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Bohr and Einstein in Dialogue 
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According to the assumption considered here, when a light ray 
starting from a point is propagated, the energy is not continuously 
distributed over an ever increasing volume, but it consists of a 
finite number of energy quanta, localised in space, which move 
without being divided and which can be absorbed or emitted only 
as a whole. EINSTEIN (1905) 

During the elementary process of radiative loss, the molecule 
suffers a recoil of magnitude hv/c in a direction which is only 
determined by 'chance', according to the present state of the theory 

EINSTEIN (1916b) 

I am studying your great works and—when I get stuck anywhere— 
now have the pleasure of seeing your friendly young face before me 
smiling and explaining. 

EINSTEIN LETTER OF MAY 2, 1920, AFTER MEETING NIELS BOHR 

You believe in a dice-playing God and I in perfect laws in the 
world of things existing as real objects, which I try to grasp in a 
wildly speculative way. 

EINSTEIN LETTER, AS QUOTED IN SCHILPP (1949), p. 176 

. .. time and space are modes by which we think and not conditions 
in which we live. 

EINSTEIN AS QUOTED BY FORSEE (1963), p. 81 
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Out yonder there was this huge world, which exists independently 
of us human beings and which stands before us like a great, eternal 

riddle, at least partially accessible to our inspection. 

EINSTEIN IN SCHILPP (1949), p. 5 

(1) The dynamical equilibrium of the systems in the stationary 
states can be discussed by help of the ordinary mechanics, 

while the passing of the systems between different stationary 

states cannot be treated on that basis. 
(2) The latter process is followed by the emission of a homogeneous 

radiation, for which the relation between the frequency and 
the amount of energy emitted is the one given by Planck's 
theory. BOHR (1913a), p. 7 

. . . any observation necessitates an interference with the course 
of the phenomena, [and requires] a final renunciation of the 
classical ideal of causality and a radical revision of our attitude 
towards the problem of physical reality. 

1st HALF, BOHR (1934), p. 115; 2nd HALF, BOHR (1935b), p. 697 
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. . . every atomic phenomenon is closed in the sense that its observa
tion is based on registrations obtained by means of suitable ampli
fication devices with irreversible functioning such as, for example, 
permanent marks on the photographic plate, caused by the pene
tration of electrons into the emulsion.. . . the quantum-mechani

cal formalism permits well-defined applications referring only to 
such closed phenomena and must be considered a rational general
ization of classical physics. BOHR (1958), pp. 73 and 90 

. . . the concepts of space and time by their very nature acquire 

a meaning only because of the possibility of neglecting the inter
action with the means of measurement. BOHR (1934), p. 99 

. . . we must be prepared for the necessity of an ever extending 
abstraction from our customary demands for a directly visualizable 

description of nature. Above all, we may expect new surprises in 
the domain where the quantum theory meets with the theory of 

relativity and where unsolved difficulties still stand. 
BOHR (1934), p. 115 

In tears, Ehrenfest said that he had to make a choice between 
Bohr's and Einstein's position and that he could not but agree 
with Bohr. [Samuel Goudsmit's account of a 1927 conversation 
with Ehrenfest.] PAIS (1979), p. 900 

October 1927. The fifth Solvay Conference convenes [in Brussels]. 
All the founders of the quantum theory were there, from Planck, 

Einstein, and Bohr to de Broglie, Heisenberg, Schrodinger, and 
Dirac. During the sessions "Einstein said hardly anything beyond 
presenting a very simple objection to the probability interpretation. 
. . . Then he fell back into silence" [de Broglie, 1962, p. 150]. 

However, the formal meetings were not the only place of dis
cussion. All participants were housed in the same hotel and there, 
in the dining room, Einstein was much livelier. Otto Stern has 
given this firsthand account [to Res Jost]: "Einstein came down 
to breakfast and expressed his misgivings about the new quantum 
theory, every time he had invented some beautiful experiment 
from which one saw that it did not work. . . . Pauli and Heisenberg 
who were there did not react to these matters, "ach was, das stimmt 
schon, das stimmt schon," ah well, it will be alright, it will be alright. 
Bohr on the other hand reflected on it with care and in the evening, 
at dinner, we were all together and he cleared up the matter in 
detail." PAIS (1979), p. 901 
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At the sixth Solvay Conference, in 1930, Einstein thought he had 

found a counterexample to the uncertainty principle. "It was 

quite a shock for Bohr. . . . he did not see the solution at once. 

During the whole evening he was extremely unhappy, going from 

one to the other and trying to persuade them that it couldn't be 
true, that it would be the end of physics if Einstein were right; 

but he couldn't produce any refutation. I shall never forget the 
vision of the two antagonists leaving the club [of the Fondation 
Universitaire]: Einstein a tall majestic figure, walking quietly, 
with a somewhat ironical smile, and Bohr trotting near him, very 

excited The next morning came Bohr's triumph." 
ROSENFELD (1968), p. 232 

The photographs on the preceding pages were taken by Paul 
Ehrenfest in his house in Leyden where Niels Bohr and Albert 
Einstein were staying as guests. The restoration of the negatives 
and production of the prints were done by William R. Whipple. 

Courtesy of the American Institute of Physics Niels Bohr Library. 
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PREFACE 

A textbook on quantum theory and 
measurement does not exist, nor is 

this intended to be one. This is a 

reference book, containing key papers 
on quantum theory as it relates to 

measurement. They are arranged in 

such a way, and accompanied by 
such supplementary references, that 

the collection can be used as a source 
book for a university course or seminar 

on the subject. It was so used by us in 

1979-1980 and in 1980-1981 at the 
University of Texas. We have found 
that these materials are of interest to 
students and colleagues of all ages, 

not only in physics, but also in astron
omy, philosophy, and mathematics. 

We suppose that the reader already 
has some familiarity with quantum 
theory, preferably at least the equiva
lent of an undergraduate course in 
the subject. 

Quantum theory has turned out 
to be the overarching principle of 
twentieth-century physics. It would 
be difficult to find a single subject 
among the physical sciences which 
is not affected in its foundations or in 
its applications by quantum theory. 
We may feel lost, to be sure, in the 

beginning stages of the study of the 
subject. Our supposed knowledge of a 

particle with its definite track through 
space and time dissolves into a wave, 
definiteness becomes indeterminism, 

and predictability of place is replaced 
by a predictability of the properties 
of nuclei, atoms, molecules, solids, 

liquids, and gases. We soon find our

selves armed with wonderful new tools. 

The more we use them, the more 

applications we find; and the more 

applications we find, the more uses of 
quantum theory we make. 

Why there is no textbook on the 

measurement side of quantum theory 
is clear to anyone who participates in 

a seminar on the subject, and even 
clearer to one who gives a course on 

it: puzzlement! Beyond the probability 
interpretation of quantum mechanics, 
beyond all the standard analysis of 
idealized experiments, beyond the prin
ciple of indeterminacy and the limits it 
imposes, lie deep issues on which full 
agreement has not yet been reached in 

the physics community. They include 
questions like these: Does observation 
demand an irreversible act of amplifi
cation such as takes place in a grain of 
photographic emulsion or in the elec
tron avalanche of a Geiger counter? 

And if so, what does one mean by 
"amplification"? And by "irrevers
ible"? Does the quantum theory of 
observation apply in any meaningful 
way to the "whole universe"? Or is it 
restricted, even in principle, to the 
light cone? And if so, whose light cone? 

How are the observations made by 
different observers to be fitted into a 

single consistent picture in space-time? 

If these are some of the issues, they 
lead to other still deeper questions: 
What is the most productive meaning 

to assign to the term "reality"? 
How are we to look at the subject, 

so mixed in its character, partly well-
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understood—and, as such, the un

shakable foundation for all of modern 
physics—and partly still uncaptured 
frontier territory? What else is it but 

an unfamiliar animal, confined to an 
animal house? And how else can one 
better capture its newness than by 
walking around, looking at it through 

one window after another, seeking to 
combine fragmentary views into a 

total picture? We here take two tours 
around the subject. The first tour begins 
with Niels Bohr's account of his famous 
28-year dialog with Albert Einstein. 

That account is followed by a great 
trio: Max Bora's epochal paper on 
the probability interpretation of quan
tum mechanics, Werner Heisenberg's 
on the principle of indeterminism, 

and Niels Bohr's Como lecture on what 
quantum mechanics permits one to 
know. These are followed by H. P. 
Robertson's general formulation of 
indeterminism or "uncertainty," then 
by Nevill Mott's analysis of the mean
ing of an α-ray track, which illustrates 

the principles expounded by Bohr and 

Born and others and shows the quan
tum theory of observation in action. 

Had quantum mechanics stopped 
here, its deepest lesson would have 
escaped attention: "No elementary 
quantum phenomenon is a phenome
non until it is a registered (observed) 
phenomenon." The door to this in
sight—and all the questions that go 
with it—was opened a crack by the 
paper of Albert Einstein, Richard 
Tolman, and Boris Podolsky, and 
opened wider by the idealized experi
ment proposed by Einstein, Podolsky, 
and Nathan Rosen. This EPR paper 

reasoned that quantum mechanics is 
incompatible with any reasonable idea 
of reality. In the next two papers, Bohr 
replies, in effect, that the EPR concept 
of reality is too limited. In contrast to 
Bohr, Erwin Schrodinger, in his famous 

paper on the "cat paradox," and 
Eugene Wigner, in a subsequent paper, 
tried to connect the concept "observa
tion" as it is employed in quantum 

mechanics with "consciousness." This 
first tour around the animal house, 
looking through the various windows, 

concludes with "law without law," an 
attempt to assess the situation as it 
stands today and to evaluate the place 
of quantum mechanics in the larger 
scheme of physics. 

The second tour of inspection (Sec
tions II-VI) looks into the old 
windows afresh and into some new 
ones. It is designed for the more 
advanced student of the subject. It 
too gives a view of what is clear and 
well-established, but also glimpses of 
what is problematic and mysterious. 
Section II begins with the classic 
treatise of Fritz Wolfgang London 
and Edmond Bauer on the quantum 
theory of observation and includes 
notes of Wigner's 1976 lectures on 
interpretation of quantum mechanics, 
not previously published. The reader 
who has mastered this material or 
the equivalent has in hand the solid 
foundation of the subject. This section 
ends with three papers on the problem 
of measurement within the framework 
of quantum theory: Hugh Everett's 
"Relative State" or "Many Worlds" 
interpretation, and papers of Wigner 
and H. D. Zeh. 
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The Einstein-Podolsky-Rosen exper

iment (Section III) deals with a system 

which, once united in a definite quan
tum state, splits into two well-separat-

ed systems. It considers the correlation 

between the state observed for one 

system and the state observed for the 
other. It asks: Does the predicted 

correlation exist? And if so, how does 

it come about? There is an enormous 
literature on these questions. Out of the 
many possible papers we have selected 

thirteen for this part of our second tour 
around the subject. They deal with 
"hidden variables," John Bell's inequal

ity designed to rule out "local hidden 

variables," the experiments them

selves, and generalizations of such 
experiments. 

Up to this point, the statistical 
interpretation of quantum mechanics 
and the principle of indeterminacy 

have been applied to a particle or 
system of finitely many degrees of 
freedom. The next group of papers 
(Section IV), including one by Lev 
Landau and Rudolf Peierls, and two 
by Bohr and Leon Rosenfeld, deal 
with the measurement of the electro
magnetic field, a system with infinitely 

many degrees of freedom. 
What is the connection between 

entropy, information, ergodicity, ir
reversibility, thermodynamics, and 
quantum mechanics? The next seven 
selections (Section V) deal in one way 
or another with these topics. 

The second tour concludes with 
Section VI, eight papers on the accura
cy achievable in measurement as it is 
affected by quantum limitations. The 
first (N. F. Mott and H. S. Massey) 

deals with the impossibility of mea

suring the spin of an electron that 

is free rather than bound in an atom 

or in some experimental combination 

of electric and magnetic fields. Even 

when a particle or an atom or a 
molecule admits of a measurement 

of its angular momentum, the mea
suring equipment may be so light 

in mass that by this very reason 
its orientation is uncertain (papers 

of Huzihiro Araki and Mutsuo Yanase, 
and Yanase). Or the measurement 

of the time at which an interaction 

takes place may limit the accuracy 
with which one can determine the 
transfer of energy in that interaction 

(paper of David Bohm and Yakir 
Aharonov). Or a message may be sent 
through an amplifier or sent down a 
communication line and have quantum 
effects introduced into it along the way 
(papers of H. Heffner, H. A. Haus 
and J. A. Mullen, and John Pierce). Or 
in a measurement of a weak effect, like 

a gravitational wave from a supernova, 
can one circumvent quantum indeter
minacy limits on the sensitivity of 

the measuring device? (paper of V. B. 
Braginsky, Y. I. Vorontsov and K. S. 

Thorne). 
Anyone asking for the practical 

bearing of the quantum theory of 

measurement will think of measuring 
devices, their sensitivity, and the im
provements in this sensitivity that can 
only be achieved by exploiting modern 
insights to the fullest. In no way do 
the advances of physics spread more 
widely to the community than in new 
and improved measuring devices, 
whose uses range from biology to 
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medicine, from chemistry to manu

facturing. Not otherwise can one 

understand why the number of kinds 

of devices listed in the annual "Guide 

to Scientific Instruments" issued by 

the American Association for the Ad

vancement of Science (AAAS, 1961, 

1970, 1980) has steadily increased. 

There is at present a heavy push to 

measure at the Earth the fantastically 

weak gravitational wave produced by 

a supernova in the Virgo cluster of 

galaxies. Central to this enterprise 

are considerations of quantum theory 

that have already led to new ideas of 

optimal design. Achievements on this 

front will surely make their way from 

physics to many another field and 

supply important areas of science and 

technology with measuring devices of 

a sensitivity previously unattainable. 

We regard as a welcome forerunner 

to the present collection an earlier 

collection of about half as many titles 

and a quarter as many pages issued 

for the exclusive use of members of 

the Physical Society of Japan. We 

have not entered into various schemes 

for the axiomatization of quantum 

theory and so-called "quantum logic," 

and therefore do not reproduce selec

tions from such books as George W. 

Mackey's Mathematical Foundations 

of Quantum Mechanics (1963) and Josef 

M. Jauch's Foundations of Quantum 

Mechanics (1968), nor, for example, 

the work of Giinther Ludwig and his 

collaborators (1968) or P. Mittelstaedt 

(1978), or Beltrametti and Cassinelli 

(1981). Neither do we pretend to a 

proper historical perspective, such as 

surely someday will be possible thanks 

to the wonderful collection of tape 

recordings, notebooks, and other ma

terials inventoried in Kuhn, Heilbron, 

Forman, and Allen, Sources for the 

History of Quantum Physics (1967). The 

literature on quantum theory is so vast 

that one could fill a book this size with 

bibliography alone. In the annotated 

bibliographies for each section (located 

near the end of the book) we have had 

to content ourselves with a few especial

ly important or representative works, 

seeking to provide in this way points 

of entry into the literature. 

The reader will look in vain in 

these selections for any detailed expo

sition of the wealth of mechanisms 

that make physics such a rich subject. 

We leave out such topics as photo

electric effect, scattering, chemical 

binding, particle theory, the Lamb-

Retherford shift, the building up of 

atoms, angular momentum isomers, 

superconductivity, and dozens of others 

equally important for understanding 

what quantum theory means for the 

world of today, because we assume 

that the reader already knows some

thing of "quantum mechanics in 

action." 

If one already knows so much about 

the applications of quantum theory, 

what more is to be learned by the 

study of the quantum theory of mea

surement? Willis Lamb (1969), some 

years after receiving the Nobel Prize, 

wrote, ". . . A discussion of the inter

pretation of quantum mechanics on 

any level beyond this almost inevitably 

becomes rather vague. The major 

difficulty involves the concept of 

'measurement,' which in quantum me-



PREFACE XlX 

chanics means determining the value 

of a physical observable for a dynamic

al system with as much precision as is 
possible. 

"I have taught graduate courses in 

quantum mechanics for over 20 years 
at Columbia, Stanford, Oxford and 

Yale, and for almost all of them have 
dealt with measurement in the follow
ing manner. On beginning the lectures 

I told the students, 'You must first 
learn the rules of calculation in quan

tum mechanics, and then I will tell you 
about the theory of measurement and 
discuss the meaning of the subject.' 
Almost invariably, the time allotted 

to the course ran out before I had to 
fulfill my promise." 

No one who reads among the present 
selections can escape some contact 
with the deeper meaning of the subject 

—and with some of the issues. Is it true 
that "no elementary quantum phenom
enon is a phenomenon until it is a 
recorded phenomenon"? If so, what 
does "recording" demand? "Irrevers

ibility"? If so, what does one mean by 
"irreversibility" ? If the "arrow of time" 
is absent from Schrodinger's equation 
and from quantum theory generally, 
what brings it into the act of measure
ment along with all its ideological 
connectives, from statistical mechanics 

to ergodic theory, and from informa
tion theory to thermodynamics? Is it 

true that the result of a measurement 
must be expressed in classical terms, 
because only in such terms can one 
speak in plain language to oneself— 
and to others? What part does com
munication play in creating what is 
called "knowledge"? And from what 

deeper principle arises the necessity of 

the quantum in a construction of the 

world? 
With a good conscience we limit 

ourselves here to the measurement 
side of quantum theory, because the 
formalism of the subject is so well 
treated in so many outstanding texts. 

Moreover, historic papers in the de
velopment of that formalism have 

been collected in the wonderfully useful 
book by B. L. Van der Waerden (1967). 
We wish to express here our indebt

edness to those books and above 

all to the book of Max Jammer (1974) 
which provides a wealth of historical 
commentary on the development of 
the subject to its present state. See 
also DeWitt and Graham (1971). 

We take this opportunity to thank 
most heartily the many colleagues 
who have given us their advice in the 

preparation of this book and to ack
nowledge our indebtedness to the 
authors and publishers cited at the 
front for permission to reprint the 

selections. We could not have put 
the collection together without calling 
on the intelligence and helpfulness 

of Ruth Bentley, Zelda Davis, Adrienne 

Harding, Colleen Kieke, Jean F. Otto, 
Rebecca Stadtner, and Gloria Talcove-
Woodward. We appreciate the care 

given to the project by the staff of 
Princeton University Press, including 
especially Alice Calaprice and Judith 

May. We thank many a favorable 
chance, many a kind act of hospitality, 

and thank, too, the University of Texas, 
the Center for Theoretical Physics, 
the Center for Statistical Mechanics 
and Thermodynamics, and the Nation-
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al Science Foundation (Grant PHY 
7826592) for the colleagues that they 
have brought our way who share 
our concern with the measurement 

side of quantum theory, among them 

L. Bartell, J. D. Bekenstein, D. Bohm, 
A. Bohr, V. B. Braginsky, E. Caianiello, 
P. Candelas, P. C. W. Davies, B. 
d'Espagnat, D. Deutsch, B. S. DeWitt, 
R. H. Dicke, F. Dyson, H. Everett III, 
L. Z. Fang, R. P. Feynman, E. S. Fry, 
U. Gerlach, A. M. Gleason, L. P. 

Horwitz, A. Jaffe, F. Jenc, J. Kalckar, 
J. R. Klauder, D. Kondepudi, and 

K. Kuchar, G. Ludwig, G. Mackey, 

L. Michel, C. W. Misner, P. Mit-
telstaedt, Y. Ne'eman, A. Peres, C. 

Piron, I. Prigogine, A. Qadir, L. 
Radicati, D. Sciama, A. Shimony, 

H. P. Stapp, E. C. G. Sudarshan, 
C. Teitelboim, K. S. Thorne, F. Tipler, 
W. Unruh, E. P. Wigner, W. K. 
Wootters, and H. D. Zeh. 

John Archibald Wheeler 

Wojciech Hubert Zurek 
Austin, Texas 

January 20, 1982 
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Questions of Principle 





1.1 THE BOHR-EINSTEIN DIALOGUE 

BOHR IN BRIEF 

Complementarity: any given application of classical concepts pre
cludes the simultaneous use of other classical concepts which in a 

different connection are equally necessary for the elucidation of the 
phenomena. BOHR (1934), p. 10 

The discovery of the quantum of action shows us, not only the natu
ral limitation of classical physics, but, by throwing a new light upon 

the old philosophical problem of the objective existence of phenom
ena independently of our observations, confronts us with a situation 

hitherto unknown in natural science. As we have seen, any observa
tion necessitates an interference with the course of the phenomena, 
[and] of such a nature that it deprives us of the foundation under
lying the causal mode of description. The limit, which nature herself 
has thus imposed upon us, of the possibility of speaking about phe

nomena as existing objectively finds its expression, as far as we can 
judge, just in the formulation of quantum mechanics. 

BOHR (1934), p. 115 

. . . atomic phenomena under different experimental conditions, 
must be termed complementary in the sense that each is well defined 
and that together they exhaust all definable knowledge about the 
objects concerned. The quantum-mechanical formalism . . . gives 

. . . an exhaustive complementary account of a very large domain 
of experience. BOHR (1958), p. 90 

. . . one sometimes speaks of "disturbance of phenomena by ob
servation" or "creation of physical attributes to atomic objects by 
measurements." Such phrases, however, are apt to cause confusion, 
since words like phenomena and observation, just as attributes and 

measurements, are here used in a way incompatible with common 
language and practical definition. On the lines of objective descrip
tion, [I advocate using] the word phenomenon to refer only to ob

servations obtained under circumstances whose description includes 
an account of the whole experimental arrangement. In such terminol
ogy, the observational problem in quantum physics is deprived of 
any special intricacy and we are, moreover, directly reminded that 
every atomic phenomenon is closed in the sense that its observation 
is based on registrations obtained by means of suitable amplification 
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devices with irreversible functioning such as, for example, perma

nent marks on a photographic plate, caused by the penetration of 
electrons into the emulsion. In this connection, it is important to 
realize that the quantum-mechanical formalism permits well-defined 
applications referring only to such closed phenomena. 

BOHR (1958), p. 73 

. . . the finite magnitude of the quantum of action prevents alto
gether a sharp distinction being made between a phenomenon and 
the agency by which it is observed .... BOHR (1934), p. 11 

.  .  .  i t .  .  .  c a n  m a k e  n o  d i f f e r e n c e ,  a s  r e g a r d s  o b s e r v a b l e  e f f e c t s  o b 
tainable by a definite experimental arrangement, whether our plans 

for constructing or handling the instruments are fixed beforehand 
or whether we prefer to postpone the completion of our planning 
until a later moment when the particle is already on its way from 
one instrument to another. BOHR IN SCHILPP (1949), p. 230 

. . . a subsequent measurement to a certain degree deprives the infor

mation given by a previous measurement of its significance for pre
dicting the future course of the phenomena. Obviously, these facts 
not only set a limit to the extent of the information obtainable by 
measurements, but they also set a limit to the meaning which we may 
attribute to such information. We meet here in a new light the old 
truth that in our description of nature the purpose is not to disclose 
the real essence of the phenomena but only to track down, so far 
as it is possible, relations between the manifold aspects of our 
experience. BOHR (1934), p. 18 

The experimental conditions can be varied in many ways, but the 
point is that in each case we must be able to communicate to others 
what we have done and what we have learned, and that therefore 
the functioning of the measuring instruments must be described 
within the framework of classical physical ideas. 

BOHR (1958), p. 89 

. . . the conscious analysis of any concept stands in a relation of 
exclusion to its immediate application. BOHR (1934), p. 96 

I am quite prepared to talk of the spiritual life of an electronic 
computer; to say that it is considering or that it is in a bad mood. 
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What really matters is the unambiguous description of its behaviour, 
which is what we observe. The question as to whether the machine 

really feels, or whether it merely looks as though it did, is absolutely 

as meaningless as to ask whether light is "in reality" waves or par

ticles. We must never forget that "reality" too is a human word just 

like "wave" or "consciousness." Our task is to learn to use these 

words correctly—that is, unambiguously and consistently. 
BOHR AS QUOTED BY KALCKAR (1967), p. 234 

We are suspended in language in such a way that we cannot say what 
is up and what is down. 

BOHR AS QUOTED BY PETERSEN (1968), p. 188 

COMMENTARY BASED ON 

PETERSEN (1968) 

Aage Petersen was already working 
on his book, his Copenhagen doctoral 
thesis, while he was assisting Bohr 
(+18 November 1962) in preparing some 
of his last lectures. The thesis is philo
sophical in character. It is concerned 

with ideas. It is not intended to be 
a professional history of science, nor a 
documentation of stages in Bohr's 
thinking. However, some of the sections 
allow one ta get an impression of 
stages in Bohr's development of the 

concepts of "complementarity," "clo
sure," and "phenomenon." The book 
states more sharply than Bohr does 
in his writings the points on which 
Bohr disagreed with others, explaining, 
for example, why Bohr introduced the 
term "complementarity" when Heisen-
berg had already employed the term 
"indeterminism." 

Petersen (pp. 110-111 and 145) notes 

that Bohr insisted upon an analysis of 
the "possibilities of definition" over 
and above those "possibilities of obser
vation" that he and Heisenberg together 

had previously considered: "One of the 
most important issues in the measure
ment analysis is the question of the 
nature and origin of the uncertainties 
involved in the determination of con
jugate variables. According to Heisen-

berg, these uncertainties were due to 
discontinuous changes, imposed by the 
quantum on one such variable during 
the measurement of the other. However, 

as Bohr pointed out, 'a discontinuous 
change of energy and momentum during 
observation could not prevent us from 

ascribing accurate values to the space-
time coordinates, as well as to the 
momentum-energy components before 
and after the process.' To clarify the 

issue it is necessary to consider closely 
the possibilities of definition. ... Bohr 
pointed out that the conditions of 
description in quantum physics not only 
'set a limit to the extent of the informa
tion obtainable by measurement, but 
they also set a limit to the meaning 

which we may attribute to such informa
tion.' More specifically, the reciprocal 
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uncertainties are'. . . essentially an out

come of the limited accuracy with which 
changes in energy and momentum can 
be defined.'" 

Petersen goes on to say (p. 120), 
"Einstein's criticism showed the need 

for a more rigorous formulation of the 
Copenhagen interpretation, and Bohr's 
many attempts to improve the termi

nology illuminate the development of 
his attitude to the interpretation ques
tion. [How could one] make explicit 

the conditions set by the formalism for 
applying the physical concepts unam
biguously in the quantum domain? 

[For this purpose the] shift from 
'intuitive understanding' to 'unambig
uous communication' [was] an impor
tant step." 

Petersen adds (pp. 120 and 122-23), 
"Terminologically, the principal result 
of Bohr's analysis of Einstein's imagi
nary experiments was the concept of a 

quantum phenomenon [which first 
appeared in Bohr (1939)]. Bohr came 

to regard it as the basic element of the 
quantal description. ... To specify a 
phenomenon it is not enough to state 
the initial characteristics of the object, 
like the momentum with which it 
emerges from the source. The predic

tions depend on the whole experimental 
arrangement and are only well defined 
if the whole arrangement is specified. 
To be able to predict the interference 
pattern we must be given the whole 
geometry of the optical bench. In other 
words, 'all unambiguous interpretation 
of the quantum mechanical formalism 
involves the fixation of the external 
conditions, defining the initial state of 
the atomic system concerned and the 

character of the possible predictions as 

regards subsequent observable proper
ties of that system. Any measurement in 
quantum theory can in fact only refer 
either to a fixation of the initial state or 
to the test of such predictions, and it 
is ... the combination of measurements 

of both kinds which constitutes a well-

defined phenomenon ... .' [A phenom
enon] is 'indivisible.' In electron inter
ference, the physical 'process' starting 
at the electron's emergence from the 
gun and ending at its impact on the 

plate has no definable course. It cannot 
be broken up into physically well-

defined steps. Unlike a classical phe
nomenon, a quantum phenomenon is 
not a sequence of physical events, but a 

new kind of individual entity." 
Petersen (p. 164) recalls Bohr's state

ment (1934, pp. 19-20): "An interesting 
example of ambiguity in our use of 
language is provided by the phrase used 
to express the failure of the causal mode 

of description, namely, that one speaks 

of a free choice on the part of nature. 
Indeed, properly speaking, such a phrase 
requires the idea of an external chooser, 
the existence of which, however, is 
denied already by the use of the word 
nature." Petersen adds (p. 172) ".. . 
Bohr often stressed in discussions that 
'reality' is a word in our language and 
that this word is no different from other 
words in that we must learn to use it 
correctly ... ." Petersen continues (p. 
173), "Indivisibility and closure are the 
two principal characteristics of a quan
tum phenomenon. ... The phenom
enon's 'interior' is .. . physically inscru
table. ... In a classical physical process 

each infinitesimal step is 'closed', i.e. it 
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is a definite physical event. . .. In quan

tum physics the object's 'behavior' is 
not a sequence of 'closed' steps." Here 

Petersen might have quoted from Bohr 

(1958, p. 73):"... Every atomic phenom
enon is closed in the sense that its 

observation is based on registrations 
obtained by means of suitable ampli

fication devices with irreversible func
tioning such as, for example, permanent 

marks on a photographic plate, caused 

by the penetration of electrons into the 

emulsion." But Petersen adds (p. 177— 
79),"... It is clear that Bohr considered 
the closure of fundamental significance 
not only in quantum physics but in the 

whole description of nature. Classical 
physics did not call attention to the role 

of this concept because classical pro
cesses have, so to say, maximal closure. 

In quantum mechanics the physically 
describable aspects of a phenomenon 

are closed, but the phenomenon's physi
cally inscrutable 'interior' is not. ... 
[The] question suggests itself as to 

whether it is possible to dispense with 
the classical concepts in the quantum 
domain or at least supplement them 

with new physical concepts that are less 
directly tied to the structure of classical 
theories and more adapted to the typical 
quantal parts of quantum mechanics. 

Bohr gave a negative answer to this 
question. He held that 'it would be a 
misconception to believe that the diffi
culties of the atomic theory may be 
evaded by eventually replacing the 
concepts of classical physics by new 
conceptual forms.'" 

"Bohr was remarkably categorical 
about the question at issue. 'It lies in 
the nature of physical observation ... 

that all experience must ultimately be 

expressed in terms of classical concepts 

.. . the unambiguous interpretation of 

any measurement must be essentially 

framed in terms of the classical physical 

theories, and we may say that in this 

sense the language of Newton and 

Maxwell will remain the language of 
physicists for all time.' 'Even when the 

phenomena transcend the scope of 
classical physical theories, the account 

of the experimental arrangement and 

the recording of observations must be 

given in plain language, suitably supple
mented by technical physical terminol
ogy. This is a clear logical demand, since 
the very word experiment refers to a 

situation where we can tell others what 

we have done and what we have 

learned.'" 

COMMENTARY OF HEISENBERG (1967) 

The Solvay Conference in Brussels in 
the autumn of 1927 closed this marvel
lous period in the history of atomic 
theory. Planck, Einstein, Lorentz, Bohr, 
de Broglie, Born, and Schrodinger, and 
from the younger generation Kramers, 
Pauli, and Dirac, were gathered here 
and the discussions were soon focussed 
to a duel between Einstein and Bohr 
on the question as to what extent 
atomic theory in its present form could 
be considered to be the final solution of 
the difficulties which had been dis
cussed for several decades. We gener
ally met already at breakfast in the 
hotel, and Einstein began to describe 
an ideal experiment in which he thought 
the inner contradictions of the Copen
hagen interpretation were particularly 
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clearly visible. Einstein, Bohr and I 

walked together from the hotel to the 

congress building, and I listened to the 

lively discussion between these two 

people whose philosophical attitudes 

were so different, and from time to time 

I added a remark on the structure of 

the mathematical formalism. Duringthe 

meeting and particularly in the pauses 

we younger people, mostly Pauli and I, 

tried to analyze Einstein's experiment, 

and at lunch time the discussions 

continued between Bohr and the others 

from Copenhagen. Bohr had usually 

finished the complete analysis of the 

ideal experiment late in the afternoon 

and showed it to Einstein at the supper 

table. Einstein had no good objection 

to this analysis, but in his heart he was 

not convinced. Bohr's friend Ehrenfest, 

who was also a close friend of Einstein, 

said to him, "I'm ashamed of you, 

Einstein. You put yourself here just in 

the same position as your opponents in 

their futile attempts to refute your 

relativity theory." These discussions 

continued even at the next Solvay 

meeting in 1930, and it was probably 

on this occasion that Einstein at break

fast proposed the famous experiment 

(discussed in Bohr's article on the 

occasion of Einstein's 70th birthday) in 

which the colour of a light quantum is 

to be determined by weighing the source 

before and after the quantum's emission. 

As this problem involved gravity, one 

had to include the theory of gravity, in 

other words, general relativity theory in 

the analysis. It was a particular triumph 

for Bohr that he was able to show that 

evening, by using just Einstein's own 

formulae from general relativity, that 

even in this experiment the uncertainty 

relations are valid, and that Einstein's 

objections were unfounded. With this 

the Copenhagen interpretation of quan

tum theory seemed from now on to 

stand on solid ground. 

COMMENTARY OF EINSTEIN (1936) 

There is no doubt that quantum me

chanics has seized hold of a beautiful 

element of truth, and that it will be a 

test stone for any future theoretical 

basis, in that it must be deducible as a 

limiting case from that basis, just as 

electrostatics is deducible from the 

Maxwell equations of the electromag

netic field or as thermodynamics is 

deducible from classical mechanics. 

However, I do not believe that quantum 

mechanics will be the starting point in 

the search for this basis, just as, vice 

versa, one could not go from thermo

dynamics (resp. statistical mechanics) 

to the foundations of mechanics. 

COMMENTARY OF EINSTEIN 

(BEFORE 1953) 

That the Lord should play with dice, 

all right; but that He should gamble 

according to definite rules, that is 

beyond me. 



1.1 DISCUSSION WITH EINSTEIN 
ON EPISTEMOLOGICAL PROBLEMS 

IN ATOMIC PHYSICS 

NIELS BOHR 

WHEN invited by the Editor of the series, "Living Philos
ophers," to write an article for this volume in which 

contemporary scientists are honouring the epoch-making con
tributions of Albert Einstein to the progress of natural philos
ophy and are acknowledging the indebtedness of our whole 
generation for the guidance his genius has given us, I thought 
much of the best way of explaining how much I owe to him for 
inspiration. In this connection, the many occasions through the 
years on which I had the privilege to discuss with Einstein 
epistemological problems raised by the modern development of 
atomic physics have come back vividly to my mind and I have 
felt that I could hardly attempt anything better than to give 
an account of these discussions which, even if no complete con
cord has so far been obtained, have been of greatest value and 
stimulus to me. I hope also that the account may convey to 
wider circles an impression of how essential the open-minded 
exchange of ideas has been for the progress in a field where new 
experience has time after time demanded a reconsideration of 
our views. 

From the very beginning the main point under debate has 
been the attitude to take to the departure from customary prin
ciples of natural philosophy characteristic of the novel develop
ment of physics which was initiated in the first year of this cen
tury by Planck's discovery of the universal quantum of action. 
This discovery, which revealed a feature of atomicity in the laws 
of nature going far beyond the old doctrine of the limited divis
ibility of matter, has indeed taught us that the classical theories 

Originally published in Albert Einstein: Philosopher-Scientist, P. A. Schilpp, ed., pp. 200-41, 
The Library of Living Philosophers, Evanston (1949). 
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of physics are idealizations which can be unambiguously applied 
only in the limit where all actions involved are large compared 
with the quantum. The question at issue has been whether the 
renunciation of a causal mode of description of atomic processes 
involved in the endeavours to cope with the situation should be 
regarded as a temporary departure from ideals to be ultimately 
revived or whether we are faced with an irrevocable step to
wards obtaining the proper harmony between analysis and syn
thesis of physical phenomena. To describe the background of 
our discussions and to bring out as clearly as possible the argu
ments for the contrasting viewpoints, I have felt it necessary 
to go to a certain length in recalling some main features of the 
development to which Einstein himself has contributed so 
decisively. 

As is well known, it was the intimate relation, elucidated 
primarily by Boltzmann, between the laws of thermodynamics 
and the statistical regularities exhibited by mechanical systems 
with many degrees of freedom, which guided Planck in his in
genious treatment of the problem of thermal radiation, leading 
him to his fundamental discovery. While, in his work, Planck 
was principally concerned with considerations of essentially 
statistical character and with great caution refrained from de
finite conclusions as to the extent to which the existence of the 
quantum implied a departure from the foundations of mechanics 
and electrodynamics, Einstein's great original contribution to 
quantum theory (1905) was just the recognition of how physi
cal phenomena like the photo-effect may depend directly on in
dividual quantum effects.1 In these very same years when, in 
developing his theory of relativity, Einstein laid a new founda
tion for physical science, he explored with a most daring spirit 
the novel features of atomicity which pointed beyond the whole 
framework of classical physics. 

With unfailing intuition Einstein thus was led step by step 
to the conclusion that any radiation process involves the emis
sion or absorption of individual light quanta or "photons" with 
energy and momentum 

E — hv and P = ha (1) 
1A. Einstein, Ann. d. Phys., /7, 132, (1905). 
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respectively, where h is Planck's constant, while V and β are the 
number of vibrations per unit time and the number of waves per 
unit length, respectively. Notwithstanding its fertility, the idea 
of the photon implied a quite unforeseen dilemma, since any 
simple corpuscular picture of radiation would obviously be ir
reconcilable with interference effects, which present so essential 
an aspect of radiative phenomena, and which can be described 
only in terms of a wave picture. The acuteness of the dilemma 
is stressed by the fact that the interference effects offer our 
only means of defining the concepts of frequency and wave
length entering into the very expressions for the energy and 
momentum of the photon. 

In this situation, there could be no question of attempting a 
causal analysis of radiative phenomena, but only, by a combined 
use of the contrasting pictures, to estimate probabilities for the 
occurrence of the individual radiation processes. However, it is 
most important to realize that the recourse to probability laws 
under such circumstances is essentially different in aim from the 
familiar application of statistical considerations as practical 
means of accounting for the properties of mechanical systems of 
great structural complexity. In fact, in quantum physics we are 
presented not with intricacies of this kind, but with the inability 
of the classical frame of concepts to comprise the peculiar fea
ture of indivisibility, or "individuality," characterizing the ele
mentary processes. 

The failure of the theories of classical physics in accounting 
for atomic phenomena was further accentuated by the progress 
of our knowledge of the structure of atoms. Above all, Ruther
ford's discovery of the atomic nucleus (1911) revealed at once 
the inadequacy of classical mechanical and electromagnetic con
cepts to explain the inherent stability of the atom. Here again 
the quantum theory offered a clue for the elucidation of the 
situation and especially it was found possible to account for the 
atomic stability, as well as for the empirical laws governing the 
spectra of the elements, by assuming that any reaction of the 
atom resulting in a change of its energy involved a complete 
transition between two so-called stationary quantum states and 
that, in particular, the spectra were emitted by a step-like pro-



12 BOHR 

ccss in which each transition is accompanied by the emission of 
a monochromatic light quantum of an energy just equal to that 
of an Einstein photon. 

These ideas, which were soon confirmed by the experiments 
of Franck and Hertz (1914) on the excitation of spectra by 
impact of electrons on atoms, involved a further renunciation 
of the causal mode of description, since evidently the interpreta
tion of the spectral laws implies that an atom in an excited state 
in general will have the possibility of transitions with photon 
emission to one or another of its lower energy states. In fact, the 
very idea of stationary states is incompatible with any directive 
for the choice between such transitions and leaves room only for 
the notion of the relative probabilities of the individual transi
tion processes. The only guide in estimating such probabilities 
was the so-called correspondence principle which originated in 
the search for the closest possible connection between the statisti
cal account of atomic processes and the consequences to be ex
pected from classical theory, which should be valid in the limit 
where the actions involved in all stages of the analysis of the 
phenomena are large compared with the universal quantum. 

At that time, no general self-consistent quantum theory was 
yet in sight, but the prevailing attitude may perhaps be illus
trated by the following passage from a lecture by the writer 
from 1913:2 

I hope that I have expressed myself sufficiently clearly so that you may 

appreciate the extent to which these considerations conflict with the ad

mirably consistent scheme of conceptions which has been rightly termed 

the classical theory of electrodynamics. On the other hand, I have tried 

to convey to you the impression that—just by emphasizing so strongly 

this conflict—it may also be possible in course of time to establish a cer

tain coherence in the new ideas. 

Important progress in the development of quantum theory 
was made by Einstein himself in his famous article on radiative 
equilibrium in 1917,3 where he showed that Planck's law for 
thermal radiation could be simply deduced from assumptions 

2N. Bohr, Fysisk Tidsskrift, 12, 97, (1914). (English version in The 
Theory of Sfectra and Atomic Constitution, Cambridge, University Press, 1922). 

3A. Einstein, Phys. Zs., 18, 121, (1917). 
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conforming with the basic ideas of the quantum theory of atomic 
constitution. To this purpose, Einstein formulated general 
statistical rules regarding the occurrence of radiative transitions 
between stationary states, assuming not only that, when the 
atom is exposed to a radiation field, absorption as well as emis
sion processes will occur with a probability per unit time pro
portional to the intensity of the irradiation, but that even in the 
absence of external disturbances spontaneous emission processes 
will take place with a rate corresponding to a certain a priori 
probability. Regarding the latter point, Einstein emphasized 
the fundamental character of the statistical description in a 
most suggestive way by drawing attention to the analogy be
tween the assumptions regarding the occurrence of the spontane
ous radiative transitions and the well-known laws governing 
transformations of radioactive substances. 

In connection with a thorough examination of the exigencies 
of thermodynamics as regards radiation problems, Einstein 
stressed the dilemma still further by pointing out that the argu
mentation implied that any radiation process was "unidirected" 
in the sense that not only is a momentum corresponding to a 
photon with the direction of propagation transferred to an atom 
in the absorption process, but that also the emitting atom will 
receive an equivalent impulse in the opposite direction, although 
there can on the wave picture be no question of a preference for 
a single direction in an emission process. Einstein's own attitude 
to such startling conclusions is expressed in a passage at the end 
of the article (Ioc. cit.y p. 127 f.), which may be translated as 
follows: 

These features of the elementary processes would seem to make the 

development of a proper quantum treatment of radiation almost unavoid

able. The weakness of the theory lies in the fact that, on the one hand, 
no closer connection with the wave concepts is obtainable and that, on the 

other hand, it leaves to chance (Zufall) the time and the direction of the 

elementary processes; nevertheless, I have full confidence in the reliability 

of the way entered upon. 

When I had the great experience of meeting Einstein for the 
first time during a visit to Berlin in 1920, these fundamental 
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questions formed the theme of our conversations. The discus
sions, to which I have often reverted in my thoughts, added to 
all my admiration for Einstein a deep impression of his detached 
attitude. Certainly, his favoured use of such picturesque phrases 
as "ghost waves (Gespensterfelder) guiding the photons" im
plied no tendency to mysticism, but illuminated rather a pro
found humour behind his piercing remarks. Yet, a certain dif
ference in attitude and outlook remained, since, with his mastery 
for co-ordinating apparently contrasting experience without 
abandoning continuity and causality, Einstein was perhaps more 
reluctant to renounce such ideals than someone for whom re
nunciation in this respect appeared to be the only way open to 
proceed with the immediate task of co-ordinating the multifari
ous evidence regarding atomic phenomena, which accumulated 
from day to day in the exploration of this new field of knowl
edge. 

In the following years, during which the atomic problems at
tracted the attention of rapidly increasing circles of physicists, 
the apparent contradictions inherent in quantum theory were 
felt ever more acutely. Illustrative of this situation is the dis
cussion raised by the discovery of the Stern-Gerlach effect in 
1922. On the one hand, this effect gave striking support to the 
idea of stationary states and in particular to the quantum theory 
of the Zeeman effect developed by Sommerfeld 3 on the other 
hand, as exposed so clearly by Einstein and Ehrenfest,4 it pre
sented with unsurmountable difficulties any attempt at forming a 
picture of the behaviour of atoms in a magnetic field. Similar 
paradoxes were raised by the discovery by Compton (1924) of 
the change in wave-length accompanying the scattering of X-rays 
by electrons. This phenomenon afforded, as is well known, a most 
direct proof of the adequacy of Einstein's view regarding the 
transfer of energy and momentum in radiative processes; at the 
same time, it was equally clear that no simple picture of a 
corpuscular collision could offer an exhaustive description of 
the phenomenon. Under the impact of such difficulties, doubts 

'A. Einstein and P. Ehrenfest, Zs. f. Phys., n, 31, (1922). 
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were for a time entertained even regarding the conservation of 
energy and momentum in the individual radiation processes;5 

a view, however, which very soon had to be abandoned in face 
of more refined experiments bringing out the correlation be
tween the deflection of the photon and the corresponding elec
tron recoil. 

The way to the clarification of the situation was, indeed, first 
to be paved by the development of a more comprehensive 
quantum theory. A first step towards this goal was the recogni
tion by de Broglie in 1925 that the wave-corpuscle duality was 
not confined to the properties of radiation, but was equally 
unavoidable in accounting for the behaviour of material par
ticles. This idea, which was soon convincingly confirmed by ex
periments on electron interference phenomena, was at once 
greeted by Einstein, who had already envisaged the deep-going 
analogy between the properties of thermal radiation and of 
gases in the so-called degenerate state.® The new line was pur
sued with the greatest success by Schrodinger (1926) who, in 
particular, showed how the stationary states of atomic systems 
could be represented by the proper solutions of a wave-equation 
to the establishment of which he was led by the formal analogy, 
originally traced by Hamilton, between mechanical and optical 
problems. Still, the paradoxical aspects of quantum theory were 
in no way ameliorated, but even emphasized, by the apparent 
contradiction between the exigencies of the general superposi
tion principle of the wave description and the feature of in
dividuality of the elementary atomic processes. 

At the same time, Heisenberg (1925) had laid the foundation 
of a rational quantum mechanics, which was rapidly developed 
through important contributions by Born and Jordan as well as 
by Dirac. In this theory, a formalism is introduced, in which the 
kinematical and dynamical variables of classical mechanics are 
replaced by symbols subjected to a non-commutative algebra. 
Notwithstanding the renunciation of orbital pictures, Hamilton's 
canonical equations of mechanics are kept unaltered and 

5N. Bohr, H. A. Kramers and J. C. Slater, Phil. Mag., 47, 7 8 J ,  ( 1 9 2 4 ) .  

' A .  E i n s t e i n ,  Berl. Ber., ( 1 9 2 4 ) ,  2 6 1 ,  and ( 1 9 2 5 ) ,  3  and 1 8 .  
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Planck's constant enters only in the rules of commutation 

__ h 

q p  —  p q = V — I— (2) 
2π 

holding for any set of conjugate variables q and p. Through a 
representation of the symbols by matrices with elements re
ferring to transitions between stationary states, a quantitative 
formulation of the correspondence principle became for the first 
time possible. It may here be recalled that an important pre
liminary step towards this goal was reached through the estab
lishment, especially by contributions of Kramers, of a quantum 
theory of dispersion making basic use of Einstein's general rules 
for the probability of the occurrence of absorption and emission 
processes. 

This formalism of quantum mechanics was soon proved by 
Schrodinger to give results identical with those obtainable by 
the mathematically often more convenient methods of wave 
theory, and in the following years general methods were 
gradually established for an essentially statistical description of 
atomic processes combining the features of individuality and the 
requirements of the superposition principle, equally characteristic 
of quantum theory. Among the many advances in this period, it 
may especially be mentioned that the formalism proved capable 
of incorporating the exclusion principle which governs the states 
of systems with several electrons, and which already before the 
advent of quantum mechanics had been derived by Pauli from 
an analysis of atomic spectra. The quantitative comprehension 
of a vast amount of empirical evidence could leave no doubt as 
to the fertility and adequacy of the quantum-mechanical formal
ism, but its abstract character gave rise to a widespread feeling of 
uneasiness. An elucidation of the situation should, indeed, de
mand a thorough examination of the very observational prob
lem in atomic physics. 

This phase of the development was, as is well known, 
initiated in 1927 by Heisenberg,7 who pointed out that the 
knowledge obtainable of the state of an atomic system will al
ways involve a peculiar "indeterminacy." Thus, any measure
ment of the position of an electron by means of some device, 

7W. Heisenberg, Zs. f. Phys., 43, 172, (1927). 
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like a microscope, making use of high frequency radiation, will, 
according to the fundamental relations (i), be connected with 
a momentum exchange between the electron and the measuring 
agency, which is the greater the more accurate a position meas
urement is attempted. In comparing such considerations with 
the exigencies of the quantum-mechanical formalism, Heisen-
berg called attention to the fact that the commutation rule (2) 
imposes a reciprocal limitation on the fixation of two conjugate 
variables, q and φ, expressed by the relation 

Aq ' Ap ~ h,  (3)  

where Aq and Ap are suitably defined latitudes in the deter
mination of these variables. In pointing to the intimate con
nection between the statistical description in quantum mechanics 
and the actual possibilities of measurement, this so-called in
determinacy relation is, as Heisenberg showed, most important 
for the elucidation of the paradoxes involved in the attempts 
of analyzing quantum effects with reference to customary physi
cal pictures. 

The new progress in atomic physics was commented upon 
from various sides at the International Physical Congress held 
in September 1927, at Como in commemoration of Volta. In 
a lecture on that occasion,8 I advocated a point of view con
veniently termed "complementarity," suited to embrace the 
characteristic features of individuality of quantum phenomena, 
and at the same time to clarify the peculiar aspects of the ob
servational problem in this field of experience. For this purpose, 
it is decisive to recognize that, however far the phenomena 
transcend the scope of classical physical explanation, the ac
count of all evidence must be expressed in classical terms. The 
argument is simply that by the word "experiment" we refer to 
a situation where we can tell others what we have done and 
what we have learned and that, therefore, the account of the 
experimental arrangement and of the results of the observations 
must be expressed in unambiguous language with suitable ap
plication of the terminology of classical physics. 

This crucial point, which was to become a main theme of the 

8Atti del Congresso Internazionale dei Fisici, Como, Settembre 1927 (reprinted 
in Nature, 121, 78 and 580, 1928). 
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discussions reported in the following, implies the impossibility 
of any sharp separation between the behaviour of atomic ob
jects and, the interaction with the measuring instruments which 
serve to define the conditions tmder which the phenomena ap
pear. In fact, the individuality of the typical quantum effects 
finds its proper expression in the circumstance that any attempt 
of subdividing the phenomena will demand a change in the 
experimental arrangement introducing new possibilities of in
teraction between objects and measuring instruments which in 
principle cannot be controlled. Consequently, evidence obtained 
under different experimental conditions cannot be compre
hended within a single picture, but must be regarded as com
plementary in the sense that only the totality of the phenomena 
exhausts the possible information about the objects. 

Under these circumstances an essential element of ambiguity 
is involved in ascribing conventional physical attributes to 
atomic objects, as is at once evident in the dilemma regarding 
the corpuscular and wave properties of electrons and photons, 
where we have to do with contrasting pictures, each referring 
to an essential aspect of empirical evidence. An illustrative ex
ample, of how the apparent paradoxes are removed by an ex
amination of the experimental conditions under which the com
plementary phenomena appear, is also given by the Compton 
effect, the consistent description of which at first had presented 
us with such acute difficulties. Thus, any arrangement suited to 
study the exchange of energy and momentum between the 
electron and the photon must involve a latitude in the space-
time description of the interaction sufficient for the definition of 
wave-number and frequency which enter into the relation (ι). 
Conversely, any attempt of locating the collision between the 
photon and the electron more accurately would, on account of 
the unavoidable interaction with the fixed scales and clocks de
fining the space-time reference frame, exclude all closer account 
as regards the balance of momentum and energy. 

As stressed in the lecture, an adequate tool for a complement
ary way of description is offered precisely by the quantum-
mechanical formalism which represents a purely symbolic 
scheme permitting only predictions, on lines of the correspond
ence principle, as to results obtainable under conditions specified 
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by means of classical concepts. It must here be remembered that 
even in the indeterminacy relation (3) we are dealing with an 
implication of the formalism which defies unambiguous expres
sion in words suited to describe classical physical pictures. Thus, 
a sentence like "we cannot know both the momentum and the 
position of an atomic object" raises at once questions as to the 
physical reality of two such attributes of the object, which can 
be answered only by referring to the conditions for the un
ambiguous use of space-time concepts, on the one hand, and 
dynamical conservation laws, on the other hand. While the com
bination of these concepts into a single picture of a causal chain 
of events is the essence of classical mechanics, room for regulari
ties beyond the grasp of such a description is just afforded by 
the circumstance that the study of the complementary phenome
na demands mutually exclusive experimental arrangements. 

The necessity, in atomic physics, of a renewed examination 
of the foundation for the unambiguous use of elementary physi
cal ideas recalls in some way the situation that led Einstein to 
his original revision on the basis of all application of space-time 
concepts which, by its emphasis on the primordial importance 
of the observational problem, has lent such unity to our world 
picture. Notwithstanding all novelty of approach, causal de
scription is upheld in relativity theory within any given frame 
of reference, but in quantum theory the uncontrollable inter
action between the objects and the measuring instruments forces 
us to a renunciation even in such respect. This recognition, how
ever, in no way points to any limitation of the scope of the 
quantum-mechanical description, and the trend of the whole 
argumentation presented in the Como lecture was to show that 
the viewpoint of complementarity may be regarded as a ra
tional generalization of the very ideal of causality. 

