell was labelled manually and used as the ground truth. Owing to 
the thinness of the volume, much of the distal cell morphologies were 
cut off and thus subclass type labelling was not possible. Nuclear and 
somatic mesh cleaning as well as feature extraction and normalization 
followed the same procedures outlined above.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets described in the manuscript are publicly available at https://
microns-explorer.org/ and https://bossdb.org/. The cell-type predic-
tions presented in the manuscript are made available as an open-access 
data tool accompanying the MICrONS dataset. Users can access the most 
up-to-date version of these prediction via the CAVEClient; instructions 
can be found at https://www.microns-explorer.org/cortical-mm3. The 
exact predictions from this manuscript are made available in the folder 
https://github.com/AllenInstitute/Perisomatic_Based_CellTyping.

Code availability
Code developed for the nucleus and soma feature extraction pipe-
line is available at https://github.com/AllenInstitute/Extract_Somatic_ 
Features. Code developed for the spine and PSS extraction pipeline is 
available at https://github.com/AllenInstitute/featureExtractionParty/ 
and https://github.com/AllenInstitute/pss_extraction_pipeline. Code 
for the analyses presented in the manuscript is available at https://
github.com/AllenInstitute/Perisomatic_Based_CellTyping.
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Extended Data Fig. 1 | Neuronal and non-neuronal subclass distribution of 
individual soma and nucleus features. a) 2D UMAP embedding of all neuronal 
and non-neuronal cells inferred from somatic features, nuclear features and 
cortical depth. Manually labeled cellular subclasses are represented in color 
(1,619) and unlabeled examples in light gray (n = 92,391). b) Distribution and 
variation of cortical depth of all cells from the manually labeled column dataset. 

c) Distribution and variation of nucleus and somatic features of all cells from 
the column dataset. For all box plots, center line, median; box limits, upper  
and lower quartiles; whiskers, 1.5x interquartile range, outliers not shown. 
Individual cells, including outliers, are shown in the overlaid swarm plots.  
Color denotes human assigned subclass labels.
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Extended Data Fig. 2 | PSS embedding space organized by postsynaptic 
ultrastructural morphologies. 2D UMAP embedding of all shapes in the PSS 
Dictionary. The numbers indicate the bin centers mapped in this 2D space and 

the corresponding PSS meshes on the right show the shape associated with 
each bin center. Bins 1–8 range in spine shapes, Bins 9–23 are shaft shapes and 
Bins 24–29 are soma shapes.



Extended Data Fig. 3 | Inhibitory neuron subclasses exhibit spatial patterns 
to PSS distributions. The UMAP embedding of all the perisomatic features, 
including PSS features, across all inhibitory cells, colored with respect to what 
fraction of that cell’s input (within the 60 µm cutout) comes from what PSS/
distance bin. PSS shape bins were simplified from 29 bins to 5 broad categories 
to simplify the visualization (bins 0-4: short spines, 5–8: long-spines, 9-18 + 23: 
smooth shafts, 19–22: spiny shafts, 24–29: soma). This visualization gives 
insight into how different cells in different parts of this embedding space 
receive varying amounts of input onto different shapes within different spatial 
zones of the perisomatic area. Cells on the far left hand side of the embedding, 

where in general bipolar type neurons were found, have larger fractions of  
their inputs near the soma, including dendritic shafts which are more irregular 
in shape (“spiny shafts”), and smooth shaft inputs farther away where the 
dendrites begin to elaborate. Basket cells on the right hand side of the side  
of the embedding are dominated by somatic inputs and smooth shaft inputs 
which are more evenly distributed spatially. The island at the bottom that is 
dominated by neurogliaform cells is characterized by having relatively fewer 
somatic inputs, but an increasing amount of shaft and spiny input at distal 
dendrites.
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Extended Data Fig. 4 | Classifier validation. a) Confusion matrix of hierarchical 
model performance for all cells within the manually labeled column after 
training. b) Confusion matrix of hierarchical model performance on a dataset 

wide sample of 100 cell predictions from each subclass. c) Comparison of 
column cross validation vs. dataset wide model performance, asterisk notes 
significance by two-tailed Fisher Exact Test.



Extended Data Fig. 5 | Cell densities across the dataset by cellular subclass. 
Predicted cell densities per mm2 for each subclass across the entire dataset in 
the XZ plane. Each square represents 50 micron2 and color denotes the density 
scaled per mm2. Note due to the approximate 1 mm depth of cortex, these 
values are also roughly densities per mm3. They roughly agree with densities of 

cells estimated from light microscopy stereology of subclasses26, usually 
utilizing histochemical markers or genetic tools. For some subclasses, there is 
not a 1-1 to alignment between the definitions of types in this study and the 
usual molecular markers used in those studies, as molecular markers are not 
directly measurable in this electron microscopy volume.
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Extended Data Fig. 6 | Perisomatic feature based classification utilized 
with different cell-type labels. a) Alternative excitatory subclass labels in the 
column from Schneider-Mizell et al.15, based on unsupervised clustering of 
dendritic and synaptic features rather than manual human expert calls. Labels 
on the clusters were inferred based on the overlap with expert labels and 
cortical depth, with finer distinctions added when necessary (i.e. L4a, L4b, L4c). 
b) Alternative inhibitory subclass labels from Schneider-Mizell et al.15 in  
the column based on unsupervised clustering of their output connectivity 
statistics. These subclasses (Perisomatic Targeting, Distal Targeting, Sparsely 
Targeting and Inhibitory Targeting) likely largely but not completely align with 

broad molecular distinctions made amongst inhibitory cells, based on reviews 
of the literature where molecular and output connectivity has been measured 
in the same cells. c) A confusion matrix of a hierarchical model retrained to 
utilize these subclass labels for excitatory neurons vs inhibitory neurons rather 
than human expert labels. Cross validation performance on the excitatory 
(67%) and inhibitory (85%) subclass models was lower than the expert labels, 
due primarily to the fine grained distinctions made amongst layer 4 and 6 types. 
The confusion matrix shown here is the output of the final model trained on all 
samples from the column.



Extended Data Fig. 7 | Basic perisomatic feature patterns maintained 
across a second dataset from a different animal. a) A cutout of a second 
dataset, which covers layer 2/3 to 6 of cortex, but is only 50 µm thick. Somas 
contained within this volume (n = 1,944) were analyzed in a manner identical to 
the larger dataset and soma, nucleus and PSS features were extracted. Excitatory 
nuclei highlighted in light blue and inhibitory nuclei in magenta. b) Feature to 
feature Pearson correlations exhibit similar correlation structure between the 

two datasets. c) A joint UMAP of the perisomatic features with the MICrONS 
dataset data shown in gray, and the smaller dataset covered by manually 
identified cell classes overlaid. In general, the same overall patterns and degree 
of separation amongst layers and cell classes was observed. Note: pericytes 
were manually excluded from this dataset due to the lower quality of nucleus 
and somatic segmentations. Extensive detailed subclass cell type validation is 
not possible in this dataset due to the truncation of axons and dendrites.
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Extended Data Table 1 | Cross validation accuracy scores for individual classifiers at each level of the hierarchical model with 
differing input features

Each row corresponds to the corresponding numbers in the diagram in Fig. 5a. All training examples were held consistent between features sets for appropriate model comparisons.  
Classifiers with the highest accuracy score at each level were included in the hierarchical model (shown in bold). The overall hierarchical model performance on the column and the dataset 
wide validation set (see methods) is reported at the bottom.
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