At the general discussion in Como, we all missed the pre
sence of Einstein, but soon after, in October 1927, I had the 
opportunity to meet him in Brussels at the Fifth Physical Con
ference of the Solvay Institute, which was devoted to the theme 
"Electrons and Photons." At the Solvay meetings, Einstein had 
from their beginning been a most prominent figure, and several 
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of us came to the conference with great anticipations to learn 
his reaction to the latest stage of the development which, to our 
view, went far in clarifying the problems which he had himself 
from the outset elicited so ingeniously. During the discussions, 
where the whole subject was reviewed by contributions from 
many sides and where also the arguments mentioned in the 
preceding pages were again presented, Einstein expressed, how
ever, a deep concern over the extent to which causal account in 
space and time was abandoned in quantum mechanics. 

To illustrate his attitude, Einstein referred at one of the ses
sions® to the simple example, illustrated by Fig. i, of a particle 
(electron or photon) penetrating through a hole or a narrow 
slit in a diaphragm placed at some distance before a photo
graphic plate. On account of the diffraction of the wave con-

Fic. ι 

nected with the motion of the particle and indicated in the figure 
by the thin lines, it is under such conditions not possible to 
predict with certainty at what point the electron will arrive at 
the photographic plate, but only to calculate the probability 
that, in an experiment, the electron will be found within any 
given region of the plate. The apparent difficulty, in this de
scription, which Einstein felt so acutely, is the fact that, if in the 
experiment the electron is recorded at one point A of the plate, 

' Institut International de Physique Solvay, Raffort et discussions du Je Con-

seil, Paris 1928, 253ff. 
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then it is out of the question of ever observing an effect of this 
electron at another point (B), although the laws of ordinary 
wave propagation offer no room for a correlation between two 
such events. 

Einstein's attitude gave rise to ardent discussions within a 
small circle, in which Ehrenfest, who through the years had 
been a close friend of us both, took part in a most active and 
helpful way. Surely, we all recognized that, in the above ex
ample, the situation presents no analogue to the application of 
statistics in dealing with complicated mechanical systems, but 
rather recalled the background for Einstein's own early con
clusions about the unidirection of individual radiation effects 
which contrasts so strongly with a simple wave picture (cf. p. 
205). The discussions, however, centered on the question of 
whether the quantum-mechanical description exhausted the pos
sibilities of accounting for observable phenomena or, as Einstein 
maintained, the analysis could be carried further and, especially, 
of whether a fuller description of the phenomena could be ob
tained by bringing into consideration the detailed balance of 
energy and momentum in individual processes. 

To explain the trend of Einstein's arguments, it may be il
lustrative here to consider some simple features of the mo
mentum and energy balance in connection with the location of 
a particle in space and time. For this purpose, we shall examine 
the simple case of a particle penetrating through a hole in a 
diaphragm without or with a shutter to open and close the hole, 
as indicated in Figs. 2a and 2b, respectively. The equidistant 
parallel lines to the left in the figures indicate the train of plane 
waves corresponding to the state of motion of a particle which, 
before reaching the diaphragm, has a momentum P related to 
the wave-number σ by the second of equations (1). In accord
ance with the diffraction of the waves when passing through the 
hole, the state of motion of the particle to the right of the 
diaphragm is represented by a spherical wave train with a suit
ably defined angular aperture θ and, in case of Fig. 2b, also with 
a limited radial extension. Consequently, the description of this 
state involves a certain latitude A-p in the momentum component 
of the particle parallel to the diaphragm and, in the case of a 
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diaphragm with a shutter, an additional latitude AE of the 
kinetic energy. 

Since a measure for the latitude Aq in location of the par
ticle in the plane of the diaphragm is given by the radius a 
of the hole, and since θ~ (i/oa), we get, using (i), just 
Af ~ $P ~ (h/Aq), in accordance with the indeterminacy rela
tion (3). This result could, of course, also be obtained directly 
by noticing that, due to the limited extension of the wave-field 
at the place of the slit, the component of the wave-number 
parallel to the plane of the diaphragm will involve a latitude 
Δσ ~ (1 /a) ~ {1/Aq). Similarly, the spread of the frequencies 

Fic. 2a FIG. 2B 

of the harmonic components in the limited wave-train in Fig. 2b 
is evidently Av ~ (ι/At), where At is the time interval during 
which the shutter leaves the hole open and, thus, represents the 
latitude in time of the passage of the particle through the dia
phragm. From (1), we therefore get 

AE'At  ~  h }  (4) 

again in accordance with the relation (3) for the two conjugated 
var iab les  E and t .  

From the point of view of the laws of conservation, the origin 
of such latitudes entering into the description of the state of the 
particle after passing through the hole may be traced to the pos
sibilities of momentum and energy exchange with the diaphragm 



1.1 DISCUSSIONS WITH EINSTEIN 23 

or the shutter. In the reference system considered in Figs. 2a and 
2b, the velocity of the diaphragm may be disregarded and only 
a change of momentum Δρ between the particle and the dia
phragm needs to be taken into consideration. The shutter, how
ever, which leaves the hole opened during the time Δ/, moves 
with a considerable velocity ν ~ («/Δ/), and a momentum 
transfer Δρ involves therefore an energy exchange with the par
ticle, amounting to νΔρ ~ (ι/Δί) Δς Δρ ~ (Α/Δ/), being 
just of the same order of magnitude as the latitude ΔΕ given by 
(4) and, thus, allowing for momentum and energy balance. 

The problem raised by Einstein was now to what extent a 
control of the momentum and energy transfer, involved in a 
location of the particle in space and time, can be used for a 
further specification of the state of the particle after passing 
through the hole. Here, it must be taken into consideration that 
the position and the motion of the diaphragm and the shutter 
have so far been assumed to be accurately co-ordinated with the 
space-time reference frame. This assumption implies, in the 
description of the state of these bodies, an essential latitude as 
to their momentum and energy which need not, of course, 
noticeably affect the velocities, if the diaphragm and the shutter 
are sufficiently heavy. However, as soon as we want to know 
the momentum and energy of these parts of the measuring ar
rangement with an accuracy sufficient to control the momentum 
and energy exchange with the particle under investigation, we 
shall, in accordance with the general indeterminacy relations, 
lose the possibility of their accurate location in space and time. 
We have, therefore, to examine how far this circumstance will 
affect the intended use of the whole arrangement and, as we 
shall see, this crucial point clearly brings out the complementary 
character of the phenomena. 

Returning for a moment to the case of the simple arrange
ment indicated in Fig. 1, it has so far not been specified to what 
use it is intended. In fact, it is only on the assumption that the 
diaphragm and the plate have well-defined positions in space 
that it is impossible, within the frame of the quantum-mechani
cal formalism, to make more detailed predictions as to the point 
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of the photographic plate where the particle will be recorded. 
If, however, we admit a sufficiently large latitude in the knowl
edge of the position of the diaphragm it should, in principle, be 
possible to control the momentum transfer to the diaphragm 
and, thus, to make more detailed predictions as to the direction 
of the electron path from the hole to the recording poirt. As 
regards the quantum-mechanical description, we have to deal 
here with a two-body system consisting of the diaphragm as 
well as of the particle, and it is just with an explicit application 
of conservation laws to such a system that we are concerned in 
the Compton effect where, for instance, the observation of the 
recoil of the electron by means of a cloud chamber allows us to 
predict in what direction the scattered photon will eventually 
be observed. 

The importance of considerations of this kind was, in the 
course of the discussions, most interestingly illuminated by the 
examination of an arrangement where between the diaphragm 
with the slit and the photographic plate is inserted another 

& 
" I  

FIG. 3 

diaphragm with two parallel slits, as is shown in Fig. 3. If a 
parallel beam of electrons (or photons) falls from the left on 
the first diaphragm, we shall, under usual conditions, observe on 
the plate an interference pattern indicated by the shading of 
the photographic plate shown in front view to the right of the 
figure. With intense beams, this pattern is built up by the ac
cumulation of a large number of individual processes, each 
giving rise to a small spot on the photographic plate, and the 
distribution of these spots follows a simple law derivable from 
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the wave analysis. The same distribution should also be found 
in the statistical account of many experiments performed with 
beams so faint that in a single exposure only one electron (or 
photon) will arrive at the photographic plate at some spot 
shown in the figure as a small star. Since, now, as indicated by 
the broken arrows, the momentum transferred to the first 
diaphragm ought to be different if the electron was assumed 
to pass through the upper or the lower slit in the second dia
phragm, Einstein suggested that a control of the momentum 
transfer would permit a closer analysis of the phenomenon and, 
in particular, to decide through which of the two slits the elec
tron had passed before arriving at the plate. 

A closer examination showed, however, that the suggested 
control of the momentum transfer would involve a latitude in 
the knowledge of the position of the diaphragm which would 
exclude the appearance of the interference phenomena in ques
tion. In fact, if ω is the small angle between the conjectured 
paths of a particle passing through the upper or the lower slit, 
the difference of momentum transfer in these two cases will, ac
cording to (i), be equal to Λσω and any control of the mo
mentum of the diaphragm with an accuracy sufficient to measure 
this difference will, due to the indeterminacy relation, involve a 
minimum latitude of the position of the diaphragm, comparable 
with ι/σω. If, as in the figure, the diaphragm with the two 
slits is placed in the middle between the first diaphragm and 
the photographic plate, it will be seen that the number of fringes 
per unit length will be just equal to σω and, since an uncertainty 
in the position of the first diaphragm of the amount of ι/σω 
will cause an equal uncertainty in the positions of the fringes, 
it follows that no interference effect can appear. The same re
sult is easily shown to hold for any other placing of the second 
diaphragm between the first diaphragm and the plate, and 
would also be obtained if, instead of the first diaphragm, an
other of these three bodies were used for the control, for the 
purpose suggested, of the momentum transfer. 

This point is of great logical consequence, since it is only the 
circumstance that we are presented with a choice of either trac
ing the path of a particle or observing interference effects, which 
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allows us to escape from the paradoxical necessity of concluding 
that the behaviour of an electron or a photon should depend 
on the presence of a slit in the diaphragm through which it 
could be proved not to pass. We have here to do with a typical 
example of how the complementary phenomena appear under 
mutually exclusive experimental arrangements (cf. p. 210) and 
are just faced with the impossibility, in the analysis of quantum 
effects, of drawing any sharp separation between an independent 
behaviour of atomic objects and their interaction with the meas
uring instruments which serve to define the conditions under 
which the phenomena occur. 

Our talks about the attitude to be taken in face of a novel 
situation as regards analysis and synthesis of experience touched 
naturally on many aspects of philosophical thinking, but, in 
spite of all divergencies of approach and opinion, a most humor
ous spirit animated the discussions. On his side, Einstein mock
ingly asked us whether we could really believe that the pro
vidential authorities took recourse to dice-playing (". . . ob 
der liebe Gott wiirfelt"), to which I replied by pointing at the 
great caution, already called for by ancient thinkers, in ascribing 
attributes to Providence in every-day language. I remember also 
how at the peak of the discussion Ehrenfest, in his affectionate 
manner of teasing his friends, jokingly hinted at the apparent 
similarity between Einstein's attitude and that of the opponents 
of relativity theory; but instantly Ehrenfest added that he 
would not be able to find relief in his own mind before concord 
with Einstein was reached. 

Einstein's concern and criticism provided a most valuable in
centive for us all to reexamine the various aspects of the situa
tion as regards the description of atomic phenomena. To me it 
was a welcome stimulus to clarify still further the role played 
by the measuring instruments and, in order to bring into strong 
relief the mutually exclusive character of the experimental con
ditions under which the complementary phenomena appear, I 
tried in those days to sketch various apparatus in a pseudo-
realistic style of which the following figures are examples. 
Thus, for the study of an interference phenomenon of the type 
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indicated in Fig. 3, it suggests itself to use an experimental ar
rangement like that shown in Fig. 4, where the solid parts of 
the apparatus, serving as diaphragms and plate-holder, are 

FIG. 4 

firmly bolted to a common support. In such an arrangement, 
where the knowledge of the relative positions of the diaphragms 
and the photographic plate is secured by a rigid connection, it is 
obviously impossible to control the momentum exchanged be
tween the particle and the separate parts of the apparatus. The 
only way in which, in such an arrangement, we could insure 
that the particle passed through one of the slits in the second 
diaphragm is to cover the other slit by a lid, as indicated in the 
figure; but if the slit is covered, there is of course no question 
of any interference phenomenon, and on the plate we shall 
simply observe a continuous distribution as in the case of the 
single fixed diaphragm in Fig. 1. 

In the study of phenomena in the account of which we are 
dealing with detailed momentum balance, certain parts of the 
whole device must naturally be given the freedom to move 
independently of others. Such an apparatus is sketched in Fig. 
5, where a diaphragm with a slit is suspended by weak springs 
from a solid yoke bolted to the support on which also other 
immobile parts of the arrangement are to be fastened. The scale 
on the diaphragm together with the pointer on the bearings of 
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the yoke refer to such study of the motion of the diaphragm, as 
may be required for an estimate of the momentum transferred 
to it, permitting one to draw conclusions as to the deflection 
suffered by the particle in passing through the slit. Since, how
ever, any reading of the scale, in whatever way performed, will 

involve an uncontrollable change in the momentum of the 
diaphragm, there will always be, in conformity with the in
determinacy principle, a reciprocal relationship between our 
knowledge of the position of the slit and the accuracy of the 
momentum control. 

In the same semi-serious style, Fig. 6 represents a part of an 
arrangement suited for the study of phenomena which, in con
trast to those just discussed, involve time co-ordination ex
plicitly. It consists of a shutter rigidly connected with a robust 
clock resting on the support which carries a diaphragm and on 
which further parts of similar character, regulated by the same 
clock-work or by other clocks standardized relatively to it, are 
also to be fixed. The special aim of the figure is to underline 
that a clock is a piece of machinery, the working of which can 
completely be accounted for by ordinary mechanics and will be 

FIG. S 
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affected neither by reading of the position of its hands nor by 
the interaction between its accessories and an atomic particle. In 
securing the opening of the hole at a definite moment, an ap
paratus of this type might, for instance, be used for an accurate 
measurement of the time an electron or a photon takes to come 
from the diaphragm to some other place, but evidently, it 
would leave no possibility of controlling the energy transfer to 

FIG. 6 

the shutter with the aim of drawing conclusions as to the energy 
of the particle which has passed through the diaphragm. If we 
are interested in such conclusions we must, of course, use an 
arrangement where the shutter devices can no longer serve as 
accurate clocks, but where the knowledge of the moment when 
the hole in the diaphragm is open involves a latitude connected 
with the accuracy of the energy measurement by the general 
relation (4). 

The contemplation of such more or less practical arrange
ments and their more or less fictitious use proved most instruc
tive in directing attention to essential features of the problems. 
The main point here is the distinction between the objects under 
investigation and the measuring instruments which serve to de
fine, in classical terms, the conditions under which the 
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phenomena appear. Incidentally, we may remark that, for the 
illustration of the preceding considerations, it is not relevant 
that experiments involving an accurate control of the mo
mentum or energy transfer from atomic particles to heavy 
bodies like diaphragms and shutters would be very difficult to 
perform, if practicable at all. It is only decisive that, in contrast 
to the proper measuring instruments, these bodies together with 
the particles would in such a case constitute the system to which 
the quantum-mechanical formalism has to be applied. As re
gards the specification of the conditions for any well-defined 
application of the formalism, it is moreover essential that the 
whole experimental arrangement be taken into account. In fact, 
the introduction of any further piece of apparatus, like a mirror, 
in the way of a particle might imply new interference effects 
essentially influencing the predictions as regards the results to 
be eventually recorded. 

The extent to which renunciation of the visualization of 
atomic phenomena is imposed upon us by the impossibility of 
their subdivision is strikingly illustrated by the following ex
ample to which Einstein very early called attention and often 
has reverted. If a semi-reflecting mirror is placed in the way 
of a photon, leaving two possibilities for its direction of propaga
tion, the photon may either be recorded on one, and only one, 
of two photographic plates situated at great distances in the two 
directions in question, or else we may, by replacing the plates 
by mirrors, observe effects exhibiting an interference between 
the two reflected wave-trains. In any attempt of a pictorial 
representation of the behaviour of the photon we would, thus, 
meet with the difficulty: to be obliged to say, on the one hand, 
that the photon always chooses one of the two ways and, on the 
other hand, that it behaves as if it had passed both ways. 

It is just arguments of this kind which recall the impossibility 
of subdividing quantum phenomena and reveal the ambiguity 
in ascribing customary physical attributes to atomic objects. In 
particular, it must be realized that—besides in the account of 
the placing and timing of the instruments forming the experi
mental arrangement—all unambiguous use of space-time con
cepts in the description of atomic phenomena is confined to the 
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recording of observations which refer to marks on a photo
graphic plate or to similar practically irreversible amplification 
effects like the building of a water drop around an ion in a 
cloud-chamber. Although, of course, the existence of the 
quantum of action is ultimately responsible for the properties 
of the materials of which the measuring instruments are built 
and on which the functioning of the recording devices depends, 
this circumstance is not relevant for the problems of the ade
quacy and completeness of the quantum-mechanical description 
in its aspects here discussed. 

These problems were instructively commented upon from 
different sides at the Solvay meeting,10 in the same session 
where Einstein raised his general objections. On that occasion 
an interesting discussion arose also about how to speak of the 
appearance of phenomena for which only predictions of statisti
cal character can be made. The question was whether, as to the 
occurrence of individual effects, we should adopt a terminology 
proposed by Dirac, that we were concerned with a choice on 
the part of "nature" or, as suggested by Heisenberg, we should 
say that we have to do with a choice on the part of the "ob
server" constructing the measuring instruments and reading 
their recording. Any such terminology would, however, appear 
dubious since, on the one hand, it is hardly reasonable to endow 
nature with volition in the ordinary sense, while, on the other 
hand, it is certainly not possible for the observer to influence the 
events which may appear under the conditions he has arranged. 
To my mind, there is no other alternative than to admit that, 
in this field of experience, we are dealing with individual phe
nomena and that our possibilities of handling the measuring in
struments allow us only to make a choice between the different 
complementary types of phenomena we want to study. 

The epistemological problems touched upon here were more 
explicitly dealt with in my contribution to the issue of Natur-
wissenschaften in celebration of Planck's 70th birthday in 1929· 
In this article, a comparison was also made between the lesson 
derived from the discovery of the universal quantum of action 

wIbid., 248S. 
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and the development which has followed the discovery of the 
finite velocity of light and which, through Einstein's pioneer 
work, has so greatly clarified basic principles of natural philos
ophy. In relativity theory, the emphasis on the dependence of 
all phenomena on the reference frame opened quite new ways 
of tracing general physical laws of unparalleled scope. In quan
tum theory, it was argued, the logical comprehension of hitherto 
unsuspected fundamental regularities governing atomic phe
nomena has demanded the recognition that no sharp separation 
can be made between an independent behaviour of the objects 
and their interaction with the measuring instruments which de
fine the reference frame. 

In this respect, quantum theory presents us with a novel 
situation in physical science, but attention was called to the very 
close analogy with the situation as regards analysis and syn
thesis of experience, which we meet in many other fields of 
human knowledge and interest. As is well known, many of the 
difficulties in psychology originate in the different placing of 
the separation lines between object and subject in the analysis 
of various aspects of psychical experience. Actually, words like 
"thoughts" and "sentiments," equally indispensable to illus
trate the variety and scope of conscious life, are used in a simi
lar complementary way as are space-time co-ordination and 
dynamical conservation laws in atomic physics. A precise for
mulation of such analogies involves, of course, intricacies of 
terminology, and the writer's position is perhaps best indicated 
in a passage in the article, hinting at the mutually exclusive 
relationship which will always exist between the practical use 
of any word and attempts at its strict definition. The principal 
aim, however, of these considerations, which were not least in
spired by the hope of influencing Einstein's attitude, was to 
point to perspectives of bringing general epistemological prob
lems into relief by means of a lesson derived from the study of 
new, but fundamentally simple physical experience. 

At the next meeting with Einstein at the Solvay Conference 
in 1930, our discussions took quite a dramatic turn. As an ob
jection to the view that a control of the interchange of momen-
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turn and energy between the objects and the measuring in
struments was excluded if these instruments should serve their 
purpose of defining the space-time frame of the phenomena, 
Einstein brought forward the argument that such control should 
be possible when the exigencies of relativity theory were taken 
into consideration. In particular, the general relationship be
tween energy and mass, expressed in Einstein's famous formula 

should allow, by means of simple weighing, to measure the 
total energy of any system and, thus, in principle to control 
the energy transferred to it when it interacts with an atomic 
object. 

As an arrangement suited for such purpose, Einstein pro
posed the device indicated in Fig. 7, consisting of a box with 

a hole in its side, which could be opened or closed by a shutter 
moved by means of a clock-work within the box. If, in the be
ginning, the box contained a certain amount of radiation and 
the clock was set to open the shutter for a very short interval 
at a chosen time, it could be achieved that a single photon was 
released through the hole at a moment known with as great 
accuracy as desired. Moreover, it would apparently also be 
possible, by weighing the whole box before and after this event, 
to measure the energy of the photon with any accuracy wanted, 

E ----- mc2 (5) 

FIG. 7 
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in definite contradiction to the reciprocal indeterminacy of time 
and energy quantities in quantum mechanics. 

This argument amounted to a serious challenge and gave rise 
to a thorough examination of the whole problem. At the out
come of the discussion, to which Einstein himself contributed 
effectively, it became clear, however, that this argument could 
not be upheld. In fact, in the consideration of the problem, it 
was found necessary to look closer into the consequences of 
the identification of inertial and gravitational mass implied in 
the application of relation (5). Especially, it was essential to 
take into account the relationship between the rate of a clock 
and its position in a gravitational field—well known from the 
red-shift of the lines in the sun's spectrum—following from 
Einstein's principle of equivalence between gravity effects and 
the phenomena observed in accelerated reference frames. 

Our discussion concentrated on the possible application of an 
apparatus incorporating Einstein's device and drawn in Fig. 8 
in the same pseudo-realistic style as some of the preceding 
figures. The box, of which a section is shown in order to ex
hibit its interior, is suspended in a spring-balance and is fur
nished with a pointer to read its position on a scale fixed to the 
balance support. The weighing of the box may thus be per
formed with any given accuracy Am by adjusting the balance 
to its zero position by means of suitable loads. The essential 
point is now that any determination of this position with a given 
accuracy Aq will involve a minimum latitude Ap in the control 
of the momentum of the box connected with Aq by the rela
tion (3). This latitude must obviously again be smaller than 
the total impulse which, during the whole interval T of the 
balancing procedure, can be given by the gravitational field to 
a body with a mass Am, or 

h 
Ap ~ <CT'g 'Am,  (6)  

Aq 

where g is the gravity constant. The greater the accuracy of the 
reading q of the pointer, the longer must, consequently, be the 
balancing interval Ty if a given accuracy Am of the weighing of 
the box with its content shall be obtained. 
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Now, according to general relativity theory, a clock, when 
displaced in the direction of the gravitational force by an 
amount of Aq, will change its rate in such a way that its reading 

FIG. 8 

in the course of a time interval T will differ by an amount ΔΓ 
given by the relation 

ι A 

— = — gAq. (7) 
1 c 

By comparing (6) and (7) we see, therefore, that after the 
weighing procedure there will in our knowledge of the adjust
ment of the clock be a latitude 
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ΔΓ > 
c2hs.m 

Together with the formula (5), this relation again leads to 

ΔΓ·Δ£ > h, 

in accordance with the indeterminacy principle. Consequently, 
a use of the apparatus as a means of accurately measuring the 
energy of the photon will prevent us from controlling the 
moment of its escape. 

The discussion, so illustrative of the power and consistency 
of relativistic arguments, thus emphasized once more the neces
sity of distinguishing, in the study of atomic phenomena, be
tween the proper measuring instruments which serve to define 
the reference frame and those parts which are to be regarded as 
objects under investigation and in the account of which quantum 
effects cannot be disregarded. Notwithstanding the most sug
gestive confirmation of the soundness and wide scope of the 
quantum-mechanical way of description, Einstein nevertheless, 
in a following conversation with me, expressed a feeling of dis
quietude as regards the apparent lack of firmly laid down prin
ciples for the explanation of nature, in which all could agree. 
From my viewpoint, however, I could only answer that, in 
dealing with the task of bringing order into an entirely new 
field of experience, we could hardly trust in any accustomed 
principles, however broad, apart from the demand of avoiding 
logical inconsistencies and, in this respect, the mathematical 
formalism of quantum mechanics should surely meet all re
quirements. 

The Solvay meeting in 1930 was the last occasion where, 
in common discussions with Einstein, we could benefit from 
the stimulating and mediating influence of Ehrenfest, but 
shortly before his deeply deplored death in 1933 he told me 
that Einstein was far from satisfied and with his usual acuteness 
had discerned new aspects of the situation which strengthened 
his critical attitude. In fact, by further examining the possibili
ties for the application of a balance arrangement, Einstein had 
perceived alternative procedures which, even if they did not 
allow the use he originally intended, might seem to enhance 
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the paradoxes beyond the possibilities of logical solution. Thus, 
Einstein had pointed out that, after a preliminary weighing of 
the box with the clock and the subsequent escape of the photon, 
one was still left with the choice of either repeating the weigh
ing or opening the box and comparing the reading of the clock 
with the standard time scale. Consequently, we are at this stage 
still free to choose whether we want to draw conclusions either 
about the energy of the photon or about the moment when it 
left the box. Without in any way interfering with the photon 
between its escape and its later interaction with other suitable 
measuring instruments, we are, thus, able to make accurate pre
dictions pertaining either to the moment of its arrival or to the 
amount of energy liberated by its absorption. Since, however, 
according to the quantum-mechanical formalism, the specifica
tion of the state of an isolated particle cannot involve both a 
well-defined connection with the time scale and an accurate 
fixation of the energy, it might thus appear as if this formalism 
did not offer the means of an adequate description. 

Once more Einstein's searching spirit had elicited a peculiar 
aspect of the situation in quantum theory, which in a most strik
ing manner illustrated how far we have here transcended cus
tomary explanation of natural phenomena. Still, I could not 
agree with the trend of his remarks as reported by Ehrenfest. 
In my opinion, there could be no other way to deem a logically 
consistent mathematical formalism as inadequate than by dem
onstrating the departure of its consequences from experience or 
by proving that its predictions did not exhaust the possibilities 
of observation, and Einstein's argumentation could be directed 
to neither of these ends. In fact, we must realize that in the 
problem in question we are not dealing with a single specified 
experimental arrangement, but are referring to two different, 
mutually exclusive arrangements. In the one, the balance to
gether with another piece of apparatus like a spectrometer is 
used for the study of the energy transfer by a photon; in the 
other, a shutter regulated by a standardized clock together with 
another apparatus of similar kind, accurately timed relatively 
to the clock, is used for the study of the time of propagation of 
a photon over a given distance. In both these cases, as also as-
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sumed by Einstein, the observable effects are expected to be in 
complete conformity with the predictions of the theory. 

The problem again emphasizes the necessity of considering 
the whole experimental arrangement, the specification of which 
is imperative for any well-defined application of the quantum-
mechanical formalism. Incidentally, it may be added that para
doxes of the kind contemplated by Einstein are encountered also 
in such simple arrangements as sketched in Fig. 5. In fact, after 
a preliminary measurement of the momentum of the dia
phragm, we are in principle offered the choice, when an elec
tron or photon has passed through the slit, either to repeat the 
momentum measurement or to control the position of the dia
phragm and, thus, to make predictions pertaining to alternative 
subsequent observations. It may also be added that it obviously 
can make no difference as regards observable effects obtainable 
by a definite experimental arrangement, whether our plans of 
constructing or handling the instruments are fixed beforehand 
or whether we prefer to postpone the completion of our plan
ning until a later moment when the particle is already on its 
way from one instrument to another. 

In the quantum-mechanical description our freedom of con
structing and handling the experimental arrangement finds its 
proper expression in the possibility of choosing the classically 
defined parameters entering in any proper application of the 
formalism. Indeed, in all such respects quantum mechanics ex
hibits a correspondence with the state of affairs familiar from 
classical physics, which is as close as possible when considering 
the individuality inherent in the quantum phenomena. Just in 
helping to bring out this point so clearly, Einstein's concern 
had therefore again been a most welcome incitement to explore 
the essential aspects of the situation. 

The next Solvay meeting in 1933 was devoted to the prob
lems of the structure and properties of atomic nuclei, in which 
field such great advances were made just in that period due to 
the experimental discoveries as well as to new fruitful applica
tions of quantum mechanics. It need in this connection hardly 
be recalled that just the evidence obtained by the study of arti-



1.1 DISCUSSIONS WITH EINSTEIN 39 

ficial nuclear transformations gave a most direct test of Ein
stein's fundamental law regarding the equivalence of mass and 
energy, which was to prove an evermore important guide for re
searches in nuclear physics. It may also be mentioned how Ein
stein's intuitive recognition of the intimate relationship between 
the law of radioactive transformations and the probability rules 
governing individual radiation effects (cf. p. 205) was confirmed 
by the quantum-mechanical explanation of spontaneous nuclear 
disintegrations. In fact, we are here dealing with a typical ex
ample of the statistical mode of description, and the comple
mentary relationship between energy-momentum conservation 
and time-space co-ordination is most strikingly exhibited in the 
well-known paradox of particle penetration through potential 
barriers. 

Einstein himself did not attend this meeting, which took 
place at a time darkened by the tragic developments in the 
political world which were to influence his fate so deeply and 
add so greatly to his burdens in the service of humanity. A few 
months earlier, on a visit to Princeton where Einstein was then 
guest of the newly founded Institute for Advanced Study to 
which he soon after became permanently attached, I had, how
ever, opportunity to talk with him again about the epistemologi-
cal aspects of atomic physics, but the difference between our 
ways of approach and expression still presented obstacles to 
mutual understanding. While, so far, relatively few persons 
had taken part in the discussions reported in this article, Ein
stein's critical attitude towards the views on quantum theory 
adhered to by many physicists was soon after brought to public 
attention through a paper11 with the title "Can Quantum-Me
chanical Description of Physical Reality Be Considered Com
plete?," published in 1935 by Einstein, Podolsky and Rosen. 

The argumentation in this paper is based on a criterion which 
the authors express in the following sentence: "If, without in 
any way disturbing a system, we can predict with certainty (i.e., 
with probability equal to unity) the value of a physical quan
tity, then there exists an element of physical reality correspond-

" A. Einstein, B. Podolsky and N. Rosen, Phys. Reu., 47, 777, (1935). 
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ing to this physical quantity." By an elegant exposition of the 
consequences of the quantum-mechanical formalism as regards 
the representation of a state of a system, consisting of two parts 
which have been in interaction for a limited time interval, it is 
next shown that different quantities, the fixation of which can
not be combined in the representation of one of the partial sys
tems, can nevertheless be predicted by measurements pertaining 
to the other partial system. According to their criterion, the 
authors therefore conclude that quantum mechanics does not 
"provide a complete description of the physical reality," and 
they express their belief that it should be possible to develop a 
more adequate account of the phenomena. 

Due to the lucidity and apparently incontestable character of 
the argument, the paper of Einstein, Podolsky and Rosen cre
ated a stir among physicists and has played a large role in gen
eral philosophical discussion. Certainly the issue is of a very 
subtle character and suited to emphasize how far, in quantum 
theory, we are beyond the reach of pictorial visualization. It 
will be seen, however, that we are here dealing with problems 
of just the same kind as those raised by Einstein in previous 
discussions, and, in an article which appeared a few months 
later,12 I tried to show that from the point of view of comple
mentarity the apparent inconsistencies were completely re
moved. The trend of the argumentation was in substance the 
same as that exposed in the .foregoing pages, but the aim of re
calling the way in which the situation was discussed at that time 
may be an apology for citing certain passages from my article. 

Thus, after referring to the conclusions derived by Einstein, 
Podolsky and Rosen on the basis of their criterion, I wrote: 

Such an argumentation, however, would hardly seem suited to affect the 
soundness of quantum-mechanical description, which is based on a co

herent mathematical formalism covering automatically any procedure 
of measurement like that indicated. The apparent contradiction in fact 

discloses only an essential inadequacy of the customary viewpoint of 

natural philosophy for a rational account of physical phenomena of the 

type with which we are concerned in quantum mechanics. Indeed the 
finite interaction between object and measuring agencies conditioned 

12N. Bohr, Phys. Rev., 48, 696, (1935). 
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by the very existence of the quantum of action entails—because of the 

impossibility of controlling the reaction of the object on the measuring 

instruments, if these are to serve their purpose—the necessity of a final re
nunciation of the classical ideal of causality and a radical revision of our 

attitude towards the problem of physical reality. In fact, as we shall see, 

a criterion of reality like that proposed by the named authors contains— 
however cautious its formulation may appear—an essential ambiguity 

when it is applied to the actual problems with which we are here con

cerned. 

As regards the special problem treated by Einstein, Podolsky 
and Rosen, it was next shown that the consequences of the for
malism as regards the representation of the state of a system 
consisting of two interacting atomic objects correspond to the 
simple arguments mentioned in the preceding in connection 
with the discussion of the experimental arrangements suited for 
the study of complementary phenomena. In fact, although any 
pair q and p, of conjugate space and momentum variables obeys 
the rule of non-commutative multiplication expressed by (2), 
and can thus only be fixed with reciprocal latitudes given by 
(3), the difference qx —• q2 between two space-co-ordinates re
ferring to the constituents of the system will commute with the 
sum ρλ -j- p2 of the corresponding momentum components, as 
follows directly from the commutability of q± with pi and q-i 
with pi. Both qx — q2 and px -(- p2 can, therefore, be accurately 
fixed in a state of the complex system and, consequently, we can 
predict the values of either qx or p\ if either q% or />2, respec
tively, are determined by direct measurements. If, for the two 
parts of the system, we take a particle and a diaphragm, like 
that sketched in Fig. 5, we see that the possibilities of specifying 
the state of the particle by measurements on the diaphragm just 
correspond to the situation described on p. 220 and further 
discussed on p. 230, where it was mentioned that, after the 
particle has passed through the diaphragm, we have in princi
ple the choice of measuring either the position of the diaphragm 
or its momentum and, in each case, to make predictions as to 
subsequent observations pertaining to the particle. As repeatedly 
stressed, the principal point is here that such measurements de
mand mutually exclusive experimental arrangements. 
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The argumentation of the article was summarized in the 
following passage: 

From our point of view we now see that the wording of the above-
mentioned criterion of physical reality proposed by Einstein, Podolsky, 
and Rosen contains an ambiguity as regards the meaning of the expres
sion 'without in any way disturbing a system.' Of course there is in a 
case like that just considered no question of a mechanical disturbance of 
the system under investigation during the last critical stage of the measur
ing procedure. But even at this stage there is essentially the question of 
an influence on the very conditions which define the possible types of 

predictions regarding the future behaviour of the system. Since these 
conditions constitute an inherent element of the description of any phe
nomenon to which the term "physical reality" can be properly attached, 
we see that the argumentation of the mentioned authors does not justify 
their conclusion that quantum-mechanical description is essentially incom
plete. On the contrary, this description, as appears from the preceding 
discussion, may be characterized as a rational utilization of all pos

sibilities of unambiguous interpretation of measurements, compatible with 

the finite and uncontrollable interaction between the objects and the 
measuring instruments in the field of quantum theory. In fact, it is only 
the mutual exclusion of any two experimental procedures, permitting 
the unambiguous definition of complementary physical quantities, which 
provides room for new physical laws, the coexistence of which might at 
first sight appear irreconcilable with the basic principles of science. It is 
just this entirely new situation as regards the description of physical 
phenomena that the notion of complementarity aims at characterizing. 

Rereading these passages, I am deeply aware of the ineffi
ciency of expression which must have made it very difficult to 
appreciate the trend of the argumentation aiming to bring out 
the essential ambiguity involved in a reference to physical at
tributes of objects when dealing with phenomena where no 
sharp distinction can be made between the behaviour of the 
objects themselves and their interaction with the measuring in
struments. I hope, however, that the present account of the dis
cussions with Einstein in the foregoing years, which contributed 
so greatly to make us familiar with the situation in quantum 
physics, may give a clearer impression of the necessity of a 
radical revision of basic principles for physical explanation in 
order to restore logical order in this field of experience. 
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Einstein's own views at that time are presented in an article 
"Physics and Reality," published in 1936 in the Journal of the 
Franklin Institute.™." Starting from a most illuminating exposi
tion of the gradual development of the fundamental principles 
in the theories of classical physics and their relation to the 
problem of physical reality, Einstein here argues that the quan
tum-mechanical description is to be considered merely as a 
means of accounting for the average behaviour of a large num
ber of atomic systems and his attitude to the belief that it 
should offer an exhaustive description of the individual phe
nomena is expressed in the following words: "To believe this 
is logically possible without contradiction; but it is so very con
trary to my scientific instinct that I cannot forego the search for 
a more complete conception." 

Even if such an attitude might seem well-balanced in itself, 
it nevertheless implies a rejection of the whole argumentation 
exposed in the preceding, aiming to show that, in quantum me
chanics, we are not dealing with an arbitrary renunciation of a 
more detailed analysis of atomic phenomena, but with a recog
nition that such an analysis is in principle excluded. The peculiar 
individuality of the quantum effects presents us, as regards the 
comprehension of well-defined evidence, with a novel situation 
unforeseen in classical physics and irreconcilable with conven
tional ideas suited for our orientation and adjustment to or
dinary experience. It is in this respect that quantum theory has 
called for a renewed revision of the foundation for the unam
biguous use of elementary concepts, as a further step in the de
velopment which, since the advent of relativity theory, has been 
so characteristic of modern science. 

In the following years, the more philosophical aspects of the 
situation in atomic physics aroused the interest of ever larger 
circles and were, in particular, discussed at the Second Interna
tional Congress for the Unity of Science in Copenhagen in 
July 1936. In a lecture on this occasion,14 I tried especially to 

"A. Einstein, Journ. Frankl. Imt., 22/, 349, (1936). 
14N. Bohr, Erkenntnut 6, 293, (1937), and Philosofhy of Science, 4, 289, 

(1937)· 
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stress the analogy in epistemological respects between the limi
tation imposed on the causal description in atomic physics and 
situations met with in other fields of knowledge. A principal 
purpose of such parallels was to call attention to the necessity 
in many domains of general human interest to face problems of 
a similar kind as those which had arisen in quantum theory and 
thereby to give a more familiar background for the apparently 
extravagant way of expression which physicists have developed 
to cope with their acute difficulties. 

Besides the complementary features conspicuous in psychol
ogy and already touched upon (cf. p. 224), examples of such 
relationships can also be traced in biology, especially as regards 
the comparison between mechanistic and vitalistic viewpoints. 
Just with respect to the observational problem, this last question 
had previously been the subject of an address to the Interna
tional Congress on Light Therapy held in Copenhagen in 
1932,15 where it was incidentally pointed out that even the 
psycho-physical parallelism as envisaged by Leibniz and Spin
oza has obtained a wider scope through the development of 
atomic physics, which forces us to an attitude towards the prob
lem of explanation recalling ancient wisdom, that when search
ing for harmony in life one must never forget that in the drama 
of existence we are ourselves both actors and spectators. 

Utterances of this kind would naturally in many minds evoke 
the" impression of an underlying mysticism foreign to the spirit 
of science J at the above mentioned Congress in 1936 I there
fore tried to clear up such misunderstandings and to explain 
that the only question was an endeavour to clarify the condi
tions, in each field of knowledge, for the analysis and synthesis 
of experience.14 Yet, I am afraid that I had in this respect only 
little success in convincing my listeners, for whom the dissent 
among the physicists themselves was naturally a cause of scepti
cism as to the necessity of going so far in renouncing customary 
demands as regards the explanation of natural phenomena. Not 
least through a new discussion with Einstein in Princeton in 
1937, where we did not get beyond a humourous contest con-

18IIe Congres international de la Lumi^re, Copenhague 1932 (reprinted in 

Naturei /3/, 421 and 457, 1933). 
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cerning which side Spinoza would have taken if he had lived 
to see the development of our days, I was strongly reminded of 
the importance of utmost caution in all questions of terminology 
and dialectics. 

These aspects of the situation were especially discussed at a 
meeting in Warsaw in 1938, arranged by the International In
stitute of Intellectual Co-operation of the League of Nations.16 

The preceding years had seen great progress in quantum phy
sics due to a number of fundamental discoveries regarding the 
constitution and properties of atomic nuclei as well as due to 
important developments of the mathematical formalism taking 
the requirements of relativity theory into account. In the last 
respect, Dirac's ingenious quantum theory of the electron of
fered a most striking illustration of the power and fertility of 
the general quantum-mechanical way of description. In the phe
nomena of creation and annihilation of electron pairs we have 
in fact to do with new fundamental features of atomicity, which 
are intimately connected with the non-classical aspects of quan
tum statistics expressed in the exclusion principle, and which 
have demanded a still more far-reaching renunciation of ex
planation in terms of a pictorial representation. 

Meanwhile, the discussion of the epistemological problems 
in atomic physics attracted as much attention as ever and, in 
commenting on Einstein's views as regards the incompleteness 
of the quantum-mechanical mode of description, I entered more 
directly on questions of terminology. In this connection I 
warned especially against phrases, often found in the physical 
literature, such as "disturbing of phenomena by observation" or 
"creating physical attributes to atomic objects by measure
ments." Such phrases, which may serve to remind of the ap
parent paradoxes in quantum theory, are at the same time apt 
to cause confusion, since words like "phenomena" and "obser
vations," just as "attributes" and "measurements," are used in 
a way hardly compatible with common language and practical 
definition. 

As a more appropriate way of expression I advocated the ap-

le New Theories in Physics (Paris 1938), 11. 
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plication of the word 'phenomenon exclusively to refer to the 
observations obtained under specified circumstances, including 
an account of the whole experimental arrangement. In such 
terminology, the observational problem is free of any special 
intricacy since, in actual experiments, all observations are ex
pressed by unambiguous statements referring, for instance, to 
the registration of the point at which an electron arrives at a 
photographic plate. Moreover, speaking in such a way is just 
suited to emphasize that the appropriate physical interpretation 
of the symbolic quantum-mechanical formalism amounts only 
to predictions, of determinate or statistical character, pertain
ing to individual phenomena appearing under conditions de
fined by classical physical concepts. 

Notwithstanding all differences between the physical prob
lems which have given rise to the development of relativity 
theory and quantum theory, respectively, a comparison of 
purely logical aspects of relativistic and complementary argu
mentation reveals striking similarities as regards the renuncia
tion of the absolute significance of conventional physical attri
butes of objects. Also, the neglect of the atomic constitution of 
the measuring instruments themselves, in the account of actual 
experience, is equally characteristic of the applications of rela
tivity and quantum theory. Thus, the smallness of the quantum 
of action compared with the actions involved in usual experi
ence, including the arranging and handling of physical ap
paratus, is as essential in atomic physics as is the enormous 
number of atoms composing the world in the general theory 
of relativity which, as often pointed out, demands that dimen
sions of apparatus for measuring angles can be made small com
pared with the radius of curvature of space. 

In the Warsaw lecture, I commented upon the use of not 
directly visualizable symbolism in relativity and quantum 
theory in the following way: 

Even the formalisms, which in both theories within their scope offer ade

quate means of comprehending all conceivable experience, exhibit deep-

going analogies. In fact, the astounding simplicity of the generalization of 
classical physical theories, which are obtained by the use of multidimen
sional geometry and non-commutative algebra, respectively, rests in both 
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cases essentially on the introduction of the conventional symbol V — i. 
The abstract character of the formalisms concerned is indeed, on closer 
examination, as typical of relativity theory as it is of quantum mechanics, 
and it is in this respect purely a matter of tradition if the former theory 
is considered as a completion of classical physics rather than as a first 
fundamental step in the thoroughgoing revision of our conceptual means 
of comparing observations, which the modern development of physics has 
forced upon us. 

It is, of course, true that in atomic physics we are confronted 
with a number of unsolved fundamental problems, especially 
as regards the intimate relationship between the elementary 
unit of electric charge and the universal quantum of action; 
but these problems are no more connected with the epistemo-
logical points here discussed than is the adequacy of relativistic 
argumentation with the issue of thus far unsolved problems of 
cosmology. Both in relativity and in quantum theory we are 
concerned with new aspects of scientific analysis and synthesis 
and, in this connection, it is interesting to note that, even in the 
great epoch of critical philosophy in the former century, there 
was only question to what extent a friori arguments could 
be given for the adequacy of space-time co-ordination and 
causal connection of experience, but never question of rational 
generalizations or inherent limitations of such categories of 
human thinking. 

Although in more recent years I have had several occasions 
of meeting Einstein, the continued discussions, from which I 
always have received new impulses, have so far not led to a 
common view about the epistemological problems in atomic 
physics, and our opposing views are perhaps most clearly stated 
in a recent issue of Dialectical bringing a general discussion of 
these problems. Realizing, however, the many obstacles for 
mutual understanding as regards a matter where approach and 
background must influence everyone's attitude, I have wel
comed this opportunity of a broader exposition of the develop
ment by which, to my mind, a veritable crisis in physical science 
has been overcome. The lesson we have hereby received would 
seem to have brought us a decisive step further in the never-

"N. Bohr, Oialectlcai i, 312 (1948). 
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ending struggle for harmony between content and form, and 
taught us once again that no content can be grasped without a 
formal frame and that any form, however useful it has hitherto 
proved, may be found to be too narrow to comprehend new ex
perience. 

Surely, in a situation like this, where it has been difficult to 
reach mutual understanding not only between philosophers and 
physicists but even between physicists of different schools, the 
difficulties have their root not seldom in the preference for a 
certain use of language suggesting itself- from the different lines 
of approach. In the Institute in Copenhagen, where through 
those years a number of young physicists from various countries 
came together for discussions, we used, when in trouble, often to 
comfort ourselves with jokes, among them the old saying of the 
two kinds of truth. To the one kind belong statements so sim
ple and clear that the opposite assertion obviously could not be 
defended. The other kind, the so-called "deep truths," are 
statements in which the opposite also contains deep truth. Now, 
the development in a new field will usually pass through stages 
in which chaos becomes gradually replaced by order; but it is 
not least in the intermediate stage where deep truth prevails 
that the work is really exciting and inspires the imagination to 
search for a firmer hold. For such endeavours of seeking the 
proper balance between seriousness and humour, Einstein's own 
personality stands as a great example and, when expressing my 
belief that through a singularly fruitful co-operation of a whole 
generation of physicists we are nearing the goal where logical 
order to a large extent allows us to avoid deep truth, I hope 
that it will be taken in his spirit and may serve as an apology for 
several utterances in the preceding pages. 

The discussions with Einstein which have formed the theme 
of this article have extended over many years which have wit
nessed great progress in the field of atomic physics. Whether 
our actual meetings have been of short or long duration, they 
have always left a deep and lasting impression on my mind, 
and when writing this report I have, so-to-say, been arguing 
with Einstein all the time even when entering on topics ap-
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parently far removed from the special problems under debate 
at our meetings. As regards the account of the conversations I 
am, of course, aware that I am relying only on my own memory, 
just as I am prepared for the possibility that many features of 
the development of quantum theory, in which Einstein has 
played so large a part, may appear to himself in a different 
light. I trust, however, that I have not failed in conveying a 
proper impression of how much it has meant to me to be able 
to benefit from the inspiration which we all derive from every 
contact with Einstein. 

NIELS BOHR 
UNIVERSITETETS INSTITUT 

FOR TEORETISK FYSIK 
COPENHAGEN, DENMARK 



1.2 BORN'S PROBABILISTIC INTERPRETATION 

COMMENTARY OF ROSENFELD (1971A) 

. . .  S c h r o d i n g e r  m a d e  n o  s e c r e t  o f  h i s  
intention to substitute simple classical 

pictures for the strange conceptions of 
quantum mechanics, for whose abstract 
character he expressed deep "aversion"; 

he was conscious that this last sentiment 
was shared by all the older generation 

of physicists, who had not accepted the 
necessity of giving up their habitual 
ways of thinking when dealing with 
phenomena on the atomic scale. Signif

icantly, he turned towards the chev-
roned peers of the classical era— 
Lorentz, Planck, Einstein—who did not 
grudge him praise and encouragement, 
and shunned the founders of quantum 

mechanics. The latter, however, who 
had taken no notice of de Broglie, 

looked into Schrodinger's ideas most 
critically; he had indeed enforced the 
claim to be taken seriously by solving 
the wave equation for the hydrogen 
atom and obtaining Rydberg's formula 
by a calculation much simpler and more 
elegant than Pauli's quantum algebra. 
This could hardly be a fortuitous coin
cidence, and indeed both Pauli and 
Schrodinger soon discovered that the 
two theories so different in conception, 
were mathematically equivalent: for 
instance, the quantum amplitude gov
erning the transition between two sta
tionary states could be readily computed 
with the help of the wave amplitudes 
corresponding to these states. Would 
this formal equivalence clinch the issue 
in favor of Schrodinger's contention 

that the proper quantal concepts can be 

altogether dispensed with? Far from it, 

Heisenberg had at once seen that this 
contention was untenable: Schrodin
ger's way of treating the charge density 
as a classical source of radiation 
would even prevent him from obtaining 

Planck's law for the distribution of 
thermal radiation. How could such an 
elementary, but fatal objection have 
escaped, not only Schrodinger himself, 

but above all the creators of the quan
tum theory of radiation, who gave him 
such uncritical support? Almost regret
ting to have ushered in ideas whose 
revolutionary consequences they had 

not foreseen, these great masters desper
ately clung to the "sound philosophy" 

of classical physics, without realizing 
its limitations; an emotional resistance 
dimmed their judgment. The pioneers 
of quantum mechanics, on their side, 
were now confronted with a new chal
lenge: Schrodinger's wave theory of 
matter clearly provided another formal 
approach to the consistent description 
of atomic phenomena they were striving 
for, but its physical content still eluded 
them. 

It did not last long, however, before 

they realized that wave mechanics was 
just the appropriate technique they 
wanted for dealing with the aperiodic 
phenomena intractable by the quantum 
algebra. This was explicitly demon
strated by Born, who showed how to 
treat atomic collisions by a transposi
tion of the mathematical methods ap
plied to the analogous classical problem 



1.2 COMMENTARY 51 

of the scattering of light waves by a 

polarizable medium. Born's argument, 

moreover, embodied an essentially new 
feature, of decisive importance, with 

regard to the physical interpretation of 

the intensity of the matter waves. The 
optical analogy suggested a comparison 

of this intensity with that of a classical 
light wave, which the quantum theory 
of radiation interprets as the density of 
the statistical distribution of the asso

ciated photons. Born pointed out that 

the usual particle description of the 
atomic collision process could be main

tained if one adopted a similar statis
tical relationship between the matter 

waves and the associated atomic par

ticles. He accordingly proposed to 

interpret the wave intensity, not as the 

density of an actual distribution of 
matter, as Schrodinger imagined, but as 

a density of probability for the presence 
of a particle. Thus, the formal equiva

lence of wave mechanics and Heisen-

berg's quantum mechanics became 
physically meaningful: it established a 

complete harmony between the statis

tical meaning of the wave intensity and 

the statistical character of the rules of 

quantum algebra for the calculation of 

transition probabilities. 
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[Preliminary communication]r 

MAX BORN 

Through the investigation of collisions it is argued that quantum 

mechanics in the Schrddinger form allows one to describe not only 

stationary states but also quantum jumps. 

Heisenberg's quantum mechanics has so far been applied exclusively to the cal
culation of stationary states and vibration amplitudes associated with transitions 
(I purposely avoid the word "transition probabilities"). In this connection the 
formalism, further developed in the meantime, seems to be well validated. However, 

questions of this kind deal with only one aspect of quantum theory. Beside them 
there shows up as equally important the question of the nature of the "transitions" 
themselves. On this point opinions seem to be divided. Many assume that the 
problem of transitions is not encompassed by quantum mechanics in its present 
form, but that here new conceptual developments will be necessary. I myself, 
impressed with the closed character of the logical nature of quantum mechanics, 

came to the presumption that this theory is complete and that the problem of 
transitions must be contained in it. I believe that I have now succeeded in proving 
this. 

Bohr has already directed attention to the fact that all difficulties of principle 
associated with the quantum approach which meet us in the emission and absorp
tion of light by atoms also occur in the interaction of atoms at short distances and 
consequently in collision processes. In collisions one deals not with mysterious 
wave fields, but exclusively with systems of material particles, subject to the for
malism of quantum mechanics. I therefore attack the problem of investigating 
more closely the interaction of the free particle (α-ray or electron) and an arbitrary 

atom and of determining whether a description of a collision is not possible within 

the framework of existing theory. 

Of the different forms of the theory only Schrodinger's has proved suitable for 

this process, and exactly for this reason I might regard it as the deepest formula
tion of the quantum laws. The course of my reasoning is the following. 

If one wishes to calculate quantum mechanically the interaction of two systems, 

f This report was originally intended for die Naturwissenschaften, but could not be accepted there 
for lack of space. I hope that its publication in this journal [Zeitschnft fiir Physik] does not seem out 
of place [M.B.]. 

Originally published under the title, "Zur Quantenmechanik der Stossvorgange," Zeitschrift fiir 

Physik, 37, 863-67 (1926); reprinted in Dokumente der Naturwissensehaft, 1, 48-52 (1962) and in M. 
Born (1963); translation into English by J A.W. and W.H.Z., 1981. 
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then, as is well known, one cannot, as in classical mechanics, pick out a state of 

the one system and determine how this is influenced by a state of the other system, 

since all states of both systems are coupled in a complicated way. This is true also 

in an aperiodic process, such as a collision, where a particle, let us say an electron, 

comes in from infinity and then goes off to infinity. There is no escape from the 

conclusion that, as well before as after collision, when the electron is far enough 

away and the coupling is small enough, a definite state must be specifiable for the 

atom and likewise a definite rectilinear motion for the electron. The problem is 

to formulate mathematically this asymptotic behavior of the coupled particles. 

I did not succeed in doing this with the matrix form of quantum mechanics, but 

did with the Schrodinger formulation. 

According to Schrodinger, the atom in its nth quantum state is a vibration of a 

state function of fixed frequency W°/h spread over all of space. In particular, an 

electron moving in a straight line is such a vibratory phenomenon which corre

sponds to a plane wave. When two such waves interact, a complicated vibration 

arises. However, one sees immediately that one can determine it through its 

asymptotic behavior at infinity. Indeed one has nothing more than a "diffraction 

problem" in which an incoming plane wave is refracted or scattered at an atom. 

In place of the boundary conditions which one uses in optics for the description 

of the diffraction diaphragm, one has here the potential energy of interaction be

tween the atom and the electron. 

The task is clear. We have to solve the Schrodinger wave equation for the 

system atom-plus-electron subject to the boundary condition that the solution in 

a preselected direction of electron space goes over asymptotically into a plane 

wave with exactly this direction of propagation (the arriving electron). In a thus 

selected solution we are further interested principally in a behavior of the 

"scattered" wave at infinity, for it describes the behavior of the system after the 

collision. We spell this out a little further. Let ιt/*¾¾)* · · · be the eigenfunc-

tions of the unperturbed atom (we assume that there is only a discrete spectrum). 

The unperturbed electron, in straight-line motion, corresponds to eigenfunctions 

sin (2π/λ)(αχ + βγ + yz + δ), a continuous manifold of plane waves. Their wave

length, according to de Broglie, is connected with the energy of translation τ by 

the relation τ = Ρ/(2μλ2). The eigenfunction of the unperturbed state in which 

the electron arrives from the + ζ direction, is thus 

^ n A q k ,  Z) = Ά°(<Ζ)ί) sin (2π ζ / λ ) .  

Now let V ( x ,  y ,  z; q k )  be the potential energy of interaction of the atom and the 

electron. One can then show with the help of a simple perturbation calculation 

that there is a uniquely determined solution of the Schrodinger equation with a 

potential V, which goes over asymptotically for ζ -> + oo into the above function. 

The question is now how this solution behaves "after the collision." 
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The calculation gives this result: The scattered wave created by this perturba

tion has asymptotically at infinity the form: 

This means that the perturbation, analyzed at infinity, can be regarded as a super

position of solutions of the unperturbed problem. If one calculates the energy 

belonging to the wavelength A„im according to the de Broglie formula, one finds 

where the v°m are the frequencies of the unperturbed atom. 

If one translates this result into terms of particles, only one interpretation is 

possible. Φ„τ,„(χ β, y) gives the probability* for the electron, arriving from the z-

direction, to be thrown out into the direction designated by the angles α, β, y, with 

the phase change δ. Here its energy τ has increased by one quantum hv°m at the 

cost of the energy of the atom (collision of the first kind for W° < W„, hv°nm < 0; 

collision of the second kind > W0
m, hv°nm > 0). 

Schrodinger's quantum mechanics therefore gives quite a definite answer to 

the question of the effect of the collision; but there is no question of any causal 

description. One gets no answer to the question, "what is the state after the colli

sion," but only to the question, "how probable is a specified outcome of the 

collision" (where naturally the quantum mechanical energy relation must be 

fulfilled). 

Here the whole problem of determinism comes up. From the standpoint of our 

quantum mechanics there is no quantity which in any individual case causally 

fixes the consequence of the collision; but also experimentally we have so far no 

reason to believe that there are some inner properties of the atom which condition 

a definite outcome for the collision. Ought we to hope later to discover such prop

erties (like phases or the internal atomic motions) and determine them in individual 

cases? Or ought we to believe that the agreement of theory and experiment—as 

to the impossibility of prescribing conditions for a causal evolution—is a pre-

established harmony founded on the nonexistence of such conditions? I myself am 

inclined to give up determinism in the world of atoms. But that is a philosophical 

question for which physical arguments alone are not decisive. 

In practical terms indeterminism is present for experimental as well as for 

theoretical physicists. The "yield function" Φ so much investigated by experimen

talists is now also sharply defined theoretically. One can determine it from the 

potential energy of interaction, V(x, y, z; qk). However, the calculations required 

* Addition in proof. More careful consideration shows that the probability is proportional to the 

square of the quantity Φ„τ„. 

β, 7) sin knJax + βγ + yz + δ)φ^). 

\Y = /ιν^ -4- T 
r f n T m  n v n m  '  
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for this purpose are too complicated to communicate here. I will only clarify briefly 

the meaning of the function Φη πι. If, for example, the atom before the collision is 

in the normal state η = 1, then it follows from the equation 

τ + Km = τ - ZtvO1 = > 0> 

that, for an electron with less energy than the lowest excitation energy of the atom, 

the final state is also necessarily m = 1, or that Wui must be equal to τ. Then we 

have "elastic reflection" of the electron with the yield function O1A. If τ increases 

beyond the first excitation level, then there occurs, besides reflection, also excita

tion with the yield Φ1τ2, etc. If the target atom is in the excited state η = 2 and 

τ < /iν2then there occur reflection with yield Φ2τ2 and collisions of the second 

kind with the yield Φ2τ1· If the kinetic energy τ > Zjvj1, then further excitation is 

also possible. 

The formulas thus reproduce completely the qualitative character of collisions. 

The quantitative predictions of the formulas for particular cases require extensive 

investigation. 

I do not exclude the possibility that the strict connection of mechanics and 

statistics as it comes to light here will demand a revision of basic ideas of thermo

dynamics and statistical mechanics. 

I also believe that the problem of radiation of light—and irradiation—has to 

be handled in a way entirely analogous to the "boundary value problem" of the 

wave equation, and will lead to a rational theory of radiation damping and line-

breadths in agreement with the theory of light quanta. 

An extended treatment will appear shortly in this journal. 
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COMMENTARY OF HEISENBERG (1967) 

In July [1926] I visited my parents in 
Munich and on this occasion I heard a 
lecture given by Schrodinger for the 
physicists in Munich about his work on 

wave mechanics. It was thus that I first 

became acquainted with the interpre
tation Schrodinger wanted to give his 

mathematical formalism of wave me
chanics, and I was very disturbed about 
the confusion with which I believed 

this would burden atomic theory. Un

fortunately, nothing came of my attempt 
during the discussion to put things in 

order. My argument that one could not 
even understand Planck's radiation law 
on the basis of Schrodinger's interpre
tation convinced no one. Wilhelm Wien, 
who held the chair of experimental 
physics at the University of Munich, 
answered rather sharply that one must 

really put an end to quantum jumps and 
the whole atomic mysticism, and the 
difficulties I had mentioned would cer
tainly soon be solved by Schrodinger. I 
no longer remember whether or not I 
wrote to Bohr of this encounter in 

Munich. Be that as it may, Bohr 
shortly afterwards invited Schrodinger 
to Copenhagen and asked him not only 
to lecture on his wave mechanics, but 
also to stay in Copenhagen so long that 
there would be adequate time to discuss 
the interpretation of quantum theory. 

As far as I remember these discus
sions took place in Copenhagen around 
September 1926 and in particular they 
left me with a very strong impression of 

Bohr's personality. For though Bohr 
was an unusually considerate and oblig

ing person, he was able in such a discus
sion, which concerned epistemological 

problems which he considered to be of 
vital importance, to insist fanatically 
and with almost terrifying relentlessness 

on complete clarity in all arguments. He 
would not give up, even after hours of 

struggling, before Schrodinger had ad
mitted that this interpretation was in
sufficient, and could not even explain 
Planck's law. Every attempt from 
Schrodinger's side to get round this 
bitter result was slowly refuted point by 
point in infinitely laborious discussions. 
It was perhaps from over-exertion that 

after a few days Schrodinger became ill 

and had to lie abed as a guest in Bohr's 
home. Even here it was hard to get 

Bohr away from Schrodinger's bed and 

the phrase, "But, Schrodinger, you must 
at least admit that..." could be heard 
again and again. Once Schrodinger 
burst out almost desperately, "If one 
has to go on with these damned quan
tum jumps, then I'm sorry that I ever 
started to work on atomic theory." To 
which Bohr answered, "But the rest of 
us are so grateful that you did, for you 

have thus brought atomic physics a 
decisive step forward." Schrodinger fi
nally left Copenhagen rather discour
aged, while we at Bohr's Institute felt 
that at least Schrodinger's interpreta
tion of quantum theory, an interpreta
tion rather too hastily arrived at using 
the classical wave-theories as models, 
was now disposed of, but that we still 
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lacked some important ideas before we 
could really reach a full understanding 

of quantum mechanics. 

From now on the discussions be

tween Bohr and his co-workers in 
Copenhagen became more and more 

concentrated on the central problem in 

quantum theory: how the mathematical 
formalism was to be applied to each 

individual problem, and thus how the 
frequently discussed paradoxes, such as 
e.g. the apparent contradiction between 

the wave and particle models, could be 

cleared up. Ever new imaginary experi

ments were thought up, each displaying 
the paradoxes in a more clear-cut way 
than its predecessors, and we tried to 

guess what answer nature would prob
ably give to each experiment. 

Left alone in Copenhagen [when 
Bohr went on vacation at the end of 
February 1927] I too was able to give 
my thoughts freer play, and I decided to 

make the above uncertainty the central 
point in the interpretation. Remem
bering a discussion I had had long be

fore with a fellow student in Gottingen, 
I got the idea of investigating the 
possibility of determining the position 
of a particle with the aid of a gamma-ray 

microscope, and in this way soon ar
rived at an interpretation which I be
lieved to be coherent and free of 

contradictions. I then wrote a long 
letter to Pauli, more or less the draft of a 

paper, and Pauli's answer was decidedly 
positive and encouraging. When Bohr 
returned from Norway, I was already 

able to present him with the first version 

of a paper along with the letter from 

Pauli. At first Bohr was rather dis

satisfied. He pointed out to me that 

certain statements in this first version 

were still incorrectly founded, and as he 
always insisted on relentless clarity in 

every detail, these points offended him 
deeply. Further, he had probably al
ready grown familiar, while he was in 

Norway, with the concept of comple

mentarity which would make it possible 
to take the dualism between the wave 

and particle picture as a suitable starting 

point for an interpretation. This concept 

of complementarity fitted well the fun

damental philosophical attitude which 
he had always had, and in which the 
limitations of our means of expressing 
ourselves entered as a central philo

sophical problem. He therefore took 

objection to the fact that I had not 
started from the dualism between par

ticles and waves. After several weeks of 

discussion, which were not devoid of 
stress, we soon concluded, not least 
thanks to Oskar Klein's participation, 

that we really meant the same, and that 
the uncertainty relations were just a 

special case of the more general com
plementarity principle. Thus, I sent my 
improved paper to the printer and 

Bohr prepared a detailed publication 

on complementarity. 

COMMENTARY OF ROSENFELD (1971A) 

Bohr was now impatient to come to 
grips with the outstanding epistemo-
logical issue. He was convinced that in 
the quantum theory of matter just as in 
that of radiation, one faced an irreduc
ible particle-wave dualism, and it seemed 

to him that the way was clear to the 
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elucidation of its epistemological sig
nificance. The emphasis must be laid 
here on the role of a scientific theory as 

a means of unambiguous communica
tion of experience. In atomic theory it 
is found convenient to use for this 
purpose, according to the circum
stances, either the language appropriate 

to the description of wave phenomena, 
or the language of particle mechanics, 
both modes of description being subject 

to essential limitations: it is a necessary 
task of the theory to formulate these 
limitations so as to fix the conditions of 
validity of each type of idealized de
scription. Night after night in the first 
months of 1927, Bohr and Heisenberg 

pondered together over these questions; 
again, they were at loggerheads over 
the strategy: Bohr expected the answer 
would follow from a direct analysis of 
the definition of the idealized concepts, 
Heisenberg argued that the answer was 
hidden in the formal structure of the 
theory and that a closer scrutiny of this 
structure should bring it to light. 

Towards the end of February, Vhey 

parted, after a last fruitless discussion, 
Bohr having decided to seek a much 
needed recreation in the snowy hills of 
Norway. On the same night, however, 
Heisenberg had an inspiration that put 
him on the right track. He vividly 
remembered a discussion he had with 
Einstein a year before about the new 
quantum mechanics; his attempt at 
arguing that a good theory ought only 
to operate with observable quantities 
had elicited from Einstein the pointed 
retort, which had made a strong impres
sion on him: "Only the theory itself can 
decide what is and is not observable." 

This remark, he thought, was the key to 
the whole problem: all one had to do 

was to investigate, for each given phe
nomenon, which conclusions one could 
draw from its theoretical analysis, ac

cording to the principles of quantum 
mechanics, about possible limitations 
to its observability. 

Heisenberg based his argumenta

tion on very general "indeterminacy 
relations" which he had shown to be 
deeply rooted in the formal structure of 
quantum mechanics. The mechanical 

variables are always associated in "con
j u g a t e "  p a i r s  . . . .  

H eisenberg naturally wanted to clinch 
the argument by analyzing particular 
examples of idealized experimental sit

uations which could illustrate the appli
cation of the indeterminacy relations. 
He was anxious, in particular, to dem
onstrate the impossibility of assigning a 
trajectory to a moving electron: let us 
imagine we should attempt to localize 
the electron by means of a microscope·, 

in order to achieve sufficient resolution, 
we should have to illuminate it with 
radiation of very high frequency, in the 
range of the gamma-rays emitted by 
radioactive substances; the scattering of 
such photons by the electron, according 
to the theory of the Compton effect, 
would throw the electron completely 
out of the path prescribed by its previ
ous velocity. Bohr's reaction to these 
considerations was very characteristic: 
he at once realized that Heisenberg 
again had forged the weapon that was 
needed to master the problem, but was 
soon dissatisfied with the smart way in 
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which he was wielding it. The idea of 

bringing out the origin of the limitations 

of classical description by analyzing 
imaginary processes of observation was 
of the type that would appeal to Bohr, 

and he took it up eagerly, but in his own 

infinitely patient manner, examining 
the argument from all sides, leaving no 
point in the shadow. He was not long 
to discover that Heisenberg's discussion 

of the gamma-ray microscope touched 

only one aspect of the question—the 

role of the frequency of the radiation, 

but did not really go to the heart of the 

matter: the Compton recoil of the elec

tron could only be a source of indeter
minacy for its momentum to the extent 
to which the scattering process itself is 
not completely determined. Now, he 
pointed out, the formation of an image 
in a microscope requires a bundle of 

rays of finite aperture, and it is this 
latitude in the direction of the photons 

impinging on the electron that implies 
a corresponding latitude in the electron 
recoil. On the other hand a large aper

ture increases the accuracy of the elec
tron's localization; and a simple com

putation shows that the two contrary 
effects of the aperture on the indeter-

minacies of position and momentum 
are such as to impose on their product 

the lower limit given by the relation (2), 
independently of the aperture and of 

the frequency of the radiation. 
. . .  B o h r  l o o k e d  u p o n  s u c h  i m a g i n a r y  

experiments in a rather different spirit 
from Heisenberg. The latter was satis
fied with the knowledge that he had now 
established a complete correspondence 
between the mathematical structure of 
the theory and the usual physical con

cepts describing the various aspects of 

experience; the indeterminacy relations 

were part of this correspondence, their 
physical content could be exhibited by 

the discussion of appropriate experi

ments. Bohr wanted to pursue the epis-
temological analysis one step further, 

and in particular to understand the 
logical nature of the mutual exclusion 

of the two aspects opposed in the 

particle-wave dualism. From this point 

of view the indeterminacy relations 

appear in a new light. The conjugate 
variables for which they hold refer, 
respectively, to the two mutually exclu

sive classical pictures centered on the 
idealized concepts of particle and wave: 

to the former are attached the momen

tum and energy variables, to the latter 

the coordinates of space and time. The 
particle concept is used to describe the 

exchanges of momentum and energy 
between atomic systems, and between 

such systems and radiation: it is the 
physical support, so to speak, of the 
conservation laws governing such ex

changes, irrespectively of any space-
time localization. The wave concept, or 
rather the derived density function, 
describes the localization of atomic 

systems and the distribution of radia
tion in space and time; it excludes the 
specification of momentum and energy, 
since only a wave of infinite spatial and 

temporal extension can have a sharply 
defined periodicity, necessary for a 
sharp definition of momentum and en
ergy. The odd situation we meet in 
atomic theory is the necessity of making 
use of these two conflicting pictures in 
order to deal with all the conditions 
under which we can observe the atomic 
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phenomena. The indeterminacy rela
tions are therefore essential to ensure 
the consistency of the theory, by as

signing the limits within which the use 
of classical concepts belonging to the 

two extreme pictures may be applied 
without contradiction. For this novel 
logical relationship, which called in 
Bohr's mind echoes of his philosophical 
meditations over the duality of our 
mental activity, he proposed the name 

"complementarity," conscious that he 
was here breaking new ground in 
epistemology. 

The solemnity of the occasion did not 

dawn immediately upon Heisenberg. 
He was not well-disposed toward the 
idea of a particle-wave dualism, and 
Bohr was himself still struggling to find 
the right expression for the new ideas 
that were taking shape in his mind. 
However eager he was to let Heisenberg 
share his elation at the prospects they 
disclosed, his eagerness was not suffi
ciently matched by clarity to make 
impression on a reluctant interlocutor. 
The memory of the fruitless discussions 
with Schrodinger still lingered in 
Heisenberg's mind, and he regarded 
with deep suspicion any attempt to 
make more than formal use of the con
cept of matter wave. He stressed, quite 
rightly, that according to the corre
spondence principle, it is the particle 
concept that has a direct physical 
meaning with respect to atomic con
stituents, whereas matter waves are 
merely mathematical auxiliaries. To 
this Bohr would oppose the case of 
radiation, where the correspondence 
principle, on the contrary, points to the 
electromagnetic waves as the funda

mental classical concept, and leaves 
only a symbolic part to the photons. 
Moreover, Oskar Klein, who was then 
Bohr's assistant, had carefully discussed 
the relation of matter waves to the cor
respondence principle, and shown how 
the latter gave as reliable a guidance for 

the physical interpretation of wave me

chanics as for that of the quantum 
algebra: but Klein's paper had not 
found grace with Heisenberg. He stuck 

obstinately to the view that his own 
scheme of quantum mechanics formed a 
sufficient basis for a complete descrip
tion of the phenomena. 

Matters did not improve when Bohr 

was shown the hastily written paper in 
which Heisenberg had developed his 
arguments. Bohr started handling the 
manuscript as he would have done one 
of his own, namely as a rough draft 
which could eventually lead to an 

acceptable text; and with his usual 
optimism, he expected Heisenberg to 

welcome this scrutiny: the latter was 
simply annoyed to find Bohr raising so 
many objections to the inaccuracies and 
careless statements of the paper, and 
proposing new formulations with which 
he was in no mood to agree. There is no 
telling how things would have ended if 
Pauli's arrival on the scene had not 
relieved the tension. Heisenberg had 
informed Pauli of his ideas and received 
from him approval and encouragement ; 
now, Pauli was in a position both to 
lend Bohr a dispassionate ear and to 
gain a hearing from Heisenberg. He was 
able to explain to the latter that there 
was no disagreement between his and 
Bohr's ways of analyzing the physical 
content of atomic theory, but that Bohr 
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had gone further and deeper in the 

analysis of its logical structure. Even so, 

all Heisenberg could be persuaded to 

do about his paper was to append to it 

a "remark added on the proof," in which 
he declared in substance that he had 
missed essential points, whose clarifi

cation would be found in a forthcoming 
paper by Bohr. This addendum must 

have puzzled many readers: it is not 

often that the announcement of a deci

sive progress in our insight into the 
workings of nature is qualified by such 
a warning. 

As to Bohr's "forthcoming" publica

tion, more than a year elapsed before it 

a p p e a r e d  i n  p r i n t . . . .  



1.3 THE PHYSICAL CONTENT OF QUANTUM 
KINEMATICS AND MECHANICS 

WERNER HEISENBERG 

First we define the terms velocity, energy, etc. (for example, for an 

electron) which remain valid in quantum mechanics. It is shown 

that canonically conjugate quantities can be determined simulta

neously only with a characteristic indeterminacy (§1). This indeter

minacy is the real basis for the occurrence of statistical relations in 

quantum mechanics. Its mathematical formulation is given by the 

Dirac-Jordan theory (§2). Starting from the basic principles thus 

obtained, we show how microscopic processes can be understood 

by way of quantum mechanics (§3). To illustrate the theory, a few 

special gedankenexperiments are discussed (§4). 

We believe we understand the physical content of a theory when we can see its 

qualitative experimental consequences in all simple cases and when at the same 

time we have checked that the application of the theory never contains inner 

contradictions. For example, we believe that we understand the physical content 

of Einstein's concept of a closed 3-dimensional space because we can visualize 

consistently the experimental consequences of this concept. Of course these con

sequences contradict our everyday physical concepts of space and time. However, 

we can convince ourselves that the possibility of employing usual space-time 

concepts at cosmological distances can be justified neither by logic nor by ob

servation. The physical interpretation of quantum mechanics is still full of internal 

discrepancies, which show themselves in arguments about continuity versus dis

continuity and particle versus wave. Already from this circumstance one might 

conclude that no interpretation of quantum mechanics is possible which uses 

ordinary kinematical and mechanical concepts. Of course, quantum mechanics 

arose exactly out of the attempt to break with all ordinary kinematic concepts and 

to put in their place relations between concrete and experimentally determinable 

numbers. Moreover, as this enterprise seems to have succeeded, the mathematical 

scheme of quantum mechanics needs no revision. Equally unnecessary is a revi

sion of space-time geometry at small distances, as we can make the quantum-

mechanical laws approximate the classical ones arbitrarily closely by choosing 

sufficiently great masses, even when arbitrarily small distances and times come into 

question. But that a revision of kinematical and mechanical concepts is necessary 

Originally published under the title, "LJber den anschaulichen Inhalt der quantentheoretischen 

Kinematik und Mechanik," ZeitschriJt fur Physik, 43, 172-98 (1927); reprinted in Dokumente der 

Naturwissenschaft, 4, 9-35 (1963); translation into English by J.A.W. and W.H.Z., 1981. 
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seems to follow directly from the basic equations of quantum mechanics. When 

a definite mass m is given, in our everyday physics it is perfectly understandable 

to speak of the position and the velocity of the center of gravity of this mass. In 

quantum mechanics, however, the relation pq — qp = —ih between mass, posi

tion, and velocity is believed to hold. Therefore we have good reason to become 
suspicious every time uncritical use is made of the words "position" and "velocity." 
When one admits that discontinuities are somehow typical of processes that take 
place in small regions and in short times, then a contradiction between the con
cepts of "position" and "velocity" is quite plausible. If one considers, for example, 
the motion of a particle in one dimension, then in continuum theory one will be 

able to draw (Fig. 1) a worldline x(t) for the track of the particle (more precisely, 

its center of gravity), the tangent of which gives the velocity at every instant. In 
contrast, in a theory based on discontinuity there might be in place of this curve 

a series of points at finite separation (Fig. 2). In this case it is clearly meaningless 

to speak about one velocity at one position (1) because one velocity can only be 

defined by two positions and (2), conversely, because any one point is associated 
with two velocities. 

FIGURE 1 

The question therefore arises whether, through a more precise analysis of these 

kinematic and mechanical concepts, it might be possible to clear up the contradic

tions evident up to now in the physical interpretations of quantum mechanics 
and to arrive at a physical understanding of the quantum-mechanical formulas.* 

* The present work has arisen from efforts and desires to which other investigators have already 

given clear expression, before the development of quantum mechanics. I call attention here especially 

to Bohr's papers on the basic postulates of quantum theory (for example, Zeits. f. Physik, 13, 117 

[1923]) and Einstein's discussions on the connection between wave field and light quanta. The problems 

dealt with here are discussed most clearly in recent times, and the problems arising are partly answered, 

by W. Pauli ("Quantentheorie," Handbuch der Physik, Vol. XXIII, cited hereafter as I.e.); quantum 

mechanics has changed only slightly the formulation of these problems as given by Pauli. It is also a 

special pleasure to thank here Herrn Pauli for the repeated stimulus I have received from our oral and 

written discussions, which have contributed decisively to the present work. 
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§1. CONCEPTS: POSITION, PATH, VELOCITY, ENERGY 

In order to be able to follow the quantum-mechanical behavior of any object one 

has to know the mass of this object and its interactions with any fields and other 

objects. Only then can the Hamiltonian function be written down for the quantum-

mechanical system. (The following considerations ordinarily refer to nonrelativistic 

quantum mechanics, as the laws of quantum electrodynamics are still very incom

pletely known.)* About the "Gestalt" (construction) of the object any further 

assumption is unnecessary; one most usefully employs the word "Gestalt" to 

designate the totality of these interactions. 

When one wants to be clear about what is to be understood by the words 

"position of the object," for example of the electron (relative to a given frame of 

reference), then one must specify definite experiments with whose help one plans 

to measure the "position of the electron"; otherwise this word has no meaning. 

There is no shortage of such experiments, which in principle even allow one to 

determine the "position of the electron" with arbitrary accuracy. For example, let 

one illuminate the electron and observe it under a microscope. Then the highest 

attainable accuracy in the measurement of position is governed by the wavelength 

of the light. However, in principle one can build, say, a 7-ray microscope and with 

it carry out the determination of position with as much accuracy as one wants. In 

this measurement there is an important feature, the Compton effect. Every obser

vation of scattered light coming from the electron presupposes a photoelectric 

effect (in the eye, on the photographic plate, in the photocell) and can therefore 

also be so interpreted that a light quantum hits the electron, is reflected or scattered, 

and then, once again bent by the lens of the microscope, produces the photoeffect. 

At the instant when position is determined—therefore, at the moment when the 

photon is scattered by the electron—the electron undergoes a discontinuous 

change in momentum. This change is the greater the smaller the wavelength of 

the light employed—that is, the more exact the determination of the position. At 

the instant at which the position of the electron is known, its momentum therefore 

can be known up to magnitudes which correspond to that discontinuous change. 

Thus, the more precisely the position is determined, the less precisely the momen

tum is known, and conversely. In this circumstance we see a direct physical 

interpretation of the equation pq — qp = — ih. Let qt be the precision with which 

the value q is known Ull is, say, the mean error of q), therefore here the wavelength 

of the light. Let P1 be the precision with which the value ρ is determinable; that is, 

here, the discontinuous change of ρ in the Compton effect. Then, according to the 

elementary laws of the Compton effect P1 and qx stand in the relation 

* Quite recently, however, great advances in this domain have been made in the papers of P. Dirac 

[Proc. Roy. Soc. Al 14, 243 (1927) and papers to appear subsequently]. 
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Pih ~ h. (1) 

That this relation (1) is a straightforward mathematical consequence of the rule 

pq - qp = —iti will be shown below. Here we can note that equation (1) is a 

precise expression for the facts which one earlier sought to describe by the division 

of phase space into cells of magnitude h. For the determination of the position of 
the electron one can also do other experiments—for example, collision experi

ments. A precise measurement of the position demands collisions with very fast 
particles, because for slow electrons the diffraction phenomena—which, according 

to Einstein, are consequences of de Broglie waves (as, for example, in the Ramsauer 
effect)—prevent a sharp specification of location. In a precise measurement of 

position the momentum of the electron again changes discontinuously. An ele

mentary estimate of the precision using the formulas for de Broglie waves leads 
once more to relation (1). 

Throughout this discussion the concept of "position of the electron" seems well 
enough defined, and only a word need be added about the "size" of the electron. 
When two very fast particles hit the electron one after the other within a very 
short time interval Δί, then the positions of the electron defined by the two particles 

lie very close together at a distance Δ/. From the regularities which are observed 

for α-particles we conclude that Al can be pushed down to a magnitude of the order 

of 10"12 cm if only At is sufficiently small and particles are selected with sufficiently 

great velocity. This is what we mean when we say that the electron is a corpuscle 

whose radius is not greater than IO"12 cm. 

We turn now to the concept of "path of the electron." By path we understand a 

series of points in space (in a given reference system) which the electron takes as 

"positions" one after the other. As we already know what is to be understood by 

"position at a definite time," no new difficulties occur here. Nevertheless, it is easy 

to recognize that, for example, the often used expression, the "Is orbit of the elec
tron in the hydrogen atom," from our point of view has no sense. In order to mea
sure this Is "path" we have to illuminate the atom with light whose wavelength is 
considerably shorter than 10~8 cm. However, a single photon of such light is 

enough to eject the electron completely from its "path" (so that only a single point 
of such a path can be defined). Therefore here the word "path" has no definable 
meaning. This conclusion can already be deduced, without knowledge of the recent 
theories, simply from the experimental possibilities. 

In contrast, the contemplated measurement of position can be carried out on 
many atoms in a Is state. (In principle, atoms in a given "stationary" state can be 
selected, for example, by the Stern-Gerlach experiment.) There must therefore 
exist for a definite state—for example, the Is state—of the atom a probability 
function for the location of the electron which corresponds to the mean value for 
the classical orbit, averaged over all phases, and which can be determined through 
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the measurement with an arbitrary precision. According to Born,* this function 

is given by φls{q) where φ ls(q) designates the Schrodinger wave function 

belonging to the Is state. With a view to later generalizations I should like to say— 

with Dirac and Jordan—that the probability is given by S( 1 .s, q)S(ls, q), where 

S(ls, q) designates that column of the matrix S(E, q) of transformation from E to 

q that belongs to the energy E = E l s. 

In the fact that in quantum theory only the probability distribution of the 

position of the electrons can be given for a definite state, such as Is, one can recog

nize, with Born and Jordan, a characteristically statistical feature of quantum 

theory as contrasted to classical theory. However, one can say, if one will, with 

Dirac, that the statistics are brought in by our experiments. For plainly even in 

classical theory only the probability of a definite position for the electron can be 

given as long as we do not know the phase of [the motion of the electron in] the 

atom. The distinction between classical and quantum mechanics consists rather 

in this: classically we can always think of the phase as determined through suitable 

experiments. In reality, however, this is impossible, because every experiment for 

the determination of phase perturbs or changes the atom. In a definite stationary 

"state" of the atom, the phases are in principle indeterminate, as one can see as a 

direct consequence of the familiar equations 

Et — tE = — ih or Jw — wJ = — ih, 

where J is the action variable and w is the angle variable. 

The word "velocity" can easily be defined for an object by measurements when 

the motion is free of force. For example, one can illuminate the object with red 

light and by way of the Doppler effect in the scattered light determine the velocity 

of the particle. The determination of the velocity is the more exact the longer the 

wavelength of the light that is used, as then the change in velocity of the particle, 

per light quantum, by way of the Compton effect is so much less. The determina

tion of position becomes correspondingly inexact, in agreement with equation 

(1). If one wants to measure the velocity of the electron in the atom at a definite 

instant, then, for example, one will let the nuclear charge and the forces arising 

* The statistical interpretation of de Broglie waves was first formulated by A. Einstein (Sitzungsber. 
d. preussische Akad. d Wiss., p. 3 [1925]). This statistical feature of quantum mechanics then played an 
essential role in M. Born, W. Heisenberg, and P. Jordan, Quantenmechanik II (Zeits. /. Physik, 35, 
557 [1926]), especially chapter 4, §3, and P. Jordan (Zeits. f. Physik, 37, 376 [1926]). It was analyzed 
mathematically in a seminal paper of M. Born (Zeits. f. Physik, 38, 803 [1926]) and used for the inter
pretation of collision phenomena One finds how to base the probability picture on the theory of the 
transformation of matrices in the following papers: W. Heisenberg (Zeits. f. Physik, 40, 501 [1926]), 
P. Jordan (Zeits. f. Physik, 40, 661 [1926]), W. Pauli (remark in Zeits. J. Physik, 41, 81 [1927]), P. 
Dirac (Proc. Roy. Soc. Al 13, 621 [1926]), and P. Jordan (Zeits. f. Physik, 40, 809 [1926]). The statistical 
side of quantum mechanics is discussed more generally in P. Jordan (Naturwiss., 15, 105 [1927]) and 
M Born (Naturwiss., 15, 238 [1927]). 
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from the other electrons suddenly be taken away, so that the motion from then 

on is force-free, and one will then carry out the measurement described above. 

A s  a b o v e ,  o n e  c a n  a g a i n  e a s i l y  c o n v i n c e  o n e s e l f  t h a t  a  [ m o m e n t u m ]  f u n c t i o n  p ( t )  

cannot be defined for a given state—such as the ls-state—of an atom. On the 

contrary, there is again a probability function for ρ in this state which according 

to Dirac and Jordan has the value S( 1 s, p)S(ls, p). Here S(ls, p) again designates 

that column of the matrix S(E, p)—that transforms from E to ρ—which belongs 
t o  E  =  E l s .  

Finally we come to experiments which allow one to measure the energy or the 

value of the action variable J. Such experiments are especially important because 

only with their help can we define what we mean when we speak of the discon

tinuous change of the energy and of J. The Franck-Hertz collision experiments 

allow one to base the measurement of the energy of the atom on the measurement 

of the energy of electrons in rectilinear motion, because of the validity of the law 

of conservation of energy in quantum theory. This measurement in principle can 

be carried out with arbitrary accuracy if only one forgoes the simultaneous deter

m i n a t i o n  o f  t h e  p o s i t i o n  o f  t h e  e l e c t r o n  o r  i t s  p h a s e  ( s e e  t h e  d e t e r m i n a t i o n  o f  p ,  

above), corresponding to the relation Et — tE = — ih. The Stern-Gerlach experi

ment allows one to determine the magnetic or an average electric moment of the 

atom, and therefore to measure quantities which depend only on the action 

variable J. The phases remain undetermined in principle. It makes as little sense 

to speak of the frequency of the light wave at a definite instant as of the energy of 

an atom at a definite moment. Correspondingly, in the Stern-Gerlach experiment 

the accuracy of the energy measurement decreases as we shorten the time during 

which the atom is under the influence of the deflecting field.* Specifically, an upper 

bound is given for the deviating force through the circumstance that the potential 

energy of that deflecting force can at most vary inside the beam by an amount 

which is considerably smaller than the differences in energy of the stationary 

states. Only then will a determination of the energy of the stationary states be at 

all possible. Let E1 be an amount of energy which satisfies this condition (Ei also 

fixes the precision of the energy measurement). Then ElId specifies the highest 

allowable value for the deflecting force, if d is the breadth of the beam (measurable 

through the spacing of the slits employed). The angular deviation of the atomic 

beam is then E^tjdp, where we designate by the time during which the atoms 

are under the influence of the deflecting field, and by ρ the momentum of the atoms 

in the direction of the beam. This deflection must be of at least the same order of 

magnitude as the natural broadening of the beam brought about by the diffraction 

by the slits, if any measurement is to be possible. The diffraction angle is roughly 

λ/d if λ denotes the de Broglie wavelength; thus, 

* In this connection see W. Pauh, i.e., p. 61 
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Xjd ~ E^Jdp, 

or, as λ = h/p, 

E1I1 ~ h. (2) 

This equation corresponds to equation (1) and shows how a precise determina

tion of energy can only be obtained at the cost of a corresponding uncertainty in 

the time. 

§2. THE DIRAC-JORDAN THEORY 

We might summarize and generalize the results of the preceding section in this 

statement: All concepts which can be used in classical theory for the description of 

a mechanical system can also be defined exactly for atomic processes in analogy to 

the classical concepts. The experiments which provide such a definition themselves 

suffer an indeterminacy introduced purely by the observational procedures we 

use when we ask of them the simultaneous determination of two canonically con

jugate quantities. The magnitude of this indeterminacy is given by relation (1) 

(generalized to any canonically conjugate quantities whatsoever). It is natural in 

this respect to compare quantum theory with special relativity. According to 

relativity, the word "simultaneous" cannot be defined except through experiments 

in which the velocity of light enters in an essential way. If there existed a "sharper" 

definition of simultaneity, as, for example, signals which propagate infinitely fast, 

then relativity theory would be impossible. However, because there are no such 

signals, or, rather, because already in the definition of simultaneity the velocity 

of light appears, there is room left for the postulate of the constancy of the speed 

of light so that this postulate does not contradict any meaningful use of the words 

"position, velocity, time." We find a similar situation with the definition of the 

concepts of "position of an electron" and "velocity" in quantum theory. All ex

periments which we can use for the definition of these terms necessarily contain 

the uncertainty implied by equation (1), even though they permit one to define 

exactly the concepts ρ and q taken in isolation. If there existed experiments which 

allowed simultaneously a "sharper" determination of ρ and q than equation (1) 

permits, then quantum mechanics would be impossible. Thus only the uncertainty 

which is specified by equation (1) creates room for the validity of the relations 

which find their most pregnant expression in the quantum-mechanical commuta
tion relations, 

pq - qp = -ih. 

That uncertainty makes possible this equation without requiring that the physical 

meaning of the quantities ρ and q be changed. 

For those physical phenomena whose quantum-mechanical formulation is still 
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unknown (for example, electrodynamics), equation (1) makes a demand which 
may be useful for the discovery of the new laws. For quantum mechanics equation 
(1) can be derived from the Dirac-Jordan formulation by a slight generalization. 
If, for any definite state variable t] we determine the position q of the electron as 
q' with an uncertainty then we can express this fact by a probability amplitude 

which differs appreciably from zero only in a region of spread near 
For example, one can write 

proportional to exp (3a) 

with therefore 

proportional to exp (3b) 

Then for the probability amplitude for any given value of p we have 

(4) 

For S(q, p), according to Jordan, we can write 

(5) 

Then, according to (4), differs appreciably from zero only for values of p 
for which is not significantly greater than 1. Specifically, employing 
(3), we find i is proportional to 

that is, proportional to 

and thus 
SS is proportional to exp where (6) 

The assumption (3) for corresponds therefore to the experimental fact that 
the value p' is measured for p and the value q' for q [with the limit (6) on the 
precision]. 

From the purely mathematical point of view it is characteristic of the Dirac-
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Jordan formulation of quantum mechanics that the relations between p, q, E, etc. 

can be described as equations connecting very general matrices in such a way that 

any predetermined quantum-theoretic quantity appears as a diagonal matrix. 

The possibility of writing things in such a way is evident when one pictures the 

matrices as tensors (for example, moment-of-inertia tensors) in a multidimensional 

space between which there are mathematical connections. One can always pick 

the axis of the coordinate system in which one expresses these relations along the 

principal axes of one of these tensors. Finally, one also can always characterize the 

mathematical relation between two tensors A and B through the transformation 

equations which take a coordinate system oriented along the principal axes of A 

over into another oriented along the principal axes of B. This latter formulation 

corresponds to the Schrodinger theory. In contrast, one will view Dirac's g-number 

formulation as the formulation of quantum mechanics that is really "invariant" 

and independent of all coordinate systems. When we want to derive physical 

results from that mathematical framework, then we have to associate numbers 

with the quantum-theoretical magnitudes—that is, with the matrices (or "tensors" 

in multidimensional space). This task is to be understood in these terms: In that 

multidimensional space a definite direction is arbitrarily prescribed (by the nature 

of the experimental setup); and it is asked what is the "value" of the matrix (for 

example, in that picture, what is the value of the moment of inertia) in this given 

direction. This question only has a well-defined meaning when the given direction 

coincides with the direction of one of the principal axes of that matrix. In this case 

there is an exact answer for the question. But also when the prescribed direction 

differs only little from one of the principal axes of the matrix one can still speak of 

the "value" of the matrix in the prescribed direction up to a definite uncertainty 

determined by the angle between the two directions. One can therefore say that 

associated with every quantum-theoretical quantity or matrix is a number which 

gives its "value" within a certain definite statistical error. The statistical error 

depends on the coordinate system. For every quantum-theoretical quantity there 

exists a coordinate system in which the statistical error for this quantity is zero. 

Therefore a definite experiment can never give exact information on all quantum-

theoretical quantities. Rather, it divides physical quantities into "known" and 

"unknown" (or more and less accurately known quantities) in a way characteristic 

of the experiment in question. The results of two experiments can be derived 

exactly one from the other only then when the two experiments divide the physical 

quantities in the same way into "known" and "unknown" (that is, when the tensors 

in that multidimensional space frequently invoked—for ease of visualization—are 

"looked at" in both experiments from the same direction). When two experiments 

use different divisions into "known" and "unknown," then their results can be 

related only statistically. 

For a more detailed discussion of this statistical connection let a gedanken-

experiment be considered. Let a Stern-Gerlach atomic beam be sent first through 
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a field F t which is so strongly inhomogeneous in the direction of the beam that 
it induces many transitions by sudden reversal in the force on the spin. Then let 
the atomic beam run free up to a definite distance from F v But there let a second 
field F 2 begin, as inhomogeneous as Between and let it be possible to 
measure the number of atoms in the different stationary states through an op-
tionally applied magnetic field. Let all radiation by the atoms be neglected. If we 
know that an atom was in a state of energy before it passed F1 , then we can 
express this fact by ascribing to the atom a wave function—for example, in p-
space—with the definite energy E„ and the undetermined phase 

After passage through the field F u this function is changed into* 

(7) 

Here we can make some arbitrary determination of the so that the are 
uniquely determined by Fj . The matrix transforms the energy values before 
the transition through Fx to the values after the transition. If after F t we carry out 
a determination of the stationary state, say, by use of an inhomogeneous magnetic 
field, then we will find that the atom has jumped from the wth state to the mth 
state with a probability When we find experimentally that an atom has 
indeed jumped to the mth state, then we have to ascribe to it in all calculations 
thereafter, not the function but simply the function with an unde-

termined phase. Through the experimental determination, "mth state," we select 
out of the multitude of different possibilities a definite one, m. However, at 
the same time we disturb everything that was still contained in the phase relations 
between the quantities as detailed below. In the transition of the atomic beam 
through F 2 , what happened at F j repeats itself. Let be the coefficients of the 
transformation matrix which transform the energies before F 2 to the energies 
after If no determination of the state is carried out between F 1 and F2 , then 
the eigenfunction is transformed according to the following scheme, 

(8) 

Let be called If the stationary state of the atom is determined 

beyond F2 , then one will find the state / with the probability In contrast, if 
between and one determines the state—and finds for it the value then 

* See P. D i r a c (Proc. Roy Soc. A112, 661 [1926] ) a n d M . Born Physik, 40, 167 [1926]) . 
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the probability for "/" beyond F2 is given by d m l d m l .  In many repetitions of the 

entire experiment (in which each time the state is determined between F 1  and F 2 ) 

one will  therefore observe the state /, beyond F 2 ,  with the relative frequency Z n i  = 

Σ cnmCnmdmidmi· This expression does not agree at all with enlenl. For this reason 
m 

Jordan (I.e.) has spoken of an "interference of probabilities." I cannot agree. The 
two kinds of experiments which lead respectively to enlenl and Znl are physically 

distinct. In one case the atom experiences no disturbance between F1 and F2. 
In the other case it is perturbed by the apparatus which determines its stationary 

state. This apparatus has as a consequence that the "phase" of the atom changes 

by an amount that is in principle uncheckable, as the momentum of an electron 

likewise changes with a determination of its position (see §1). The magnetic field 
for the determination of the state between F1 and F2 will separate the eigenvalues 
E. In the observation of the path of the atomic beam the atoms are slowed down by 
statistically different and uncheckable amounts (I think here, say, of Wilson cloud-

chamber pictures). This has as a consequence that the final transformation matrix 
(from the energy value before entry into F1 to the energy after exit from F2) is no 

longer given by £ cnmdml, but every term in this sum has additionally an unknown 
m 

phase factor. No expectation is therefore open to us, except that the mean value of 
enlenl averaged over all these expected phase alterations is equal to Znl. A simple 

calculation confirms that this is the case. We can therefore deduce from one 
experiment the possible results of another by definite statistical rules. The other 
experiment itself selects out of the plenitude of all possibilities a quite definite one, 
and thereby limits the possibilities for all later experiments. Such an interpretation 

of the equation for the transformation matrix S or the Schrodinger wave equation 
is only possible because the sum of solutions is again a solution. In this circumstance 
we see the deep significance of the linearity of Schrddinger wave equations. On 
that account they can be understood only as equations for waves in phase space; 
and on that account we may regard as hopeless every attempt to replace these 
equations by nonlinear equations, for example in the relativistic case (for more than 
one electron). 

§3. THE TRANSITION FROM MICRO- TO MACROMECHANICS 

It seems to me that the concepts of kinematics and mechanics in quantum theory 
are sufficiently clarified by the analysis of the words "position of an electron," 
"velocity," "energy," etc., in the preceding sections that physical understanding 
of macroscopic processes from the standpoint of quantum mechanics must also 
be possible. The transition from micro- to macromechanics has already been 
treated by Schrodinger,* but I do not believe that Schrodinger's considerations 

* E. Schrodinger, Naturwiss., 14, 664 (1926). 
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get to the heart of the problem, and this is why: According to Schrodinger, in a 

high state of excitation a sum of eigenfunctions ought to be able to give a wave 

packet of limited extent which—through periodic changes in its form—will carry 

out the periodic motions of the classical "electron." There is an argument against 
this outlook: If the wave packet had such properties as ascribed to it by this view, 

then the radiation sent out by the atom would be representable as a Fourier series 
in which the frequencies of the higher vibrations were integer multiples of the 

basic frequency. The frequencies of the spectral lines sent out by the atom are, 

however, according to quantum mechanics, never integer multiples of the basic 

frequency—except in the special case of the harmonic oscillator. Thus Schrodinger's 

reasoning is only viable for the case of the harmonic oscillator treated by him; in 
all other cases a wave packet spreads out in the course of time over the whole 
immediate neighborhood of the atom. The higher the state of excitation of the 

atom, the slower is that spreading of the wave packet. However, if one waits long 
enough it happens. The reasoning developed above about the radiation sent out 
by the atom might at first sight be used against all experiments which look for a 
direct transition from quantum to classical mechanics at high quantum numbers. 
For that reason the attempt was made earlier to circumvent such reasoning by 

referring to the natural radiation broadening of stationary states—certainly 
wrongly, first of all because this way out is blocked already in the case of the 
hydrogen atom on account of the weakness of the radiation for high states, and 
secondly, because the transition from quantum to classical mechanics ought to 

be understandable without calling on electrodynamics. Bohr* has already referred 

many times to these well-known difficulties which stand in the way of a direct 
connection between quantum and classical theory. We have spelled them out again 
here so explicitly only because in recent times they seem to be forgotten. 

I believe that one can fruitfully formulate the origin of the classical "orbit" in 
this way: the "orbit" comes into being only when we observe it. For example, let 
an atom be given in a state of excitation η = 1000. The dimensions of the orbit 

in this case are already relatively large so that, in accordance with §1, it is enough 
to use light of relatively low wavelength to determine the position of the electron. 
If the position determination is not to be too fuzzy then the Compton recoil will 
put the atom in some state of excitation between, say, 950 and 1050. Simultaneously, 
the momentum of the electron can be determined from the Doppler effect with a 
precision given by (1). One can characterize the experimental finding by a wave-
packet, or, better, a probability-amplitude packet, in q-space of a spread given by 
the wavelength of the light used, and built up primarily out of eigenfunctions 
between the 950th and 1050th eigenfunction—and by a corresponding packet in 
p-space. Let a new determination of position be made after some time with the 
same precision. Its result, according to §2, can be predicted only statistically. All 

* N Bohr, "Grundpostulate der Quantentheorie," I.e. 



74 HEISENB ERG 

positions count as likely (with calculable probability) which lie within the bounds 

of the now broadened wavepacket. The situation would be no different in classical 

theory, for there too the result of the second position measurement would be 

predictable only statistically because of the uncertainty in the first measurement. 

Also, the orbits of classical theory would spread out like the wavepacket. However, 

statistical laws themselves are different in quantum mechanics and in classical 

theory. The second determination of the position selects a definite "q" from the 

totality of possibilities and limits the options for all subsequent measurements. 

After the second position determination the results of later measurements can 

only be calculated when one again ascribes to the electron a "smaller" wavepacket 

of extension λ (wavelength of the light used in the observation). Thus every position 

determination reduces the wavepacket back to its original extension λ. The "values" 

of the quantities p, q are known throughout all the experiments with a certain 

precision. The values of ρ and q stay within the precision limits fixed by the classical 

equations of motion. This can be seen directly from the quantum-mechanical 

equations, 

ρ = -<3H/r;q; q = <3H/5p. (9) 

However, the orbit, as noted earlier, can be calculated only statistically from the 

initial conditions, a circumstance that one can consider as a consequence of the 

fundamental indeterminism of the initial conditions. The statistical laws are differ
ent for quantum mechanics and classical theory. This distinction, under appro
priate circumstances, can give rise to gross macroscopic differences between 
classical and quantum theory. Before I discuss an example, I should like to indicate 

how the transition, discussed above, to classical theory is formulated mathemati
cally for a simple mechanical system, the force-free motion of a particle. In one 

dimension the equations of motion run 

H = p2/2 m; q = p/m; ρ = 0. (10) 

As time can be treated as a parameter (or "onumber") when there are no time-

dependent external forces, the solution of this equation is 

q = PotIm + q0; P = Po, (11) 

where p0 and q0 are the momentum and the position at the time t = 0. At t = 0 

the value q0 = q' is measured with accuracy qu and p0 = p' with accuracy P1 

[see equations (3) to (6)]. In order to draw conclusions from the "values" of p0 

and q0 about the "values" of q at the time f, one must find—according to Dirac 
and Jordan—that transformation function which transforms all matrices in the 
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representation* in which is diagonal to that representation in which q is diago-
nal. In the matrix scheme in which is diagonal, can be replaced by the operator 

, According to Dirac [I.e. equation (11)] the desired transformation 
amplitude S(q0, q) satisfies the differential equation, 

(12) 

or 

[with the solution] 

(13) 

SS is therefore independent of q0. In other words, if at the time t = 0 we know 
exactly, then at any time t 0 all values of q are equally probable; that is, the 

probability that q lies in any finite region is quite nil. Physically this is already 
clear without further investigation. Thus the exact determination of q0 leads to an 
infinitely large Compton recoil. The same would naturally apply for an arbitrary 
mechanical system. If, however, q0 is known at the time t = 0 only within the range 

and in the range [see equation (3)], then 

and the probability [amplitude] function for q is to be calculated according to the 
formula, ' 

The result is 

(14) 

With the abbreviation (15) the exponent in (14) becomes 

* T h e w o r d " r e p r e s e n t a t i o n , " no t e m p l o y e d by H e i s e n b e r g himself , is i n t r o d u c e d here for c lar i ty 
H e uses the ph ra se "ma t r i x s c h e m e " (T rans l a to r s ' note.) 
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-{<?o(l  + i/β)  -  2q 0 [q '  + i(q  -  tp'/m)/β~\ + q/ 2 )/2q\.  

The term with q' 2  can be taken into the constant (^-independent factor) and the 

integration gives 

S(^q)  = const exp {\_q '  + i{q  -  tp '/m)/β] 2 /[2(1 + i t f )q\\)  

= const exp - {[(q  -  tp '/m -  if iq ') 2 {  1 -  i/P)]/[2qj{ l  + β 2 )]} .  (16) 

It follows that 

Ξ(η,  q jSty,  q)  = const exp - {[q  -  tp'/m -  + β 2 )} .  (17) 

Thus the electron is located at the time t  at the position tp '/m + q'  with a spread 

qj(l + β2)1'2. The "wavepacket" or, better, "probability packet" has expanded by 

the factor (1 + β2)112. According to (15), β is proportional to the time t, inversely 

proportional to the mass, as is entirely plausible, and inversely proportional to q\. 

Too much precision in q0 produces great uncertainty in p0 and thus leads to a 

large uncertainty in q. The parameter η which we have brought in above for formal 

reasons might be left out here in all formulas, as it does not enter the calculation. 

To illustrate that the difference between the classical and the quantum statistical 

laws leads to gross macroscopic differences between the results of the two theories, 

let the reflection of a beam of electrons at a grating be discussed briefly. When 

the spacing of the rulings is of the order of the de Broglie wavelength of the elec

trons, then reflection occurs in definite, discrete directions like the reflection of 

light at a grating. What classical theory gives is grossly and macroscopically 

different. Nevertheless, from the orbit of an individual electron we can in no way 

find a contradiction with a classical theory. We might if we could, direct the elec

tron, say, to a definite point on a grating ruling, and then verify that the reflection 

there violates classical theory. However, when we want to determine the position 

of the electron so precisely that we can say at what point on a grating ruling it hits, 

then the electron acquires through this position determination a large velocity, 

and the de Broglie wavelength of the electron becomes so much shorter that now 

the reflection really can and will take place approximately as predicted classically, 

without violating the laws of the quantum theory. 

§4. DISCUSSION OF A FEW SPECIAL IDEALIZED EXPERIMENTS 

According to the physical interpretation of quantum theory aimed at here, the 

time of transitions or "quantum jumps" must be as concrete and determinable by 

measurement as, say, energies in stationary states. The spread within which such 

an instant is specifiable is given according to equation (2) by h/AE, if AE designates 
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the change of energy in a quantum jump.* We consider, for example, the following 

experiment. An atom, at time t = 0 in state η = 2 may transit, via radiation, to 

the ground state, η = 1. Then, in analogy to equation (7), we can ascribe to the 

atom the eigenfunction 

if we assume that the radiation damping is expressed in a factor of the form e~ M  

in the eigenfunction (the real dependence is perhaps not so simple). This atom is 

sent through an inhomogeneous magnetic field for the determination of its energy 

level, as is usual in the Stern-Gerlach experiment; yet we also have the inhomo

geneous field follow the atomic beam over a long stretch of its path. The consequent 

acceleration we will measure, say, in this way: we divide the entire stretch that the 

atomic beam pursues in the magnetic field into short sections, at the end of each 

of which we determine the deviation of the beam. Depending on the velocity of 

the atomic beam, the division into intervals of space corresponds for the atom to 

division into small time intervals Δί. According to §1, equation (2), there corre

sponds to a time interval Δί a spread in energy of h/At. The probability of measuring 

the definite energy E can be directly deduced fromJS(p, E) and is therefore calcu

la ted for  the interval  f rom η At  to  (n + 1)Δί  as,  

If the determination "state η = 2" is made at the time (n + 1)Δί, then for every

thing later one must ascribe to the atom not the eigenfunction (18) but one which 

results from (18) when f is replaced by ί — (η + 1) Δί. If, on the contrary, one finds 

"state η = 1," then from that point on one has to attribute to the atom the eigen

function 

Thus one will first find for a series of intervals Δί "state η = 2," then steadily 

"state η = 1." In order that a distinction between the two states will still be 

possible, Δί cannot be shrunk below h/AE. Thus the instant of the transition is 

determinable within this spread. We imply an experiment of the kind just sketched 

quite in the spirit of the old formulation of quantum theory founded by Planck, 

Einstein, and Bohr when we speak of the discontinuous change of the energy. As 

such an experiment can in principle be carried out, an agreement about its outcome 

must be possible. 

In Bohr's basic postulates of quantum theory, the energy of an atom has the 

S(t,  ρ)  = e~ M \ j/(E 2 ,  p)e- ' E 2 " h  +  ( 1 -  e^y^E,,  P y- l E m  (18) 

ι l>{E l ,p)e~ i E M h .  

* Compare W Pauli, I.e., p. 12. 
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advantage—just as do the values of the action variables J—over other deter
minants of the motion (position of the electron, etc.) in that its numerical value 
can always be given. This preferred position which the energy has over other 

quantum-mechanical quantities it owes only to the circumstance that it represents 
an integral of the equations of motion for closed systems (the energy matrix E is 
a constant). For open systems, in contrast, the energy is not singled out over any 
other quantum-mechanical quantity. In particular, one will be able to devise 
experiments in which the phases, w, of the atom are precisely measurable, but in 

which then the energy remains in principle undetermined, corresponding to the 
relation Jw — wj = - iff or J1W1 ~ h. Resonance fluorescence is such an experi

ment.  If  one irradiates an atom with an eigenfrequency, say V 1 2  =  (E 2  -  EJ/h,  

then the atom vibrates in phase with the external radiation. Then, even in principle, 

it makes no sense to ask in which state, E1 or E2, the atom is thus vibrating. The 
phase relation between atom and external radiation may be determined, for 
example, by the phase relations of large numbers of atoms with one another 
([R. W.] Wood's experiments). If one prefers to avoid experiments with radiation 

then one can also measure the phase relation by carrying out exact position 

determinations on the electron in the sense of §1 at different times relative to the 
phase of the light impinging (on many atoms). A "wave function," say, of the form, 

S(q,  t )  =  ε 2 φ 2 (Ε 2 ,  9)β-«*2.+«/* + (1- q)e~ i E l , l \  (19) 

can be ascribed to the individual atom. Here c 2  depends on the strength and β on 

the phase of the incident light. The probability of a definite position q is thus 

%, t)S(q,  t)  = ο\φ 2 φ 2  +  ( 1 -  C 2
2 ^ 1 Ij j 1  

+ c2(l - ci)1/2{i^2^1e-i[<£2-£l)t+W* + ^2ΐΚέ>+ί[(£2~£ι)' + /!]/*}. (20) 

The periodic term in (20) is experimentally distinguishable from the unperiodic 

ones, as the determinations of position can be carried out for different phases of 

the incident light. 

In a well-known idealized experiment proposed by Bohr, the atoms of a Stern-

Gerlach atomic beam are first excited to a resonance fluorescence at a definite 

state by incident radiation. After a little way they go through an inhomogeneous 

magnetic field. The radiation emerging from the atoms can be observed during the 

whole path, before and after the magnetic field. Before the atoms enter the magnetic 

field, ordinary resonance radiation takes place; that is, as in dispersion theory, it 

must be assumed that all atoms send out spherical waves in phase with the incident 

light. The latter view at first sight contradicts the result that a crude application 

of the quantum theory of light or the basic rules of quantum theory would give. 

Thus from this view one would conclude that only a few atoms are raised to the 
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"upper state" through absorption of the light quantum, and that therefore the 

entire resonance radiation arises from a few intensively radiating centers. It 

therefore seemed natural in earlier times to say that the concept of light quanta 

ought to be brought in here only to account for the balance of energy and momen

tum, and that "in reality" all atoms in the ground state radiate weak and coherent 

spherical waves. After the atoms have passed the magnetic field, however, there 

can hardly be any doubt that the atomic beam has divided into two beams of 

which one corresponds to atoms in the upper state, the other in the lower. If now 

the atoms in the lower state were to radiate, then we would have a gross violation 

of the law of conservation of energy. For all the energy of excitation resides in the 

beam with atoms in the upper state. Still less can there be any doubt that past the 

magnetic field only the "upper state" beam sends out light, and indeed incoherent 

light, from the few intensively radiating atoms in the upper state. As Bohr has 

shown, this idealized experiment makes it especially clear that care is often needed 

in applying the concept of "stationary state." The formulation of quantum theory 

developed here allows a discussion of the Bohr experiment to be carried through 

without any difficulty. In the external radiation field the phases of the atoms are 

determined. Therefore it is meaningless to speak of the "energy of the atom." Also, 

after the atom has left the radiation field one is not entitled to say that it is in a 

definite stationary state, insofar as one enquires about the coherence properties of 

the radiation. However, one can set up an experiment to find out in what state the 

atom is. The result of this experiment can be stated only statistically. Such an 

experiment is really performed by the inhomogeneous magnetic field. Beyond the 

magnetic field the energies of the atoms are well determined and therefore the 

phases are indeterminate. The resulting radiation is incoherent and comes only 

from atoms in the upper state. The magnetic field determines the energies and 

therefore destroys the phase relation. Bohr's idealized experiment is a very beauti

ful illustration of the fact that the energy of the atom "in reality" is not a number 

but a matrix. The conservation law holds for the energy matrix and therefore also 

for the value of the energy as precisely as it can be measured. In mathematical 

terms the lifting of the phase relation can be traced out as follows, for example. 

Let Q be the coordinates of the center of gravity of the atom, so that one ascribes 

to the atom, instead of (19), the eigenfunction 

S(Q, t)S(q , f) = S(g, q,  t) .  (21) 

Here S(Q, t)  is a function that, like S(i] ,  q)  in (16), differs from zero only in a small 

neighborhood of a point in Q-space and propagates with the velocity of the atoms 

in the direction of the beam. The probability of a relative amplitude q regardless 

of Q is given by the integral of 

S(Q, q,  t)S(Q, q,  i )  



80 HEISENBERG 

over Q—that is, through (20). However, the eigenfunction (21) will change by a 

calculable amount in a magnetic field and, on account of the different deviation of 

atoms in the upper and lower state, will have changed beyond the magnetic field 

into 

S(Q, q, t) = C2S2(Q, ήφ 2 (Ε 2 ,  + (1- C^S^Q, #ι(£ι, (22) 

Here S,(Q, ή and S 2(Q, t) will be functions in Q-space which differ from zero only 

in the small neighborhood of a point; but this point is different for S 1  and S 2 .  

The product S1S2 is therefore zero everywhere. The probability of a relative 

amplitude q and a definite value Q is therefore 

S(Q, q, t)S(Q, q, t) = C 2
2S 2S 2Xlz 2^ 2  +  ( 1 -  CDS 1S ̂  ̂ 1. (23) 

The periodic term of (20) has disappeared and with it the possibility of measuring 

a phase relation. The statistical result of position determinations will always be 

the same, whatever the phase of the incident radiation. We may assume that 

experiments with radiation, the theory of which has not yet been developed, will 

give the same results about phase relations between atoms and incident radiation. 

Finally let us examine the connection* of equation (2), E1J1 ~ h, with a complex 

of problems which Ehrenfest and other investigators have discussed on the basis 

of Bohr's correspondence principle in two important papers^ Ehrenfest and 

Tolman speak of "weak quantization" when the quantized periodic motion is 

interrupted through quantum jumps or rather perturbations in intervals of time 

which can be regarded as not very long compared to the periods of the system. 

These cases should reveal not only the exact quantum energy values but also 

energy values which do not differ too much from the quantum values, and these 

with a smaller and qualitatively predictable a priori probability. In quantum 

mechanics this behavior is to be interpreted in these terms. As the energy is really 

changed by external perturbations or quantum jumps, every energy measurement, 

insofar as it is to be unique, must be done in the time between two perturbations. 

In this way an upper bound is specified for I1 in the sense of §1. Therefore we 

measure the energy value E0 of a quantized state also only within a spread E1 ~ 

Hft1. Here the question is meaningless even in principle whether the system "really" 

takes on with the correspondingly lower statistical weight such energy values E 

as deviate from E0, or whether their experimental realization is to be attributed 

only to the inaccuracy of the measurement. If J1 is smaller than the period of the 

system then it is no longer meaningful to speak of discrete stationary states or 

discrete energy values. 

* W. Pauli drew my attention to this connection. 
f P. Ehrenfest and G. Breit (Zeits. f. Physik, 9, 207 [1922]) and P. Ehrenfest and R. C. Tolman 

(Phys. Rev., 24, 287 [1924]). See also the discussion in N. Bohr, Grundpostulate der Quantentheorie, I.e. 
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Ehrenfest and Breit in a similar connection draw attention to the following 

paradox. A rotator, which we will visualize as a gear-wheel, is provided with an 

attachment which after / revolutions of the wheel exactly reverses the direction of 

its rotation. For example, let the gear-wheel mesh with a toothed sliding member 

which moves on a straight line between two stops. The slider hits a stop after a 

definite number of rotations and in that way reverses the rotation of the gear
wheel. The true period T of the system is long in comparison with the rotation 

period t of the wheel. The discrete energy levels are densely packed—and the 
denser the packing, the greater the value of T. From the standpoint of consistent 

quantum theory all stationary states have the same statistical weight. Therefore, 
for sufficiently great T, practically all energy values occur with equal frequency, in 

opposition to what would be expected for the rotator. We may sharpen this 
paradox a little before we treat it from our standpoint. Thus, in order to determine 

whether the system takes on the discrete energy values belonging to the pure 

rotator exclusively or particularly often, or whether it assumes with equal prob
ability all possible values (that is, values which correspond to the small energy 
interval h/T), a time J1 suffices which is small relative to T (but » t). In other 
words, although the long period plays no part at all in such measurements, it 
appears to express itself in the fact that all possible energy values can occur. We 

are of the view that, in reality also, such experiments for the determination of the 

total energy of the system would give all possible energy values with equal prob
ability. The factor responsible for this outcome is not the big period T, but the 
sliding member. Even if the system sometimes happens to have an energy identical 
with the quantized energy value of the simple rotator, it can be modified easily—by 
external forces acting on the stop—to states which do not correspond to the 

quantization of the simple rotator.* The coupled system, rotator-plus-slider, 

indeed shows a periodicity entirely different from that of the rotator. The solution 
of the paradox lies rather in a different circumstance. When we want to measure 

the energy of the rotator alone, we must first break the coupling between the 
rotator and the slider. In classical theory, when the mass of the slider is sufficiently 

small, the coupling can be broken without a change in energy; and there, conse
quently, the energy of the entire system can be equated to that of the rotator (for 
small slider mass). In quantum mechanics the energy of interaction between slider 

and rotator is at least of the same order of magnitude as the level spacing of the 
rotator (even for small slider mass there is a high zero point energy associated 
with the elastic interaction between rotator and slider). On decoupling, the slider 
and the rotator individually take their characteristic quantum energies. Conse
quently, insofar as we are able to measure the energy values of the rotator alone 
we always find the quantum energy values with experimental accuracy. Even for 

* According to Ehrenfest and Breit this cannot happen, or can happen only rarely, through forces 
which act on the gear-wheel. 
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vanishing mass of the slider, however, the energy of the coupled system is different 

from the energy of the rotator. The energy of the coupled system can take on all 

possible values (consistent with the T-quantization) with equal probability. 

Quantum kinematics and mechanics show far-reaching differences from the 

ordinary theory. The applicability of classical kinematics and mechanical concepts, 

however, can be justified neither from our laws of thought nor from experiment. 

The basis for this conclusion is relation (1), Pl^q1 ~ h. As momentum, position, 

energy, etc. are precisely defined concepts, one does not need to complain that the 

basic equation (1) contains only qualitative predictions. Moreover, as we can think 

through qualitatively the experimental consequences of the theory in all simple 

cases, we will no longer have to look at quantum mechanics as unphysical and 

abstract.* Of course we would also like to be able to derive, if possible, the quan

titative laws of quantum mechanics directly from the physical foundations—that 

is, essentially, from relation (1). On this account Jordan has sought to interpret 

the equation, 

S(q,q") = J%, q')S(q',q")dq',  

as a probability relation. However, we cannot accept this interpretation (§2). We 

believe, rather, that for the time being the quantitative laws can be derived out of 

the physical foundations only by use of the principle of maximum simplicity. If, for 

example, the X-coordinate of the electron is no longer a "number," as can be 

concluded experimentally, according to equation (1), then the simplest assumption 

conceivable [that does not contradict (1)] is that this X-coordinate is a diagonal 

term of a matrix whose nondiagonal terms express themselves in an uncertainty 

or—by transformation—in other ways (see for example §4). The prediction that, 

say, the velocity in the X-direction is "in reality" not a number but the diagonal 

term of the matrix, is perhaps no more abstract and no more unvisualizable than 

the statement that the electric field strengths are "in reality" the time part of an 

antisymmetric tensor located in space-time. The phrase "in reality" here is as much 

and as little justified as it is in any mathematical description of natural processes. 

As soon as one accepts that all quantum-theoretical quantities are "in reality" 

matrices, the quantitative laws follow without difficulty. 

If one assumes that the interpretation of quantum mechanics is already correct 

* Schrodinger describes quantum mechanics as a formal theory of frightening, indeed repulsive, 
abstractness and lack of visualizability. Certainly one cannot overestimate the value of the mathematical 
(and to that extent physical) mastery of the quantum-mechanical laws that Schrodmger's theory has 
made possible. However, as regards questions of physical interpretation and principle, the popular 
view of wave mechanics, as I see it, has actually deflected us from exactly those roads which were 
pointed out by the papers of Einstein and de Broglie on the one hand and by the papers of Bohr and 
by quantum mechanics on the other hand. 
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in its essential points, it may be permissible to outline briefly its consequences of 

principle. We have not assumed that quantum theory—in opposition to classical 

theory—is an essentially statistical theory in the sense that only statistical con
clusions can be drawn from precise initial data. The well-known experiments of 

Geiger and Bothe, for example, speak directly against such an assumption. Rather, 

in all cases in which relations exist in classical theory between quantities which 
are really all exactly measurable, the corresponding exact relations also hold in 
quantum theory (laws of conservation of momentum and energy). But what is 
wrong in the sharp formulation of the law of causality, "When we know the present 

precisely, we can predict the future," is not the conclusion but the assumption. 

Even in principle we cannot know the present in all detail. For that reason every
thing observed is a selection from a plenitude of possibilities and a limitation on 
what is possible in the future. As the statistical character of quantum theory is so 

closely linked to the inexactness of all perceptions, one might be led to the pre

sumption that behind the perceived statistical world there still hides a "real" 
world in which causality holds. But such speculations seem to us, to say it explicitly, 
fruitless and senseless. Physics ought to describe only the correlation of observa
tions. One can express the true state of affairs better in this way: Because all 
experiments are subject to the laws of quantum mechanics, and therefore to 
equation (1), it follows that quantum mechanics establishes the final failure of 
causality. 

ADDITION IN PROOF 

After the conclusion of the foregoing paper, more recent investigations of Bohr 

have led to a point of view which permits an essential deepening and sharpening 
of the analysis of quantum-mechanical correlations attempted in this work. In 

this connection Bohr has brought to my attention that I have overlooked essential 
points in the course of several discussions in this paper. Above all, the uncertainty 
in our observation does not arise exclusively from the occurrence of discontinuities, 
but is tied directly to the demand that we ascribe equal validity to the quite different 
experiments which show up in the corpuscular theory on one hand, and in the 
wave theory on the other hand. In the use of an idealized gamma-ray microscope, 
for example, the necessary divergence of the bundle of rays must be taken into 
account. This has as one consequence that in the observation of the position of 

the electron the direction of the Compton recoil is only known with a spread 
which then leads to relation (1). Furthermore, it is not sufficiently stressed that 
the simple theory of the Compton effect, strictly speaking, only applies to free 
electrons. The consequent care needed in employing the uncertainty relation is, 
as Professor Bohr has explained, essential, among other things, for a comprehensive 

discussion of the transition from micro- to macromechanics. Finally, the discussion 
of resonance fluorescence is not entirely correct because the connection between 
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the phase of the light and that of the electronic motion is not so simple as was 

assumed. I owe great thanks to Professor Bohr for sharing with me at an early 
stage the results of these more recent investigations of his—to appear soon in a 
paper on the conceptual structure of quantum theory—and for discussing them 
with me. 

Copenhagen, Institute for Theoretical Physics of the University. 
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COMMENTARY OF ROSENFELD (1963) 

Complementarity is no system, no 

doctrine with ready-made precepts. 

There is no via regia to it; no formal 

definition of it can even be found in 

Bohr's writings, and this worries many 

people. The French are shocked by this 

breach of the Cartesian rules; they 

blame Bohr for indulging in "clair-

obscur" and shrouding himself in "les 

brumes du Nord." The Germans in their 

thoroughness have been at work distin

guishing several forms of complemen

tarity and studying, in hundreds of 

pages, their relations to Kant. Pragmatic 

Americans have dissected complemen

tarity with the scalpel of symbolic logic 

and undertaken to define this gentle art 

of the correct use of words without 

using any words at all. Bohr was content 

to teach by example. He often evoked 

the thinkers of the past who had 

intuitively recognized dialectical aspects 

of existence and endeavored to give 

them poetical or philosophical expres

sion; our only advantage over these 

great men, he would observe, is that in 

physics we have been presented with 

such a simple and clear case of comple

mentarity that we are able to study it in 

detail and thus arrive at a precise formu

lation of a logical relationship of univer

sal scope. The nature of this relation he 

regarded as sufficiently illustrated by 

his analyses of the limits of validity of 

classical physical concepts. 

COMMENTARY OF ROSENFELD (1971A; 

CONTINUED FROM §1. 3 ABOVE) 

As to Bohr's "forthcoming" publication, 

more than a year elapsed before it 

appeared in print: it was a much fur

bished version of a lecture he delivered, 

shortly after the events just retraced, at 

a physicists' conference in Como. He 

had the greatest misgivings about pre

senting his conception of complemen

tarity to the community of physicists in 

a state which he judged immature; 

but he yielded to the advice of his 

more practically-minded brother Har-

ald. Upon the latter's urging, he even 

consented to write up a brief account, 

that could be promptly published in 

Nature, as a letter to the editor: but 

this letter never reached its destination. 

With the help of Klein, he actually 

managed to complete it just on the 

night of his reluctant departure for 

Como. However, when Klein came up 

to the Institute the next morning, and 

enquired whether the letter had been 

sent off, he learned that there had been 

a double hitch, of a kind to delight 

Freudians. Bohr had missed the night 

train, because he could not find his 

passport (which lay on his desk); he 

had departed by the next train, taking 

with him the famous letter. 
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COMMENTARY OF HEISENBERG (1967; 

CONTINUED FROM §1. 3 ABOVE) 

How closely the idea of complemen

tarity was in accord with Bohr's older 
philosophical ideas became apparent 

through an episode, which, if I remem
ber correctly, took place on a sailing 
trip from Copenhagen to Svendborg on 

the island Fyn. At that time Bohr and a 
colleague and friend owned a sailing 

boat, the captain of which was the bril

liant and extremely charming chemist 
Bjerrum. The distinguished surgeon 

Chievitz kept spirits high even in 
stormy weather, and the other friends 
contributed each in his way to this 
happy and untroubled existence. Bohr 

was full of the new interpretation of 

quantum theory, and as the boat took 
us full sail southwards in sunshine, 
there was plenty of time to tell of this 

scientific event and to reflect philosoph
ically on the nature of atomic theory. 
Bohr began by talking of the difficulties 

of language, of the limitations of all our 
means of expressing ourselves, which 

one had to take into account from the 
very beginning if one wants to practice 
science, and he explained how satisfying 
it was that this limitation had already 
been expressed in the foundation of 
atomic theory in a mathematically lucid 
way. Finally, one of the friends re

marked drily, "But, Niels, this is not 
really new, you said exactly the same 

ten years ago." 



1.4 THE QUANTUM POSTULATE AND 
THE RECENT DEVELOPMENT OF ATOMIC THEORY 

NIELS BOHR 

Although it is with great pleasure that I follow the 
kind invitation of the presidency of the congress to 
give an account of the present state of the quantum 
theory in order to open a general discussion on this 
subject, which takes so central a position in modern 
physical science, it is with a certain hesitation that I 
enter on this task. Not only is the venerated originator 
of the theory present himself, but among the audience 
there will be several who, due to their participation in 
the remarkable recent development, will surely be more 
conversant with details of the highly developed for
malism than I am. Still I shall try, by making use only 
of simple considerations and without going into any 
details of technical mathematical character, to describe 
to you a certain general point of view which I believe 
is suited to give an impression of the general trend of 
the development of the theory from its very beginning 
and which I hope will be helpful in order to harmonize 
the apparently conflicting views taken by different 
scientists. No subject indeed may be better suited 
than the quantum theory to mark the development of 
physics in the century passed since the death of the 
great genius, whom we are here assembled to com
memorate. At the same time, just in a field like this 
where we are wandering on new paths and have to rely 

Originally published in Nature, 121, 580-90 (1928). Reprinted in Niels 
Bohr (1934), Atomic Theory and the Description of Nature, Cambridge 
University Press, pp. 52-91, from which book this paper is reproduced 
here. 
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upon our own judgment in order to escape from the 
pitfalls surrounding us on all sides, we have perhaps 
more occasion than ever at every step to be remindful 
of the work of the old masters who have prepared the 
ground and furnished us with our tools. 

i. QUANTUM POSTULATE AND CAUSALITY 

The quantum theory is characterized by the acknow
ledgment of a fundamental limitation in the classical 
physical ideas when applied to atomic phenomena. The 
situation thus created is of a peculiar nature, since our 
interpretation of the experimental material rests essen
tially upon the classical concepts. Notwithstanding the 
difficulties which, hence, are involved in the formulation 
of the quantum theory, it seems, as we shall see, that its 
essence may be expressed in the so-called quantum 
postulate, which attributes to any atomic process an 
essential discontinuity, or rather individuality, com
pletely foreign to the classical theories and symbolized 
by Planck's quantum of action. 

This postulate implies a renunciation as regards the 
causal space-time co-ordination of atomic processes. 
Indeed, our usual description of physical phenomena is 
based entirely on the idea that the phenomena concerned 
may be observed without disturbing them appreciably. 
This appears, for example, clearly in the theory of re
lativity, which has been so fruitful for the elucidation of 
the classical theories. As emphasized by Einstein, every 
observation or measurement ultimately rests on the 
coincidence of two independent events at the same space-
time point. Just these coincidences will not be affected 
by any differences which the space-time co-ordination 
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of different observers otherwise may exhibit. Now, the 
quantum postulate implies that any observation of 
atomic phenomena will involve an interaction with the 
agency of observation not to be neglected. Accordingly, 
an independent reality in the ordinary physical sense 
can neither be ascribed to the phenomena nor to the 
agencies of observation. After all, the concept of observa
tion is in so far arbitrary as it depends upon which objects 
are included in the system to be observed. Ultimately, 
every observation can, of course, be reduced to our sense 
perceptions. The circumstance, however, that in in
terpreting observations use has always to be made of 
theoretical notions entails that for every particular case 
it is a question of convenience at which point the con
cept of observation involving the quantum postulate 
with its inherent "irrationality" is brought in. 

This situation has far-reaching consequences. On one 
hand, the definition of the state of a physical system, as 
ordinarily understood, claims the elimination of all ex
ternal disturbances. But in that case, according to the 
quantum postulate, any observation will be impossible, 
and, above all, the concepts of space and time lose their 
immediate sense. On the other hand, if in order to make 
observation possible we permit certain interactions with 
suitable agencies of measurement, not belonging to the 
system, an unambiguous definition of the state of the 
system is naturally no longer possible, and there can be 
no question of causality in the ordinary sense of the word. 
The very nature of the quantum theory thus forces us to 
regard the space-time co-ordination and the claim of 
causality, the union of which characterizes the classical 
theories, as complementary but exclusive features of the 
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description, symbolizing the. idealization of observation 
and definition respectively. Just as the relativity theory 
has taught us that the convenience of distinguishing 
sharply between space and time rests solely on the small-
ness of the velocities ordinarily met with compared to 
the velocity of light, we learn from the quantum theory 
that the appropriateness of our usual causal space-time 
description depends entirely upon the small value of the 
quantum of action as compared to the actions involved 
in ordinary sense perceptions. Indeed, in the descrip
tion of atomic phenomena, the quantum postulate pre
sents us with the task of developing a'' complementarity " 
theory the consistency of which can be judged only by 
weighing the possibilities of definition and observation. 

This view is already clearly brought out by the much-
discussed question of the nature of light and the ultimate 
constituents of matter. As regards light, its propagation 
in space and time is adequately expressed by the electro
magnetic theory. Especially the interference phenomena 
in vacuo and the optical properties of material media are 
completely governed by the wave theory superposition 
principle. Nevertheless, the conservation of energy and 
momentum during the interaction between radiation and 
matter, as evident in the photo-electric and Compton 
effect, finds its adequate expression just in the light 
quantum idea put forward by Einstein. As is well known, 
the doubts regarding the validity of the superposition 
principle, on one hand, and of the conservation laws, on 
the other, which were suggested by this apparent con
tradiction, have been definitely disproved through direct 
experiments. This situation would seem clearly to in
dicate the impossibility of a causal space-time descrip-
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tion of the light phenomena. On one hand, in attempting 
to trace the laws of the time-spatial propagation of light 
according to the quantum postulate, we are confined to 
statistical considerations. On the other hand, the fulfil
ment of the claim of causality for the individual light 
processes, characterized by the quantum of action, en
tails a renunciation as regards the space-time descrip
tion. Of course, there can be no question of a quite 
independent application of the ideas of space and time 
and of causality. The two views of the nature of light 
are rather to be considered as different attempts at an 
interpretation of experimental evidence in which the 
limitation of the classical concepts is expressed in com
plementary ways. 

The problem of the nature of the constituents of 
matter presents us with an analogous situation. The 
individuality of the elementary electrical corpuscles is 
forced upon us by general evidence. Nevertheless, recent 
experience, above all the discovery of the selective re
flection of electrons from metal crystals, requires the use 
of the wave theory superposition principle in accordance 
with the original ideas of L. de Broglie. Just as in the 
case of light, we have consequently in the question of the 
nature of matter, so far as we adhere to classical concepts, 
to face an inevitable dilemma which has to be regarded 
as the very expression of experimental evidence. In fact, 
here again we are not dealing with contradictory but 
with complementary pictures of the phenomena, which 
only together offer a natural generalization of the clas
sical mode of description. In the discussion of these 
questions, it must be kept in mind that, according to the 
view taken above, radiation in free space as well as isol-
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ated material particles are abstractions, their properties 
on the quantum theory being definable and observable 
only through their interaction with other systems. 
Nevertheless, these abstractions are, as we shall see, in
dispensable for a description of experience in connection 
with our ordinary space-time view. 

The difficulties with which a causal space-time descrip
tion is confronted in the quantum theory, and which 
have been the subject of repeated discussions, are now 
placed into the foreground by the recent development 
of the symbolic methods. An important contribution to 
the problem of a consistent application of these methods 
has been made lately by Heisenberg. In particular, he 
has stressed the peculiar reciprocal uncertainty which 
affects all measurements of atomic quantities. Before 
we enter upon his results, it will be advantageous to show 
how the complementary nature of the description ap
pearing in this uncertainty is unavoidable already in an 
analysis of the most elementary concepts employed in 
interpreting experience. 

2. QUANTUM OF ACTION AND KINEMATICS 

The fundamental contrast between the quantum of 
action and the classical concepts is immediately apparent 
from the simple formulae which form the common foun
dation of the theory of light quanta and of the wave 
theory of material particles. If Planck's constant be de
noted by h, as is well known, 

Er = I \  = h,  ( i )  

where E and I  are energy and momentum respectively, 
τ and λ the corresponding period of vibration and wave-
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length. In these formulae the two notions of light and 
also of matter enter in sharp contrast. While energy and 
momentum are associated with the concept of particles, 
and, hence, maybe characterized according to the classical 
point of view by definite space-time co-ordinates, the 
period of vibration and wave-length refer to a plane 
harmonic wave train of unlimited extent in space and 
time. Only with the aid of the superposition principle 
does it become possible to attain a connection with the 
ordinary mode of description. Indeed, a limitation of 
the extent of the wave-fields in space and time can always 
be regarded as resulting from the interference of a group 
of elementary harmonic waves. As shown by de Broglie, 
the translational velocity of the individuals associated 
with the waves can be represented by just the so-called 
group-velocity. Let us denote a plane elementary wave by 

A COS Ztt (Vt— Xax — yay  — £σ ζ +δ), 

where A and δ are constants determining respectively 
the amplitude and the phase. The quantity ν= i/t is the 
frequency, σχ, συ, σζ the wave numbers in the direction 
of the co-ordinate axes, which may be regarded as vector 
components of the wave number σ = ι /λ in the directions 
of propagation. While the wave or phase velocity is given 
by ν/σ, the group-velocity is defined by dvjda. Now ac
cording to the relativity theory we have for a particle 
with the velocity ν: 

I =  \ E  and vdl= dE, 
C2  

where c denotes the velocity of light. Hence by equation 
(i) the phase velocity is c2jv and the group-velocity v. 
The circumstance that the former is in general greater 



94 BOHR 

than the velocity of light emphasizes the symbolic cha
racter of these considerations. At the same time, the 
possibility of identifying the velocity of the particle with 
the group-velocity indicates the field of application of 
space-time pictures in the quantum theory. Here the 
complementary character of the description appears, 
since the use of wave-groups is necessarily accompanied 
by a lack of sharpness in the definition of period and 
wave-length, and hence also in the definition of the cor
responding energy and momentum as given by relation (i). 

Rigorously speaking, a limited wave-field can only be 
obtained by the superposition of a manifold of ele
mentary  waves  cor responding  to  a l l  va lues  of  ν  and σ χ ,  
σν, σζ. But the order of magnitude of the mean dif
ference between these values for two elementary waves 
in the group is given in the most favourable case by the 
condition 

AtAv= AxAax= AyAav= Az Aa z= I, 

where At, Ax, Ay, Az denote the extension of the wave-
field in time and in the directions of space corresponding 
to the co-ordinate axes. These relations—well known 
from the theory of optical instruments, especially from 
Rayleigh's investigation of the resolving power of spectral 
apparatus—express the condition that the wave-trains 
extinguish each other by interference at the space-time 
boundary of the wave-field. They may be regarded also 
as signifying that the group as a whole has no phase in 
the same sense as the elementary waves. From equation 
(i) we find thus: 

At AE= AxAlx= Ay AIy= Az AI z  = h t  (2) 

as determining the highest possible accuracy in the 
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definition of the energy and momentum of the indi
viduals associated with the wave-field. In general, the 
conditions for attributing an energy and a momentum 
value to a wave-field by means of formula (i) are much 
less favourable. Even if the composition of the wave-
group corresponds in the beginning to the relations (2), 
it will in the course of time be subject to such changes 
that it becomes less and less suitable for representing an 
individual. It is this very circumstance which gives rise 
to the paradoxical character of the problem of the nature 
of light and of material particles. The limitation in the 
classical concepts expressed through relation (2), is, be
sides, closely connected with the limited validity of 
classical mechanics, which in the wave theory of matter 
corresponds to the geometrical optics in which the 
propagation of waves is depicted through " rays ". Only 
in this limit can energy and momentum be unambigu
ously defined on the basis of space-time pictures. For 
a general definition of these concepts we are confined to 
the conservation laws, the rational formulation of which 
has been a fundamental problem for the symbolical 
methods to be mentioned below. 

In the language of the relativity theory, the content of 
the relations (2) may be summarized in the statement 
that according to the quantum theory a general reci
procal relation exists between the maximum sharpness 
of definition of the space-time and energy-momentum 
vectors associated with the individuals. This circum
stance may be regarded as a simple symbolical expres
sion for the complementary nature of the space-time 
description and the claims of causality. At the same time, 
however, the general character of this relation makes it 
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possible to a certain extent to reconcile the conservation 
laws with the space-time co-ordination of observations, 
the idea of a coincidence of well-defined events in a 
space-time point being replaced by that of unsharply 
defined individuals within finite space-time regions. 

This circumstance permits us to avoid the well-known 
paradoxes which are encountered in attempting to de
scribe the scattering of radiation by free electrical par
ticles as well as the collision of two such particles. 
According to the classical concepts, the description of 
the scattering requires a finite extent of the radiation in 
space and time, while in the change of the motion of the 
electron demanded by the quantum postulate one seem
ingly is dealing with an instantaneous effect taking place 
at a definite point in space. Just as in the case of radia
tion, however, it is impossible to define momentum and 
energy for an electron without considering a finite space-
time region. Furthermore, an application of the con
servation laws to the process implies that the accuracy 
of definition of the energy-momentum vector is the same 
for the radiation and the electron. In consequence, ac
cording to relation (2), the associated space-time regions 
can be given the same size for both individuals in inter
action. 

A similar remark applies to the collision between two 
material particles, although the significance of the 
quantum postulate for this phenomenon was disregarded 
before the necessity of the wave concept was realized. 
Here, this postulate does, indeed, represent the idea of the 
individuality of the particles which, transcending the 
space-time description, meets the claim of causality. 
While the physical content of the light-quantum idea is 
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wholly connected with the conservation theorems for 
energy and momentum, in the case of the electrical par
ticles the electric charge has to be taken into account in 
this connection. It is scarcely necessary to mention that 
for a more detailed description of the interaction between 
individuals we cannot restrict ourselves to the facts ex
pressed by formulae (i) and (2), but must resort to a pro
cedure which allows us to take into account the coupling 
of the individuals, characterizing the interaction in ques
tion, where just the importance of the electric charge 
appears. As we shall see, such a procedure necessitates 
a further departure from visualization in the usual sense. 

3. MEASUREMENTS IN THE QUANTUM THEORY 

In his investigations already mentioned on the consist
ency of the quantum-theoretical methods, Heisenberg 
has given the relation (2) as an expression for the 
maximum precision with which the space-time co
ordinates and momentum-energy components of a par
ticle can be measured simultaneously. His view was 
based on the following consideration: On one hand, the 
co-ordinates of a particle can be measured with any de
sired degree of accuracy by using, for example, an optical 
instrument, provided radiation of sufficiently short wave
length is used for illumination. According to the quantum 
theory, however, the scattering of radiation from the ob
ject is always connected with a finite change in mo
mentum, which is the larger the smaller the wave-length 
of the radiation used. The momentum of a particle, on 
the other hand, can be determined with any desired de
gree of accuracy by measuring, for example, the Doppler 
effect of the scattered radiation, provided the wave-length 
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of the radiation is so large that the effect of recoil can be 
neglected, but then the determination of the space co
ordinates of the particle becomes correspondingly less 
accurate. 

The essence of this consideration is the inevitability 
of the quantum postulate in the estimation of the possi
bilities of measurement. A closer investigation of the 
possibilities of definition would still seem necessary in 
order to bring out the general complementary character 
of the description. Indeed, a discontinous change of 
energy and momentum during observation could not 
prevent us from ascribing accurate values to the space-
time co-ordinates, as well as to the momentum-energy 
components before and after the process. The reciprocal 
uncertainty which always affects the values of these 
quantities is, as will be clear from the preceding analysis, 
essentially an outcome of the limited accuracy with which 
changes in energy and momentum can be defined, when 
the wave-fields used for the determination of the space-
time co-ordinates of the particle are sufficiently small. 

In using an optical instrument for determinations of 
position, it is necessary to remember that the formation 
of the image always requires a convergent beam of light. 
Denoting by λ the wave-length of the radiation used, 
and by e the so-called numerical aperture, that is, the 
sine of half the angle of convergence, the resolving power 
of a microscope is given by the well-known expression 
AJ2e. Even if the object is illuminated by parallel light, 
so that the momentum Λ/λ of the incident light quantum 
is known both as regards magnitude and direction, the 
finite value of the aperture will prevent an exact know
ledge of the recoil accompanying the scattering. Also, 
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even if the momentum of the particle were accurately 
known before the scattering process, our knowledge of 
the component of momentum parallel to the focal plane 
after the observation would be affected by an uncertainty 
amounting to 2eh/λ. The product of the leastinaccuracies 
with which the positional co-ordinate and the component 
of momentum in a definite direction can be ascertained 
is therefore just given by formula (2). One might per
haps expect that in estimating the accuracy of determin
ing the position, not only the convergence but also the 
length of the wave-train has to be taken into account, 
because the particle could change its place during the 
finite time of illumination. Due to the fact, however, 
that the exact knowledge of the wave-length is im
material for the above estimate, it will be realized that 
for any value of the aperture the wave-train can always 
be taken so short that a change of position of the particle 
during the time of observation may be neglected in com
parison to the lack of sharpness inherent in the deter
mination of position due to the finite resolving power of 
the microscope. 

In measuring momentum with the aid of the Doppler 
effect—with due regard to the Compton effect—one will 
employ a parallel wave-train. For the accuracy, however, 
with which the change in wave-length of the scattered 
radiation can be measured the extent of the wave-train 
in the direction of propagation is essential. If we assume 
that the directions of the incident and scattered radiation 
are parallel and opposite, respectively, to the direction of 
the position co-ordinate and momentum component to 
be measured, then cKjzl can be taken as a measure of the 
accuracy in the determination of the velocity, where I 
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denotes the length of the wave-train. For simplicity, we 
here have regarded the velocity of light as large com
pared to the velocity of the particle. If m represents the 
mass of the particle, then the uncertainty attached to the 
value of the momentum after observation is cmXjzl. In 
this case the magnitude of the recoil, 2hjX, is sufficiently 
well defined in order not to give rise to an appreciable 
uncertainty in the value of the momentum of the particle 
after observation. Indeed, the general theory of the 
Compton effect allows us to compute the momentum 
components in the direction of the radiation before and 
after the recoil from the wave-lengths of the incident and 
scattered radiation. Even if the positional co-ordinates 
of the particle were accurately known in the beginning, 
our knowledge of the position after observation never
theless will be affected by an uncertainty. Indeed, on 
account of the impossibility of attributing a definite in
stant to the recoil, we know the mean velocity in the 
direction of observation during the scattering process 
only with an accuracy ZhjmX. The uncertainty in the 
position after observation hence is 2hljtncX. Here, too, 
the product of the inaccuracies in the measurement of 
position and momentum is thus given by the general 
formula (2). 

Just as in the case of the determination of position, the 
time of the process of observation for the determination 
of momentum may be made as short as is desired, if only 
the wave-length of the radiation used is sufficiently small. 
The fact that the recoil then gets larger does not, as we 
have seen, affect the accuracy of measurement. It should 
further be mentioned, that in referring to the velocity 
of a particle as we have here done repeatedly, the purpose 
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has only been to obtain a connection with the ordinary 
space-time description convenient in this case. As it ap
pears already from the considerations of de Broglie 
mentioned above, the concept of velocity must always in 
the quantum theory be handled with caution. It will 
also be seen that an unambiguous definition of this con
cept is excluded by the quantum postulate. This is par
ticularly to be remembered when comparing the results 
of successive observations. Indeed, the position of an 
individual at two given moments can be measured with 
any desired degree of accuracy; but if, from such 
measurements, we would calculate the velocity of the 
individual in the ordinary way, it must be clearly realized 
that we are dealing with an abstraction, from which no 
unambiguous information concerning the previous or 
future behaviour of the individual can be obtained. 

According to the above considerations regarding the 
possibilities of definition of the properties of individuals, 
it will obviously make no difference in the discussion of 
the accuracy of measurements of position and mo
mentum of a particle if collisions with other material 
particles are considered instead of scattering of radiation. 
In both cases, we see that the uncertainty in question 
equally affects the description of the agency of measure
ment and of the object. In fact, this uncertainty cannot 
be avoided in a description of the behaviour of indi
viduals with respect to a co-ordinate system fixed in the 
ordinary way by means of solid bodies and unperturbable 
clocks. The experimental devices—opening and closing 
of apertures, etc.—are seen to permit only conclusions 
regarding the space-time extension of the associated 
wave-fields. 
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In tracing observations back to our sensations, once 
more regard has to be taken to the quantum postulate in 
connection with the perception of the agency of observa
tion, be it through its direct action upon the eye or 
by means of suitable auxiliaries such as photographic 
plates, Wilson clouds, etc. It is easily seen, however, 
that the resulting additional statistical element will not 
influence the uncertainty in the description of the object. 
It might even be conjectured that the arbitrariness in 
what is regarded as object and what as agency of ob
servation would open up a possibility of avoiding this 
uncertainty altogether. In connection with the measure
ment of the position of a particle, one might, for example, 
ask whether the momentum transmitted by the scattering 
could not be determined by means of the conservation 
theorem from a measurement of the change of mo
mentum of the microscope—including light source and 
photographic plate—during the process of observation. 
A closer investigation shows, however, that such a 
measurement is impossible, if at the same time one wants 
to know the position of the microscope with sufficient 
accuracy. In fact, it follows from the experiences which 
have found expression in the wave theory of matter that 
the position of the centre of gravity of a body and its 
total momentum can only be defined within the limits 
of reciprocal accuracy given by relation (2). 

Strictly speaking, the idea of observation belongs to 
the causal space-time way of description. Due to the 
general character of relation (2), however, this idea can 
be consistently utilized also in the quantum theory, if 
only the uncertainty expressed through this relation is 
taken into account. As remarked by Heisenberg, one 
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may even obtain an instructive illustration of the 
quantum-theoretical description of atomic (microscopic) 
phenomena by comparing this uncertainty with the un
certainty, due to imperfect measurements, inherently 
contained in any observation as considered in the ordi
nary description of natural phenomena. He remarks on 
that occasion that even in the case of macroscopic phe
nomena we may say, in a certain sense, that they are 
created by repeated observations. It must not be for
gotten, however, that in the classical theories any suc
ceeding observation permits a prediction of future events 
with ever-increasing accuracy, because it improves our 
knowledge of the initial state of the system. According 
to the quantum theory, just the impossibility of neg
lecting the interaction with the agency of measurement 
means that every observation introduces a new uncon
trollable element. Indeed, it follows from the above 
considerations that the measurement of the positional 
co-ordinates of a particle is accompanied not only by a 
finite change in the dynamical variables, but also the 
fixation of its position means a complete rupture in the 
causal description of its dynamical behaviour, while the 
determination of its momentum always implies a gap in 
the knowledge of its spatial propagation. Just this situa
tion brings out most strikingly the complementary cha
racter of the description of atomic phenomena which 
appears as an inevitable consequence of the contrast be
tween the quantum postulate and the distinction between 
object and agency of measurement, inherent in our very 
idea of observation. 
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4. CORRESPONDENCE PRINCIPLE AND 
MATRIX THEORY 

Hitherto we have only regarded certain general features 
of the quantum problem. The situation implies, however, 
that the main stress has to be laid on the formulation of 
the laws governing the interaction between the objects 
which we symbolize by the abstractions of isolated 
particles and radiation. Points of attack for this formula
tion are presented in the first place by the problem of 
atomic constitution. As is well known, it has been pos
sible here, by means of an elementary use of classical 
concepts and in harmony with the quantum postulate, 
to throw light on essential aspects of experience. For 
example, the experiments regarding the excitation of 
spectra by electronic impacts and by radiation are ade
quately accounted for on the assumption of discrete 
stationary states and individual transition processes. 
This is primarily due to the circumstance that in these 
questions no closer description of the space-time be
haviour of the processes is required. 

Here the contrast with the ordinary way of description 
appears strikingly in the circumstance that spectral lines, 
which on the classical view would be ascribed to the 
same state of the atom, will, according to the quantum 
postulate, correspond to separate transition processes, 
between which the excited atom has a choice. Notwith
standing this contrast, however, a formal connection 
with the classical ideas could be obtained in the limit 
where the relative difference in the properties of neigh
bouring stationary states vanishes asymptotically and 
where in statistical applications the discontinuities may 
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be disregarded. Through this connection it was possible 
to a large extent to interpret the regularities of spectra 
on the basis of our ideas about the structure of the 
atom. 

The aim of regarding the quantum theory as a rational 
generalization of the classical theories led to the formula
tion of the so-called correspondence principle. The 
utilization of this principle for the interpretation of 
spectroscopic results was based on a symbolical applica
tion of classical electrodynamics, in which the individual 
transition processes were each associated with a har
monic in the motion of the atomic particles to be ex
pected according to ordinary mechanics. Except in the 
limit mentioned, where the relative difference between 
adjacent stationary states may be neglected, such a frag
mentary application of the classical theories could only 
in certain cases lead to a strictly quantitative description 
of the phenomena. Especially the connection developed 
by Ladenburg and Kramers between the classical treat
ment of dispersion and the statistical laws governing the 
radiative transition processes formulated by Einstein 
should be mentioned here. Althoughitwas just Kramers' 
treatment of dispersion that gave important hints for the 
rational development of correspondence considerations, 
it is only through the quantum-theoretical methods 
created in the last few years that the general aims laid 
down in the principle mentioned have obtained an ade
quate formulation. 

As is known, the new development was commenced in 
a fundamental paper by Heisenberg, where he succeeded 
in emancipating himself completely from the classical 
concept of motion by replacing from the very start the 
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ordinary kinematical and mechanical quantities by 
symbols which refer directly to the individual processes 
demanded by the quantum postulate. This was accom
plished by substituting for the Fourier development of 
a classical mechanical quantity a matrix scheme, the ele
ments of which symbolize purely harmonic vibrations 
and are associated with the possible transitions between 
stationary states. By requiring that the frequencies 
ascribed to the elements must always obey the com
bination principle for spectral lines, Heisenberg could 
introduce simple rules of calculation for the symbols 
which permit a direct quantum-theoretical transcription 
of the fundamental equations of classical mechanics. 
This ingenious attack on the dynamical problem of 
atomic theory proved itself from the beginning to be an 
exceedingly powerful and fertile method for interpreting 
quantitatively the experimental results. Through the 
work of Born and Jordan, as well as of Dirac, the theory 
was given a formulation which can compete with clas
sical mechanics as regards generality and consistency. 
Especially, the element characteristic of the quantum 
theory, Planck's constant, appears explicitly only in the 
algorithms to which the symbols, the so-called matrices, 
are subjected. In fact, matrices, which represent 
canonically conjugated variables in the sense of the 
Hamiltonian equations, do not obey the commutative 
law of multiplication, but two such quantities, q and p, 
have to fulfil the exchange rule 

pq-qp^V^i^. (3) 

Indeed, this exchange relation expresses strikingly the 
symbolical character of the matrix formulation of the 
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quantum theory. The matrix theory has often been 
called a calculus with directly observable quantities. It 
must be remembered, however, that the procedure de
scribed is limited just to those problems, in which in ap
plying the quantum postulate the space-time description 
may largely be disregarded, and the question of observa
tion in the proper sense therefore placed in the back
ground. 

In pursuing further the correspondence of the quantum 
laws with classical mechanics, the stress placed on the 
statistical character of the quantum-theoretical descrip
tion, which is brought in by the quantum postulate, has 
been of fundamental importance. Here the generaliza
tion of the symbolical method made by Dirac and Jordan 
represented a great progress by making possible the 
operation with matrices, which are not arranged accord
ing to the stationary states, but where the possible 
values of any set of variables may appear as indices of 
the matrix elements. In analogy to the interpretation 
considered in the original form of the theory of the 
"diagonal elements" connected only with a single 
stationary state, as time averages of the quantity to be 
represented, the general transformation theory of 
matrices permits the representation of such averages of 
a mechanical quantity, in the calculation of which any 
set of variables characterizing the " state " of the system 
has given values, while the canonically conjugated vari
ables are allowed to take all possible values. On the 
basis of the procedure developed by these authors and 
in close connection with ideas of Born and Pauli, Heisen-
berg has in the paper already cited above attempted a 
closer analysis of the physical content of the quantum 
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theory, especially in view of the apparently paradoxical 
character of the exchange relation (3). In this connection 
he has formulated the relation 

A.qAp~h. (4) 

as the general expression for the maximum accuracy 
with which two canonically conjugated variables can 
simultaneously be observed. In this way Heisenberg has 
been able to elucidate many paradoxes appearing in the 
application of the quantum postulate, and to a large 
extent to demonstrate the consistency of the symbolic 
method. In connection with the complementary nature 
of the quantum-theoretical description, we must, as 
already mentioned, constantly keep the possibilities of 
definition as well as of observation before the mind. For 
the discussion of just this question the method of wave 
mechanics developed by Schrodinger has, as we shall see, 
proved of great help. It permits a general application of 
the principle of superposition also in the problem of 
interaction, thus offering an immediate connection with 
the above considerations concerning radiation and free 
particles. Below we shall return to the relation of wave 
mechanics to the general formulation of the quantum 
laws by means of the transformation theory of matrices. 

5. WAVE MECHANICS AND THE QUANTUM 
POSTULATE 

Already in his first considerations concerning the wave 
theory of material particles, de Broglie pointed out that 
the stationary states of an atom may be visualized as an 
interference effect of the phase wave associated with a 
bound electron. It is true that this point of view at first 
did not, as regards quantitative results, lead beyond the 
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earlier methods of quantum theory, to the development 
of which Sommerfeld has contributed so essentially. 
Schrodinger, however, succeeded in developing a wave-
theoretical method which has opened up new aspects, 
and has proved to be of decisive importance for the great 
progress in atomic physics during the last years. Indeed, 
the proper vibrations of the Schrodinger wave equation 
have been found to furnish a representation of the 
stationary states of an atom meeting all requirements. 
The energy of each state is connected with the corre
sponding period of vibration according to the general 
quantum relation (i). Furthermore, the number of 
nodes in the various characteristic vibrations gives a 
simple interpretation to the concept of quantum number 
which was already known from the older methods, but 
at first did not seem to appear in the matrix formulation. 
In addition, Schrodinger could associate with the solu
tions of the wave equation a continuous distribution of 
charge and current which, if applied to a characteristic 
vibration, represents the electrostatic and magnetic pro
perties of an atom in the corresponding stationary state. 
Similarly, the superposition of two characteristic solu
tions corresponds to a continuous vibrating distribution 
of electrical charge, which on classical electrodynamics 
would give rise to an emission of radiation, illustrating 
instructively the consequences of the quantum postulate 
and the correspondence requirement regarding the tran
sition process between two stationary states formulated in 
matrix mechanics. Another application of the method of 
Schrodinger, important for the further development, has 
been made by Born in his investigation of the problem of 
collisions between atoms and free electric particles. Inthis 
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connection he succeeded in obtaining a statistical inter
pretation of the wave functions, allowing a calculation of 
the probability of the individual transition processes re
quired by the quantum postulate. This includes a wave-
mechanical formulation of the adiabatic principle of 
Ehrenfest, the fertility of which appears strikingly in the 
promising investigations of Hund on the problem of 
the formation of molecules. 

In view of these results, Schrodinger has expressed 
the hope that the development of the wave theory will 
eventually remove the irrational element expressed by 
the quantum postulate and open the way for a complete 
description of atomic phenomena along the line of the 
classical theories. In support of this view, Schrodinger, 
in a recent paper, emphasizes the fact that the discon
tinuous exchange of energy between atoms required by 
the quantum postulate, from the point of view of the 
wave theory, is replaced by a simple resonance pheno
menon. In particular, the idea of individual stationary 
states would be an illusion and its applicability only an 
illustration of the resonance mentioned. It must be kept 
in mind, however, that just in the resonance problem 
mentioned we are concerned with a closed system which, 
according to the view presented here, is not accessible to 
observation. In fact, wave mechanics, just as the matrix 
theory, on this view represents a symbolic transcription 
of the problem of motion of classical mechanics adapted 
to the requirements of quantum theory and only to be 
interpreted by an explicit use of the quantum postulate. 
Indeed, the two formulations of the interaction problem 
might be said to be complementary in the same sense as 
the wave and particle idea in the description of the free 
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individuals. The apparent contrast in the utilization of 
the energy concept in the two theories is just connected 
with this difference in the starting-point. 

The fundamental difficulties opposing a space-time 
description of a system of particles in interaction appear 
at once from the inevitability of the superposition prin
ciple in the description of the behaviour of individual 
particles. Already for a free particle the knowledge of 
energy and momentum excludes, as we have seen, the 
exact knowledge of its space-time co-ordinates. This 
implies that an immediate utilization of the concept 
of energy in connection with the classical idea of the 
potential energy of the system is excluded. In the 
Schrodinger wave equation these difficulties are avoided 
by replacing the classical expression of the Hamiltonian 
by a differential operator by means of the relation 

/—— h & , x 

(5) 

where/) denotes a generalized component of momentum 
and q the canonically conjugated variable. Here the 
negative value of the energy is regarded as conjugated to 
the time. So far, in the wave equation, time and space 
as well as energy and momentum are utilized in a purely 
formal way. 

The symbolical character of Schrodinger's method ap
pears not only from the circumstance that its simplicity, 
similarly to that of the matrix theory, depends essentially 
upon the use of imaginary arithmetic quantities. But 
above all there can be no question of an immediate con
nection with our ordinary conceptions because the " geo
metrical" problem represented by the wave equation is 
associated with the so-called co-ordinate space, the num-
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ber of dimensions of which is equal to the number of 
degrees of freedom of the system, and, hence, in general 
greater than the number of dimensions of ordinary space. 
Further, Schrodinger's formulation of the interaction 
problem, just as the formulation offered by matrix 
theory, involves a neglect of the finite velocity of propa
gation of the forces claimed by relativity theory. 

On the whole, it would scarcely seem justifiable, in the 
case of the interaction problem, to demand a visualiza
tion by means of ordinary space-time pictures. In fact, 
all our knowledge concerning the internal properties of 
atoms is derived from experiments on their radiation or 
collision reactions, such that the interpretation of ex
perimental facts ultimately depends on the abstractions 
of radiation in free space, and free material particles. 
Hence, our whole space-time view of physical phe
nomena, as well as the definition of energy and mo
mentum, depends ultimately upon these abstractions. 
In judging the applications of these auxiliary ideas, we 
should only demand inner consistency, in which con
nection special regard has to be paid to the possibilities 
of definition and observation. 

In the characteristic vibrations of Schrodinger's wave 
equation we have, as mentioned, an adequate representa
tion of the stationary states of an atom allowing an un
ambiguous definition of the energy of the system by 
means of the general quantum relation (i). This entails, 
however, that in the interpretation of observations a 
fundamental renunciation regarding the space-time de
scription is unavoidable. In fact, the consistent applica
tion of the concept of stationary states excludes, as we 
shall see, any specification regarding the behaviour of 
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the separate particles in the atom. In problems where a 
description of this behaviour is essential, we are bound 
to use the general solution of the wave equation which 
is obtained by superposition of characteristic solutions. 
We meet here with a complementarity of the possi
bilities of definition quite analogous to that which we 
have considered earlier in connection with the properties 
of light and free material particles. Thus, while the de
finition of energy and momentum of individuals is at
tached to the idea of a harmonic elementary wave, every 
space-time feature of the description of phenomena is, 
as we have seen, based on a consideration of the inter
ferences taking place inside a group of such elementary 
waves. Also in the present case the agreement between 
the possibilities of observation and those of definition 
can be directly shown. 

According to the quantum postulate any observation 
regarding the behaviour of the electron in the atom will 
be accompanied by a change in the state of the atom. As 
stressed by Heisenberg, this change will, in the case of 
atoms in stationary states of low quantum number, con
sist in general in the ejection of the electron from the 
atom. A description of the "orbit" of the electron in the 
atom with the aid of subsequent observations is, hence, 
impossible in such a case. This is connected with the 
circumstance that from characteristic vibrations with 
only a few nodes no wave packages can be built up which 
would even approximately represent the "motion" of a 
particle. The complementary nature of the description, 
however, appears particularly in that the use of observa
tions concerning the behaviour of particles in the atom 
rests on the possibility of neglecting, during the process 
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of observation, the interaction between the particles, 
thus regarding them as free. This requires, however, that 
the duration of the process is short compared with the 
natural periods of the atom, which again means that the 
uncertainty in the knowledge of the energy transferred 
in the process is large compared to the energy differences 
between neighbouring stationary states. 

Injudging the possibilities of observation it must, on 
the whole, be kept in mind that the wave-mechanical 
solutions can be visualized only in so far as they can be 
described with the aid of the concept of free particles. 
Here the difference between classical mechanics and the 
quantum-theoretical treatment of the problem of inter
action appears most strikingly. In the former such a 
restriction is unnecessary because the "particles" are 
here endowed with an immediate "reality", inde
pendently of their being free or bound. This situation is 
particularly important in connection with the consistent 
utilization of Schrodinger's electric density as a measure 
of the probability for electrons being present within 
given space regions of the atom. Remembering the re
striction mentioned, this interpretation is seen to be a 
simple consequence of the assumption that the proba
bility of the presence of a free electron is expressed by 
the electric density associated with the wave-field in a 
similar way to that by which the probability of the pre
sence of a light quantum is given by the energy density 
of the radiation. 

As already mentioned, the means for a general con
sistent utilization of the classical concepts in the quantum 
theory have been created through the transformation 
theory of Dirac and Jordan, by the aid of which Heisen-
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berg has formulated his general uncertainty relation (4). 
In this theory also the Schrodinger wave equation has 
obtained an instructive application. In fact, the charac
teristic solutions of this equation appear as auxiliary 
functions which define a transformation from matrices 
with indices representing the energy values of the system 
to other matrices, the indices of which are the possible 
values of the space co-ordinates. It is also of interest in 
this connection to mention that Jordan and Klein have 
recently arrived at the formulation of the problem of 
interaction expressed by the Schrodinger wave equation, 
taking as starting-point the wave representation of in
dividual particles and applying a symbolic method closely 
related to the deep-going treatment of the radiation pro
blem developed by Dirac from the point of view of the 
matrix theory, to which we shall return below. 

6.  REALITY OF STATIONARY STATES 

In the conception of stationary states we are, as men
tioned, concerned with a characteristic application of the 
quantum postulate. By its very nature this conception 
means a complete renunciation as regards a time de
scription. From the point of view taken here, just this 
renunciation forms the necessary condition for an un
ambiguous definition of the energy of the atom. More
over, the conception of a stationary state involves, strictly 
speaking, the exclusion of all interactions with individuals 
not belonging to the system. The fact that such a closed 
system is associated with a particular energy value may 
be considered as an immediate expression for the claim 
of causality contained in the theorem of conservation of 
energy. This circumstance justifies the assumption of 
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the supra-mechanical stability of the stationary states, 
according to which the atom, before as well as after an 
external influence, always will be found in a well-defined 
state, and which forms the basis for the use of the 
quantum postulate in problems concerning atomic 
structure. 

In a judgment of the well-known paradoxes which this 
assumption entails for the description of collision and 
radiation reactions, it is essential to consider the limita
tions of the possibilities of definition of the reacting free 
individuals, which is expressed by relation (2). In fact, 
if the definition of the energy of the reacting individuals 
is to be accurate to such a degree as to entitle us to speak 
of conservation of energy during the reaction, it is neces
sary, according to this relation, to co-ordinate to the re
action a time interval long compared to the vibration 
period associated with the transition process, and con
nected with the energy difference between the stationary 
states according to relation (1). This is particularly to be 
remembered when considering the passage of swiftly 
moving particles through an atom. According to the 
ordinary kinematics, the effective duration of such a pas
sage would be very small as compared with the natural 
periods of the atom, and it seemed impossible to recon
cile the principle of conservation of energy with the 
assumption of the stability of stationary states. In the 
wave representation, however, the time of reaction is im
mediately connected with the accuracy of the knowledge 
of the energy of the colliding particle, and hence there 
can never be the possibility of a contradiction with the 
law of conservation. In connection with the discussion 
of paradoxes of the kind mentioned, Campbell suggested 



1.4 THE QUANTUM POSTULATE 

the view that the conception of time itself may be essen
tially statistical in nature. From the view advanced here, 
according to which the foundation of space-time de
scription is offered by the abstraction of free individuals, 
a fundamental distinction between time and space, how
ever, would seem to be excluded by the relativity re
quirement. The singular position of the time in problems 
concerned with stationary states is, as we have seen, due 
to the special nature of such problems. 

The application of the conception of stationary states 
demands that in any observation, say by means of col
lision or radiation reactions, permitting a distinction 
between different stationary states, we are entitled to 
disregard the previous history of the atom. The fact that 
the symbolical quantum theory methods ascribe a par
ticular phase to each stationary state the value of which 
depends upon the previous history of the atom, would 
for the first moment seem to contradict the very idea of 
stationary states. As soon as we are really concerned with 
a time problem, however, the consideration of a strictly 
closed system is excluded. The use of simply harmonic 
proper vibrations in the interpretation of observations 
means, therefore, only a suitable idealization which in a 
more rigorous discussion must always be replaced by a 
group of harmonic vibrations, distributed over a finite 
frequency interval. Now, as already mentioned, it is a 
general consequence of the superposition principle that 
it has no sense to co-ordinate a phase value to the group 
as a whole, in the same manner as may be done for each 
elementary wave constituting the group. 

This inobservability of the phase, well known from 
the theory of optical instruments, is brought out in a 
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particularly simple manner in a discussion of the Stern-
Gerlach experiment, so important for the investigation 
of the properties of single atoms. As pointed out by 
Heisenberg, atoms with different orientation in the field 
may only be separated if the deviation of the beam is 
larger than the diffraction at the slit of the de Brogiie 
waves representing the translational motion of the atoms. 
This condition means, as a simple calculation shows, that 
the product of the time of passage of the atom through 
the field, and the uncertainty due to the finite width of 
the beam of its energy in the field, is at least equal to 
the quantum of action. This result was considered by 
Heisenberg as a support of relation (2) as regards the 
reciprocal uncertainties of energy and time values. It 
would seem, however, that here we are not simply deal
ing with a measurement of the energy of the atom at a 
given time. But since the period of the proper vibrations 
of the atom in the field is connected with the total energy 
by relation (1), we realize that the condition for separa
bility mentioned just means the loss of the phase. This 
circumstance removes also the apparent contradictions, 
arising in certain problems concerning the coherence of 
resonance radiation, which have been discussed fre
quently, and were also considered by Heisenberg. 

To consider an atom as a closed system, as we have 
done above, means to neglect the spontaneous emission 
of radiation which even in the absence of external in
fluences puts an upper limit to the lifetime of the sta
tionary states. The fact that this neglect is justified in 
many applications is connected with the circumstance 
that the coupling between the atom and the radiation 
field, which is to be expected on classical electro-
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dynamics, is in general very small compared to the 
coupling between the particles in the atom. It is, in fact, 
possible in a description of the state of an atom to a con
siderable extent to neglect the reaction of radiation, thus 
disregarding the unsharpness in the energy values con
nected with the lifetime of the stationary states according 
to relation (2). This is the reason why it is possible to 
draw conclusions concerning the properties of radiation 
by using classical electrodynamics. 

The treatment of the radiation problem by the new 
quantum-theoretical methods meant, to begin with, just 
a quantitative formulation of this correspondence con
sideration. This was the very starting-point of the original 
considerations of Heisenberg. It may also be mentioned 
that an instructive analysis of Schrodinger's treatment 
of the radiation phenomena from the point of view of the 
correspondence principle has been recently given by 
Klein. In the more rigorous form of the theory de
veloped by Dirac, the radiation field itself is included in 
the closed system under consideration. Thus it became 
possible in a rational way to take account of the in
dividual character of radiation demanded by the quantum 
theory and to build up a dispersion theory, in which the 
finite width of the spectral lines is taken into consideration. 
The renunciation regarding space-time pictures charac
terizing this treatment would seem to offer a striking 
indication of the complementary character of the quan
tum theory. This is particularly to be borne in mind in 
judging the radical departure from the causal description 
of Nature met with in radiation phenomena, to which we 
have referred above in connection with the excitation of 
spectra. 
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In view of the asymptotic connection of atomic pro
perties with classical electrodynamics, demanded by the 
correspondence principle, the reciprocal exclusion of the 
conception of stationary states and the description of the 
behaviour of individual particles in the atom might be 
regarded as a difficulty. In fact, the connection in ques
tion means that in the limit of large quantum numbers 
where the relative difference between adjacent stationary 
states vanishes asymptotically, mechanical pictures of 
electronic motion may be rationally utilized. It must be 
emphasized, however, that this connection cannot be 
regarded as a gradual transition towards classical theory 
in the sense that the quantum postulate would lose its 
significance for high quantum numbers. On the con
trary, the conclusions obtained from the correspondence 
principle with the aid of classical pictures depend just 
upon the assumptions that the conception of stationary 
states and of individual transition processes are main
tained even in this limit. 

This question offers a particularly instructive example 
for the application of the new methods. As shown by 
Schrodinger, it is possible, in the limit mentioned, by 
superposition of proper vibrations to construct wave-
groups small in comparison to the "size" of the atom, 
the propagation of which indefinitely approaches the 
classical picture of moving material particles, if the 
quantum numbers are chosen sufficiently large. In the 
special case of a simple harmonic vibrator, he was able 
to show that such wave-groups will keep together even 
for any length of time, and will oscillate to and fro in a 
manner corresponding to the classical picture of the 
motion. This circumstance Schrodinger has regarded as 
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a support of his hope of constructing a pure wave theory 
without referring to the quantum postulate. As em
phasized by Heisenberg, the simplicity of the case of the 
oscillator, however, is exceptional and intimately con
nected with the harmonic nature of the corresponding 
classical motion. Nor is there in this example any possi
bility for an asymptotical approach towards the problem 
of free particles. In general, the wave-group will gradu
ally spread over the whole region of the atom, and the 
"motion" of a bound electron can only be followed 
during a number of periods, which is of the order of 
magnitude of the quantum numbers associated with the 
proper vibrations. This question has been more closely 
investigated in a recent paper by Darwin which contains 
a number of instructive examples of the behaviour of 
wave groups. From the viewpoint of the matrix theory 
a treatment of analogous problems has been carried out 
by Kennard. 

Here again we meet with the contrast between the 
wave-theory superposition principle and the assumption 
of the individuality of particles with which we have been 
concerned already in the case of free particles. At the 
same time the asymptotical connection with the classical 
theory, to which a distinction between free and bound 
particles is unknown, offers the possibility of a par
ticularly simple illustration of the above considerations 
regarding the consistent utilization of the concept of 
stationary states. As we have seen, the identification of 
a stationary state by means of collision or radiation re
actions implies a gap in the time description, which is at 
least of the order of magnitude of the periods associated 
with transitions between stationary states. Now, in the 



BOHR 

limit of high quantum numbers these periods may be 
interpreted as periods of revolution. Thus we see at once 
that no causal connection can be obtained between ob
servations leading to the fixation of a stationary state and 
earlier observations on the behaviour of the separate 
particles in the atom. 

Summarizing, it might be said that the concepts of 
stationary states and individual transition processes 
within their proper field of application possess just as 
much or as little " reality" as the very idea of individual 
particles. In both cases we are concerned with a demand 
of causality complementary to the space-time descrip
tion, the adequate application of which is limited only 
by the restricted possibilities of definition and of ob
servation. 

7. THE PROBLEM OF THE ELEMENTARY 
PARTICLES 

When due regard is taken of the complementary feature 
required by the quantum postulate, it seems, in fact, 
possible with the aid of the symbolic methods to build 
up a consistent theory of atomic phenomena, which may 
be considered as a rational generalization of the causal 
space-time description of classical physics. This view 
does not mean, however, that classical electron theory 
may be regarded simply as the limiting case of a vanish
ing quantum of action. Indeed, the connection of the 
latter theory with experience is based on assumptions 
which can scarcely be separated from the grotip of pro
blems of the quantum theory. A hint in this direction 
was ailready given by the well-known difficulties met 
with in the attempts to account for the individuality of 
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ultimate electrical particles on general mechanical and 
electrodynamical principles. In this respect also, the 
general relativity theory of gravitation has not fulfilled 
expectations. A satisfactory solution of the problems 
touched upon would seem to be possible only by means 
of a rational quantum-theoretical transcription of the 
general field theory, in which the ultimate quantum of 
electricity has found its natural position as an expression 
of the feature of individuality characterizing the quantum 
theory. Recently Klein has directed attention to the pos
sibility of connecting this problem with the five-dimen-
sional unified representation of electromagnetism and 
gravitation proposed by Kaluza. In fact, the conserva
tion of electricity appears in this theory as an analogue 
to the conservation theorems for energy and momentum. 
Just as these concepts are complementary to the space-
time description, the appropriateness of the ordinary 
four-dimensional description as well as its symbolical 
utilization in the quantum theory would, as Klein em
phasizes, seem to depend essentially on the circumstance 
that in this description electricity always appears in well-
defined units, the conjugated fifth dimension being as a 
consequence not open to observation. 

Quite apart from these unsolved deep-going problems, 
the classical electron theory up to the present time has 
been the guide for a further development of the corre
spondence description in connection with the idea first 
advanced by Compton that the ultimate electrical par
ticles, besides their mass and charge, are endowed with 
a magnetic moment due to an angular momentum de
termined by the quantum of action. This assumption, 
introduced with striking success by Goudsmit and 
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Uhlenbeck into the discussion of the origin of the 
anomalous Zeeman effect, has proved most fruitful in 
connection with the new methods, as shown especially 
by Heisenberg and Jordan. One might say, indeed, that 
the hypothesis of the magnetic electron, together with 
the resonance problem elucidated by Heisenberg, which 
occurs in the quantum-theoretical description of the be
haviour of atoms with several electrons, have brought 
the correspondence interpretation of the spectral laws 
and the periodic system to a certain degree of completion. 
The principles underlying this attack have even made it 
possible to draw conclusions regarding the properties of 
atomic nuclei. Thus Dennison, in connection with ideas 
of Heisenberg and Hund, has succeeded recently in a 
very interesting way in showing how the explanation of 
the specific heat of hydrogen, hitherto beset with diffi
culties, can be harmonized with the assumption that 
the proton is endowed with a moment of momentum of 
the same magnitude as that of the electron. Due to its 
larger mass, however, a magnetic moment much smaller 
than that of the electron must be associated with the 
proton. 

The insufficiency of the methods hitherto developed 
as concerns the problem of the elementary particles ap
pears in the questions just mentioned from the fact that 
they do not allow of an unambiguous explanation of the 
difference in the behaviour of the electric elementary 
particles and the "individuals" symbolized through the 
conception of light quanta expressed in the so-called 
exclusion principle formulated by Pauli. In fact, we 
meet in this principle, so important for the problem of 
atomic structure as well as for the recent development of 
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statistical theories, with one among several possibilities, 
each of which fulfils the correspondence requirement. 
Moreover, the difficulty of satisfying the relativity re
quirement in quantum theory appears in a particularly 
striking light in connection with the problem of the mag
netic electron. Indeed, it seemed not possible to bring 
the promising attempts made by Darwin and Pauli in 
generalizing the new methods to cover this problem 
naturally, in connection with the relativity kinematical 
consideration of Thomas so fundamental for the inter
pretation of experimental results. Quite recently, how
ever, Dirac has been able successfully to attack the pro
blem of the magnetic electron through a new ingenious 
extension of the symbolical method and so to satisfy the 
relativity requirement without abandoning the agree
ment with spectral evidence. In this attack not only the 
imaginary complex quantities appearing in the earlier 
procedures are involved, but his fundamental equations 
themselves contain quantities of a still higher degree of 
complexity that are represented by matrices. 

Already the formulation of the relativity argument im
plies essentially the union of the space-time co-ordination 
and the demand of causality characterizing the classical 
theories. In the adaptation of the relativity requirement 
to the quantum postulate, we must therefore be prepared 
to meet with a renunciation as to visualization in the 
ordinary sense going still further than in the formulation 
of the quantum laws considered here. Indeed, we find 
ourselves here on the very path taken by Einstein of 
adapting our modes of perception borrowed from the 
sensations to the gradually deepening knowledge of the 
laws of Nature. The hindrances met with on this path 
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originate above all in the fact that, so to say, every word 
in the language refers to our ordinary perception. In the 
quantum theory we meet this difficulty at once in the 
question of the inevitability of the feature of irrationality 
characterizing the quantum postulate. I hope, however, 
that the idea of complementarity is suited to characterize 
the situation, which bears a deep-going analogy to the 
general difficulty in the formation of human ideas, in
herent in the distinction between subject and object. 



1 . 5 T H E U N C E R T A I N T Y P R I N C I P L E 

H . P . ROBERTSON 

The uncertainty principle is one of the 
most characteristic and important Conse-
quences of the new quantum mechanics. This 
principle, as formulated by Heisenberg for 
two conjugate quantum-mechanical variables, 
states that the accuracy with which two such 
variables can be measured simultaneously is 
subject to the restriction that the product of 
the uncertainties in the two measurements is 
at least of order h (Planck's constant). Con-
don* has remarked that an uncertainty rela-
tion of this type can not hold in the general 
case where the two variables under consider-
ation are not conjugate, and has stressed the 
desirability of obtaining a general formulation 
of the principle. It is the purpose of the 
present letter to give such a general formula-
tion, and to apply it in particular to the case 
of angular momentum. 

We define the "mean value" of an 
(Hermitean) operator A in a system whose 
state is described by the (normal) function i/-
as 

where the integral is extended over the entire 
coordinate space. The Hermitean character 
of A (i.e. 

for arbitrary insures the reality of 
The "uncertainty" A A in the value of A is 
then defined, in accordance with statistical 
usage, as the root mean square of the devia-
tion of A from this mean, i.e. 

The uncertainty principle for two such variables 
A, B, whose commutator 
expressed by 

i.e. the product of the uncertainties in A, B is 
not less than half the absolute value of the mean 
of their commutator. 

* E. U. Condon "Remarks on Uncertainty 
Principles" Science LXIX, p. 573 (May 31, 
1929), and in conversations with the writer on 
this topic. 

We here confine ourselves to sketching the 
proof of this principle for a one-particle sys-
tem and for quantum mechanical variables 

which are linear in the 
momenta (The proof for the 
general case in which the operators can be 
expanded in powers of the momenta can be 
made along exactly the same lines.) Writing 

where etc. and the a's are 
functions of position, the Hermitean character 
of A requires that these functions be real and 
that div The expression for 

may be written, on integrating once by 
parts, using the fact that div (a) = 0 and dis-
carding the resulting surface integral, in the 
form 

We are now in a position to apply the 
Schwarzian inequality2 

Taking 

and reducing the integral on the right hand 
side by integration by parts we find 

the required result. 

We obviously obtain Heisenberg's result if 
the two variables are conjugate, for then C, 
and consequently are As a further 
illustration of the principle, we apply it to the 
case of angular momentum. Here we have 

so the product of the uncertainties in two of the 
components of angular momentum is not less 
than times the mean value of the third 
component in the state under consideration. 

1 Cf. proof of special case A = p, B=q in 
H. Weyl "Gruppentheorie und Quanten-
mechanik" pp. 66, 272. 

2 Weyl, 1. c. p. 272. 

Originally published in Physical Review, 34, 163-64 (1929). 
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Consider in particular the state, treated b y 
Condon, defined by 

l 

where the pole of the spherical coordinates lies 
on the z-axis. Then 
have the definite values 

the mean values of are zero and the 
uncertainties are given b y 

N o w from the uncertainty principle for Mx, 
we find 

which is in fact the case. This example shows 
that for m=l the equal i ty holds; the in-
equality is consequent ly the most restrictive 
one that can be deduced for angular momenta , 
for we have here a case in which the ult imate 
limit has (in principle) been reached. 

H . P . ROBERTSON 

Palmer Physical Laboratory, 
Princeton, N . J., 

June 18, 1929. 



1.6 THE WAVE MECHANICS OF α-RAY TRACKS 

NEVILL F. MOTT 

The present note is suggested by a recent paper by Prof. Darwin,* and is 

intended to show how one of the most typically particle-like properties of 

matter can be derived from the wave mechanics. In the theory of radioactive 

disintegration, as presented by Gamow, the α-particle is represented by a 

spherical wave which slowly leaks out of the nucleus. On the other hand, the 

α-particle, once emerged, has particle-like properties, the most striking being 

the ray tracks that it forms in a Wilson cloud chamber. It is a little difficult 

to picture how it is that an outgoing spherical wave can produce a straight 

track ; we think intuitively that it should ionise atoms at random throughout 

space. We could consider that Gamow's outgoing spherical wave should give 

the probability of disintegration, but that, when the particle is outside the 

nucleus, it should be represented by a wave packet moving in a definite direc
tion, so as to produce a straight track. But it ought not to be necessary to 
do this. The wave mechanics unaided ought to be able to predict the possible 
results of any observation that we could make on a system, without invoking, 
until the moment at which the observation is made, the classical particle-like 
properties of the electrons or α-particles forming that system. If we consider 

the α-ray alone as the system under consideration, then the gas of the Wilson 

chamber must be considered as the means by which we observe the particle ; 

so in this case we must consider the α-ray as a particle as soon as it is outside 

the nucleus, because that is the moment at which the observation is made. If, 

however, we consider the α-particle and the gas together as one system, then 

it is ionised atoms that we observe ; interpreting the wave function should 

give us simply the probability that such and such an atom is ionised. Until 

this final interpretation is made, no mention should be made of the α-ray 

being a particle at all. 

The difficulty that we have in picturing how it is that a spherical wave can 

produce a straight track arises from our tendency to picture the wave as 

existing in ordinary three dimensional space, whereas we are really dealing 

with wave functions in the multispace formed by the co-ordinates both of the 

α-particle and of every atom in the Wilson chamber. 

* ' Roy. Soc. Proc.,' A, vol. 124, p. 375 (1929). 

Originally published in Proceedings of the Royal Society, London, A126, 79-84 (1929). 
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For our purpose it will be sufficient to consider only two atoms ; for simplicity 

we shall suppose that -they are hydrogen atoms. The position of the nuclei 

of the atoms we shall treat as parameters ; this is legitimate, since the nuclei 

are many times heavier than the electrons, and move very much more slowly 

than the α-particles ; therefore, during the whole time of formation of a track, 

they may be considered effectively at rest.* We shall then show that the atoms 

cannot both be ionised unless they lie in a straight line with the radioactive 

nucleus. 

Let ψί (r) be the wave function of an excited hydrogen atom, referred to 

axes that pass through its nucleus. We shall denote by ψ0 (r) the wave function 

corresponding to the normal state. We shall take axes such that the nucleus 

of the radioactive atom lies at the origin, and the two hydrogen atoms at the 

points a1; a2. Then the wave functions of the two hydrogen atoms are, in 

these co-ordinates 
Y1 (r) = ψ (r — aj) 
ΨΠ (Γ) = ψ (Γ — a2). 

Let R be the co-ordinate of the α-particle and T1, r2 the co-ordinates of the two 

electrons. Let F (R, T1, r2) em,h be a periodic wave function of the α-particle 

and of the two atomic electrons. We can expand F in a series of wave functions 

of the two atoms, of the form 

F (R, T1, r2) = Σ /J1J1 (R) Tjl
1 (rx) Tj,11 (r2). (1) 

JiJa 

We can now see what form the wave function must have, in order that we 

shall obtain straight tracks. Interpret

ing our wave function, we see that 

I /J1J. (r) I2 is the probability that we 

shall find the α-particle in the volume 

element dV, and at the same time the 

first atom in the excited (or ionised) 

state J1 and the second in the state J2. 

To obtain a consistent theory of the 

straight tracks, we must have f00 (R) 

representing an outgoing spherical wave, 

at any rate for |R| less than either |ax| 
or Ia

2I- /J,O(R) will represent the 

probable positions of an α-particle that 

has excited the first atom, but not the 

second. It should therefore be independent of a2, and should represent a 

* We do not consider the possibility of a collision between the α-particle and the nucleus. 

H atom 

4 Ra nucleus 
FIG. 1. 
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wave diverging from the point whose amplitude vanishes except inside a 
small cone, pointing away from the origin. Finally, will give the 
probability that the a-particle excites both atoms. 

should vanish, therefore, unless the line joining and passes 
near the origin. We shall obtain a solution with these properties. 

The wave equation is 

(2) 

where refers to the co-ordinates of the oc-particle, and to the 
co-ordinates of the electrons. We have left out the terms giving the inter-
action between the a-particle and the nuclei of the atoms, which would in fact 
produce deviations from the straight track, and are irrelevant to our purpose. 
We treat the interaction of the atoms and the a-particle as a perturbation, and 
solve by a method of successive approximations, similar to that used by Born* 
in his work on collisions. We set 

with 
] 

where 

representing an outgoing wave for the a-particle, and the normal states of 
both atoms. Then F is a solution of (2) if 

. (3) 

Let us solve first for We expand as a series of the form (1), namely 

(4) 

If we insert (4) in (3), multiply by and integrate over all 
, we obtain a differential equation satisfied by , namely 

(5) 

* ' Z. Physik,' vol. 38, p. 803 (1926). 
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where 

= 0. otherwise. 

In these formulae 

Now, the most g«neral solution of (5) is* 

(6) 

where 

and G (R) is the most general solution of 

Now, it is clear that our starting conditions, namely that both atoms are in 
the normal state before collision, require tha t 

for 6 (R) represents streams of particles fired at already excited atoms. We see, 
therefore, tha t if neither J x nor J 2 define the normal state of an atom, _ 
vanishes, and therefore, to this approximation, there is no probability that 
both atoms will be excited. This is to be expected; we have treated the 
probability tha t one atom will be excited as a small quantity of the first order ; 
the probability of both being excited will therefore be a small quantity of the 
second order. 

If , say, J j represents the normal state, then K (R) vanishes except in the 
neighbourhood of a2. Except in the neighbourhood of a2, therefore, 
is given by the asymptotic formula 

where 

and 

(7) 

* Of. Courant-Hilbert, " Methoden der Mathematischen Physik," chap. 5, 10. 
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We have taken the positive value of ik' in (6), so that shall represent a 
wave diverging from gives the amplitude of the 
wave in any direction. 

We can easily see that is very small except in the neighbourhood of 

(8) 

tha t is to say, except in a small cone with its vertex at a2, pointing away from 
the radioactive nucleus. 

For we can see from (5) that must become very small except in the 
neighbourhood of R = 0. The exponentials oscillate very rapidly in the 
region where R does not vanish. 3 (1), therefore, will have a strong maximum 
when the two exponential terms are in phase at the origin. Since h — k' 
is negligible compared to k, this will be the case when (8) is satisfied. 

I t is interesting to work out the function 3 (1) for a particular case. Born* 
has calculated the function Y0J for certain simple cases, and also the functions 
3(1) using a plane wave instead of our spherical wave. His results are 
applicable to our case, however, since the integrand in (7) vanishes except in a 
small region, in which the spherical wave may be considered plane. We have 
thenf 

where au is the radius of the normal orbit of the hydrogen atom, and 

and the summation is over all the three states with principal quantum number 
two. I t is clear that this function is only appreciable in the neighbourhood 
(8), since kaH is a very large number. 

In order to find the probability that both atoms should be excited, we shall 
now consider F(2). If we expand in a series of the form (4), as before, and insert 
in (3), then we obtain, analogously to (3), the following differential equation 
satisfied by 

(9) 

• ' Gott. Nachr.,' p. 146 (1926). 
Loo, cit„ equation (32). 
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Now, if the point a2 does not lie very near the straight line joining the origin 
to av  then the right-hand side of (9) will vanish for all R; for  /¾ (R) 

vanishes except in the neighbourhood of this line, as we have shown, and 
Y0Ja (R — a2) vanishes except in the neighbourhood of a2. Therefore in this 
case, it follows, as before, that the only solution of (9) satisfying our initial 
conditions is 

/^T2 ( R ) = O j  

and there is therefore no probability of both atoms being excited. If, on the 
other hand, the line joining ax, a2 does pass through the origin, then we can 
obtain as before a solution representing a wave diverging from the point a2. 
The amplitude of this wave gives the probability that both atoms are excited, 
and that the particle is moving in a given direction after exciting both. 

In conclusion, the author would like to express his thanks to Prof. Darwin, 
who has contributed a great deal to the course of the development of this 
paper. 



1.7 KNOWLEDGE OF PAST AND FUTURE IN 
QUANTUM MECHANICS 

ALBERT EINSTEIN, 
RICHARD C. TOLMAN , 
AND BORIS PODOLSKY 

It is w ell known that the principles of quan
tum mechanics limit the possibilities of exact 
prediction as to the future path of a particle. 
It has sometimes been supposed, nevertheless, 
that the quantum mechanics would permit an 
exact description of the past path of a par
ticle. 

The purpose of the present note is to discuss 
a simple ideal experiment which shows that 
the possibility of describing the past path of 
one particle would lead to predictions as to the 
future behaviour of a second particle of a kind 
not allowed in the quantum mechanics. It 
will hence be concluded that the principles of 
quantum mechanics actually involve an un
certainty in the description of past events 
which is analogous to the uncertainty in the 
prediction of future events. And it will be 
shown for the case in hand, that this uncer
tainty in the description of the past arises 
from a limitation of the knowledge that can be 
obtained by measurement of momentum. 

Consider a small box B1 as shown in the 
figure, containing a number of identical par
ticles in thermal agitation, and provided with 
two small openings which are closed by the 
shutter 5. The shutter is arranged to open 
automatically for a §hort time and then close 
again, and the number of particles in the box 
is so chosen that cases arise in which one par
ticle leaves the box and travels over the direct 
path SO to an observer at 0, and a second 
particle travels over the longer path SRO 
through elastic reflection at the ellipsoidal re
flector R. 

The box is accurately weighed before and 
after the shutter has opened in order to de
termine the total energy of the particles which 
have left, and the observer at O is provided 
with means for observing the arrival of par
ticles, a clock for measuring their time of 
arrival, and some apparatus for measuring 

Fig.  I .  

momentum. Furthermore the distances SO 
and SRO are accurately measured beforehand, 
— the distance SO being sufficient so that the 
rate of the clock at O is not disturbed by the 
gravitational effects involved in weighing the 
box, and the distance SRO being very long in 
order to permit an accurate reweighing of the 
box before the arrival of the second particle. 

Let us now suppose that the observer at O 
measures the momentum of the first particle 
as it approaches along the path SO, and then 
measures its time of arrival. Of course the 
latter observation, made for example with the 
help of gamma-ray illumination, will change 
the momentum in an unknown manner. Nev
ertheless, knowing the momentum of the par
ticle in the past, and hence also its past ve
locity and energy, it would seem possible to 

Originally published in Physical Review, 37, 780-81 (1931). 
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calculate the time when the shutter must have 
been open from the known time of arrival of 
the first particle, and to calculate the energy 
and velocity of the second particle from the 
known loss in the energy content of the box 
when the shutter opened. It would then seem 
possible to predict beforehand both the energy 
and the time of arrival of the second particle, 
a paradoxical result since energy and time are 
quantities which do not commute in quantum 
mechanics. 

The explanation of the apparent paradox 
must lie in the circumstance that the past mo
tion of the first particle cannot be accurately 
determined as was assumed. Indeed, we are 
forced to conclude that there can be no meth
od for measuring the momentum of a particle 
without changing its value. For example, an 
analysis of the method of observing the Dop-
pler effect in the reflected infrared light from 
an approaching particle shows that, although 
it permits a determination of the momentum 
of the particle both before and after collision 
with the light quantum used, it leaves an un
certainty as to the time at which the collision 
with the quantum takes place. Thus in our 
example, although the velocity of the first par
ticle could be determined both before and 
after interaction with the infrared light, it 

would not be possible to determine the exact 
position along the path SO at which the change 
in velocity occurred as would be necessary to 
obtain the exact time at which the shutter was 
open. 

It is hence to be concluded that the princi
ples of the quantum mechanics must involve 
an uncertainty in the description of past 
events which is analogous to the uncertainty 
in the prediction of future events. It is also 
to be noted that although it is possible to 
measure the momentum of a particle and fol
low this with a measurement of position, this 
will not give sufficient information for a com
plete reconstruction of its past path, since it 
has been shown that there can be no method 
for measuring the momentum of a particle 
without changing its value. Finally, it is of 
special interest to emphasize the remarkable 
conclusion that the principles of quantum 
mechanics would actually impose limitations 
on the localization in time of a macroscopic 
phenomenon such as the opening and closing 
of a shutter. 

ALBERT EINSTEIN 
RICHARD C. TOLMAN 
BORIS PODOLSKY 

California Institute of Technology, 
February 26, 1931. 



1.8 THE EINSTEIN-PODOLSKY-ROSEN PAPER 

COMMENTARY OF ROSENFELD (1967) 

[Einstein] attended [Bohr's 1933 Sol-

vay] lecture and followed the argument 
with the closest attention; he made 

no direct comment on it, but put at 

once the discussion on the general 
theme of the meaning of quantum 
theory. He had no longer any doubt 

about the logic of Bohr's argumenta

tion; but he still felt the same uneasiness 

as before ("Unbehagen" was his word) 
when confronted with the strange conse
quences of the theory. "What would you 
say of the following situation?" he asked 

me. "Suppose two particles are set in 
motion towards each other with the 
same, very large, momentum, and that 
they interact with each other for a very 
short time when they pass at known 

positions. Consider now an observer 
who gets hold of one of the particles, 

far away from the region of interaction, 

and measures its momentum; then, 

from the conditions of the experiment, 
he will obviously be able to deduce the 

momentum of the other particle. If, 
however, he chooses to measure the 

position of the first particle, he will be 
able to tell where the other particle is. 
This is a perfectly correct and straight
forward deduction from the principles 
of quantum mechanics; but is it not 
very paradoxical? How can the final 
state of the second particle be influenced 
by a measurement performed on the 
first, after all physical interaction has 
ceased between them?" 

I had not the impression that Einstein 

at that time saw in this case, cleverly 
presented with all the appearances of a 

paradox, anything else than an illustra
tion of the unfamiliar features of quan
tum phenomena. Two years later, 

however, he gave it a much more 

prominent role in a paper written 
jointly with Podolsky and Rosen; com
bined with a "criterion of reality," it 

was now used with the intention to 
expose an essential imperfection of 

quantum theory. Any attribute of a 
physical system that can be accurately 
determined without disturbing the sys

tem, thus went the argument, is an 
"element of physical reality," and a 
description of the system can only be 
regarded as complete if it embodies all 

the elements of reality which can be 
attached to it. Now, the example of the 
two particles shows that the position 

and the momentum of a given particle 
can be obtained by appropriate mea
surements performed on another parti
cle without disturbing the first, and are 
therefore elements of reality in the sense 
indicated. Since quantum theory does 
not allow both to enter into the descrip
tion of the state of the particle, such a 
description is incomplete. The paradox 
which this incomplete description pre

sents, by suggesting an unaccountable 
influence of the measurement on the 
state of the particle, would of course not 
appear in a complete theory. 

This onslaught came down upon us 

as a bolt from the blue. ... 



1.8 CAN QUANTUM-MECHANICAL DESCRIPTION OF 
PHYSICAL REALITY BE CONSIDERED COMPLETE? 

ALBERT EINSTEIN, BORIS PODOLSKY, AND NATHAN ROSEN 

In a complete theory there is an element corresponding 
to each element of reality. A sufficient condition for the 
reality of a physical quantity is the possibility of predicting 
it with certainty, without disturbing the system. In 
quantum mechanics in the case of two physical quantities 
described by non-commuting operators, the knowledge of 
one precludes the knowledge of the other. Then either (1) 
the description of reality given by the wave function in 

1. 

ANY serious consideration of a physical 
theory must take into account the dis

tinction between the objective reality, which is 
independent of any theory, and the physical 
concepts with which the theory operates. These 
concepts are intended to correspond with the 
objective reality, and by means of these concepts 
we picture this reality to ourselves. 

In attempting to judge the success of a 
physical theory, we may ask ourselves two ques
tions : (1) "Is the theory correct?" and (2) "Is 
the description given by the theory complete?" 
It is only in the case in which positive answers 
may be given to both of these questions, that the 
concepts of the theory may be said to be satis
factory. The correctness of the theory is judged 
by the degree of agreement between the con
clusions of the theory and human experience. 
This experience, which alone enables us to make 
inferences about reality, in physics takes the 
form of experiment and measurement. It is the 
second question that we wish to consider here, as 
applied to quantum mechanics. 

quantum mechanics is not complete or (2) these two 
quantities cannot have simultaneous reality. Consideration 
of the problem of making predictions concerning a system 
on the basis of measurements made on another system that 
had previously interacted with it leads to the result that if 
(1) is false then (2) is also false. One is thus led to conclude 
that the description of reality as given by a wave function 
is not complete. 

Whatever the meaning assigned to the term 
complete, the following requirement for a com
plete theory seems to be a necessary one : emery 
element of the physical reality must have a counter
part in the physical theory. We shall call this the 
condition of completeness. The second question 
is thus easily answered, as soon as we are able to 
decide what are the elements of the physical 
reality. 

The elements of the physical reality cannot 
be determined by a priori philosophical con
siderations, but must be found by an appeal to 
results of experiments and measurements. A 
comprehensive definition of reality is, however, 
unnecessary for our purpose. We shall be satisfied 
with the following criterion, which we regard as 
reasonable. If, without in any way disturbing a 
system, we can predict with certainty {i.e., with 
probability equal to unity) the value of a physical 
quantity, then there exists an element of physical 
reality corresponding to this physical quantity. It 
seems to us that this criterion, while far from 
exhausting all possible ways of recognizing a 
physical reality, at least provides us with one 

Originally published in Physical Review, 47, 777-80 (1935). 
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such way, whenever the conditions set down in 

it occur. Regarded not as a necessary, but 

merely as a sufficient, condition of reality, this 

criterion is in agreement with classical as well as 

quantum-mechanical ideas of reality. 
To illustrate the ideas involved let us consider 

the quantum-mechanical description of the 
behavior of a particle having a single degree of 
freedom. The fundamental concept of the theory 
is the concept of state, which is supposed to be 
completely characterized by the wave function 

φ, which is a function of the variables chosen to 
describe the particle's behavior. Corresponding 
to each physically observable quantity A there 

is an operator, which may be designated by the 
same letter. 

If φ is an eigenfunction of the operator A, that 
is, if 

Φ'=A ψ = αφ, (1) 

where α is a number, then the physical quantity 
A has with certainty the value a whenever the 
particle is in the state given by ψ. In accordance 

with our criterion of reality, for a particle in the 
state given by ψ f°r which Eq. (1) holds, there 
is an element of physical reality corresponding 
to the physical quantity A. Let, for example, 

φ  =  g ( 2 i r i / A )  (2)  

we obtain 
p= (h/2iri)d/dx, (3) 

In accordance with quantum mechanics we can 
only say that the relative probability that a 

measurement of the coordinate will give a result 

lying between a and b is 

P(a, b) = 
/

& 

ψψάχ = I dx = b — a. (6) 

where h is Planck's constant, p0 is some constant 
number, and χ the independent variable. Since 
the operator corresponding to the momentum of 
the particle is 

ψ' = p\j/ = {h/2Tri)d\j//dx = p($. (4) 

Thus, in the state given by Eq. (2), the momen
tum has certainly the value p0. It thus has 
meaning to say that the momentum of the par
ticle in the state given by Eq. (2) is real. 

On the other hand if Eq. (1) does not hold, 
we can no longer speak of the physical quantity 
A having a particular value. This is the case, for 
example, with the coordinate of the particle. The 
operator corresponding to it, say q, is the operator 
of multiplication by the independent variable. 
Thus, 

q\l/ = x\p5^a\l/. (5) 

Since this probability is independent of a, but 
depends only upon the difference b—a, we see 
that all values of the coordinate are equally 
probable. 

A definite value of the coordinate, for a par
ticle in the state given by Eq. (2), is thus not 
predictable, but may be obtained only by a 
direct measurement. Such a measurement how
ever disturbs the particle and thus alters its 
state. After the coordinate is determined, the 
particle will no longer be in the state given by 
Eq. (2). The usual conclusion from this in 
quantum mechanics is that when the momentum 
of a particle is known, its coordinate has no physical 

reality. 
More generally, it is shown in quantum me

chanics that, if the operators corresponding to 
two physical quantities, say A and B, do not 
commute, that is, if AB^BA1 then the precise 
knowledge of one of them precludes such a 
knowledge of the other. Furthermore, any 
attempt to determine the latter experimentally 
will alter the state of the system in such a way 
as to destroy the knowledge of the first. 

From this follows that either (1) the quantum-
mechanical description of reality given by the wave 

function is not complete or (2) when the operators 
corresponding to two physical quantities do not 

commute the two quantities cannot have simul
taneous reality. For if both of them had simul
taneous reality—and thus definite values—these 
values would enter into the complete description, 
according to the condition of completeness. If 
then the wave function provided such a complete 
description of reality, it would contain these 
values ; these would then be predictable. This 
not being the case, we are left with the alter
natives stated. 

In quantum mechanics it is usually assumed 
that the wave function does contain a complete 
description of the physical reality of the system 
in the state to which it corresponds. At first 
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sight this assumption is entirely reasonable, for 
the information obtainable from a wave function 
seems to correspond exactly to what can be 
measured without altering the state of the 
system. We shall show, however, that this as
sumption, together with the criterion of reality 
given above, leads to a contradiction. 

2. 

For this purpose let us suppose that we have 
two systems, I and II, which we permit to inter
act from the time / = 0 to t=T, after which time 
we suppose that there is no longer any interaction 
between the two parts. We suppose further that 
the states of the two systems before Z = O were 
known. We can then calculate with the help of 
Schrodinger's equation the state of the combined 
system I + 11 at any subsequent time; in par
ticular, for any t > T. Let us designate the cor
responding wave function by Ψ. We cannot, 

however, calculate the state in which either one 

of the two systems is left after the interaction. 

This, according to quantum mechanics, can be 

done only with the help of further measurements, 

by a process known as the reduction of the wave 

packet. Let us consider the essentials of this 

process. 

Let οι, ai, a3, · • • be the eigenvalues of some 
physical quantity A pertaining to system I and 
U1(X1), Ui(X1)l U3(X1), • • • the corresponding 
eigenfunctions, where X1 stands for the variables 
used to describe the first system. Then Ψ, con
sidered as a function of Xi, can be expressed as 

OO 

Ψ(*1, X n ) =  Σ in( X i ) U n ( X l ) ,  (T) 
n—1 

where Xi stands for the variables used to describe 
the second system. Here ψη(χ2) are to be regarded 

merely as the coefficients of the expansion of Ψ 

i n t o  a  s e r i e s  o f  o r t h o g o n a l  f u n c t i o n s  U n ( X 1 ) .  

Suppose now that the quantity A is measured 
and it is found that it has the value ak. It is then 

concluded that after the measurement the first 

system is left in the state given by the wave 

function Uk(X1), and that the second system is 

left in the state given by the wave function 
Ψη(χι)· This is the process of reduction of the 

wave packet; the wave packet given by the 

infinite series (7) is reduced to a single term 

^h(Xi)Uk(X1). 
The set of functions U n ( X 1 )  is determined by 

the choice of the physical quantity A. If, instead 
of this, we had chosen another quantity, say B, 
having the eigenvalues b\, 62, δ3, · · · and eigen
functions z>i(*i), Vi(X1), · · · we should 
have obtained, instead of Eq. (7), the expansion 

OO 
ψ(χι, Χι) = Σ V > s ( x 2 ) v s ( x i ), (8) 

s=l 

where <p,'s are the new coefficients. If now the 
quantity B is measured and is found to have the 
value br, we conclude that after the measurement 
t h e  f i r s t  s y s t e m  i s  l e f t  i n  t h e  s t a t e  g i v e n  b y  V r ( X 1 )  

and the second system is left in the state given 

by φ,(Χϊ). 
We see therefore that, as a consequence of two 

different measurements performed upon the first 
system, the second system may be left in states 
with two different wave functions. On the other 

hand, since at the time of measurement the two 
systems no longer interact, no real change can 
take place in the second system in consequence 
of anything that may be done to the first system. 
This is, of course, merely a statement of what is 
meant by the absence of an interaction between 
the two systems. Thus, it is possible to assign two 
different wave functions (in our example and 
<pr) to the same reality (the second system after 
the interaction with the first). 

Now, it may happen that the two wave func
tions, 1Pk and ψr, are eigenfunctions of two non-
commuting operators corresponding to some 
physical quantities P and Q, respectively. That 
this may actually be the case can best be shown 
by an example. Let us suppose that the two 
systems are two particles, and that 

Ψ(χι, x2) = f e< 2 r l l h H x i-X 2 + x l> ) pdp, (9) 
-co 

where xo is some constant. Let A be the momen
tum of the first particle; then, as we have seen 
in Eq. (4), its eigenfunctions will be 

Wp(Xi)=Cc2lriw"11 (10) 

corresponding to the eigenvalue p. Since we have 
here the case of a continuous spectrum, Eq. (7) 
will now be written 
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/

CO 
φ ρ (χ2)η ρ {χ 1 )άρ, (11) 

where 
y Pp{%2) =$~^v i lh)  (XJ-Xo)Pi (12) 

This φ ρ however is the eigenfunction of the 
operator 

P = (h/2iri)d/dX2, (13) 

corresponding to the eigenvalue —p of the 
momentum of the second particle. On the other 
hand, if B is the coordinate of the first particle, 
it has for eigenfunctions 

Vx(Xl)  = S(X1-X),  (14) 

corresponding to the eigenvalue x,  where 
S(xi~x) is the well-known Dirac delta-function. 
Eq. (8) in this case becomes 

Ψ(χι,Xz)= J* <px(xi)vx(xi)dx, (15) 

where 

Ψ Χ { Χ Ι ) =  I e'2"''0*1-12+1») H P  

= hh{x — x 2 + X 0 ) ·  ( 1 6 )  

This ψχ, however, is the eigenfunction of the 
operator 

Q=x 2  (17) 

corresponding to the eigenvalue x+x 0  of the 
coordinate of the second particle. Since 

PQ- QP = ft/2τϊ, (18) 

we have shown that it is in general possible for 
φι- and ψ τ to be eigenf unctions of two noncom-
muting operators, corresponding to physical 
quantities. 

Returning now to the general case contem
plated in Eqs. (7) and (8), we assume that ψ/c 
and ψτ are indeed eigenfunctions of some non-
commuting operators P and Q, corresponding to 
the eigenvalues pk and qr, respectively. Thus, by 
measuring either A or B we are in a position to 
predict with certainty, and without in any way 

disturbing the second system, either the value 
of the quantity P (that is pt) or the value of the 
quantity Q (that is qr). In accordance with our 

criterion of reality, in the first case we must 

consider the quantity P as being an element of 
reality, in the second case the quantity Q is an 

element of reality. But, as we have seen, both 
wave functions and ψτ belong to the same 

reality. 
Previously we proved that either (1) the 

quantum-mechanical description of reality given 
by the wave function is not complete or (2) when 

the operators corresponding to two physical 
quantities do not commute the two quantities 
cannot have simultaneous reality. Starting then 

with the assumption that the wave function 
does give a complete description of the physical 

reality, we arrived at the conclusion that two 
physical quantities, with noncommuting oper
ators, can have simultaneous reality. Thus the 
negation of (1) leads to the negation of the only 
other alternative (2). We are thus forced to 
conclude that the quantum-mechanical descrip
tion of physical reality given by wave functions 
is not complete. 

One could object to this conclusion on the 
grounds that our criterion of reality is not suf
ficiently restrictive. Indeed, one would not arrive 
at our conclusion if one insisted that two or more 
physical quantities can be regarded as simul
taneous elements of reality only when they can be 

simultaneously measured or predicted. On this 
point of view, since either one or the other, but 
not both simultaneously, of the quantities P 
and Q can be predicted, they are not simultane
ously real. This makes the reality of P and Q 

depend upon the process of measurement carried 
out on the first system, which does not disturb 
the second system in any way. No reasonable 
definition of reality could be expected to permit 
this. 

While we have thus shown that the wave 
function does not provide a complete description 
of the physical reality, we left open the question 
of whether or not such a description exists. We 
believe, however, that such a theory is possible. 



1.9 BOHR'S REPLY 

COMMENTARY OF ROSENFELD (1967) 

This onslaught came down upon us as 
a bolt from the blue. Its effect on Bohr 
was remarkable. We were then in the 
midst of groping attempts at exploring 
the implications of the fluctuations of 

charge and current distributions, which 
presented us with riddles of a kind we 
had not met in electrodynamics. A new 
worry could not come at a less propi

tious time. Yet, as soon as Bohr had 
heard my report of Einstein's argument, 
everything else was abandoned: we had 
to clear up such a misunderstanding at 
once. We should reply by taking up the 
same example and showing the right 
way to speak about it. In great excite

ment, Bohr immediately started dic
tating to me the outline of such a reply. 
Very soon, however, he became hesi
tant: "No, this won't do, we must try all 
over again ... we must make it quite 
clear ... ." So it went on for a while, 
with growing wonder at the unexpected 

subtlety of the argument. Now and then, 
he would turn to me: "What can they 
mean? Do you understand it?" There 
would follow some inconclusive exege
sis. Clearly, we were farther from the 
mark than we first thought. Eventually, 
he broke off with the familiar remark 
that he "must sleep on it." The next 
morning he at once took up the dicta
tion again, and I was struck by a change 
in the tone of the sentences: there was 
no trace in them of the previous day's 
sharp expressions of dissent. As I 
pointed out to him that he seemed to 
take a milder view of the case, he 

smiled: "That's a sign," he said, "that 

we are beginning to understand the 
problem." And indeed, the real work 
now began in earnest: day after day, 
week after week, the whole argument 
was patiently scrutinized with the help 
of simpler and more transparent exam
ples. Einstein's problem was reshaped 

and its solution reformulated with such 
precision and clarity that the weakness 
in the critics' reasoning became evident, 
and their whole argumentation, for all 
its false brilliance, fell to pieces. "They 
do it 'smartly,'" Bohr commented, "but 
what counts is to do it right." 

The refutation of Einstein's criticism 
does not add any new element to the 
conception of complementarity, but it 
is of great importance in laying bare a 
very deep-lying opposition between 
Bohr's general philosophical attitude 
and the still widespread habits of 

thought belonging to a glorious but 
irrevocably bygone stage in the evolu
tion of science. Physical concepts, 
Einstein used to say, are "free creations 
of the mind." In the case under debate, 
the "criterion of reality" he proposed 
has very much this character, and it 
turns out to yield a striking illustration 
of the pitfalls to which one may be 
exposed by such arbitrary constructions 
of concepts. In spite of its apparent 
clarity, the criterion in question con
tains in fact a very essential ambiguity, 
hidden in the seemingly harmless re
striction "without disturbing the sys
tem." To disclose this ambiguity, how-
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ever, it is necessary to renounce any 

pretension to impose upon nature our 

own preconceived notion of what "ele

ments of reality" ought to be, and 
humbly take guidance, as Bohr exhorts 
us to do, in what we can learn from 
nature herself. 

When one realizes the fundamental 

nature of the issue at stake, it becomes 
easier to understand the state of exalta

tion in which Bohr accomplished this 
work. The writing of his reply, its typing, 
polishing, retyping and sending off to 

print did not take more than six weeks— 
an astonishing speed when one knows 
how slow his usual pace was. It was 
impressive to watch him thus at the 

height of his powers, in utmost con
centration and unrelenting effort to 
attain clarity through painstaking scru
tiny of every detail—true as ever to his 
favourite Schiller aphorism "Nur die 
Fulle fiihrt zur Klarheit." He was 
particularly well served on this occasion 

by his uncommon ability to go into the 

opponent's views, dissect his arguments 
and turn them to the advantage of the 
truth. In this, however, he always 
proceeded with complete openminded-
ness, and only rejoiced in victory if in 
winning it he had also deepened his 

own insight into the problem. 
The contest about the completeness 

of the quantal description of physical 

phenomena was the last clash between 

the two giants. The confrontation of 
their diverging conceptions of the na
ture of scientific knowledge had now 

reached the limits set by confining it to 
the problems of the physical world. That 

there was no hope of carrying it further 
was soon made clear by Einstein him
self, who commented on Bohr's position 

that it was logically possible, but "so 
very contrary to my scientific instinct 
that I cannot forego the search for a 

more complete conception." Bohr was 

very unhappy about this deadlock, for 
he admired Einstein precisely for the 
way in which he had laid stress on 
the epistemological aspects of classical 

physics and, at an early stage, of quan
tum theory also. In fact, Einstein's 
approach to these problems had been 

so closely similar to his own, and such 
a source of inspiration to him, that he 
found Einstein's later lack of under
standing doubly disheartening. On the 
other hand, he had good reason to look 
back with satisfaction on a controversy 
which had put to such severe test his 
own conception of the complementarity 
of physical phenomena, and even, in 
this last dispute about an alleged 
"criterion of reality," the underlying 

general ideas he had formed of the most 
fundamental aspects of human knowl
edge and man's position in the universe. 



1.9 QUANTUM MECHANICS 
AND PHYSICAL REALITY 

NIELS BOHR 

IN a recent article by A. Einstein, B. Podolsky and 
N. Rosen, which appeared in the Physical Review of 
May 15, and was reviewed in NATURE of June 22, 

the question of the completeness of quantum me
chanical description has been discussed on the basis 
of a "criterion of physical reality", which the authors 
formulate as follows : "If, without in any way 
disturbing a system, we can predict with certainty 
the value of a physical quantity, then there exists 
an element of physical reality corresponding to this 
physical quantity". 

Since, as the authors show, it is always possible in 
quantum theory, just as in classical theory, to predict 
the value of any variable involved in the description 
of a mechanical system from measurements per
formed on other systems, which have only tem
porarily been in interaction with the system under 
investigation; and since in contrast to classical 
mechanics it is never possible in quantum mechanics 
to assign definite values to both of two conjugate 
variables, the authors conclude from their criterion 
that quantum mechanical description of physical 
reality is incomplete. 

I should like to point out, however, that the 
named criterion contains an essential ambiguity 
when it is applied to problems of quantum mechanics. 
It is true that in the measurements under considera
tion any direct mechanical interaction of the system 
and the measuring agencies is excluded, but a closer 
examination reveals that the procedure of measure
ments has an essential influence on the conditions on 
which the very definition of the physical quantities 
in question rests. Since these conditions must be 
considered as an inherent element of any phenomenon 
to which the term "physical reality" can be un
ambiguously applied, the conclusion of the above-
mentioned authors would not appear to be justified. 
A fuller development of this argument will be given 
in an article to be published shortly in the Physical 
Review. 

N. BOHR. 
Institute of Theoretical Physics, 

Copenhagen. 
June 29. 

Originally published m Nature, 136, 65 (1935). 



1.10 CAN QUANTUM-MECHANICAL DESCRIPTION OF 
PHYSICAL REALITY BE CONSIDERED COMPLETE? 

NIELS BOHR 

It is shown that a certain "criterion of physical reality" formulated in a recent article with 

the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity 
when it is applied to quantum phenomena. In this connection a viewpoint termed "comple
mentarity" is explained from which quantum-mechanical description of physical phenomena 
would seem to fulfill, within its scope, all rational demands of completeness. 

IN a recent article1 under the above title A. 
Einstein, B. PodoIsky and N. Rosen have 

presented arguments which lead them to answer 
the question at issue in the negative. The trend 
of their argumentation, however, does not seem 
to me adequately to meet the actual situation 
with which we are faced in atomic physics. I 
shall therefore be glad to use this opportunity 
to explain in somewhat greater detail a general 
viewpoint, conveniently termed "complementar
ity," which I have indicated on various previous 
occasions,2 and from which quantum mechanics 
within its scope would appear as a completely 
rational description of physical phenomena, such 
as we meet in atomic processes. 

The extent to which an unambiguous meaning 
can be attributed to such an expression as 
"physical reality" cannot of course be deduced 
from a priori philosophical conceptions, but—as 
the authors of the article cited themselves 
emphasize—must be founded on a direct appeal 
to experiments and measurements. For this 
purpose they propose a "criterion of reality" 
formulated as follows: "If, without in any way 
disturbing a system, we can predict with cer
tainty the value of a physical quantity, then 
there exists an element of physical reality 
corresponding to this physical quantity." By 
means of an interesting example, to which we 
shall return below, they next proceed to show 
that in quantum mechanics, just as in classical 
mechanics, it is possible under suitable conditions 
to predict the value of any given variable 
pertaining to the description of a mechanical 
system from measurements performed entirely 
on other systems which previously have been in 

1 A. Einstein, B. PodoIsky and N. Rosen, Phys. Rev. 47, 
777 (1935). 

2 Cf. N. Bohr, Atomic Theory and Description of Nature, I 
(Cambridge, 1934). 

interaction with the system under investigation. 
According to their criterion the authors therefore 
want to ascribe an element of reality to each of 
the quantities represented by such variables. 
Since, moreover, it is a well-known feature of the 
present formalism of quantum mechanics that 
it is never possible, in the description of the 
state of a mechanical system, to attach definite 
values to both of two canonically conjugate 
variables, they consequently deem this formalism 
to be incomplete, and express the belief that a 
more satisfactory theory can be developed. 

Such an argumentation, however, would 
hardly seem suited to affect the soundness of 
quantum-mechanical description, which is based 
on a coherent mathematical formalism covering 
automatically any procedure of measurement like 
that indicated.* The apparent contradiction in 

* The deductions contained in the article cited may in 
this respect be considered as an immediate consequence 
of the transformation theorems of quantum mechanics, 
which perhaps more than any other feature of the for
malism contribute to secure its mathematical complete
ness and its rational correspondence with classical me
chanics. In fact, it is always possible in the description of a 
mechanical system, consisting of two partial systems (1) 
and (2), interacting or not, to replace any two pairs of 
canonically conjugate variables (ffipi). (¢2^2) pertaining 
to systems (1) and (2), respectively, and satisfying the 
usual commutation rules 

[3i£ i] = ihPH = ih/2ir, 
ίΐφΐ = [PiPzJ = LSiPz] = Llip 1 ] = 0. 

by two pairs of new conjugate variables (Q1P1), (QiPi) 
related to the first variables by a simple orthogonal trans
formation, corresponding to a rotation of angle θ in the 
planes (5132), (pipi) 

qi = Qi cos β—Q2 sin θ Pi = Pi cosS —Pi sin β 
Ii = Qi sin 0+§2 cos θ pi = P1 sin Θ+Ρ2 cos Θ. 

Since these variables will satisfy analogous commutation 
rules, in particular 

Ε<2ιΛ]=»Λ/2τ, MiP2H = O, 

it follows that in the description of the state of the com
bined system definite numerical values may not be as
signed to both Qi and Pi, but that we may clearly assign 

Originally published in Physical Review, 48, 696-702 (1935). 
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fact discloses only an essential inadequacy of the 
customary viewpoint of natural philosophy for a 
rational account of physical phenomena of the 
type with which we are concerned in quantum 
mechanics. Indeed the finite interaction between 

object and measuring agencies conditioned by the 
very existence of the quantum of action entails 
—because of the impossibility of controlling the 
reaction of the object on the measuring instru
ments if these are to serve their purpose—the 
necessity of a final renunciation of the classical 
ideal of causality and a radical revision of our 
attitude towards the problem of physical reality. 
In fact, as we shall see, a criterion of reality 
like that proposed by the named authors con
tains—however cautious its formulation may 
appear—an essential ambiguity when it is ap
plied to the actual problems with which we are 
here concerned. In order to make the argument 
to this end as clear as possible, I shall first 
consider in some detail a few simple examples of 
measuring arrangements. 

Let us begin with the simple case of a particle 
passing through a slit in a diaphragm, which 
may form part of some more or less complicated 
experimental arrangement. Even if the mo
mentum of this particle is completely known 
before it impinges on the diaphragm, the diffrac
tion by the slit of the plane wave giving the 
symbolic representation of its state will imply 
an uncertainty in the momentum of the particle, 
after it has passed the diaphragm, which is the 
greater the narrower the slit. Now the width of 
the slit, at any rate if it is still large compared 
with the wave-length, may be taken as the 
uncertainty Aq of the position of the particle 
relative to the diaphragm, in a direction perpen
dicular to the slit. Moreover, it is simply seen 
from de Broglie's relation between momentum 
and wave-length that the uncertainty Ap of the 
momentum of the particle in this direction is 
correlated to Aq by means of Heisenberg's 
general principle 

ApAq~h, 

such values to both Qi and P2- In that case it further results 
from the expressions of these variables in terms of (¢1^1) 
and {qipi), namely 

Qi = Si cos 0+Ϊ2 sin Θ, Pi = —pi sin θ+pi cos Θ, 

that a subsequent measurement of either ¢2 or /> will allow 
us to predict the value of 31 or pi respectively. 

which in the quantum-mechanical formalism is a 
direct consequence of the commutation relation 
for any pair of conjugate variables. Obviously 
the uncertainty Ap is inseparably connected with 
the possibility of an exchange of momentum be
tween the particle and the diaphragm; and the 
question of principal interest for our discussion 
is now to what extent the momentum thus 
exchanged can be taken into account in the 
description of the phenomenon to be studied by 
the experimental arrangement concerned, of 
which the passing of the particle through the 
slit may be considered as the initial stage. 

Let us first assume that, corresponding to 
usual experiments on the remarkable phenomena 
of electron diffraction, the diaphragm, like the 
other parts of the apparatus,—say a second 
diaphragm with several slits parallel to the 
first and a photographic plate,—is rigidly fixed 
to a support which defines the space frame of 
reference. Then the momentum exchanged be
tween the particle and the diaphragm will, 
together with the reaction of the particle on the 
other bodies, pass into this common support, 
and we have thus voluntarily cut ourselves off 
from any possibility of taking these reactions 
separately into account in predictions regarding 
the final result of the experiment,—say the posi
tion of the spot produced by the particle on the 
photographic plate. The impossibility of a closer 
analysis of the reactions between the particle and 
the measuring instrument is indeed no peculiarity 
of the experimental procedure described, but is 
rather an essential property of any arrangement 
suited to the study of the phenomena of the type 
concerned, where we have to do with a feature 
of individuality completely foreign to classical 
physics. In fact, any possibility of taking into 
account the momentum exchanged between the 
particle and the separate parts of the apparatus 
would at once permit us to draw conclusions 
regarding the "course" of such phenomena,—say 
through what particular slit of the second 
diaphragm the particle passes on its way to the 
photographic plate—which would be quite in
compatible with the fact that the probability of 
the particle reaching a given element of area on 
this plate is determined not by the presence of 
any particular slit, but by the positions of all 
the slits of the second diaphragm within reach 
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of the associated wave diffracted from the slit of 
the first diaphragm. 

By another experimental arrangement, where 
the first diaphragm is not rigidly connected with 
the other parts of the apparatus, it would at 
least in principle* be possible to measure its 
momentum with any desired accuracy before 
and after the passage of the particle, and thus to 
predict the momentum of the latter after it has 
passed through the slit. In fact, such measure
ments of momentum require only an unambigu
ous application of the classical law of conservation 
of momentum, applied for instance to a collision 
process between the diaphragm and some test 
body, the momentum of which is suitably con
trolled before and after the collision. It is true 
that such a control will essentially depend on an 
examination of the space-time course of some 
process to which the ideas of classical mechanics 
can be applied; if, however, all spatial dimensions 
and time intervals are taken sufficiently large, 
this involves clearly no limitation as regards the 
accurate control of the momentum of the test 
bodies, but only a renunciation as regards the 
accuracy of the control of their space-time coor
dination. This last circumstance is in fact quite 
analogous to the renunciation of the control of 
the momentum of the fixed diaphragm in the 
experimental arrangement discussed above, and 
depends in the last resort on the claim of a purely 
classical account of the measuring apparatus, 
which implies the necessity of allowing a latitude 
corresponding to the quantum-mechanical uncer
tainty relations in our description of their be
havior. 

The principal difference between the two ex
perimental arrangements under consideration is, 
however, that in the arrangement suited for the 
control of the momentum of the first diaphragm, 
this body can no longer be used as a measuring 
instrument for the same purpose as in the pre
vious case, but must, as regards its position rela
tive to the rest of the apparatus, be treated, like 
the particle traversing the slit, as an object of 

* The obvious impossibility of actually carrying out, 
with the experimental technique at our disposal, such 
measuring procedures as are discussed here and in the 
following does clearly not affect the theoretical argument, 
since the procedures in question are essentially equivalent 
with atomic processes, like the Compton effect, where a 
corresponding application of the conservation theorem of 
momentum is well established. 

investigation, in the sense that the quantum-
mechanical uncertainty relations regarding its 
position and momentum must be taken explicitly 
into account. In fact, even if we knew the posi
tion of the diaphragm relative to the space frame 
before the first measurement of its momentum, 
and even though its position after the last meas
urement can be accurately fixed, we lose, on 
account of the uncontrollable displacement of 
the diaphragm during each collision process with 
the test bodies, the knowledge of its position 
when the particle passed through the slit. The 
whole arrangement is therefore obviously un-
suited to study the same kind of phenomena as 
in the previous case. In particular it may be 
shown that, if the momentum of the diaphragm 
is measured with an accuracy sufficient for allow
ing definite conclusions regarding the passage of 
the particle through some selected slit of the 
second diaphragm, then even the minimum un
certainty of the position of the first diaphragm 
compatible with such a knowledge will imply the 
total wiping out of any interference effect—re
garding the zones of permitted impact of the 
particle on the photographic plate—to which the 
presence of more than one slit in the second 
diaphragm would give rise in case the positions 
of all apparatus are fixed relative to each other. 

In an arrangement suited for measurements of 
the momentum of the first diaphragm, it is fur
ther clear that even if we have measured this 
momentum before the passage of the particle 
through the slit, we are after this passage still 
left with a free choice whether we wish to know 
the momentum of the particle or its initial posi
tion relative to the rest of the apparatus. In 
the first eventuality we need only to make a 
second determination of the momentum of the 
diaphragm, leaving unknown forever its exact 
position when the particle passed. In the second 
eventuality we need only to determine its 
position relative to the space frame with the 
inevitable loss of the knowledge of the mo
mentum exchanged between the diaphragm and 
the particle. If the diaphragm is sufficiently 
massive in comparison with the particle, we may 
even arrange the procedure of measurements in 
such a way that the diaphragm after the first 
determination of its momentum will remain at 
rest in some unknown position relative to the 
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instrument rigidly fixed to the support which 
defines the space frame of reference. Under the 
experimental conditions described such a meas
urement will therefore also provide us with the 
knowledge of the location, otherwise completely 
unknown, of the diaphragm with respect to this 
space frame when the particles passed through 
the slits. Indeed, only in this way we obtain a 
basis for conclusions about the initial position of 
the other particle relative to the rest of the appa
ratus. By allowing an essentially uncontrollable 
momentum to pass from the first particle into 
the mentioned support, however, we have by 
this procedure cut ourselves off from any future 
possibility of applying the law of conservation 
of momentum to the system consisting of the 
diaphragm and the two particles and therefore 
have lost our only basis for an unambiguous 
application of the idea of momentum in pre
dictions regarding the behavior of the second 
particle. Conversely, if we choose to measure 
the momentum of one of the particles, we lose 
through the uncontrollable displacement inevi
table in such a measurement any possibility of 
deducing from the behavior of this particle the 
position of the diaphragm relative to the rest of 
the apparatus, and have thus no basis whatever 
for predictions regarding the location of the 
other particle. 

From our point of view we now see that the 
wording of the above-mentioned criterion of 
physical reality proposed by Einstein, Podolsky 
and Rosen contains an ambiguity as regards the 
meaning of the expression "without in any way 
disturbing a system." Of course there is in a 
case like that just considered no question of a 
mechanical disturbance of the system under 
investigation during the last critical stage of the 
measuring procedure. But even at this stage 
there is essentially the question of an influence 
on the very conditions which define the possible 
types of predictions regarding the future behavior 
of the system. Since these conditions constitute 
an inherent element of the description of any 
phenomenon to which the term "physical reality" 
can be properly attached, we see that thfe argu
mentation of the mentioned authors does not 
justify their conclusion that quantum-mechanical 
description is essentially incomplete. On the con
trary this description, as appears from the pre

ceding discussion, may be characterized as a 
rational utilization of all possibilities of unambig
uous interpretation of measurements, compatible 
with the finite and uncontrollable interaction 
between the objects and the measuring instru
ments in the field of quantum theory. In fact, 
it is only the mutual exclusion of any two experi 
mental procedures, permitting the unambiguous 
definition of complementary physical quantities, 
which provides room for new physical laws, the 
coexistence of which might at first sight appear 
irreconcilable with the basic principles of science. 
It is just this entirely new situation as regards 
the description of physical phenomena, that the 
notion of complementarity aims at characterizing. 

The experimental arrangements hitherto dis
cussed present a special simplicity on account of 
the secondary role WtlIch the idea of time plays 
in the description of the phenomena in question. 
It is true that we have freely made use of such 
words as "before" and "after" implying time-
relationships; but in each case allowance must 
be made for a certain inaccuracy, which is of 
no importance, however, so long as the time 
intervals concerned are sufficiently large com
pared with the proper periods entering in the 
closer analysis of the phenomenon under investi
gation. As soon as we attempt a more accurate 
time description of quantum phenomena, we 
meet with well-known new paradoxes, for the 
elucidation of which further features of the 
interaction between the objects and the meas
uring instruments must be taken into account. 
In fact, in such phenomena we have no longer 
to do with experimental arrangements consisting 
of apparatus essentially at rest relative to one 
another, but with arrangements containing mov
ing parts,—like shutters before the slits of the 
diaphragms,—controlled by mechanisms serving 
as clocks. Besides the transfer of momentum, 
discussed above, between the object and the 
bodies defining the space frame, we shall there
fore, in such arrangements, have to consider an 
eventual exchange of energy between the object 
and these clock-like mechanisms. 

The decisive point as regards time measure
ments in quantum theory is now completely 
analogous to the argument concerning measure
ments of positions outlined above. Just as the 
transfer of momentum to the separate parts of 
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other parts of the apparatus, and the subsequent 
fixation of this position may therefore simply 
consist in establishing a rigid connection between 
the diaphragm and the common support. 

My main purpose in repeating these simple, 
and in substance well-known considerations, is 
to emphasize that in the phenomena concerned 
we are not dealing with an incomplete description 
characterized by the arbitrary picking out of 
different elements of physical reality at the cost 
of sacrifying other such elements, but with a 
rational discrimination between essentially differ
ent experimental arrangements and procedures 
which are suited either for an unambiguous use 
of the idea of space location, or for a legitimate 
application of the conservation theorem of mo
mentum. Any remaining appearance of arbitrari
ness concerns merely our freedom of handling the 
measuring instruments, characteristic of the very 
idea of experiment. In fact, the renunciation in 
each experimental arrangement of the one or the 
other of two aspects of the description of physical 
phenomena,—the combination of which charac
terizes the method of classical physics, and which 
therefore in this sense may be considered as com
plementary to one another,—depends essentially 
on the impossibility, in the field of quantum 
theory, of accurately controlling the reaction of 
the object on the measuring instruments, i.e., 
the transfer of momentum in case of position 
measurements, and the displacement in case of 
momentum measurements. Just in this last re
spect any comparison between quantum mechan
ics and ordinary statistical mechanics,—however 
useful it may be for the formal presentation of 
the theory,—is essentially irrelevant. Indeed we 
have in each experimental arrangement suited 
for the study of proper quantum phenomena not 
merely to do with an ignorance of the value of 
certain physical quantities, but with the impossi
bility of defining these quantities in an unam
biguous way. 

The last remarks apply equally well to the 
special problem treated by Einstein, Podolsky 
and Rosen, which has been referred to above, 
and which does not actually involve any greater 
intricacies than the simple examples discussed 
above. The particular quantum-mechanical state 
of two free particles, for which they give an 
explicit mathematical expression, may be repro

duced, at least in principle, by a simple experi
mental arrangement, comprising a rigid dia
phragm with two parallel slits, which are very 
narrow compared with their separation, and 
through each of which one particle with given 
initial momentum passes independently of the 
other. If the momentum of this diaphragm is 
measured accurately before as well as after the 
passing of the particles, we shall in fact know 
the sum of the components perpendicular to the 
slits of the momenta of the two escaping particles, 
as well as the difference of their initial positional 
coordinates in the same direction; while of course 
the conjugate quantities, i.e., the difference of 
the components of their momenta, and the sum 
of their positional coordinates, are entirely 
unknown.* In this arrangement, it is therefore 
clear that a subsequent single measurement 
either of the position or of the momentum of 
one of the particles will automatically determine 
the position or momentum, respectively, of the 
other particle with any desired accuracy; at least 
if the wave-length corresponding to the free 
motion of each particle is sufficiently short 
compared with the width of the slits. As pointed 
out by the named authors, we are therefore 
faced at this stage with a completely free choice 
whether we want to determine the one or the 
other of the latter quantities by a process which 
does not directly interfere with the particle 
concerned. 

Like the above simple case of the choice 
between the experimental procedures suited for 
the prediction of the position or the momentum 
of a single particle which has passed through a 
slit in a diaphragm, we are, in the "freedom of 
choice" offered by the last arrangement, just 
concerned with a discrimination between different 
experimental procedures which allow of the unam
biguous use of complementary classical concepts. 
In fact to measure the position of one of the 
particles can mean nothing else than to establish 
a correlation between its behavior and some 

* As will be seen, this description, apart from a trivial 
normalizing factor, corresponds exactly to the transforma
tion of variables described in the preceding footnote if 
(<Zi£i)> i&Pv) represent the positional coordinates and com
ponents of momenta of the two particles and if 0= — 7r/4. 
It may also be remarked that the wave function given by 
formula (9) of the article cited corresponds to the special 
choice of Pt = 0 and the limiting case of two infinitely 
narrow slits. 
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the apparatus,—the knowledge of the relative 
positions of which is required for the description 
of the phenomenon,—has been seen to be entirely 
uncontrollable, so the exchange of energy be
tween the object and the various bodies, whose 
relative motion must be known for the intended 
use of the apparatus, will defy any closer 
analysis. Indeed, it is excluded in principle to 
control the energy which goes into the clocks without 
interfering essentially with their use as time indi
cators. This use in fact entirely relies on the 
assumed possibility of accounting for the func
tioning of each clock as well as for its eventual 
comparison with other clocks on the basis of 
the methods of classical physics. In this account 
we must therefore obviously allow for a latitude 
in the energy balance, corresponding to the quan
tum-mechanical uncertainty relation for the con
jugate time and energy variables. Just as in the 
question discussed above of the mutually exclu
sive character of any unambiguous use in quan
tum theory of the concepts of position and 
momentum, it is in the last resort this circum
stance which entails the complementary relation
ship between any detailed time account of atomic 
phenomena on the one hand and the unclassical 
features of intrinsic stability of atoms, disclosed 
by the study of energy transfers in atomic reac
tions on the other hand. 

This necessity of discriminating in each ex
perimental arrangement between those parts of 
the physical system considered which are to be 
treated as measuring instruments and those 
which constitute the objects under investigation 
may indeed be said to form a principal distinction 
between classical and quantum-mechanical descrip
tion of physical phenomena. It is true that the 
place within each measuring procedure where this 
discrimination is made is in both cases largely a 
matter of convenience. While, however, in classi
cal physics the distinction between object and 
measuring agencies does not entail any difference 
in the character of the description of the phe
nomena concerned, its fundamental importance 
in quantum theory, as we have seen, has its root 
in the indispensable use of classical concepts in 
the interpretation of all proper measurements, 
even though the classical theories do not suffice 
in accounting for the new types of regularities 
with which we are concerned in atomic physics. 

In accordance with this situation there can be no 
question of any unambiguous interpretation of 
the symbols of quantum mechanics other than 
that embodied in the well-known rules which 
allow to predict the results to be obtained by a 
given experimental arrangement described in a 
totally classical way, and which have found their 
general expression through the transformation 
theorems, already referred to. By securing its 
proper correspondence with the classical theory, 
these theorems exclude in particular any imag
inable inconsistency in the quantum-mechanical 
description, connected with a change of the place 
where the discrimination is made between object 
and measuring agencies. In fact it is an obvious 
consequence of the above argumentation that in 
each experimental arrangement and measuring 
procedure we have only a free choice of this place 
within a region where the quantum-mechanical 
description of the process concerned is effectively 
equivalent with the classical description. 

Before concluding I should still like to empha
size the bearing of the great lesson derived from 
general relativity theory upon the question of 
physical reality in the field of quantum theory. 
In fact, notwithstanding all characteristic differ
ences, the situations we are concerned with in 
these generalizations of classical theory present 
striking analogies which have often been noted. 
Especially, the singular position of measuring 
instruments in the account of quantum phe
nomena, just discussed, appears closely analo
gous to the well-known necessity in relativity 
theory of upholding an ordinary description of 
all measuring processes, including a sharp dis
tinction between space and time coordinates, 
although the very essence of this theory is the 
establishment of new physical laws, in the 
comprehension of which we must renounce the 
customary separation of space and time ideas.* 

*Just this circumstance, together with the relativistic 
invariance of the uncertainty relations of quantum 
mechanics, ensures the compatibility between the argu
mentation outlined in the present article and all exigencies 
of relativity theory. This question will be treated in greater 
detail in a paper under preparation, where the writer will in 
particular discuss a very interesting paradox suggested by 
Einstein concerning the application of gravitation theory 
to energy measurements, and the solution of which offers an 
especially instructive illustration of the generality of the 
argument of complementarity. On the same occasion a 
more thorough discussion of space-time measurements in 
quantum theory will be given with all necessary mathe
matical developments and diagrams of experimental 



1.10 PHYSICAL REALITY 151 

The dependence on the reference system, in 
relativity theory, of all readings of scales and 
clocks may even be compared with the essentially 
uncontrollable exchange of momentum or energy 
between the objects of measurements and all 
instruments defining the space-time system of 

arrangements, which had to be left out of this article, 
where the mam stress is laid on the dialectic aspect of the 
question at issue. 

reference, which in quantum theory confronts us 
with the situation characterized by the notion of 
complementarity. In fact this new feature of 
natural philosophy means a radical revision of 
our attitude as regards physical reality, which 
may be paralleled with the fundamental modifi
cation of all ideas regarding the absolute char
acter of physical phenomena, brought about by 
the general theory of relativity. 



L L L  T H E  P R E S E N T  S I T U A T I O N  I N  Q U A N T U M  M E C H A N I C S :  
A TRANSLATION OF SCHRODINGER'S "CAT PARADOX" PAPER 

ERWIN SCHRODINGER (TRANS. JOHN D. TRIMMER*) 

INTRODUCTION 

This is a translation of Schrodinger's three-part 
1935 paper1 in Die Natitrnvssenschaften Earlier 

that same year there had appeared the Einstein. Po-
dolsky, Rosen paper2 (also famous in "paradoxol-
ogx") which., Schrodinger says, in a footnote, moti

vated his offering. Along with this article in German, 
Schrodinger had two closely related English-language 

publications.1 But the German, aside from its one-
paragraph presentation of the famous cat, covers 

additional territory and gives many fascinating in
sights into Schrodinger's thought. The translator's 

goal has been to adhere to the logical and physical 
content of the original, while at the same time trying 
to convey something of its semi-conversational, at 

times slightly sardonic flavor. 

TRANSLATION 

1. The Physics of Models 

in the second half of the previous century there 
arose, from the great progress in kinetic theory of 
gases and in the mechanical theory of heat, an ideal 
of the exact description of nature that stands out as 
the reward of centuries-long search and the fulfill

ment of millennia-long hope, and that is called classical 
These are its features. 

Of natural objects, whose observed behavior one 
might treat, one sets up a representation—based on 
the experimental data in one's possession but with
out handcuffing the intuitive imagination—that is 

worked out in all details exactly, much more exactly 
than any experience, considering its limited extent, 
can ever authenticate. The representation in its ab
solute determinacy resembles a mathematical concept 
or a geometric figure which can be completely calcu
lated from a number of determining parts, as, e.g., a 

triangle's one side and two adjoining angles, as de
termining parts, also determine the third angle, the 

*Box 79, Route 1, Millmgton, Md 21651 
1E Schrodinger, "Die gegenwartige Situation in der 

Quantenmechanik," Naturwissenschaften 23 pp. 807-812 , 823-
828, 844-S49 (1935). 

2 A. Einstein, B Podolsky, and N. Rosen, Phys. Rev 47: 
p. 777 (1935). 

3 E. Schrodinger, Proc. Cambridge Phil. Soc. 31: p. 555 
(1935) ; ibid., 32 p. 446 (1936). 

other two sides, the three altitudes, the radius of the 
inscribed circle, etc Yet the '^presentation differs 

intrinsicallv from a geometric figure in this impor
tant respect, that also in time as fourth dimension it 
is just as sharply determined as the figure is in the 

three space dimensions. Thus it is a question (as is 
self-evident) alwavs of a concept that changes with 
tune, that can assume different states, and if a state 
becomes known in the necessary number of determin

ing parts, then not only are all other parts also given 
for this moment (as illustrated for the triangle above), 

but likewise all parts, the complete state, for any given 

later time, just as the character of a triangle on its 
base determines its character at the apex. It is part 
of the inner law of the concept that it should change 

in a given manner, that is, if left to itself in a given 

initial state, that it should continuoush run through 
a given sequence of states, each one of which it 
reaches at a fully determined time That is its na
ture. that is the hypothesis, which, as I said above, 
one builds on a foundation of intuitive imagination. 

Of course one must not think so literally, that in 
this way one learns how things go in the real world. 
To show that one does not think this, one calls the 

precise thinking aid that one has created, an image 
or a model. With its hindsight-free clarity, which 

cannot be attained without arbitrariness, one has 
merely insured that a fully determined hypothesis 
can be tested for its consequences, without admitting 

further arbitrariness during the tedious calculations 
required for deriving these consequences. Here one 
has explicit marching orders and actually xvorks out 
only what a clever fellow could have told directly 
from the data! At least one then knows where the 
arbitrariness lies and where improvement must be 

made in case of disagreement with experience: in the 

initial hvpothesis or model. For this one must always 
be prepared If in many various experiments the 

natural object behaves like the model, one is happy 
and thinks that the image fits the reality in essential 

features. If it fails to agree, under novel experi

ments or with refined measuring techniques, it is not 

said that one should not be happy. For basically this 

is the means of gradually bringing our picture, i e., 

our thinking, closer to the realities. 

The classical method of the precise model has as 

principal goal keeping the unavoidable arbitrariness 

This translation was originally published in Proceedings of the American Philosophical Society, 124, 323-38 
(1980). 



1.11 CAT PARADOX 1 5 3  

neatly isolated in the assumptions, more or less as 

body cells isolate the nucleoplasm, for the historical 

process of adaptation to continuing experience. Per

haps the method is based on the belief that somehow 

the initial state really determines uniquely the subse
quent events, or that a complete model, agreeing with 

reality in complete exactness would permit predictive 

calculation of outcomes of all experiments with com
plete exactness Perhaps on the other hand this 

belief is based 011 the method. IUit it is quite prob

able that the adaptation of thought to experience is 

an infinite process and that "complete model" is a 
contradiction in terms, somewhat like "largest in

teger " 

A clear presentation of what is meant by classical 
model, its determining parts, its state, is the founda

tion for all  that follows. Above all ,  a determinate 

mode! and a determinate state of the same must not 

be confused. Best consider an example. The Ruther

ford model of the hydrogen atom consists of two point 
masses As determining parts one could for example 
use the two times three rectangular coordinates of 

the two points and the two times three components 
of their velocities along the coordinate axes—thus 
twelve in all. Instead of these one could also choose: 

the coordinates and velocity components of the center 
of mass, plus the separation of the two points,  two 
angles that establish the direction in space of the line 
joining them, and the speeds (= time derivatives) 

with which the separation and the two angles are 

changing at the particular moment; this again adds up 

of course to twelve. It is not part of the concept 
"R-model of the H-atom" that the determining parts 
should have particular numerical values Such being 

assigned to them, one arrives at a determinate state 

of the model. The clear view over the totality ot 
possible states—yet without relationship among them 
—constitutes "the model" or "the model in an ν state 

whatsoever." But the concept of the model then 

amounts to more than merely . the two points in cer
tain positions, endowed with certain velocities. It 
embodies also knowledge for every state how it will 
change with time in absence of outside interference. 

(Information on how one half of the determining 
parts will change with time is indeed given by the 

other half, but how this other half will change must 
be independently determined.) This knowledge is 

implicit in the assumptions: the points have the 
masses m, M and the charges —e, +e and therefore 
attract each other with force e-/r2, if their separation 
is r. 

These results, with definite numerical values for 
m, ΛΙ, and e (but of course not for r), belong to the 

description of the model (not first and only to that 

of a definite state), m, M, and e are not determining 

parts. Bv contrast, separation r is one. It appears 

as the seventh in the second "set" of the example in

troduced above. And if one uses the first, r is not 

an independent thirteenth but can be calculated from 

the 6 rectangular coordinates: 

r = ι (x, - X 2 ) '  + ( y i  - y,.) J  +  ( Z 1  -  Z o ) 2 j - .  

The number of determining parts (which are often 

called variables in contrast to constants of the model 

such as m, ΛΙ, e) is unlimited. Twelve conveniently 

chosen ones determine all others, or the state No 

twelve have the privilege of being the determining 

parts Examples of other especially important de

termining parts are the energy, the three compo
nents of angular momentum relative to center of mass, 

the kinetic energy of center of mass motion. These 

just named ha\e, however, a special character. They 
are indeed variable, i e., they have different values in 

different states But in every sequence of states, that 

is actually passed through in the course of time, they 
retain the same value. So the} are also called con
stants of the motion—differing from constants of the 

model. 

2 ^ tahs t ies  of  Model  Var iables  in  Qi tantum Mcchanics  

At the pivot point of contemporary quantum me
chanics (Q.M.) stands a doctrine, that perhaps may 

vet undergo many shifts of meaning but that will not, 
I am convinced, cease to be the pivot point. It is 
this, that models with determining parts that uniquely 

determine each other, as do the classical ones, cannot 

do justice to nature. 
One might think that for anyone believing this, the 

classical models have played out their roles. But 
thi-> is not the case. Rather one uses precisely them, 
not only to express the negative of the new doctrine, 

but aiso to describe the diminished mutual deter-
nnnac\ remaining afterwards as though obtaining 
among the same variables of the same models as 

were used earlier, as follows. 

A The classical concept of state becomes lost, in 
thai at most a well-chosen half of a complete set of 
\ariables can be assigned definite numerical values; 
in the Rutherford example for instance the six rec
tangular coordinates or the velocity components (still 

other groupings are possible). The other half then 
remains completely indeterminate, while supernumer
ary parts can show IughK \arying degrees of inde

terminacy. In general, of a complete set (for the 
R-model twelve parts) all will be known only un

certainly. One can best keep track of the degree of 
uncertainty by following classical mechanics and 
choosing variables arranged in pairs of so-called 

canonically-conjugate ones The simplest example is 
a space coordinate χ of a point mass and the com
ponent px along the same direction, its linear mo

mentum (i.e , mass times velocity) Two such con
strain each other in the precision with which they 
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may be simultaneously known, in that the product of 
their tolerance- or variation-widths (customarily 
designated by putting a A ahead of the quantity) 
cannot fall belcnc the magnitude of a certain universal 

constant.4 thus 

Δχ·Δρχ § h. 

(Heisenberg uncertainty relation ) 
B. If even at any given moment not all variables 

are determined by some of them, then of course 
neither are they all determined for a later moment 
by data obtainable earlier. Tliis may be called a 
break with causality, but in view of .-/ it is nothing 
essentially new If a classical state does not exist 
at any moment, it can hardly change causally. What 
do change are the statistics or probabilities, these 
moreover causally. individual variables meanwhile 
may become more, or less, uncertain. Overall it may
be said that the total precision of the description does 
not change with time, because the principle of limi
tations described under . L remains the same at every 
moment. 

Now what is the meaning of the terms "uncertain." 
"statistics." "probability"? Here O.M. gives the fol
lowing account It takes over unquestiomngly from 
the classical model the entire infinite roll call of 
imaginable variables or determining parts and pro
claims each part to be directly measurable, indeed 
measurable to arbitrary precision, so far as it alone is 
concerned. If through a well-chosen, constrained set 
of measurements one has gained that maximal knowl
edge of an object which is just possible according to 
A., then the mathematical apparatus of the new theory 
provides means of assigning, for the same or for any 
later instant of time, a fully determined statistical dis
tribution to every variable, that is, an indication of 
the fraction of cases it will be found at this or that 
value, or within this or that small interval (which 
is also called probability.) The doctrine is that this 
is in fact the probability of encountering the relevant 
variable, if one measures it at the relevant time, at 
this or that value. Tiy a single trial the correctness 
of this probability prediction can be given at most 
an approximate test, namely in the case that it is com
paratively sharp, i.e., declares possible only a small 
range of values. To test it thoroughly one must 
repeat the entire trial ab ovo (i.e , including the ori-
entational or preparatory measurements) very often 
and may use only those cases in which the prepara
tory measurements gave exactly the same results. 
For these cases, then, the statistics of a particular 

*h = 1.041 ·10~" erg sec. Usually in the literature the 2jr-

fold of this (6.542-10""17 erg sec) is designated as h and for 
our h an h with a cross-bar is written [Transl. Note: In 
conformity with the now universal usage, fi is used in the 
translation in place of h.] 

variable, reckoned forward from the preparatory 
measurements, is to be confirmed by measurement— 
this is the doctrine. 

One must guard against criticizing this doctrine 
because it is so difficult to express; this is a matter 
of language. But a different criticism surfaces. 
Scarcely a single physicist of the classical era would 
have dared to believe, in thinking about a model, that 
its determining parts are measurable on the natural 
object Only much remoter consequences of the 
picture were actually open to experimental test. And 
all experience pointed toward one conclusion: long 
before the advancing experimental arts had bridged 
the broad chasm, the model would have substan
tially changed through gradual adaptation to new 
facts.—Xow while the new theory calls the classical 
model incapable of specifying all details of the mutual 
interrelationship of the determining parts (for which 
its creators intended it), it nevertheless considers the 
model suitable for guiding us as to just which mea
surements can in principle be made on the relevant 
natural object. This would have seemed to those 
who thought up the picture a scandalous extension of 
their thought-pattern and an unscrupulous proscrip
tion against future development. Would it not be 
pre-established harmony of a peculiar sort if the 
classical-epoch researchers, those who, as we hear 
today, had 110 idea of what measuring truly is, had 
unwittingly gone on to give us as legacy a guidance 
scheme revealing just what is fundamentally measur
able for instance about a hydrogen atom! ? 

1 hope later to make clear that the reigning doc
trine is born of distress. Meanwhile I continue to 
expound it. 

3 Examples  of  Probabi l i ty  Predict ions 

All of the foregoing pertains to determining parts 
of a classical model, to positions and velocities of 
point masses, to energies, angular momenta, etc. The 
onlv unclassical feature is that only probabilities are 
predicted. Let us have a closer look. The orthodox 
treatment is always that, by way of certain measure
ments performed now and by way of their resulting 
prediction of results to be expected of other measure
ments following thereafter either immediately or at 
some given time, one gains the best possible proba
bility estimates permitted by nature. Now how does 
the matter really stand? In important and typical 
cases as follows. 

If one measures the energy of a Planck oscillator, 
the probability of finding for it a value between E 
and E' cannot possibly be other than zero unless 
between E and E' there lies at least one value from 
the series 37rh»', 57rhf, 7-rrhv, 9irhc, . . . For any interval 
containing none of these values the probability is zero. 
In plain English: other measurement results are ex-
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FIG. 1 Angular momentum, M is a material point, O a 
geometric reference point Tlie vector arrow repre
sents the momentum (=mass times velocity) of M. 
Then the angular momentum is the product of the 
length of the arrow by the length OF. 

eluded. The values are odd multiples of the constant 

of the model Av 

(Planck constant) Ίττ, 

c = frequency of the oscillator. 

Two points stand out. First, no account is taken of 

preceding measurements—these are quite unnecessary 
Second, the statement certainly doesn't suffer an ex
cessive lack of precision—quite to the contrary it is 

sharper than any actual measurement could ever be. 

Another typical example is magnitude of angular 
momentum In Fig. 1 let M be a moving point mass, 

with the vector representing, in magnitude and direc
tion, its momentum (mass times velocity). O is any 
arbitrary fixed point in space, say the origin of co
ordinates ; thus not a physically significant point, but 

rather a geometric reference point. As magnitude 

of the angular momentum of M about O classical 
mechanics designates the product of the length of 
the momentum vector by the length of the normal OF. 
In Q.M. the magnitude of angular momentum is gov
erned much as the energy of the oscillator. Again 
the probability is zero for any interval not containing 
some value(s) from the following series 

h (2)4, h (2 X 3)J, h (3 X 4)i, h (4x5)',...; 

that is, only one of these values is allowed. Again 

this is true without reference to preceding measure

ments. And one readily conceives how important is 

this precise statement, much more important than 

knowing which of these values, or what probability 

for each of them, would actually pertain to a given 
case. Moreover it is also noteworthy here that there 

is no mention of the reference point: however it is 

chosen one will get a value from the series. This 
assertion seems unreasonable for the model, because 

the normal OF changes continuously as the point O is 

displaced, if the momentum vector remains unchanged 

In this example we see how Q.M does indeed use 
the model to read off those quantities which one can 

measure and for which it makes sense to predict 

results, but finds the classical model inadequate for 
explicating relationships among these quantities. Now 

in both examples does one not get the feeling that 

the essential content of what is being said can only 

with some difficulty be forced into the Spanish boot 
of a prediction of probability of finding this or that 
measurement result for a variable of the classical 
model ? Does one not get the impression that here 

one deals with fundamental properties of new classes 
of characteristics, that keep only the name in common 

with classical ones? And by no means do we speak 
here of exceptional cases, rather it is precisely the 

trill)- valuable statements of the new theory that have 
this character. There are indeed problems more 
nearly of the type for which the mode of expression 

is suitable. But they are by no means equally im
portant. Moreover of no importance whatever are 

those that are naively set up as class exercises. 
"Given the position of the electron in the hydrogen 
atom at time t = 0, find the statistics of its position 

at a later time." No one cares about that. 
The big idea seems to be that all statements per

tain to the intuitive model. But the useful statements 

are scarcely intuitive to it, and its intuitive aspects 

are of little worth. 

4 Can Our Base the lheory on Ideal Ensembles9  

The classical model plays a Protean role in Q.M. 

Each of its determining parts can under certain cir
cumstances become an object of interest and achieve 

a certain reality. Hut never all of them together— 
now jt is these, now those, and indeed always at most 

Iialf of the complete set of variables allowed by a full 
picture of the momentary state Meantime, how about 
thf^thers' Have they then no reality, perhaps (par

don the expression) a blurred reality; or are all of 
them always real and is it merely, according to The
orem A. of Sect. 2 , that simultaneous knowledge of 

them is ruled out ? 
The second interpretation is especially appealing to 

those acquainted with the statistical viewpoint that 

came up in the second half of the preceding century; 
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the more so, considering that on the eve of the new 

century quantum theory was born from it, from a 

central problem in the statistical theory of heat (Max 

Planck's Theory of Heat Radiation, December, 1899) 

The essence of this line of thought is precisely this, 

that one practically never knows all the determining 

parts of the system, but rather much fewer. To de
scribe an actual body at a given moment one relies 

therefore not on one state of the model but on a so-
called dibbs ensemble. By this is meant an ideal, 
that is, merely imagined ensemble of states, that 

accurately reflects our limited knowledge of the actual 
body. The body is then considered to behave as 
though in a single state arbitrarily chosen from this 

ensemble. This interpretation had the most extensive 
results. Its highest triumphs were in those cases for 
which not all states appearing in the ensemble led to 
the same observable behavior. Thus the body's con
duct is now this way, now that, just as foreseen (ther

modynamic fluctuations ι. At first thought one might 

well attempt likewise to refer back the always un
certain statements of Q.M. to an ideal ensemble of 
states, of which a quite specific one applies in any 
concrete instance—but one does not know which one. 

That this won't work is shown by the one example 
of angular momentum, as one of many. Imagine in 
Fig. 1 the point M to be situated at various positions 
relative to O and fitted with various momentum 

vectors, and all these possibilities to be combined into 
an ideal ensemble. Then one can indeed so choose 
these positions and vectors that in every case the 
product of vector length by length of normal OF 

yields one or the other of the acceptable values— 
relative to the particular point (). But for an arbi
trary different point O', of course, unacceptable values 
occur Thus appeal to the ensemble is no help at all. 
—Another example is the oscillator energy. Take the 
case that it has a sharply determined value, e.g., the 
lowest, 37rhi<. The separation of the two point masses 
(that constitute the oscillator) then appears very t in-
sharp. To be able to refer this statement to a statis
tical collective of states would require the distribution 
of separations to be sharply limited, at least toward 
large values, by that separation for which the poten
tial energy alone would equal or exceed the value 

3»hi'. But that's not the way it is—arbitrarily large 
separations occur, even though with markedly reduced 
probability. And this is no mere secondary calcula
tion result, that might in some fashion be circum

vented, without striking at the heart of the theory: 
along with many others, the quantum mechanical 
treatment of radioactivity (Gamow) rests on this 
state of affairs.—One could go on indefinitely with 
more ex^piples. One should note that there was no 
question of any time-dependent changes. It would 
be of no help to permit the model to vary quite "un-

classically," perhaps to "jump." Already for the 

single instant things go wrong. At no moment does 
there exist an ensemble of classical states of the model 
that squares with the totality of quantum mechanical 

statements of this moment. The same can also be 
said as follows: if I wish to ascribe to the model at 
each moment a definite (merely not exactly known to 

me) state, or (which is the same) to all determining 
parts definite (merely not exactly known to me) 

numerical values, then there is no supposition as to 
these numerical values to be imagined that would not 
conflict with some portion of quantum theoretical 

assertions 
That is not quite what one expects, on hearing that 

the pronouncements of the new theory are always 

uncertain compared to the classical ones. 

5. Are the Varuibles Really Blurred9  

The other alternative consisted oi granting reality 

only to the momentarily sharp determining parts— 

or in more general terms to each variable a sort of 
realization just corresponding to the quantum me
chanical statistics of this variable at the relevant 

moment. 
That it is in fact not impossible to express the 

degree and kind of blurring of all variables in one 

perfectly clear concept follows at once from the fact 
that Q.M. as a matter of fact has and uses such an 
instrument, the so-called wave function or !/(-function, 

also called system vector. Much more is to be said 
about it further on. That it is an abstract, unintuitive 

mathematical construct is a scruple that almost always 
surfaces against new aids to thought and that carries 
no great message. At all events it is an imagined 
entity that images the blurring of all variables at 

every moment just as clearly and faithfully as the 
classical model does its sharp numerical values. Its 
equation of motion too, the law of its time variation, 
so long as the s\stem is left undisturbed, lags not one 
iota, in clarity and determinacy, behind the equations 
of motion of the classical model. So the latter could 
be straight-forwardly replaced by the ψ-function, so 

long as the blurring is confined to atomic scale, not 

open to direct control. In fact the function has pro
vided quite intuitive and convenient ideas, for in
stance the "cloud of negative electricity'' around the 
nucleus, etc. But serious misgivings arise if one 
notices that the uncertainty affects macroscopically 
tangible and visible things, for which the term "blur
ring" seems simply wrong The state of a radioactive 

nucleus is presumably blurred m such degree and 
fashion that neither the instant of decay nor the 
direction, in which the emitted α-particle leaves the 

nucleus, is well-established. Inside the nucleus, blur
ring doesn't bother us. The emerging particle is 
described, if one wants to explain intuitively, as a 
spherical wave that continuously emanates in all di-



1.11 CAT PARADOX 157 

rections from the nucleus and that impinges continu
ously on a surrounding luminescent screen over its 
full expanse. The screen however does not show a 
more or less constant uniform surface glow, but rather 
lights up at one instant at one spot—or, to honor the 
truth, it lights up now here, now there, for it is im
possible to do the experiment with only a single radio
active atom. If in place of the luminescent screen 
one uses a spatially extended detector, perhaps a gas 
that is ionised by the α-particles, one finds the ion 
pairs arranged along rectilinear columns,5 that project 
backwards on to the bit of radioactive matter from 
which the α-radiation comes (C.T.R. Wilson's cloud 
chamber tracks, made visible by drops of moisture 
condensed on the ions). 

One can even set up quite ridiculous cases. A cat 
is penned up in a steel chamber, along with the fol
lowing diabolical device (which must be secured 
against direct interference by the cat) : in a Geiger 
counter there is a tiny bit of radioactive substance, so 
small, that perhaps in the course of one hour one of 
the atoms decays, but also, with equal probability, 
perhaps none; if it happens, the counter tube dis
charges and through a relay releases a hammer which 
shatters a small flask of hydrocyanic acid. If one 
has left this entire system to itself for an hour, one 
would say that the cat still lives if meanwhile no atom 
has decayed. The first atomic decay would have 
poisoned it. The ψ-function of the entire system 
would express this by having in it the living and the 
dead cat (pardon the expression) mixed or smeared 
out in equal parts. 

It is typical of these cases that an indeterminacy 
originally restricted to the atomic domain becomes 
transformed into macroscopic indeterminacy, which 
can then be resolved by direct observation. That 
prevents us from so naively accepting as valid a 
"blurred model" for representing reality. In itself 
it would not embody anything unclear or contradic
tory There is a difference between a shaky or out-
of-focus photograph and a snapshot of clouds and fog 
banks. 

6. Ί hi Dchbiriit l '  Aluml-jaee of the Epiitenwlogieai 
Ficzy.'Point 

in the fourth section we saw that it is no) possible 
smoothly to take over models and to ascribe, to the 
momentarily unknown or not exactly known vari
ables, nonetheless determinate values, that we simph 
don't know In Sect. 5. we saw that the indeter
minacy is not even an actual blurring, for there are 
always cases where an easily executed observation 
provides the missing knowledge. So what is left? 

For illustration see Fig S or 6 on ρ 375 of the 1927 
volume of this journal: or Fig 1, ρ 7.¾ of the preceding 
years volume (1934), though these are proton tracks. 

From this very hard dilemma the reigning doctrine 
rescues itself or us by having recourse to epistemol-
ogy. We are told that no distinction is to be made 
between the state of a natural object and what I 
know about it, or perhaps better, what I can know 
about it if I go to some trouble. Actually—so they 
say—there is intrinsically only awareness, observa
tion, measurement. If through them I have procured 
at a given moment the best knowledge of the state 
of the physical object that is possibly attainable in 
accord with natural laws, then I can turn aside as 
meaningless any further questioning about the "ac
tual state," inasmuch as I am convinced that no 
further observation can extend my knowledge of it— 
at least, not without an equivalent diminution in some 
other respect (namely by changing the state, see 
below). 

Now this sheds some light on the origin of the 
proposition that I mentioned at the end of Sect. 2. as 
something very far-reaching: that all model quantities 
are measurable in principle. One can hardly get 
along without this article of belief if one sees himself 
constrained, in the interests of physical methodology, 
to call in as dictatorial help the above-mentioned 
philosophical principle, which no sensible person can 
fail to esteem as the supreme protector of all em
piricism. 

Reality resists imitation through a model. So one 
lets go of naive realism and leans directly on the 
indubitable proposition that actually (for the physi
cist) after all is said and done there is only observa
tion, measurement. Then all our physical thinking 
thenceforth has as sole basis and as sole object the 
results of measurements which can in principle be 
carried out, for we must now explicitly not relate 
our thinking any longer to any other kind of reality 
or to a model. All numbers arising in our physical 
calculations must be interpreted as measurement re
sults. Hut since we didn't just now come into the 
world and start to build up our science from scratch, 
but rather ha\e m use a quite definite scheme of cal
culation. from which in \ lew ot* the great progress m 
O M we would less than e\ er want to be parted, we 
see oursches forced t'> thctaie from the writing-table 
which measurements are m principle possible, that is, 
must he possible ir order to support adequate!} our 
reckoning sWeni '!'ills allow.- a sharp value for 
each single \ariab]< of the in.ι lei (indeed for a whole 
"half set") and so ea< Ii singk \ariable must be mea
surable to arbitran exactness We cannot be satis-
tied with less, for we have io.st our naively realistic 
innocence Wc ha\e nothing but our reckoning 
scheme to specify where Xature draws the ignora-
bimus-line, ι e.. what is a bcsl possible knowledge of 
the object. And if we couldn't do that, then indeed 
would our measurement reality become highly de
pendent on the diligence or laziness of the experi-
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menter, how much trouble he takes to inform himself. 
We must go on to tell him how far he could go if 
only he were clever enough. Otherwise it would 
be seriously feared that just there, where we forbid 
further questions, there might well still be something 
worth knowing that we might ask about. 

7.  The  ψ-func t ion  as  Expec ta t ion-cata log  

Continuing to expound the official teaching, let us 
turn to the already (Sect. 5) mentioned ^-function 
It is now the means for predicting probability of 
measurement results. In it is embodied the momen-
tarily-attained sum of theoretically based future ex
pectation, somewhat as laid down in a catalog. It is 
the relation- and-determinacy-bridge between mea
surements and measurements, as in the classical 
theory the model and its state were. With this latter 
the !//-function moreover has much in common. It is, 
in principle, determined by a finite number of suitably 
chosen measurements on the object, half as many as 
were required in the classical theory. Thus the cata
log of expectations is initially compiled. From then 
on it changes with time, just as the state of the model 
of classical theory, in constrained and unique fashion 
("causally")—the evolution of the !//-function is gov
erned by a partial differential equation (of first order 
in time and solved for θψ/dt) This corresponds to 
the undisturbed motion of the model in classical the
ory. But this goes on only until one again carries 
out any measurement. For each measurement one is 
required to ascribe to the ψ-function (= the predic
tion-catalog) a characteristic, quite sudden change, 
which depends on the measurement result obtained, 
and so cannot be foreseen; from which alone it is 
already quite clear that this second kind of change 
of the !//-function has nothing whatever in common 
with its orderly development between two measure
ments. The abrupt change by measurement ties in 
closely with matters discussed in Sect. 5. and will 
occupy us further at some length; it is the most in
teresting point of the entire theory. It is precisely 
the point that demands the break with naive realism 
For this reason one can not put the ψ-function directly 
in place of the model or of the physical thing. And 
indeed not because one might never dare impute 
abrupt unforeseen changes to a physical thing or to a 
model, but because in the realism point of view ob
servation is a natural process like any other and 
cannot per se bring about an interruption of the 
orderly flow of natural events. 

8. Theory of Measurement, Part One 

The rejection of realism has logical consequences. 
In general, a variable has no definite value before I 
measure it; then measuring it does not mean ascer

taining the value that it has. But then what does it 
mean? There must still be some criterion as to 
whether a measurement is true or false, a method is 
good or bad, accurate, or inaccurate—whether it de
serves the name of measurement process at all Any 
old playing around with an indicating instrument in 
the vicinity of another body, whereby at any old 
time one then takes a reading, can hardly be called 
a measurement on this body. Now it is fairly clear; 
if reality does not determine the measured value, then 
at least the measured value must determine reality— 
it must actually be present after the measurement in 
that sense which a'one will be recognized again. That 
is, the desired criterion can be merely this : repetition 
of the measurement must give the same result. By 
many repetitions I can prove the accuracy of the pro
cedure and show that I am not just playing. It is 
agreeable that this program matches exactly the 
method of the experimenter, to whom likewise the 
"true value" is not known beforehand. We formu
late the essential point as follows: 

The systematically arranged interaction of two sys
tems (measured object and measuring instrument) 
is called a measurement on the first system, if a di
rectly-sensible variable feature of the second (pointer 
position) is always reproduced within certain error 
limits when the process is immediately repeated (on 
the same object, which in the meantime must not be 
exposed to any additional influences) 

This statement will require considerable added com
ment : it is by no means a faultless definition. Em
pirics is more complicated than mathematics and is 
not so easily captured in polished sentences. 

Before the first measurement there might have been 
an arbitrary quantum-theory prediction for it. After 
it the prediction always runs: within error limits 
again the same result. The expectation-catalog ( — 
!//-function) is therefore changed by the measurement 
in respect to the variable being measured. If the 
measurement procedure is known from beforehand 
to be reliable, then the first measurement at once re
duces the theoretical expectation within error limits 
on to the value found, regardless of whatever the 
prior expectation may have been. This is the typical 
abrupt change of the !/«-function discussed above. But 
the expectation-catalog changes in unforeseen manner 
not only for the measured variable itself, but also for 
others, in particular for its "canonical conjugate." 
If for instance one has a rather sharp prediction for 
the momentum of a particle and proceeds to measure 
its position more exactly than is compatible with 
Theorem A of Sec. 2., then the momentum predic
tion must change. The quantum mechanical reckon
ing scheme moreover takes care of this automatically; 
there is no ψ-function whatsoever that would con
tradict Theorem A when one deduces from it the 
combined expectations. 
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Since the expectation-catalog changes radically dur
ing measurement, the object is then no longer suited 
for testing, in their full extent, the statistical pre
dictions made earlier; at the very least for the mea
sured variable itself, since for it now the (nearly) 
same value would occur over and over again. That 
is the reason for the prescription already given in 
Sect. 2.: one can indeed test the probability predic
tions completely, but for this one must repeat the 
entire experiment ah ovo. One's prior treatment of 
the measured object (or one identical to it) must be 
exactly the same as that given the first time, in order 
that the same expectation-catalog (= ^-function) 
should be valid as before the first measurement. Then 
one "repeats" it. (This repeating now means of 
course something quite other than earlier!) All this 
one must do not twice but very often. Then the pre
dicted statistics are established—that is the doctrine. 

One should note the difference between the error 
limits and the error distribution of the measurement. 
on the one hand, and the theoretically predicted sta
tistics, on the other hand. They have nothing to do 
with each other. They are established by the two 
quite different types of repetition just discussed. 

Here there is opportunity to deepen somewhat the 
above-attempted delimitation of measuring. There are 
measuring instruments that remain fixed on the read
ing given by the measurement just made. Or the 
pointer could remain stuck because of a defect One 
would then repeatedly make exactly the same reading, 
and according to our instruction that would be a 
spectacularly accurate measurement. Moreover that 
would be true not merely for the object but also for 
the instrument itself1 As a matter of fact there is 
still missing from our exposition an important point, 
but one which could not readily be stated earlier, 
namely what it is that truly makes the difference be
tween object and instrument (that it is the latter on 
which the reading is made, is more or less super
ficial). We have just seen that the instrument under 
certain circumstances, as required, must be set back 
to its neutral initial condition before any control 
measurement is made. This is well known to the 
experimentalist. Theoretically the matter may best 
be expressed by prescribing that on principle the in
strument should be subjected to the identical prior 

treatment before each measurement, so that for it 

each time the same expectation-catalog (— !//-func

tion) applies, as it is brought up to the object. For 

the object it is just the other way around, any inter

ference being forbidden when a control measurement 

is to be made, a "repetition of the first kind" (that 

leads to error statistics). That is the characteristic 

difference between object and instrument. It dis

appears for a "repetition of the second kind" (that 
serves for checking the quantum predictions). Here 

the difference between the two is actually rather 

insignificant. 
From this we gather further that for a second 

measurement one may use another similarly built and 
similarly prepared instrument—it need not necessarily 
be the same one; this is in fact sometimes done, as 
a check on the first one. It may indeed happen that 
two quite differently built instruments are so related 
to each other that if one measures with them one 
after the other (repetition of the first kind!) their 
two indications are in one-to-one correlation with 
each other They then measure on the object essen
tially the same variable—i e., the same for suitable 
calibration of the scales. 

9. The ψ-functioH as Descript ion oj  State 

The rejection of realism also imposes obligations. 
From the standpoint of the classical model the mo
mentary statement content of the ^-function is far 
from complete; it comprises only about 50 per cent 
of a complete description. From the new standpoint 
it must be complete for reasons already touched 
upon at the end of Sect. <5. It must be impossible to 
add on to it additional correct statements, without 
otherwise changing it; else one would not have the 
right to call meaningless all questions extending 
beyond it. 

Thence it follows that two different catalogs, that 
apply to the same system under different circum
stances or at different times, may well partially over
lap, but never so that the one is entirely contained 
within the other. For otherwise it would be suscep
tible to completion through additional correct state
ments, namely through those by which the other one 
exceeds it —The mathematical structure of the theory 
automaticallv satisfies this condition. There is no 
ψ-function that furnishes exactly the same statements 
as another and in addition several more. 

Therefore if a system changes, whether by itself 
or because of measurements, there must always be 
statements missing from the new function that were 
contained in the earlier one. In the catalog not just 
new entries, but also deletions, must be made. Now 

knowledge can well be gained, but not lost. So the 
deletions mean that the previously correct statements 
have now become incorrect Λ correct statement can 
become incorrect only if the object to which it applies 
changes 1 consider it acceptable to express this 

reasoning sequence as follows : 
Theorem 1 : If different ^-functions are under dis

cussion the system is in different states. 

If one speaks only of systems for which a ψ-function 
is in genera! available, then the inverse of this the
orem runs : 

Theorem 2 For the same ^-function the system is 
in the same state. 
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This inverse does not follow from Theorem 1 but 
independently of it, directly from completeness or 
maximality. Whoever for the same expectation-cata
log would yet claim a difference is possible, would 
be admitting that it (the catalog) does not give in
formation on all justifiable questions. —The language 
usage of almost all authors implies validity of the 
above two theorems. Of course, they set up a kind 
of new reality—in entirely legitimate fashion, I be
lieve Moreover they are not trivially tautological, 
not mere verbal interpretations of "state." Without 
presupposed maximality of the expectation-catalog, 
change of the ι/'-function could be brought about by 
mere collecting of new information. 

We must face up to yet another objection to the 
derivation of Theorem 1. One can argue that each 
individual statement or item of knowledge, under ex
amination there, is after all a probability statement, 
to which the category of correct, or incorrect does 
not apply in any relation to an individual case, but 
rather in relation to a collective that comes into being 
from one's preparing the system a thousand times 
in identical fashion (in order then to allow the same 
measurement to follow; cf. Sect 8.). That makes 
sense, but we must specify all members of this col
lective to be identically prepared, since to each the 
same !//-function, the same statement-catalog applies 
and we dare not specify differences that are not ex
pressed in the catalog (cf the foundation of Theorem 
2). Thus the collective is made up of identical in
dividual cases. If a statement is wrong for it, then 
the individual case must have changed, or else the 
collective too would again be the same. 

10 Theory of Measurement,  Part  Two 

Now it was previously stated (Sect. 7 )  and ex
plained (Sect. 8) that any measurement suspends the 
law that otherwise governs continuous time-depen
dence of the 0-function and brings about in it a 
quite different change, not governed by any law but 
rather dictated by the result of the measurement. 
But laws of nature differing from the usual ones 
cannot apply during a measurement, for objectively 
viewed it is a natural process like any other, and it 
cannot interrupt the orderly course of natural events. 
Since it does interrupt that of the ^-function, the 
latter—as we said in Sect. 7—can not serve, like the 
classical model, as an experimentally verifiable repre
sentation of an objective reality. And yet in the last 
Section something like that has taken shape. 

So, using catchwords for emphasis, I try again to 
contrast: 1.) The discontinuity of the expectation-
catalog due to measurement is unavoidable, for if 
measurement is to retain any meaning at all then the 
measured value, from a good measurement, must ob
tain. 2.) The discontinuous change is certainly not 

governed by the otherwise valid causal law, since it 
depends on the measured value, which is not prede
termined. 3.) The change also definitely includes 
(because of "maximality") some loss of knowledge, 
but knowledge cannot be lost, and so the object must 
change—both along with the discontinuous changes 
and also, during these changes, in an unforeseen, 
different way. 

How does this add up? Things are not at all 
simple. It is the most difficult and most interesting 
point of the theory. Obviously we must try to com
prehend objectively the interaction between measured 
object and measuring instrument To that end we 
must lay out a few very abstract considerations. 

This is the point Whenever one has a complete 
expectation-catalog—a maximum total knowledge— 
a ψ-function—for two completely separated bodies, 
or, in better terms, for each of them singly, then one 
obviously has it also for the two bodies together, i.e., 
if one imagines that neither of them singly but rather 
the two of them together make up the object of inter
est, of our questions about the future 0 

But the converse is not true. Maximal knowledge 
of a total system does not necessarily include total 
knowledge of all its parts, not even when these are 
fully separated from each other and at the moment 
are not influencing each other at all. Thus it may 
be that some part of what one knows may pertain to 
relations or stipulations between the two subsystems 
(we shall limit ourselves to two), as follows: if a 
particular measurement on the first system yields this 
result, then for a particular measurement on the sec
ond the valid expectation statistics are such and such; 
but if the measurement in question on the first system 
should have that result, then some other expectation 
holds for that on the second, should a third result 
occur for the first, then still another expectation ap
plies to the second; and so on, in the manner of a 

complete disjunction of all possible measurement re
sults which the one specifically contemplated measure

ment on the first system can yield. In this way, any 
measurement process at all or, what amounts to the 
same, an}· variable at all of the second system can be 

tied to the not-yet-known value of any variable at all 

of the first, and of course vice versa also. If that is 

the case, if such conditional statements occur in the 
combined catalog, then it can not possibly be maximal 

in regard to the individual systems. For the content 
of two maximal individual catalogs would by itself 
suffice for a maximal combined catalog; the condi

tional statements could not be added on. 

6Obviously We cannot fail to have, for instance, state
ments on the relation of the two to each other. For that 
would be, at least for one of the two, something in addition 
to its Ψ-function. And such there cannot be. 
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These conditioned predictions, moreover, are not 

something that has suddenly fallen in here from the 
blue. They are in every expectation-catalog. If one 
knows the ψ-function and makes a particular measuie-
ment and this has a particular result, then on6 again 
knows the ψ-function, voila tout. It's just that for 
the case under discussion, because the combined sys
tem is supposed to consist of two fully separated 
parts, the matter stands out as a bit strange. For 
thus it becomes meaningful to distinguish between 
measurements on the one and measurements on the 
other subsystem This provides to each full title to 
a private maximal catalog; on the other hand it re
mains possible that a portion of the attainable com
bined knowledge is, so to say, squandered on condi
tional statements, that operate between the subsystems, 
so that the private expectancies are left unfulfilled— 
even though the combined catalog is maximal, that is 
even though the !/«-function of the combined system is 
known. 

Let us pause for a moment. This result in its 
abstractness actually says it all: Best possible knowl
edge of a whole does not necessarily include the same 
for its parts. Let us translate this into terms of 
Sect. 9. The whole is in a definite state, the parts 
taken individually are not. 

"How so? Surely a system must be in some sort 
of state." "No. State is !/«-function, is maximal sum 
of knowledge. I didn't necessarily provide myself 
with this, I may have been lazy. Then the system is 
in no state." 

"Fine, but then too the agnostic prohibition of 
questions is not yet in force and in our case I can 
tell myself: the subsystem is already in some state, I 
just don't know which." 

"Wait. Unfortunately no. There is no Ί just 
don't know'. For as to the total system, maximal 
knowledge is at hand ..." 

The insufficiency of the ψ-function as model re
placement rests solely on the fact that one doesn't 
alivays have it. If one does have it. then by all means 
let it serve as description of the state. But some
times one does not have it, in cases where one might 
reasonably expect to. And in that case, one dare not 
postulate that it "is actually a particular one, one 
just doesn't know it"; the above-chosen standpoint 
forbids this. "It" is namely a sum of knowledge; 
and knowledge, that no one knows, is none. 

We continue. That a portion of the knowledge 
should float in the form of disjunctive conditional state
ments between the two systems can certainly not 
happen if we bring up the two from opposite ends of 
the world and juxtapose them without interaction. 
For then indeed the two "know" nothing about each 
other. A measurement on one cannot possibly furnish 
any grasp of what is to be expected of the other. 
Any "entanglement of predictions" that takes place 

can obviously only go back to the fact that the two 
bodies at some earIier time formed in a true sense 
one system, that is were interacting, and have left 
behind traces on each other. If two separated bodies, 
each by itself known maximally, enter a situation in 
which they influence each other, and separate again, 
then there occurs regularly that which I have just 
called entanglement of our knowledge of the two 
bodies. The combined expectation-catalog consists 
initially of a logical sum of the individual catalogs; 
during the process it develops causally in accord with 
known law (there is no question whatever of mea
surement hereJ. The knowledge remains maximal, 
but at its end, if the two bodies have again separated, 
it is not again split into a logical sum of knowledges 
about the individual bodies. What still remains of 
that may have become less than maximal, even very 
strongly so —()ne notes the great difference over 
against the classical model theory, where of coursc 
from known initial states and with known interaction 
the individual end states would be exactly known. 

The measuring process described in Sect. S now 
fits neatly into this general scheme, if we apply it to 
the combined system, measured object + measuring 
instrument. As we thus construct an objective pic
ture of this process, like that of any other, we dare 
hope to clear up, if not altogether to avoid, the 
singular jump of the ψ-function. So now the one body 
is the measured object, the other the instrument. To 
suppress any interference from outside we arrange for 
the instrument by means of built-in clockwork to creep 
up automatically to the object and in like manner creep 
away again. The reading itself we postpone, as our 
immediate purpose is to investigate whatever may be 
happening "objectively"; but for later use we let the 
result be recorded automatically in the instrument, 
as indeed is often done these days 

Now how do things stand, after automatically com
pleted measurement? We possess, afterwards same 
as before, a maximal expectation-catalog for the total 
system. The recorded measurement result is of course 
not included therein. As to the instrument the cata
log is far from complete, telling us nothing at all 
about where the recording pen left its trace. (Re
member that poisoned cat!) What this amounts to 
is that our knowledge has evaporated into conditional 
statements: if the mark is at line 1, then things are 
thus and so for the measured object, if it is at line 2, 
then such and such, if at 3, then a third, etc. Now 
has the !/«-function of the measured object made a leap? 
Has it developed further in accord with natural law 
(in accord with the partial differential equation) ? No 
to both questions. It is no more. It has become 
snarled up, in accord with the causal law for the 
combined !/«-function, with that of the measuring 
instrument. The expectation-catalog of the object 
has split into a conditonal disjunction of expectation-
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catalogs—like a Baedeker that one has taken apart in 
the proper manner. Along with each section there is 
given also the probability that it proves correct—tran
scribed from the original expectation-catalog of the 
object. But which one proves right—which section of 
the Baedeker should guide the ongoing journey—that 
can be determined only by actual inspection of the 
record. 

And what if we don't look? Let's say it was 
photographically recorded and by bad luck light 
reaches the film before it is developed. Or we inad
vertently put in black paper instead of film. Then 
indeed have we not only not learned anything new 
from the miscarried measurement, but we have suf
fered loss of knowledge. This is not surprising. It 
is only natural that outside interference will almost 
always spoil the knowledge that one has of a system. 
The interference, if it is to allow the knowledge to be 
gained back afterwards, must be circumspect indeed. 

What have we won by this analysis? First, the 
insight into the disjunctive splitting of the expectation-
catalog, which still takes place quite continuously and 
is brought about through embedment in a combined 
catalog for instrument and object. From this amal
gamation the object can again be separated out only 
by the living subject actually taking cognizance of 
the result of the measurement. Some time or other 
this must happen if that which has gone on is actually 
to be called a measurement—however dear to our 
hearts it was to prepare the process throughout as 
objectively as possible. And that is the second insight 
we have won : not until this inspection, which deter
mines the disjunction, does anything discontinuous, or 
leaping, take place. One is inclined to call this a 
mental action, for the object is already out of touch, 
is no longer physically affected. what befalls it is 
already past. But it would not be quite right to say 

that the ^-function of the object which changes other

wise according to a partial differential equation, inde
pendent of the observer, should change leap-

fashion because of a mental act For it had dis

appeared, it was no more Whate\er is not. 110 more 

can it change It is burn anew, is reconsti'uted. i-

separated out ftoni the entangled Inowledgc tKat one 
has, through an act of percept·.»" liit.li as ; matter 

of fact is not a physical effect on the ni'-i-uri· . object 
From the torn, r· which the «.-!imii.· ·. was last 

known, to the ne-i m which it HftjMKar.-., nin- no con

tinuous road—η an indeed mrougn annihilation 

Contrasting Ihe U-.• forms the thing lnok,- like a 

Ieaj1 In truth something of importarcf happens in 
between, natneh the influence of the >w > bodies on 

each other, dunn^ which the object possessed no 
private expectation-catalog nor had am claim thereto, 

because it was not independent. 

11. Resolution of the "Entanglement." Result 
Dependent on the Experimenter's Intention 

We return to the general case of "entanglement," 
without having specificially in view the special case, 
just considered, of a measurement process. Suppose 
the expectation-catalogs of two bodies A and B have 
become entangled through transient interaction. Now 
let the bodies be again separated. Then I can take 
one of them, say B, and by successive measurements 
bring my knowledge of it, which had become less than 
maximal, back up to maximal. I maintain: just as 
soon as I succeed in this, and not before, then first, 
the entanglement is immediately resolved and, second, 
I will also have acquired maximal knowledge of A 
through the measurements on B, making use of the 
conditional relations that were in effect. 

For in the first place the knowledge of the total 
system remains always maximal, being in no way 
damaged by good and exact measurements. In the 
second place: conditional statements of the form "if 
for A. . , then for B. ." can no longer exist, as soon 
as we have reached a maximal catalog on B. For it is 
not conditional and to it nothing at all can be added 
on relevant to B. Thirdly: conditional statements in 
the inverse sense (if for B. . , then for A. .) can be 
transformed into statements about A alone, because 
all probabilities for B are already known uncondi
tionally. The entanglement is thus completely put 
aside, and since the knowledge of the total system has 
remained maximal, it can only mean that along with 
the maximal catalog for B came the same thing for A. 

And it cannot happen the other way around, that A 
becomes maximally known indirectly, through mea
surements on B, before B is. For then all conclusions 
work in the reversed direction—that is, B is too. The 
systems become simultaneously maximally known, as 
asserted. Incidentally, this would also be true if one 
did not limit the measurement to just one of the two 
systems. But the interesting point is precisely this, 
that one can limit it to one of the two , that thereby 
one reaches his goal 

Which measurements on B and in what sequence 
they are undertaken, is left entirely to the arbitrary 
choice of the experimenter. He need not pick out 
specific \ariables, in order to be able to use the con
ditional statements He is fret to formulate a plan 
that would lead bun to maximal knowledge of 15, even 
if he should know nothing at all about B And it can 
do no harm if he carries through this plan to the end. 
If he asks himself after each measurement whether he 
has perhaps already reached his goal, he does so only 
to spare himself front further, superfluous labor 

What sort of Α-catalog comes forth in this indirect 
way depends obviously on the measured values that 
are found in B (before the entanglement is entirely 
resolved; not on more, on any later ones, in case the 
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measuring goes on superfluously). Suppose now that 

in this way I derived an Α-catalog in a particular case. 

Then I can look back and consider whether I might 

perhaps have found a different one if I had put into 

action a different measuring plan for B. But since 

after all I neither have actually touched the system 

A, nor in the imagined other case would have touched 

it, the statements of the other catalog, whatever it 

might be, must all also be correct. They must there

fore be entirely contained within the first, .since the 

first is maximal But so is the second So it must 

be identical with the first. 

Strangely enough, the mathematical structure of the 

theory by 110 means satisfies this requirement auto

matically Even worse, examples can be set up where 

the requirement is necessarily violated. It is true 

that in any experiment one can actually carry out only 

one group of measurements (always 011 B), for once 

that has happened the entanglement is resolved and 

one learus nothing more about A from further mea

surements on B But there are cases of entanglement 

in which two definite programs are specifiable, of 

which each 1) must lead to resolution of the entangle

ment, and 2) must lead to an Α-catalog to which the 

other can not possibly lead—whatsoever measured 

values may turn up m one case or the other. It is 

simply like this, that the two series of Α-catalogs, that 

can possibly arise from the one or the other of the 

programs, are sharply separated and have m common 

not a single term. 

These are especially pointed cases, in which the con

clusion lies so clearly exposed. In general one must 

reflect more carefully. If two programs of measure

ment on B are proposed, along with the two series 

of Α-catalogs to which they can lead, then it is by 

no means sufficient that the two series have one or 

more terms in common in order for one to be able 

to say: well now, surely one of these will always turn 

up—and so to set forth the requirements as "pre

sumably fulfilled." That 's not enough For indeed 

one knows the probability of every measurement on B, 

considered as measurement on the total system, and 

under many ab-ovo-repetitions each one must occur 

with the frequency assigned to it Therefore the two 

series of Α-catalogs would have to agree, member by 

member, and furthermore the probabilities m each 

series would have to be the same And that not 

merely for these two programs but also for each of 

the infinitely many that one might think up. But 

this is utterly out of the question. The requirement 

that the Α-catalog that one gets should always be the 

same, regardless of what measurements on B bring 

it into being, this requirement is plainly and simply 

never fulfilled. 

Now we wish to discuss a simple "pointed" example. 

12 An Example 7  

For simplicity, we consider two systems with just 

one degree of freedom. That is, each of them shall 

be specified through a single coordinate q and its 

canomcally conjugate momentum p. The classical 

picture would be a point mass that could move only 

along a straight line, like the spheres of those play

things on which small children learn to calculate, ρ is 

the product of mass by velocity. For the second 

system we denote the two determining parts by capital 

Q and P. As to whether the two are "threaded on 

the same wire" we shall not be at all concerned, m our 

abstract consideration. But even if they are, it may 

in that case be convenient not to reckon q and Q 

from the same reference point. The equation q = Q 

thus does not necessarily mean coincidence The two 

sy stems mav m spite of this be fully separated. 

In the cited paper it is shown that between these 

two systems an entanglement can arise, which at a par

ticular moment, to which everything following is 

referred, can be compactly shown in the two equations . 
(1 — Q an( '  P — — P- That means: I know, if a mea

surement of q on the system yields a certain value, 

that a Q-measiirenient performed immediately there

after on the second will give the same value, and vice 

versa; and I know, if a p-measurement on the first 

system yields a certain value, that a P-measurement 

performed immediately thereafter will give the oppo

site value, and vice versa. 

A single measurement of q or p or Q or P resolves 

the entanglement and makes both systems maximally 

known A second measurement on the same system 

modifies only the statements about it, but teaches 

nothing more about the other. So one cannot check 

both equations in a single experiment. But one can 

repeat the experiment ab ovo a thousand times; each 

time set up the same entanglement: according to whim 

check one or the other of the equations; and find con

firmed that one which one is momentarily pleased to 

check. We assume that all this has been done 

If for the thousand-and-first experiment one is 

then seized by the desire to give up further checking 

and instead measure q on the first system and P on the 

second, and one obtains 

q = 4 , P = 7; 

can one then doubt that 

q = 4: P = -7 

would have been a correct prediction for the first 

system, or 

Q = 4. P — 7 

7 A Einstem, B Podulsky, and N. Rosen, Phys. Rev. 47 . 
777 (1935). The appearance of this work motivated the 
present—shall I say lecture or general confession? 
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a correct prediction for the second? Quantum pre
dictions are indeed not subject to test as to their full 
content, ever, in a single experiment; yet they are 
correct, in that whoever possessed them suffered no 
disillusion, whichever half he decided to check. 

There's no doubt about it. Every measurement is 
for its system the first. Measurements on separated 
systems cannot directly influence each other—that 
would be magic. Neither can it be by chance, if from 
a thousand experiments it is established that virginal 
measurements agree. 

The prediction-catalog q = 4, ρ —  — 7  would of 
course be hypermaxinial. 

13. Continuation of the Example. All Possible 
Measurements Are Entangled Unequivoeally 

Now a prediction of this extent is thus utterly im
possible according to the teaching of Q.M., which we 
here follow out to its last consequences. Many of my 
friends remain reassured in this and declare: what 
answer a system would have given to the experimenter 
if • . . ,—has nothing to do with an actual measurement 
and so, from our epistemological standpoint, does not 
concern us. 

But let us once more make the matter very clear. 
Let us focus attention on the system labeled with 
small letters p, q and call it for brevity the "small" 
one. Then things stand as follows. I can direct 
one of two questions to the small system, either that 
about q or that about p. Before doing so I can, if 
I choose, procure the answer to one of these questions 
by a measurement on the fully separated other system 
(which we shall regard as auxiliary apparatus), or I 
may intend to take care of this afterwards. My small 
system, like a schoolboy under examination, cannot 
possibly know whether I have done this or for which 
questions, or whether and for which I intend to do 
it later. From arbitrarily many pretrials I know that 
the pupil will correctly answer the first question that 
I put to him. From that it follows that in every case 
he knows the answer to both questions. That the 
answering of the first question, that it pleases me to 
put to him, so tires or confuses the pupil that his 
further answers are worthless, changes nothing at all 
of this conclusion No school principal would judge 
otherwise, if this situation repeated itself with thou
sands of pupils of similar provenance, however much 
he might wonder what makes all the scholars so dim-
witted or obstinate after the answering of the first 
question. He would not come to think that his, the 
teacher's, consulting a textbook first suggests to the 
pupil the correct answer, or even, in the cases when 
the teacher chooses to consult it only after ensuing 
answers by the pupil, that the pupil's answer has 
changed the text of the notebook in the pupil's favor. 

Thus my small system holds a quite definite answer 
to the q-question and to the p-question in readiness 

for the case that one or the other is the first to be put 
directly to it. Of this preparedness not an iota can 
be changed if I should perhaps measure the Q on 
the auxiliary system (in the analogy: if the teacher 
looks up one of the questions in his notebook and 
thereby indeed ruins with an inkblot the page where 
the other answer stands). The quantum mechanician 
maintains that after a Q-measurement on the auxiliary 
system my small system has a !//-function in which "q 
is fully sharp, but ρ fully indeterminate." And yet, 
as already mentioned, not an iota is changed of the 
fact that my small system also has ready an answer 
to the p-question, and indeed the same one as before. 

But the situation is even worse yet. Not only to 
the q-question and to the p-question does my clever 
pupil have a definite answer ready, but rather also to 
a thousand others, and indeed without my having the 
least insight into the memory technique by which he 
is able to do it ρ and q are not the only variables that 
I can measure. Any combination of them whatsoever, 

for example 

P2  + q2  

also corresponds to a fully definite measurement 
according to the formulation of Q.M. Now it may 
be shown8 that also for this the answer can be 
obtained by a measurement on the auxiliary system, 
namely by measurement of P2 + Q2, and indeed the 
answers are just the same. By general rules of Q.M. 
this sum of squares can only take on a value from the 

series 

h, 3h, Sh, 7h, .... 

The answer that my small system has ready for the 
(p-' + qJ)-question (in case this should be the first it 
must face) must be a number from this series.—It 
is very much the same with measurement of 

p2 + a2q2 

where a is an arbitrary positive constant In this case 
the answer must be, according to Q M., a number 
from the following series 

ah, 3ah, Sail, 7ah, .... 

For each numerical value of a one gets a different 
question, and to each my small system holds ready an 
answer from the series (formed with the a-value in 
question) 

Most astonishing is this : these answers cannot pos
sibly be related to each other in the way given by the 
formulas! For let q' be the answer held ready for the 
q-question, and p' that for the p-question, then the 
relation 

(p'2 + a2q'2)/(ah) = an odd integer 

8E. Schrodinger, Proc. Cambridge PhiL Soc. (in press). 
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cannot possibly hold for given numerical values q' 
and p' and for any positive number a. This is by no 

means an operation with imagined numbers, that one 
can not really ascertain One can in fact get two of 

the numbers, e.g., q' and p', the one by direct, the 
other by indirect measurement And then one can 

(pardon the expression) convince himself that the 
above expression, formed with the numbers q' and p' 
and an arbitrary a, is not an odd integer. 

The lack of insight into the relationships among the 
various answers held in readiness (into the "nieinon 
technique" of the pupil) is a total one, a gap not to be 
filled perhaps In a new kind of algebra of Q M. The 
lack is all the stranger, since on the other hand one 
can show . the entanglement is already uniquely deter
mined by the requirements q = Q and ρ = —P. If we 
know that the coordinates are equal and the momenta 
equal but opposite, then there follows by quantum 
mechanics a fully determined one-to-one arrangement 
of all possible measurements on both systems. For 
every measurement 011  the "small" one the numerical 
result can be procured by a suitably arranged measure
ment on the "large" one, and each measurement on 
the large stipulates the result that a particular mea
surement on the small would give or has given (Of 
course in the same sense as always heretofore only 
the virgin measurement on each system counts.) As 
soon as we have brought the two systems into the 
situation where they (briefly put) coincide in co
ordinate and momentum, then they (briefly put) coin
cide also in regard to all other variables. 

But as to how the numerical values of all these 
variables of one system relate to each other we know 
nothing at all, even though for each the system must 
have a quite specific one in readiness, for if we wish 
we can learn it from the auxiliary system and then 
find it always confirmed by direct measurement 

Should one now think that because we are so 
ignorant about the relations among the variable-
values held ready in one system, that none exists, 
that far-ranging arbitrary combination can occur? 
That would mean that such a system of "one degree 
of freedom" would need not merely two numbers for 
adequately describing it, as in classical mechanics, but 
rather many more, perhaps infinitely many. It is 
then nevertheless strange that two systems always 
agree in all variables if they agree in two. There
fore one would have to make the second assumption, 
that this is due to our awkwardness , would have to 
think that as a practical matter we are not competent 

to bring two systems into a situation such that they 

coincide in reference to two variables, without nolens 

volens bringing about coincidence also for all other 

variables, even though that would not in itself be 
necessary. One would have to make these two 

assumptions in order not to perceive as a great 

dilemma the complete lack of insight into the inter
relationship of variable-values within one system. 

It 7 nne-depeiulent e oj til,' linttnu/lement. Consideration 
of the Specuil Hole of Time 

It is perhaps not superfluous to recall that every
thing said in sections 12 and 13 pertains to a single 
instant of tune The entanglement is not constant 
in time It does continue to be a one-to-one entangle
ment of all λ arables, but the arrangement changes. 
That Iiie lUis the following At a later time t one can 
very well again learn the values of q or of ρ that 
then obtain. 1>\ a measurement on the auxiliary sys
tem, but the measurements, that tine must undertake 
thereto on the auxiliary system, are different Which 
ones they should be, one can easily see in simple cases 
It now of course becomes a question of the forces at 
work within eaih of the two systems. Let us assume 
that no forces are working For simplicity we will 
set the mass of each to be the same and call it m. 
Then in the classical model the momenta ρ and I' 
would remain constant, since they are still the masses 
multiplied b\ the velocities, and the coordinates at 
time t, which we shall distinguish by giving them sub
scripts t, (q t. O tJ. would be calculated from the 
initial ones, which henceforth we designate q,Q, thus : 

<l' = Ί + (p/m)t 

Q, = O + (l'/m)t 

Let us first talk about the small system. The most 
natural way of describing it classically at time t is 
in terms of coordinate and momentum at this time, i.e., 
in terms of q t  and ρ But one may do it differently. 
In place of q t  one could specify q It too is a "deter
mining part at time t," and indeed at every time t, 
and in fact one that does not change with time This 
is similar to the way'm which I can specify a certain 
determining part of my own person, namely my age, 
either through the number 48, which changes with 
time and m the system corresponds to specifying q t, 
or through the number 1887, which is usual in docu
ments and coriesponds to specifying q Now accord
ing to the foregoing : 

q = qt - (p/'m)t 

Similarly for the second system. So we take as deter
mining parts 

for the first system q t  — (p/m)t and p. 
for the second system Q t  — (P/m)t and P. 

The advantage is that among these the same entangle
ment goes on indefinitely 

q, - (p/m)t = Qt - (P/m)t 

P = - P  
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or solved: 

qt = Qt - (2 t/m)P; ρ = - P. 

So that what changes with time is just this: the 
coordinate of the "small" system is not ascertained 
simply by a coordinate measurement on the auxiliary 
system, but rather by a measurement of the aggregate 

Q, - (2 t/m)P. 

Here however, one must not get the idea that maybe 
he measures Q t  and P, because that just won't go 
Rather one must suppose, as one always must suppose 
in Q.M., that there is a direct measurement procedure 
for this aggregate. Except for this change, everything 
that was said in Sections 12 and 13 applies at any 
point of time; in particular there exists at all times 

the one-to-one entanglement of all variables together 
with its evil consequences 

It is just this way too, if within each system a 
force works, except that then q t  and ρ are entangled 
with variables that are more complicated combinations 
of Q t  and P 

I have briefly explained this in order that we may 
consider the following That the entanglement should 
change with time makes us after all a bit thoughtful 
Must perhaps all measurements, that were under dis
cussion, be completed in very short time, actually 
instantaneously, in zero time, in order that the unwel
come consequences be vindicated5 Can the ghost be 
banished by reference to the fact that measurements 
take time? No. For each single experiment one 
needs just one measurement on each system; only the 
virginal one matters, further ones apart from this 
would be without effect How long the measurement 
lasts need not therefore concern us. since we have no 
second one following on One must merely be able 
to so arrange the two virgin measurements that they 
yield variable-values for the same definite point of 
time, known to us m advance—known in advance, 
because after all we must direct the measurements at 
a pair of variables that are entangled at just this 
point of time 

"Perhaps it is not possible so to direct the mea
surements ?" 

"Perhaps. I even presume so Merely today's 
Q.M. must require this. For it is now so set up that 
its predictions are alwaj s made for a point of time 
Since they are supposed to relate to measurement 
results, they would be entirely without content if the 
relevant variables were not measurable for a definite 
point of time, whether the measurement itself lasts a 
long or a short while " 

When we learn the result is of course quite imma
terial. Theoretically that has as little weight as for 
instance the fact that one needs se\eral months to inte
grate the differential equations of the weather for the 

next three days.—The drastic analogy with the pupil 
examination misses the mark in a few points of the 
law's letter, but it fits the spirit of the law. The expres
sion "the system knows" will perhaps no longer carry 
the meaning that the answer comes forth from an in
stantaneous situation; it may perhaps derive from a 
succession of situations, that occupies a finite length 
of time. But even if it be so, it need not concern us 
so long as the system somehow brings forth the answer 
from within itself, with no other help than that we tell 
it (through the experimental arrangement) which 
question we would like to have answered; and so long 
as the answer itself is uniquely tied to a moment of 
time; which for better or for worse must be presumed 
for every measurement to which contemporary Q.M 
speaks, for otherwise the quantum mechanical predic
tions would have no content. 

In our discussion, however, we have stumbled across 
a possibility. If the formulation could be so carried 
out that the quantum mechanical predictions did not or 
did not always pertain to a quite sharply defined point 
of time, then one would also be freed from requiring 
this of the measurement results. Thereby, since the 
entangled variables change with tune, setting up the 
antinomical assertions would become much more 
difficult 

That prediction for sharply-defined time is a 
blunder, is probable also on other grounds. The 
numerical value of time is like any other the result 
of observation Can one make exception just for 
measurement with a clock ? Must it not like any other 
pertain to a variable that in general has no sharp 
value and in any case cannot have it simultaneously 
with any other variable? If one predicts the value of 
another for a particular point of tune, must one not 
fear that both can never be sharply known together' 
Withm contemporary Q M one can hardly deal with 
this apprehension For time is always considered a 

priori as known precisely, although one would have to 

admit that everv look-at-the-clock disturbs the clock's 

motion in uncontrollable fashion 
Permit me to repeat that we do not possess a Q M. 

whose statements should not be valid for sharply 

fixed points of time. It seems to me that this lack 

manifests itself directly in the former antinomies 

Which is not to say that it is the only lack which 

manifests itself in them. 

15 Natural Law or Calculating IJcvicc? 

That "sharp time" is an anomaly in Q.M. and that 

besides, more or less independent of that, the special 

treatment of time forms a serious hindrance to adapt-
ing Q.M. to the relativity principle, is something that 

in recent years I have brought up again and again, 

unfortunately without being able to make the shadow 
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of a useful counterproposal.9  In an overview of the 

entire contemporary situation, such as I have tried to 

sketch here, there comes up, in addition, a quite dif

ferent kind of remark in relation to the so ardently 

sought, but not vet actually attained, "relativisation" 

of Q.M. 

The remarkable theory of measurement, the appar 

ent jumping around of the ψ-function, and finally the 

"antinomies of entanglement," all derive from the 

simple manner in which the calculation methods of 

quantum mechanics allow two separated systems con

ceptually to be combined together into a single one; 

for which the methods seem plainly predestined. 

When two systems interact, their ψ-functions, as we 

have seen, do not come into interaction but rather they 

immediately cease to exist and a single one, for the 

combined system, takes their place It consists, to 

mention this  briefly,  at  f irst  s imply of  the product  

of the two individual functions; which, since the one 

function depends on quite different variables from the 

other, is a function of all these variables, or "acts in 

a space of much higher dimension number" than the 

individual functions As soon as the systems begin to 

influence each other, the combined function ceases to 

be a product and moreover does not again divide up, 

after they have again become separated, into factors 

that can be assigned individually to the systems. Thus 

one disposes provisionally (until the entanglement 

is resolved by an actual observation) of only a 

common description of the two in that space of higher 

dimension. This is the reason that knowledge of the 

individual systems can decline to the scantiest, even to 

zero, while that of the combined system remains con
tinually maximal. Best possible knowledge of a whole 

does not include best possible knowledge of its parts— 

and that is what keeps coming back to haunt us. 

Whoever reflects on this must after all be left 

fairly thoughtful by the following fact The con

ceptual  joining of two or more systems into one 

encounters great difficulty as soon as one attempts 
to introduce the principle of special relativity into 

Q.M. Already seven years ago P A.M. Dirac found a 
startlingly simple and elegant relativistic solution to 

the problem of a single electron 111 A series of experi

mental confirmations, marked by the key terms elec

tron spin, positive electron, and pair creation, can 

leave no doubt as to the basic correctness of the solu

tion But in the first place it does nevertheless very 

strongly transcend the conceptual plan of Q M (that 

which I have attempted to picture here),11 and in the 

9  Berl. Ber. 16 Apr. 1931; Annates de VInsti tut  Henri  
Poincare,  p. 269 (Paris,  1931) ;  Cursos de la Uniz 'ersidad 
Internacional de Verano en Santander, 1' ρ 60 (Madrid, 

Signo, 1935). 

10 Proc.  Roy.  Soc Lotui  A117 ρ 610 (1928). 
1 1  P A M Dirac, The principles  of  quantum mechanics,  

second place one runs into stubborn resistance as soon 

as one seeks to go forward, according to the prototype 

of non-relativistic theory, from the Dirac solution to 

the problem of several electrons (This shows at 

once that the solution lies outside the general plan, 

in which, as mentioned, the combining together of sub

systems is extremely simple.) I do not presume to 
pass judgment on the attempts which have been made 

in this direction.1- That they have reached their goal, 

I must doubt first of all because the authors make no 

such claim. 

Matters stand much the same with another system, 

the electromagnetic field. Its laws are "relativity 
theory personified," a How-relativistic treatment being 

in general impossible. Yet it was this field, which in 
terms of the classical model of heat radiation provided 

the first hurdle for quantum theory, that was the first 

system to be "quantized " That this could be success

fully done with simple means comes about because 

here one has things a bit easier, in that the photons, 

the "atoms of light," do not in general interact directl) 

with each other, 13 but only via the charged particles. 

Today we do not as yet have a truly unexceptionable 

quantum theory of the electromagnetic field. 14 One 

can go a long wa; with building uf> out  of  subsystems 

according to the pattern of the non-relativistic theory 

(Dirac's theory of light15), yet without quite reaching 

the goal. 

The simple procedure provided for this by the non-

relativistic theory is perhaps after all only a con

venient calculational trick, but one that today, as we 

have seen, has attained influence of unprecedented 

scope over our basic attitude toward nature. 

My warmest thanks to Imperial Chemical Indus 

tries, London, for the leisure to write this article. 

1st ed ρ 239; 2nd ed ρ 252 Oxford: Clarendon Press, 

1930 or 1935 
'-Herewith a feu of the more important references' G 

Breit 1  I'hvs Rer 34: ρ 553 (1929) and 39 ρ 616 (1932); 
C. M011er, Z I'hysik 70 ρ 786 (1931), P A. M. Dirac, 
I 'roc Roy Spc Loiid A136 ρ 453 ( 1932) and Proc.  Cam
bridge Phil  Soc 30 ρ 150 ( 1934);  R Peierls,  Proc.  Roy 
Soc I.ond. A146 p. 420 (1934) :  W Heisenberg,  Z. Physik.  

90 p. 209 (1934). 
But tin;, Ik ilcls, probably, only approximately. See M. 

Born and L lnfeld. Pioc Rov Soc Lond A144 p. 425 
and A147 ρ 522 (1934); AlSO ρ 141 (19351 This is the 
most recent attempt at a quantum electrodynamics 

1 4Hcre again the most important works, partially assign
able, according to their content-, also to the penultimate cita
tion P Jordan and W. Pauli, Z Physik 47. p. 151 (1928) ; 
\V. Heisenberg and W Pauli, Z Physik 56: p. 1 (1929); 
59 ρ 168 (1930), P. A M Dirac, V. A. Fock, and B. 
Podolsky, Physik Z Sowjetunion 6 ρ 468 (1932) ; Ν. 
Bohr and L Rosenfeld, Danske. Videns Selsk. (math.-phys.) 

12. p. 8 (1933). 
ι η  An excellent reference: E. Fermi, Rev. Mod. Phys.  4:  

p. 87 (1932). 



1.12 REMARKS ON THE MIND-BODY QUESTION 

EUGENE P. WIGNER 

Introductory Comments 

F. Dyson, in a very thoughtful article,1 points to the everbroadening 
scope of scientific inquiry. Whether or not the relation of mind to body 
will enter the realm of scientific inquiry in the near future—and the 
present writer is prepared to admit that this is an open question-it seems 
worthwhile to summarize the views to which a dispassionate contempla
tion of the most obvious facts leads. The present writer has no other 
qualification to offer his views than has any other physicist and he be
lieves that most of his colleagues would present similar opinions on the 
subject, if pressed. 

Until not many years ago, the "existence" of a mind or soul would have 
been passionately denied by most physical scientists. The brilliant suc
cesses of mechanistic and, more generally, macroscopic physics and of 
chemistry overshadowed the obvious fact that thoughts, desires, and 
emotions are not made of matter, and it was nearly universally accepted 
among physical scientists that there is nothing besides matter. The epi
tome of this belief was the conviction that, if we knew the positions and 
velocities of all atoms at one instant of time, we could compute the fate 
of the universe for all future. Even today, there are adherents to this 

1F. J. Dyson, Scientific American, 199, 74 (1958). Several cases are related in 
this article in which regions of inquiry, which were long considered to be outside 
the province of science, were drawn into this province and, in fact, became focuses 
of attention. The best-known example is the interior of the atom, which was consid
ered to be a metaphysical subject before Rutherford's proposal of his nuclear model, 
in 1911. 

Originally published in The Scientist Speculates, I. J. Good, ed., pp. 284-302, Heinemann, 
London (1961); Basic Books, New York (1962). Reprinted in E. Wigner (1967), Symmetries 
and Reflections, Indiana University Press, Bloomington, pp. 171-84 from which book this paper 
is reproduced here. 
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view2 though fewer among the physicists than — ironically enough — 

among biochemists. 

There are several reasons for the return, on the part of most physical 

scientists, to the spirit of Descartes's "Cogito ergo sum," which recognizes 

the thought, that is, the mind, as primary. First, the brilliant successes of 
mechanics not only faded into the past; they were also recognised as 

partial successes, relating to a narrow range of phenomena, all in the 

macroscopic domain. When the province of physical theory was ex

tended to encompass microscopic phenomena, through the creation of 

quantum mechanics, the concept of consciousness came to the fore 

again: it was not possible to formulate the laws of quantum mechanics 

in a fully consistent way without reference to the consciousness.3 All 

that quantum mechanics purports to provide are probability connections 

between subsequent impressions (also called "apperceptions") of the 

consciousness, and even though the dividing line between the observer, 

whose consciousness is being affected, and the observed physical object 

can be shifted towards the one or the other to a considerable degree,4 

it cannot be eliminated. It may be premature to believe that the present 

philosophy of quantum mechanics will remain a permanent feature of 

future physical theories; it will remain remarkable, in whatever way 
our future concepts may develop, that the very study of the external 

world led to the conclusion that the content of the consciousness is an 
ultimate reality. 

It is perhaps important to point out at this juncture that the question 
concerning the existence of almost anything (even the whole external 
world) is not a very relevant question. All of us recognize at once how 

meaningless the query concerning the existence of the electric field in 
vacuum would be. All that is relevant is that the concept of the electric 

2 The book most commonly blamed for this view is E. F. Haeckel's Weltratsel 
(1899). However, the views propounded in this book are less extreme (though 
more confused) than those of the usual materialistic philosophy. 

3 W. Heisenberg expressed this most poignantly [Daedalus, 87, 99 (1958) ]: "The 
laws of nature which we formulate mathematically in quantum theory deal no longer 
with the particles themselves but with our knowledge of the elementary particles." 
And later: "The conception of objective reality . . . evaporated into the . . . mathe
matics that represents no longer the behavior of elementary particles but rather 
our knowledge of this behavior." The "our" in this sentence refers to the observer 
who plays a singular role in the epistemology of quantum mechanics. He will be 
referred to in the first person and statements made in the first person will always 
refer to the observer. 

4 J .  v o n  N e u m a n n ,  Mathematische Grundlagen der Quantenmechanik (Berlin: 
Julius Springer, 1932), Chapter VI; English translation (Princeton, N.J.: Princeton 
University Press, 1955). 
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field is useful for communicating our ideas and for our own thinking. 
The statement that it "exists" means only that: (a) it can be measured, 
hence uniquely defined, and (b) that its knowledge is useful for under
standing past phenomena and in helping to foresee further events. It can 
be made part of the Weltbild. This observation may well be kept in 
mind during the ensuing discussion of the quantum mechanical descrip
tion of the external world. 

The Language of Quantum Mechanics 

The present and the next sections try to describe the concepts in 
terms of which quantum mechanics teaches us to store and commu
nicate information, to describe the regularities found in nature. These 
concepts may be called the language of quantum mechanics. We shall 
not be interested in the regularities themselves, that is, the contents 
of the book of quantum mechanics, only in the language. It may be that 
the following description of the language will prove too brief and too 
abstract for those who are unfamiliar with the subject, and too tedious 
for those who are familiar with it.5 It should, nevertheless, be helpful. 
However, the knowledge of the present and of the succeeding section is 
not necessary for following the later ones, except for parts of the section 
on the Simplest Answer to the Mind-Body Question. 

Given any object, all the possible knowledge concerning that object 
can be given as its wave function. This is a mathematical concept the 
exact nature of which need not concern us here—it is composed of a 
(countable) infinity of numbers. If one knows these numbers, one can 
foresee the behavior of the object as far as it can be foreseen. More pre
cisely, the wave function permits one to foretell with what probabilities 
the object will make one or another impression on us if we let it interact 
with us either directly, or indirectly. The object may be a radiation field, 
and its wave function will tell us with what probability we shall see a 

5 The contents of this section should be part of the standard material in courses 
on quantum mechanics. They are given here because it may be helpful to recall 
them even on the part of those who were at one time already familiar with them, be
cause it is not expected that every reader of these lines had the benefit of a course in 
quantum mechanics, and because the writer is well aware of the fact that most 
courses in quantum mechanics do not take up the subject here discussed. See also, 
in addition to references 3 and 4, W. Pauli, Handbuch der Physik, Section 2.9, 
particularly page 148 (Berlin: Julius Springer, 1933). Also F. London and E. Bauer, 
La Theorie de ΐobservation en mecanique quantique (Paris: Hermann and Co., 
1939). The last authors observe (page 41), "Remarquons Ie role essential que joue 
la conscience de l'observateur. . . ." 
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flash if we put our eyes at certain points, with what probability it will 
leave a dark spot on a photographic plate if this is placed at certain 
positions. In many cases the probability for one definite sensation will be 
so high that it amounts to a certainty—this is always so if classical me
chanics provides a close enough approximation to the quantum laws. 

The information given by the wave function is communicable. If 
someone else somehow determines the wave function of a system, he 
can tell me about it and, according to the theory, the probabilities for 
the possible different impressions (or "sensations") will be equally large, 
no matter whether he or I interact with the system in a given fashion. 
In this sense, the wave function "exists." 

It has been mentioned before that even the complete knowledge of 
the wave function does not permit one always to foresee with certainty 
the sensations one may receive by interacting with a system. In some 
cases, one event (seeing a flash) is just as likely as another (not seeing 
a flash). However, in most cases the impression (e.g., the knowledge of 
having or not having seen a flash) obtained in this way permits one to 
foresee later impressions with an increased certainty. Thus, one may be 
sure that, if one does not see a flash if one looks in one direction, one 
surely does see a flash if one subsequently looks in another direction. 
The property of observations to increase our ability for foreseeing the 
future follows from the fact that all knowledge of wave functions is 
based, in the last analysis, on the "impressions" we receive. In fact, the 
wave function is only a suitable language for describing the body of 
knowledge—gained by observations—which is relevant for predicting 
the future behaviour of the system. For this reason, the interactions 
which may create one or another sensation in us are also called observa
tions, or measurements. One realises that all the information which the 
laws of physics provide consists of probability connections between sub
sequent impressions that a system makes on one if one interacts with 
it repeatedly, i.e., if one makes repeated measurements on it. The wave 
function is a convenient summary of that part of the past impressions 
which remains relevant for the probabilities of receiving the different 
possible impressions when interacting with the system at later times. 

An Example 

It may be worthwhile to illustrate the point of the preceding section 
on a schematic example. Suppose that all our interactions with the sys
tem consist in looking at a certain point in a certain direction at times 
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ί0, ίο + 1, #ο + 2, · · · , and our possible sensations are seeing or not seeing 
a flash. The relevant law of nature could then be of the form: "If you 
see a flash at time t, you will see a flash at time t + I with a probability 
Y4, no flash with a probability %; if you see no flash, then the next 
observation will give a flash with the probability %, no flash with a 
probability Y4; there are no further probability connections." Clearly, 
this law can be verified or refuted with arbitrary accuracy by a suffi
ciently long series of observations. The wave function in such a case de
pends only on the last observation and may be if a flash has been seen 
at the last interaction, ψ2 if no flash was noted. In the former case, that 

is for i//], a calculation of the probabilities of flash and no flash after 

unit time interval gives the values Y4 and -¾; for ψ·2 these probabilities 

must turn out to be % and Y4. This agreement of the predictions of the 
law in quotation marks with the law obtained through the use of the 

wave function is not surprising. One can either say that the wave func
tion was invented to yield the proper probabilities, or that the law given 
in quotation marks has been obtained by having carried out a calcula
tion with the wave functions, the use of which we have learned from 
Schrodinger. 

The communicability of the information means, in the present exam
ple, that if someone else looks at time t, and tells us whether he saw a 
flash, we can look at time t + 1 and observe a flash with the same prob
abilities as if we had seen or not seen the flash at time t ourselves. In 
other words, he can tell us what the wave function is: ι/ί if he did, ψ·> if 
he did not see a flash. 

The preceding example is a very simple one. In general, there are 
many types of interactions into which one can enter with the system, 

leading to different types of observations or measurements. Also, the 

probabilities of the various possible impressions gained at the next 
interaction may depend not only on the last, but on the results of many 
prior observations. The important point is that the impression which 
one gains at an interaction may, and in general does, modify the prob
abilities with which one gains the various possible impressions at later 
interactions. In other words, the impression which one gains at an inter
action, called also the result of an observation, modifies the wave func
tion of the system. The modified wave function is, furthermore, in gen
eral unpredictable before the impression gained at the interaction has 
entered our consciousness: it is the entering of an impression into our 
consciousness which alters the wave function because it modifies our 
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appraisal of the probabilities for different impressions which we expect 

to receive in the future. It is at this point that the consciousness enters 

the theory unavoidably and unalterably. If one speaks in terms of the 

wave function, its changes are coupled with the entering of impressions 

into our consciousness. If one formulates the laws of quantum mechanics 

in terms of probabilities of impressions, these are ipso facto the primary 

concepts with which one deals. 

It is natural to inquire about the situation if one does not make the 

observation oneself but lets someone else carry it out. What is the wave 

function if my friend looked at the place where the flash might show 

at time t? The answer is that the information available about the object 

cannot be described by a wave function. One could attribute a wave 

function to the joint system: friend plus object, and this joint system 

would have a wave function also after the interaction, that is, after my 

friend has looked. I can then enter into interaction with this joint system 

by asking my friend whether he saw a flash. If his answer gives me 

the impression that he did, the joint wave function of friend + object 

will change into one in which they even have separate wave functions 

(the total wave function is a product) and the wave function of the 

object is xjj\. If he says no, the wave function of the object is ψ2, i-e., the 

object behaves from then on as if I had observed it and had seen no 

flash. However, even in this case, in which the observation was carried 

out by someone else, the typical change in the wave function occurred 

only when some information (the yes or no of my friend) entered my 

consciousness. It follows that the quantum description of objects is 

influenced by impressions entering my consciousness.® Solipsism may 

be logically consistent with present quantum mechanics, monism in 
the sense of materialism is not. The case against solipsism was given at 
the end of the first section. 

The Reasons for Materialism 

The principal argument against materialism is not that illustrated in 
the last two sections: that it is incompatible with quantum theory. The 

6 The essential point is not that the states of objects cannot be described by means 
of position and momentum co-ordinates (because of the uncertainty principle). 
The point is, rather, that the valid description, by means of the wave function, is 
influenced by impressions entering our consciousness. See in this connection the re
mark of London and Bauer, quoted above, and S. Watanabe's article in Louis de 
Broglie, Physicien et Penseur (Paris: Albin Michel, 1952), p. 385. 
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principal argument is that thought processes and consciousness are the 
primary concepts, that our knowledge of the external world is the con
tent of our consciousness and that the consciousness, therefore, cannot 
be denied. On the contrary, logically, the external world could be 
denied—though it is not very practical to do so. In the words of Niels 
Bohr,7 "The word consciousness, applied to ourselves as well as to others, 
is indispensable When dealing with the human situation." In view of 
all this, one may well wonder how materialism, the doctrine8 that "life 
could be explained by sophisticated combinations of physical and chem
ical laws," could so long be accepted by the majority of scientists. 

The reason is probably that it is an emotional necessity to exalt the 
problem to which one wants to devote a lifetime. If one admitted any
thing like the statement that the laws we study in physics and chemistry 
are limiting laws, similar to the laws of mechanics which exclude the 
consideration of electric phenomena, or the laws of macroscopic physics 
which exclude the consideration of "atoms," we could not devote our
selves to our study as wholeheartedly as we have to in order to recognise 
any new regularity in nature. The regularity which we are trying to 
track down must appear as the all-important regularity—if we are to pur
sue it with sufficient devotion to be successful. Atoms were also con
sidered to be an unnecessary figment before macroscopic physics was 
essentially complete—and one can well imagine a master, even a great 
master, of mechanics to say: "Light may exist but I do not need it in 
order to explain the phenomena in which I am interested." The present 
biologist uses the same words about mind and consciousness; he uses 
them as an expression of his disbelief in these concepts. Philosophers 
do not need these illusions and show much more clarity on the subject. 
The same is true of most truly great natural scientists, at least in their 
years of maturity. It is now true of almost all physicists—possibly, but 
not surely, because of the lesson we learned from quantum mechanics. 
It is also possible that we learned that the principal problem is no longer 
the fight with the adversities of nature but the difficulty of understand
ing ourselves if we want to survive. 

7 N. Bohr, Atomic Physics and Human Knowledge, section on "Atoms and Hu
man Knowledge," in particular p. 92 ( New York: John Wiley & Sons, 1960). 

8 The quotation is from William S. Beck, The Riddle of Life, Essay in Adven
tures of the Mind (New York: Alfred A. Knopf, I960), p. 35. This article is an 
eloquent statement of the attitude of the open-minded biologists toward the ques
tions discussed in the present note. 
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Simplest Answer to the Mind-Body Question 

Let us first specify the question which is outside the province of 
physics and chemistry but is an obviously meaningful (because opera
tionally defined) question: Given the most complete description of my 
body (admitting that the concepts used in this description change as 
physics develops), what are my sensations? Or, perhaps, with what 
probability will I have one of the several possible sensations? This is 
clearly a valid and important question which refers to a concept—sensa
tions—which does not exist in present-day physics or chemistry. Whether 
the question will eventually become a problem of physics or psychol-
ogy, or another science, will depend on the development of these 
disciplines. 

Naturally, I have direct knowledge only of my own sensations and 
there is no strict logical reason to believe that others have similar expe
riences. However, everybody believes that the phenomenon of sensa
tions is widely shared by organisms which we consider to be living. It is 
very likely that, if certain physico-chemical conditions are satisfied, a 
consciousness, that is, the property of having sensations, arises. This 
statement will be referred to as our first thesis. The sensations will be 
simple and undifferentiated if the physico-chemical substrate is simple; 
it will have the miraculous variety and colour which the poets try to 
describe if the substrate is as complex and well organized as a human 
body. 

The physico-chemical conditions and properties of the substrate not 
only create the consciousness, they also influence its sensations most 
profoundly. Does, conversely, the consciousness influence the physico-
chemical conditions? In other words, does the human body deviate from 
the laws of physics, as gleaned from the study of inanimate nature? The 
traditional answer to this question is, "No": the body influences the 
mind but the mind does not influence the body.9 Yet at least two reasons 
can be given to support the opposite thesis, which will be referred to 
as the second thesis. 

The first and, to this writer, less cogent reason is founded on the 

9 This writer does not profess to a knowledge of all, or even of the majority of all, 
metaphysical theories. It may be significant, nevertheless, that he never found an 
affirmative answer to the query of the text—not even after having perused the rele
vant articles in the earlier (more thorough) editions of the Encyclopaedia Britan-
nica. 
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quantum theory of measurements, described earlier in sections 2 and 3. 

In order to present this argument, it is necessary to follow my descrip

tion of the observation of a "friend" in somewhat more detail than was 

done in the example discussed before. Let us assume again that the ob

ject has only two states, ψι and ψ2· If the state is, originally, ψι, the state 

of object plus observer will be, after the interaction, ψι X χι; if the state 

of the object is 1/¾ the state of object plus observer will be ψ2 X xa after 

the interaction. The wave functions X1 and χ·> give the state of the ob

server; in the first case he is in a state which responds to the question 

"Have you seen a flash?" with "Yes"; in the second state, with "No." 

There is nothing absurd in this so far. 

Let us consider now an initial state of the object which is a linear 

combination a + β ψ·> of the two states and ψο· It then follows from 

the linear nature of the quantum mechanical equations of motion that 

t h e  s t a t e  o f  o b j e c t  p l u s  o b s e r v e r  i s ,  a f t e r  t h e  i n t e r a c t i o n ,  α  ( ψ ι  x  X i )  +  β  

(</*·-> X χ·.>)· If I now ask the observer whether he saw a flash, he will with 

a probability | a |2 say that he did, and in this case the object will also 

give to me the responses as if it were in the state ^1. If the observer 

answers "No"—the probability for this is |y3]2—tlie object's responses from 

then on will correspond to a wave function ψ2· The probability is zero 

that the observer will say "Yes," but the object gives the response which 

I/M would give because the wave function α (ψ, X X1) + β (ψ·> X χ2) of the 

joint system has no (ψ X χι) component. Similarly, if the observer denies 

having seen a flash, the behavior of the object cannot correspond to X1 

because the joint wave function has no (ι/ί X X2) component. All this is 

quite satisfactory: the theory of measurement, direct or indirect, is 

logically consistent so long as I maintain my privileged position as ulti

mate observer. 

However, if after having completed the whole experiment I ask my 

friend, "What did you feel about the flash before I asked you?" he will 

answer, "I told you already, I did [did not] see a flash," as the case may 

be. In other words, the question whether he did or did not see the 

flash was already decided in his mind, before I asked him.10 If we 

accept this, we are driven to the conclusion that the proper wave func-

10 F. London and E. Bauer ( o p .  c i t . ,  reference 5) on page 42 say, "II [l'observa-
teur] dispose d'une faculte caracteristique et bien familiere, que nous pouvons ap-
peler la 'faculte d'introspection': il peut se rendre compte de maniere immediate de 
son propre etat." 
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tion immediately after the interaction of friend and object was already 

either ψι X X1 or ψι X χ2 and not the linear combination α (ψ\ X χχ) + β 

(φ2 X χ2). This is a contradiction, because the state described by the wave 

function a (^1 X χι) + β (ψ„ X ) describes a state that has properties 

which neither ψι X χι nor ψ2 X χ2 has. If we substitute for "friend" some 

simple physical apparatus, such as an atom which may or may not be 
excited by the light-flash, this difference has observable effects and 

there is no doubt that α (φι X χι) + β· (ψ2 X χζ) describes the properties 

of the joint system correctly, the assumption that the wave function is 

either ψι X X1 or ψ2 X χ2 does not. If the atom is replaced by a conscious 

being, the wave function a (<//, X χι) + β (ψ2 X χζ) (which also follows 

from the linearity of the equations) appears absurd because it implies 

that my friend was in a state of suspended animation before he answered 
my question.11 

It follows that the being with a consciousness must have a different 

role in quantum mechanics than the inanimate measuring device: the 

atom considered above. In particular, the quantum mechanical equa
tions of motion cannot be linear if the preceding argument is accepted. 
This argument implies that "my friend" has the same types of impres
sions and sensations as I—in particular, that, after interacting with the 
object, he is not in that state of suspended animation which corresponds 
to the wave function α (ψ, X χ,) + β (ψ2 X χ2)· It is not necessary to see 

a contradiction here from the point of view of orthodox quantum me
chanics, and there is none if we believe that the alternative is meaning
less, whether my friend's consciousness contains either the impression 
of having seen a flash or of not having seen a flash. However, to deny 
the existence of the consciousness of a friend to this extent is surely an 

11 In an article which will appear soon [Werner Heisenberg und die Physik 
unserer Zeit (Braunschweig: Friedr. Vieweg, 1961)] G. Ludwig discusses the 
theory of measurements and arrives at the conclusion that quantum mechanical 
theory cannot have unlimited validity (see, in particular, Section Ilia, also Ve). 
This conclusion is in agreement with the point of view here represented. However, 
Ludwig believes that quantum mechanics is valid only in the limiting case of micro
scopic systems, whereas the view here represented assumes it to be valid for all in
animate objects. At present, there is no clear evidence that quantum mechanics be
comes increasingly inaccurate as the size of the system increases, and the dividing line 
between microscopic and macroscopic systems is surely not very sharp. Thus, the 
human eye can perceive as few as three quanta, and the properties of macroscopic 
crystals are grossly affected by a single dislocation. For these reasons, the present 
writer prefers the point of view represented in the text even though he does not 
wish to deny the possibility that Ludwig's more narrow limitation of quantum me
chanics may be justified ultimately. 
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unnatural attitude, approaching solipsism, and few people, in their 
hearts, will go along with it. 

The preceding argument for the difference in the roles of inanimate 
observation tools and observers with a consciousness—hence for a viola
tion of physical laws where consciousness plays a role—is entirely cogent 
so long as one accepts the tenets of orthodox quantum mechanics in all 
their consequences. Its weakness for providing a specific effect of the 
consciousness on matter lies in its total reliance on these tenets—a reli
ance which would be, on the basis of our experiences with the ephemeral 
nature of physical theories, difficult to justify fully. 

The second argument to support the existence of an influence of the 
consciousness on the physical world is based on the observation that we 
do not know of any phenomenon in which one subject is influenced by 
another without exerting an influence thereupon. This appears convinc
ing to this writer. It is true that under the usual conditions of experi
mental physics or biology, the influence of any consciousness is certainly 
very small. "We do not need the assumption that there is such an effect." 
It is good to recall, however, that the same may be said of the relation 
of light to mechanical objects. Mechanical objects influence light—other
wise we could not see them—but experiments to demonstrate the effect 
of light on the motion of mechanical bodies are difficult. It is unlikely 
that the effect would have been detected had theoretical considerations 
not suggested its existence, and its manifestation in the phenomenon 
of light pressure. 

More Difficult Questions 

Even if the two theses of the preceding section are accepted, very 
little is gained for science as we understand science: as a correlation of 
a body of phenomena. Actually, the two theses in question are more 
similar to existence theorems of mathematics than to methods of con
struction of solutions and we cannot help but feel somewhat helpless 
as we ask the much more difficult question: how could the two theses 
be verified experimentally? i.e., how could a body of phenomena be built 
around them. It seems that there is no solid guide to help in answering 
this question and one either has to admit to full ignorance or to engage 
in speculations. 

Before turning to the question of the preceding paragraph, let us note 
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in which way the consciousnesses are related to each other and to the 
physical world. The relations in question again show a remarkable sim
ilarity to the relation of light quanta to each other and to the material 
bodies with which mechanics deals. Light quanta do not influence each 
other directly12 but only by influencing material bodies which then in
fluence other light quanta. Even in this indirect way, their interaction is 
appreciable only under exceptional circumstances. Similarly, conscious
nesses never seem to interact with each other directly but only via the 
physical world. Hence, any knowledge about the consciousness of an
other being must be mediated by the physical world. 

At this point, however, the analogy stops. Light quanta can interact 
directly with virtually any material object but each consciousness is 
uniquely related to some physico-chemical structure through which 
alone it receives impressions. There is, apparently, a correlation between 
each consciousness and the physico-chemical structure of which it is a 
captive, which has no analogue in the inanimate world. Evidently, there 
are enormous gradations between consciousnesses, depending on the 
elaborate or primitive nature of the structure on which they can lean: 
the sets of impressions which an ant or a microscopic animal or a plant 
receives surely show much less variety than the sets of impressions which 
man can receive. However, we can, at present, at best, guess at these 
impressions. Even our knowledge of the consciousness of other men is 
derived only through analogy and some innate knowledge which is 
hardly extended to other species. 

It follows that there are only two avenues through which experimenta
tion can proceed to obtain information about our first thesis: observation 
of infants where we may be able to sense the progress of the awakening 
of consciousness, and by discovering phenomena postulated by the sec
ond thesis, in which the consciousness modifies the usual laws of physics. 
The first type of observation is constantly carried out by millions of 
families, but perhaps with too little purposefulness. Only very crude 
observations of the second type have been undertaken in the past, and 
all these antedate modern experimental methods. So far as it is known, 
all of them have been unsuccessful. However, every phenomenon is 
unexpected and most unlikely until it has been discovered—and some of 
them remain unreasonable for a long time after they have been dis
covered. Hence, lack of success in the past need not discourage. 

12 This statement is certainly true in an approximation which is much better 
than is necessary for our purposes. 
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Non-linearity of Equations as Indication of Life 

The preceding section gave two proofs—they might better be called 
indications—for the second thesis, the effect of consciousness on physical 
phenomena. The first of these was directly connected with an actual 
process, the quantum mechanical observation, and indicated that the 
usual description of an indirect observation is probably incorrect if 
the primary observation is made by a being with consciousness. It 
may be worthwhile to show a way out of the difficulty which we 
encountered. 

The simplest way out of the difficulty is to accept the conclusion 
which forced itself on us: to assume that the joint system of friend plus 
object cannot be described by a wave function after the interaction—the 
proper description of their state is a mixture.13 The wave function is 
(</Ί x χι) with a probability | a |2; it is (φ 2 X χ·λ) with a probability \β\2· It 

was pointed out already by Bohm14 that, if the system is sufficiently 

complicated, it may be in practice impossible to ascertain a difference 

between certain mixtures, and some pure states (states which can be 
described by a wave function). In order to exhibit the difference, one 

would have to subject the system (friend plus object) to very compli
cated observations which cannot be carried out in practice. This is in 
contrast to the case in which the flash or the absence of a flash is reg
istered by an atom, the state of which I can obtain precisely by much 
simpler observations. This way out of the difficulty amounts to the 
postulate that the equations of motion of quantum mechanics cease to 
be linear, in fact that they are grossly non-linear if conscious beings enter 
the picture.10 We saw that the linearity condition led uniquely to the 

13 The concept of the mixture was put forward first by L. Landau, Z. Physik, 45, 
430 (1927). A more elaborate discussion is found in J. von Neumann's book (foot
note 4), Chapter IV. A more concise and elementary discussion of the concept of 
mixture and its characterisation by a statistical (density) matrix is given in L. Lan
dau and E. Lifshitz, Quantum Mechanics (London: Pergamon Press, 1958), pp. 
35-38. 

14The circumstance that the mixture of the states (ψ1 X χχ) and (ψ2 X χ2), 
with weights | α |2 and | β |2, respectively, cannot be distinguished in practice from 
the state α(ψ1 χ X1) -f- β(ψ2 X Xz)' the states X are of great complexity, has 
been pointed out already in Section 22.11 of D. Bohm's Quantum Theory (New 
York: Prentice Hall, 1951). The reader will also be interested in Sections 8.27, 8.28 
of this treatise. 

15 The non-linearity is of a different nature from that postulated by W. Heisen-
berg in his theory of elementary particles [cf., e.g., H. P. Diirr, W. Heisenberg, 
H. Mitter, S. Schlieder, K. Yamazaki, Z. Naturforseh., 14, 441 (1954)]. In our case 
the equations giving the time variation of the state vector (wave function) are 
postulated to be non-linear. 
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unacceptable wave function for the joint state. 
Actually, in the present case, the final state is uncertain even in the sense 
that it cannot be described by a wave function. The statistical element 
which, according to the orthodox theory, enters only if I make an obser-
vation enters equally if my friend does. 

It remains remarkable that there is a continuous transition from the 
state to the mixture of with 
probabilities | so that every member of the continuous 
transition has all the statistical properties demanded by the theory of 
measurements. Each member of the transition, except that which cor-
responds to orthodox quantum mechanics, is a mixture, and must be 
described by a statistical matrix. The statistical matrix of the system 
friend-plus-object is, after their having interacted 

in which the first row and column corresponds to the wave function 
the second to The case corresponds to orthodox 

quantum mechanics; in this case the statistical matrix is singular and 
the state of friend-plus-object can be described by a wave function, 
namely, we have the simple mixture 
of and with probabilities , respectively. 
At intermediate 8, we also have mixtures of two states, with probabilities 

The two states are 
l and 

go over continuously into as S increases to 
The present writer is well aware of the fact that he is not the first one 

to discuss the questions which form the subject of this article and that 
the surmises of his predecessors were either found to be wrong or un-
provable, hence, in the long run, uninteresting. He would not be greatly 
surprised if the present article shared the fate of those of his predeces-
sors. He feels, however, that many of the earlier speculations on the 
subject, even if they could not be justified, have stimulated and helped 
our thinking and emotions and have contributed to re-emphasize the 
ultimate scientific interest in the question, which is, perhaps, the most 
fundamental question of all. 
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JOHN ARCHIBALD WHEELER 

The second phase of the dialog began in Europe but 
continued in America from Einstein's arrival at Princeton in 
October, 1933, to his death there in April, 1955. Here Ein
stein tried to show that quantum theory — in making what 
happens depend upon what the observer chooses to measure 
—is incompatible with any reasonable idea of reality.18 Bohr's 
reply19 briefly summarized was this: Your concept of reality 
is too limited. 

THE BEAM SPLITTER 

Of all the idealized experiments taken up by the two 
friends in their effort to win agreement, none is simpler than 
the beam splitter of fig. 4. With the final half-silvered mirror 
in place the photodetector at the lower right goes click-click 
as the successive photons arrive but the adjacent counter 
registers nothing. This is evidence of interference between 
beams 4a and 4b; or, in photon language, evidence that each 
arriving light quantum has arrived by both routes, A and B. 
In such experiments,20 Einstein originally argued, it is unrea
sonable for a single photon to travel simultaneously two 
routes. Remove the half-silvered mirror, as at the lower left, 
and one will find that the one counter goes off, or the other. 
Thus the photon has traveled only one route. It travels only 
one route, but it travels both routes; it travels both routes, but 
it travels only one route. What nonsense! How obvious it is 
that quantum theory is inconsistent! 

18 A. Einstein, B Podolsky and N. Rosen, "Can quantum-mechanical description of 
physical reality be considered complete?" Physical Review 47: pp. 777-780 (1935). 

19 N. Bohr, "Can quantum-mechanical description of physical reality be considered 
complete?" Physical Review 48: pp. 696-702 (1935). 

m The center of discussion in the Bohr-Einstein dialog was more often the so-called 
double-slit experiment than the beam splitter depicted in figure 4. The latter is 
made the focus of attention here because it presents the central point without 
getting into the physics of interference patterns. 

The first section between stars (*»***) appeared in Wheeler, 1981a; the next section 

between stars from Wheeler, 1979; the following from Wheeler, 1980; and the final section 

(a single paragraph) from Wheeler, 1981b. Preparation for publication of all four items was 

assisted by The University of Texas Center for Theoretical Physics and by NSF Grant PHY78-
26592. 
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Bohr emphasized that there is no inconsistency. We are 
dealing with two different experiments. The one with the 
half-silvered mirror removed tells which route. The one with 
the half-silvered mirror in place provides evidence that the 
photon traveled both routes. But it is impossible to do both 
experiments at once. One can observe one feature of nature, 
or the complementary feature of nature but not both features 
simultaneously. -What we choose to measure has an irretriev
able consequence for what we will find. 

-.^DELAYED' 
CHOICE^ 

•yS IN OR OUT-

ROUTES 1 / \ I 

^ ¾ )  

Fig. 4. Beam splitter (above) and its use in a delayed-choice experiment (below). An 
electromagnetic wave comes in at 1 and encounters the half-silvered mirror marked 
"'AS" which splits it into two beams, 2a and 2b, of equal intensity which are reflected 
by mirrors A and B to a crossing point at the right. Counters (lower left) located 
past the point of crossing tell by which route an arriving photon has come. In the 
alternative arrangement at the lower right, a half-silvered mirror is inserted at the 
point of crossing. On one side it brings beams 4a and 4b into destructive interfer
ence, so that the counter located on that side never registers anything. On the other 
side the beams are brought into constructive interference to reconstitute a beam, 5, 
of the original strength, 1. Every photon that enters at 1 is registered in that second 
counter in the idealized case of perfect mirrors and 100 per cent photodetector 
efficiency. In the one arrangement (lower left) one finds out by which route the 
photon came. In the other arrangement (lower right) one has evidence that the 
arriving photon came by both routes. In the new "delayed-choice" version of the 
experiment one decides whether to put in the half-silvered mirror or take it out at 
the very last minute. Thus one decides whether the photon "shall have come by one 
route, or by both routes" after it has "already done its travel." 

WHICH 
ROUTE "> 
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THE DELAYED-CHOICE EXPERIMENT 

In our own day we have learned to state the point even 
more sharply by way of a so-called delayed-choice experi
ment.21 There we make the decision whether to put the final 
half-silvered mirror in place or to take it out at the very last 
picosecond, after the photon has already accomplished its 
travel. In this sense, we have a strange inversion of the nor
mal order of time. We, now, by moving the mirror in or out 
have an unavoidable effect on what we have a right to say 
about the already past history of that photon. 

"PHENOMENON" 

The dependence of what is observed upon the choice of 
experimental arrangement made Einstein unhappy. It con
flicts with the view that the universe exists "out there" inde
pendent of all acts of observation. In contrast Bohr stressed 
that we confront here an inescapable new feature of nature, 
to be welcomed because of the understanding it gives us. In 
struggling to make clear to Einstein the central point as he 
saw it, Bohr found himself forced to introduce the word 
"phenomenon."7 In today's words Bohr's point — and the 
central point of quantum theory — can be put into a single, 
simple sentence. "No elementary phenomenon is a phenom
enon until it is a registered (observed) phenomenon."8 It is 
wrong to speak of the "route" of the photon in the experi
ment of the beam splitter. It is wrong to attribute a tangibility 
to the photon in all its travel from the point of entry to its 
last instant of flight. A phenomenon is not yet a phenomenon 

21 J.A. Wheeler, "The 'past' and the 'delayed-choice' double-slit experiment," in A.R. 
Marlow, ed., Mathematical Foundations of Quantum Theory (Academic Press, New 
York, 1978), pp. 9-48. 

22 "Closed by irreversible amplification", p. 73; "irreversible amplification," p. 88: N 
Bohr, Atomic Physics and Human Knowledge (Wiley, New York, 1958). 

25A homely illustration of this idea is provided by the old parlor game of Twenty 
Questions in the "surprise version" described by the author in several places, most 
recently in "Beyond the black hole," a chapter in H. Woolf, ed., Some Strangeness in 
the Proportions: An Einstein Centenary Celebration (Addison-Weslev, Reading, Mass., 
1980). 
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until it has been b r o u g h t to a close by an i r revers ible act of 
ampl i f icat ion such as t he b l acken ing of a g ra in of silver b ro-
m i d e emuls ion o r t he t r i g g e r i n g of a pho tode tec tor . 2 2 I n 
b r o a d e r t e rms , we find tha t n a t u r e at the q u a n t u m level is 
not a m a c h i n e tha t goes its i nexorab le way. In s t ead wha t 
answer we get d e p e n d s o n t he ques t ion we pu t , t he exper i -
m e n t we a r r a n g e , the r eg i s t e r ing device we choose . We a r e 
inescapably involved in b r i n g i n g a b o u t tha t which a p p e a r s to 
be h a p p e n i n g . 2 1 

C O N C E R N A B O U T O B S E R V E R - P A R T I C I P A N C Y T O D A Y 

Most appl ica t ions of q u a n t u m theo ry deal with stat ion-
ary states of e l e m e n t a r y part icles, of a tomic nuclei , a toms , 
molecules a n d l a rge r systems, a n d with processes of collision 
be tween o n e q u a n t u m system a n d ano the r . Only in r ecen t 
years has inc reas ing a t t en t ion c o m e back to t he po in t of cen-
tral c o n c e r n of B o h r a n d Eins te in , t he e l e m e n t a r y q u a n t u m 
p h e n o m e n o n , t he process of m e a s u r e m e n t , the invo lvemen t 
of the reg i s t e r ing device in b r i n g i n g a b o u t tha t which a p p e a r s 
to be h a p p e n i n g , t he s t r anges t p a r t of a s t r ange subject . H o w 
can o n e c o n t e m p l a t e i n d e t e r m i n i s m , c o m p l e m e n t a r i t y a n d 
" p h e n o m e n o n " wi thou t b e i n g r e m i n d e d of t he words of Ger -
t r u d e Stein a b o u t m o d e r n a r t ? "It looks s t r a n g e a n d it looks 
s t r ange a n d it looks very s t r ange ; a n d t h e n sudden ly it doesn ' t 
look s t r ange at all a n d you can ' t u n d e r s t a n d wha t m a d e it 
look s t r ange in t he first place." Many invest igators , bel ieving 
that the grea tes t ins ights a r e to be won f r o m na tu re ' s s t ranges t 
f ea tu res , a r e — in r e sea rch p a p e r s , review articles a n d books 
— g i v i n g f r e s h c o v e r a g e o f t h e s t r a n g e " o b s e r v e r -
par t ic ipancy" f o r c e d to o u r a t t en t ion by the q u a n t u m . 2 4 

24 Sec io i e x a m p l e B d ' L s p a g n a t , ed . . Foundations of Quantum Meihanus ( A c a d e m i c 
Press . Nex\ York , 1971) ; E P. W i g n e r . " I n t e l p r e t a t i o n of q u a n t u m m e c h a n i c s , " 9 3 
p a g e s of m i m e o g r a p h e d n o t e s of l e c t i n e s d e l i v e r e d at P r i n c e t o n Univers i ty in 
1970 o n d e p o s i t m F i n e L i b r a r v P r i n c e t o n U n i \ e r s i t \ , P r i n c e t o n , N ).; M . M . 
Yanase . M N a m i k i a n d S M a c l n d a . e d s , Theory of Measuwment in Quantum Me-
thtinns ( P l u s i t a l S o c i e n of J a p a n , " I o k \ o , 1980) ; J A W h e e l e r , " F r o n t i e r s o f t ime , " 
in N T o t a l d o di F i a n i i a , e d , Ptoblems in the Foundations of Phx.uc.s, R e n d i c o n t i 
de l l a S c u o l a I n t e r n a z i o n a l e d i Fisica ' E n r i c o F e r m i ' , L X X I I C o r s o ( N o r t h - H o l -
l a n d , A m s t e r d a m , 1979) 
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MANY QUANTA VERSUS ONE QUANTUM 

How does quantum mechanics today differ from what 
Bishop George Berkeley told us two centuries ago, "Esse est 
percipi," to be is to be perceived?25 Does the tree not exist in 
the forest unless there is someone there to see it? Do Bohr's 
conclusions about the role of the observer differ from those 
of Berkeley? Yes, and in an important way. Bohr deals with 
the individual quantum process. Berkeley — like all of us 
under everyday circumstances — deals with multiple quan
tum processes. 

Pondering the difference between the individual quan
tum phenomenon and the tree that falls, unobserved, in the 
forest, we walk through the art gallery on our way to visit 
again a favorite picture. We pass by the painting "Impres
sions," first shown by Claude Monet in 1863 at the Salon des 
Refuses. From a tiny dab of color on that canvas in the single 
second of our passage the pupil of our eye receives 50,000 
photons. Each is accidental in its direction and time of arrival. 
The quanta in that hail of information are so numerous that 
they give the impression of perfect steadiness of illumination. 
What one of us busy mortals has the time to count them all? 
We rely instead on some gross and handier measure of inten
sity, such as the eye so aptly passes to the brain. There is no 
place in that message for the qualifying words, "with a root 
mean square fluctuation of 224 relative to an average number 
of photons of 50,000." Who needs to know about quanta to 
know the dot of color is there? 

Unexpectedly the power blacks out. A guard with electric 
torch pointed at the floor guides our return. Our eye receives 
no photons from the dab of paint on the canvas. However, a 
touch of the hand as we pass the painting in the dark is 
enough to comfort us that it is still there. It would outreach 
any on-the-spot bookkeeping to count the IO16 atomic points 
of contact between the fingers and the picture frame, or the 
even more numerous quantum processes that impinge from 
the frame onto the fingertips. The message is still clear. How-

25 Ci- Berkele\ (1685-1783) m MW. Calkins, ed., Berkeln• E.s.sa\s, Principles, Dialogs, 
Willi Selecliijiis from Other Writings (Scribner, New York, 1929, as reprinted in 1957), 
pp. 125-126. 
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ever, we now go through a longer chain of theory and inter
pretation in reaching the conclusion that the dab of paint is 
still there. Or was the luminous dot of color an illusion cre
ated by trick illumination from a concealed lamp? That was 
conceivable when we passed it first but highly unlikely given 
the integrity of the museum and the difficulty of the under
taking. During the exit through the dark it is more difficult 
to check against deception but the best indirect evidence one 
has says that the painting is still there with all its dots of color. 
Moreover, one is free to stop and extend the investigation 
and transform questionable evidence into convincing evi
dence. 

When we emerge from the gallery and start thinking 
again of the tree, we recognize that this problem differs from 
the case of the picture only in degree, not in kind. The 
supposition that it fell we can check more and more conclu
sively according to the amount of effort we are willing to put 
into investigating impact points, ground dislocations and 
acoustic records. Anything macroscopic that happened in the 
past makes, we know, a rich fallout of consequences in the 
present. But whether we deal with the fall of the tree or the 
evidence for the dab of paint on the canvas or the motion of 
the moon through the sky, the number of quanta that come 
into play is so enormous that the unseen quantum individu
ality of the act of observation can hardly be said to influence 
the event observed. 

In contrast the choice of question asked has a decisive 
consequence for26 the elementary quantum phenomenon. 
For illustration it is enough to recall the inquiry of fig. 4 about 
the "track" of the photon, or a similar inquiry about the 
"path" of an electron through a beam splitter or the "motion" 
of an electron in an atom. In each of these examples, more
over, at least one of the available choices of question to be 
asked (which route for the photon or electron; or what posi
tion or momentum does the electron have in the atom) has a 

26 Why not change "has a decisive consequence for . . ." to "makes all the difference 
in the elementary quantum phenomenon"? The word "difference" is not allowa
ble. We can do the one experiment or the other experiment but the two experi
ments simply will not fit into one place at one time. We are dealing with one 
phenomenon, one "act of creation." The very individuality of the quantum phe
nomenon leaves no place for comparing what is with what might have been. 
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completely unpredictable answer. We can send a million pho
tons through the beam splitter when it is operated in the 
"which route" configuration at the lower left of fig. 4. Then 
we can be assured half a million photons, more or less (statis
tical variations of the order of magnitude ±500) will be 
recorded by each counter. However, when via the same ar
rangement we deal with a single photon we have not the 
slightest possibility to tell in advance which of the two counters 
it will strike. 

QUANTUM OUTCOME: (X)VERNED BY HIDDEN VARIABLES? 

Is there not some underground machinery beneath the 
working of the world which one can ferret out to secure an 
advance indication of the outcome? Some secret determiner, 
some "hidden variable"? Every attempt, theoretical or obser
vational, to defend such a hypothesis has been struck down.27 

Not the slightest hard evidence has ever been found that 
would throw doubt on the plain, straightforward prediction 
of quantum mechanics, the prediction that no prediction is 
possible. Probability? Yes. A definite forecast? No. Einstein 
could be unhappy that "God plays dice"; but Bohr could tell 
him jokingly, "Einstein, stop telling God what to do."28 

QUANTUM OUTCOME: ALLAH WILLED IT? 

If no identifiable machinery is at hand to tell the lone 
photon which way to go then why not simply say of the route 
it actually takes, Allah willed it? And willed the outcome of 
every other individual quantum process? 

To strike down a proposal of this kind, it has been 

" For a review of relevant experiments, see especially F.M Pipkin, "Atomic physics 

tests of the basic concepts in quantum mechanics," pp. 281-340 in Advances in 
Atomic and Molecular Physics (Academic Press, New York, 1978). 

28  N. Bohr as quoted bv | .  Bronowski, The Ascent of Man (Little, Brown and Co , 
Boston/Toronto, 197.'ϊ), p. 122 
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pointed out more than once,29 is beyond the power of logic. 
One has to appeal instead to pragmatism. In the struggle for 
survival, other things being equal, that way of life will go 
under that takes all that comes in a blindly fatalistic spirit. To 
evade danger and to seize opportunity every faculty has to 
be mobilized to predict what lies ahead of peril and promise. 
Society charges science with the task of prediction. Science 
makes some progress with the task. In the individual quan
tum process, however, prediction comes to the end of the 
road. Science does not have to be ashamed of its finding. It 
has only to be honest about it. Why demand of science a 
cause when cause there is none? 

QUANTUM OUTCOME: ELEMENTARY ACT OF CREATION? 

How did the universe come into being? Is that some 
strange, far-off process, beyond hope of analysis? Or is the 
mechanism that came into play one which all the time shows 
itself? 

Of the signs that testify to "quantum phenomenon" as 
being the elementary act of creation, none is more striking 
than its untouchability. In the delayed-choice version of the 
split-beam experiment, for example, we have no right to say 
what the photon is doing in all its long course from point of 
entry to point of detection. Until the act of detection the 
phenomenon-to-be is not yet a phenomenon. We could have 
intervened at some point along the way with a different meas
uring device; but then regardless whether it is the new reg
istering device or the previous one that happens to be triggered 
we have a new phenomenon. We have come no closer than 
before to penetrating to the untouchable interior of the phe
nomenon. For a process of creation that can and does operate 
anywhere, that reveals itself and yet hides itself, what could 
one have dreamed up out of pure imagination more magic 
— and more fitting—than this? 

29 For a discussion of this point I am indebted to Professor Andrew Gleason. 
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D E L A Y E D C H O I C E A T T H E C O S M O L O G I C A L S C A L E 

Of all t he f e a t u r e s of t he "act of c rea t ion" tha t is the 
e l e m e n t a r y q u a n t u m p h e n o m e n o n , t he mos t s tar t l ing is tha t 
seen in t he de layed-choice e x p e r i m e n t . It r eaches back in to 
the past in a p p a r e n t oppos i t ion to the n o r m a l o r d e r of t ime. 
T h e d i s tance of t ravel in a l abora to ry spl i t -beam e x p e r i m e n t 
migh t be th i r ty m e t e r s a n d t he t ime a t e n t h o f a mic rosecond ; 
bu t the d i s tance cou ld as well have b e e n billions of l ight years 
a n d the t ime billions of years . T h u s the obse rv ing device in 
the h e r e a n d now, a c c o r d i n g to its last m i n u t e set t ing o n e way 
o r the o ther , has an i r re t r i evab le c o n s e q u e n c e f o r wha t o n e 
has the r i gh t to say a b o u t a p h o t o n tha t was given o u t long 
b e f o r e t h e r e was any life in the universe . 

Two as t ronomica l objects, k n o w n as 0957 + 561 A,B (hg. 
5), once c o n s i d e r e d to be two dist inct quasis tel lar objects o r 
"quasars" because they a r e s e p a r a t e d by six seconds of arc, 
a r e c o n s i d e r e d now by m a n y obse rve r s to be two distinct 
images of o n e quasar . 3 0 Ev idence has been f o u n d f o r an in-
t e r v e n i n g galaxy, r o u g h l y a q u a r t e r of t he way f r o m us to the 
quasar . Calcula t ions indicate3 1 t ha t a n o r m a l galaxy at such a 
d is tance has t he p o w e r to take two light rays, s p r e a d a p a r t by 

30 D. Wa l sh . R.F. C a r s w e l l a n d R J. W e v m a n n , " 0 9 5 7 + 561 A . B : twin q u a s i s t e l l a r 
ob j ec t s o r g r a y i t a t i o n a l l ens?" Xtiime 2 7 9 : p p . 3 8 1 - 3 8 4 (1979) ; R J. W e v m a n n , F.H 
C h a f f e e J r . , M. Davis , N P. C a r l e t o n . D. Walsh , a n d R.F. Caisvvell . " M u l t i p l e -
n u r r o r o b s e r v a t i o n s of t h e twin Q S O 0 9 5 7 + 561 A, B," Astiophwual journal 233 , 
L 4 3 - L 4 6 (1979) , P.) Y o u n g . W.L.VV. S a r g e n t , J.A K u s t i a n a n d J A W e s t p h a l . 
" C C D p h o t o m e t r y of t h e n u c l e i of t h r e e s u p e r g i a n t e l l i p t k a l ga lax ies : e v i d e n c e 
f o r a s u p e i mass ive ob j ec t in t h e c e n t e r of t h e r a d i o g a l a w N G C 6 2 5 1 , " Asho/tlns/ial 
Ioiu,ml 2 3 4 : p p 7 6 - 8 5 (1979 ) : 1 ) H R o b e r t s , f ' E C i e e n f i e l d a n d B . F B u r k e . 
" T h e d o u b l e q u a s a r 0 9 5 7 + 561 • a r a d i o s tudy at 6 c e n t i m e t e r s w a v e l e n g t h . " Saeme 
2 0 5 : p p 8 9 4 - 8 9 6 ( 1 9 7 9 ) , G G. Poo le r . 1 B r o w n e . fc.J. D a i n t r e e , I ' K . M o o r e , R G 
N o b l e a n d D. W a l s h , " R a d i o s t u d i e s of t h e d o u b l e Q S O 0 9 5 7 + 561 A,B." Xalmr 
2 8 0 : p p 4 6 1 - 4 6 4 ( 1 9 7 9 ) , P E . G r e e n f i e l d . 1 ) H R o b e i t s a n d B F. B u r k e , " 1 he-
d o u b l e q u a s a r 0 9 5 7 + 5 6 1 : e x a m i n a t i o n of t h e g r a \ n a t i o n a l lens h y p o t h e s i s u s i n g 
t h e \ e r \ l a r g e a r r av . " Snemr 2 0 8 : p p . 4 9 5 - 4 9 7 (1980) ; P.J. Y o u n g , J F. G u n n . J.A 
Kr i s t i an , J B O k e a n d J.A. W e s t p h a l . " Q 0 9 5 7 + 5 6 I A . B - a g r a v i t a t i o n a l lens 
f o r m e d bv a g a l a x \ at z = 0 .39 , " Astiophysiral Journal, m pi ess (1980 ) , B. Wills a n d 
D Wills, " S p e c t r o p h o t o m e t r y of t h e d o u b l e QSO 0 9 5 7 + 5 6 1 A^io/ihysnal Journal 
2 3 8 : p p . 1 - 9 ( 1 9 8 0 ) ; B l . S o i f e r , G N e u g e b a u e r , K. M a t t h e w s , E F Beck l in . C . G . 
Wvni l -Wil l iams a n d R. C a p p s , " IR o b s e r v a t i o n s ol t h e d o u b l e q u a s a r 0 9 5 7 + 561 A.B 
a n d t h e i n t e r v e n i n g galaxy." Xalmr 2 8 5 p p 9 1 - 9 3 (1980) 

31 C .C . D y e r a n d R.C. R o e d e r , "Poss ib le m u l t i p l e i m a g i n g by s p h e r i c a l ga laxies ," 
A^tiophwal Journal 2 3 8 , L 6 7 - L 7 0 (1980 ) : C C D v e r a n d R C R o e d e r . "A r a n g e 
of t i m e d e l a y s f o r t h e d o u b l e q u a s a r 0 9 5 7 + 561 A . B , " /Wio/j/ivwrrif Journal, s ub -
m i t t e d f o r p u b l i c a t i o n J u n e 16, 1980 
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Fig. 5. Left, the double quasistellar object ( "quasar": red shift ζ = 1.41), identified 
bv its right ascension and declination as 0957 + 561 A,B, and suspected to be the two 

images — produced by gravitational lens action—of one and the same quasar. This 
photograph, made at the University of Hawaii telescope by Alan Stockton and 
kindly communicated and discussed by Derek Wills of the University of Texas at 
Austin, is the digital sum of five one-minute exposures in red light (5700 to 7000A). 
The stellar images appear elongated because of a telescope tracking problem. Right, 
the same digital photographic record after a stellar profile has been subtracted from 
the southern image (B), the residual being compatible with the existence near B of 
a lensing galaxy (G-I). Evidence has been found by Young, Gunn, Kristian, Oke 
and Westphal at Galtech for such a galaxy (0.02" to the West and 0.8" North of B; 
red shift ζ = 0.39), much closer to B than to A (which is 1.2" to the West and 6" 
North of B), and for its membership in a cluster of perhaps 1000 to 10,000 galaxies 
(centered 2" to the West and 15" North of B). 
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fifty thousand light years on their way out from the quasar, 
and bring them back together at the Earth. This circum
stance, and evidence for a new case of gravitational lensing,32 

make it reasonable to promote the split-beam experiment in 
the delayed-choice version from the laboratory level to the 
cosmological scale as illustrated in fig. 6. 

We get up in the morning and spend the day in medita
tion whether to observe by "which route" or to observe inter
ference between "both routes." When night comes and the 
telescope is at last usable we leave the half-silvered mirror out 
or put it in, according to our choice. The monochromatizing 
filter placed over the telescope makes the counting rate low. 
We may have to wait an hour for the first photon. When it 
triggers a counter, we discover "by which route" it came with 
the one arrangement; or by the other, what the relative phase 
is of the waves associated with the passage of the photon 
from source to receptor "by both routes" — perhaps 50,000 
light years apart as they pass the lensing galaxy G-1. But the 
photon has already passed that galaxy billions of years before 
we made our decision. This is the sense in which, in a loose 
way of speaking, we decide what the photon shall have done 
after it has already done it. In actuality it is wrong to talk of 
the "route" of the photon. For a proper way of speaking we 
recall once more that it makes no sense to talk of the phe
nomenon until it has been brought to a close by an irrever
sible act of amplification: "No elementary phenomenon is a 
phenomenon until it is a registered (observed) phenomenon." 

32 R.J. Weymann, D. Latham, J.R.P. Angel, R.F. Green, J.W. Liebert, D.A. Turnshek, 
D.E. Turnshek and J.A. Tyson, "The triple QSO PGl 115 + 08: another probable 
gravitational lens," Nature 205: pp. 641-643 (1980). 
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Fig. 6. Proposed delayed-choice experiment extending over a cosmological reach 
of space and time. Left, quasar Q recorded at receptor as two quasars by reason of 
the gravitational lens action of the intervening galaxy G-I. Middle, schematic design 
of receptor for delayed-choice experiment: (a) filter to pass only wave lengths in a 
narrow interval, corresponding to a long wave train, suitable for interference ex
periments; (b) lens to focus the two apparent sources onto the acceptor faces of two 
optic fibers; (c) delay loop in one of these fibers of such length, and of such rate of 
change of length with time, as to bring together the waves traveling the two very 
different routes with the same, or close to the same, phase. Right, the choice. Upper 
diagram, nothing is interposed in the path of the two waves at the crossing of the 
optic fibers. Wave 4a goes into counter I, and 4b into counter II. Whichever of 
these photodetectors goes off, that — in a bad way of speaking — signals "by which 
route, a or b, the photon in question traveled from the quasar to the receptor." 
Lower diagram, a half-silvered mirror, '/2S, is interposed as indicated at the crossing 
of the two fibers. Let the delay loop be so adjusted that the two arriving waves have 
the same phase. Then there is never a count in I. All photons are recorded in II. 
This result, again in a misleading phraseology, says that "the photons in question 
come by both routes." However, at the time the choice was made whether to put in 
lZiS or leave it out, the photon in question had already been on its way for billions of 
years. It is not right to attribute to it a route. No elementary phenomenon is a 
phenomenon until it is a registered phenomenon. 
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THE "PAST" IN THE LIGHT OF 

THE DELAYED-CHOICE EXPERIMENT 

To use other language, we are dealing with an elemen
tary act of creation. It reaches into the present from billions 
of years in the past. It is wrong to think of that past as 
"already existing" in all detail. The "past" is theory. The past 
has no existence except as it is recorded in the present. By 
deciding what questions our quantum registering equipment 
shall put in the present we have an undeniable choice in what 
we have the right to say about the past. 

What we call reality consists (fig. 7) of a few iron posts of 
observation between which we fill in by an elaborate papier-
mache construction of imagination and theory.33 

Spacetime in the prequantum dispensation was a great 
record parchment. This sheet, this continuum, this carrier of 
all that is, was and shall be, had its definite structure with its 
curves, waves and ripples; and on this great page every event, 
like a glued down grain of sand, had its determinate place. 
In this frozen picture a far-reaching modification is forced by 
the quantum. What we have the right to say of past spacetime, 
and past events, is decided by choices — of what measure
ments to carry out — made in the near past and now. The 
phenomena called into being by these decisions reach back
ward in time in their consequences as indicated in fig. 8, back 
even to the earliest days of the universe. Registering equip
ment operating in the here and now has an undeniable part 
in bringing about that which appears to have happened. Use
ful as it is under everyday circumstances to say that the world 
exists "out there" independent of us, that view can no longer 
be upheld. There is a strange sense in which this is a "parti
cipatory universe." 

33 In this connection see especially E.H. Gombrich, Art and Illusion: A Study in the 
Psychology of Pictorial Representation (Princeton University Press, Princeton, N.J., 
1961, 2nd edition, revised), pp. 273, 329 and 394. 
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Fig. 7. What we call "reality," symbolized by the letter "R" in the diagram, consists 
of an elaborate papier-mache construction of imagination and theory fitted in 
between a few iron posts of observation. 
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FROM MEASUREMENT TO MEANING 

We cannot speak in these terms without a caution and a 
question. The caution: "Consciousness" has nothing whatso
ever to do with the quantum process. We are dealing with an 
event that makes itself known by an irreversible act of am
plification, by an indelible record,34 an act of registration. 
Does that record subsequently enter into the "consciousness" 
of some person, some animal or some computer? Is that the 
first step in translating the measurement into "meaning" — 
meaning regarded as "the joint product of all the evidence 
that is available to those who communicate"?35 Then that is a 
separate part of the story, important but not to be confused 
with "quantum phenomenon." 

IS THE UNIVERSE CONSTRUCTED OUT OF ELEMENTARY 

PHENOMENA? 

From this caution we turn to the question: If the ele
mentary quantum process is an act of creation, is an act of 
creation of any other kind required to bring into being all 
that is? 

At first sight no question could seem more ridiculous. 
How fantastic the disproportion seems between the micro
scopic scale of the typical quantum phenomenon and the 
gigantic reach of the universe! Disproportion, however, we 
have learned, does not give us the right to dismiss. Else how 
would we have discovered that the heat of the carload of 
molten pig iron goes back for its explanation to the random 
motions of billions of microscopic atoms and the shape of the 
elephant to the message on a microscopic strand of DNA? Is 
the term "big bang" merely a shorthand way to describe the 

54 F.J. Belinfante, Measurements and Time Reversal in Objective Quantum Theory (Oxford 
University Press, Oxford, 1975); terminology "indelible," p. 39. 

3d D. F0llesdal, "Meaning and experience" in S. Guttenplan1 ed., Mind and Language 
(Clarendon Press, Oxford, 1975), pp. 254. F0llesdal's article, the other articles in 
this book and the references they make to the still larger literature of meaning, a 
central topic of philosophy in Britain and America in recent decades, will indicate 
the representative character of this statement. 
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cumulative consequence of billions upon billions of elemen
tary acts of observer-participancy reaching back into the past, 
as symbolized in fig. 8? 

An old legend describes a dialog between Abraham and 
Jehovah. Jehovah chides Abraham, "You would not even 
exist if it were not for me!" "Yes, Lord, that I know," Abraham 
replies, "but also You would not be known if it were not for 
me."36 

In our time the participants in the dialog have changed. 
They are the universe and man. The universe, in the words 
of some who would aspire to speak for it, says, "I am a giant 
machine. I supply the space and time for your existence. 
There was no before before I came into being, and there will 

16 Thanks are expressed here to Professors Lawrence P. Horwitz, Zvi Kurzweil, 
Yuval Ne'eman, Asher Peres, Shmuel Sambursky, Lawrence Schulman and Elie 
Wiesel, each for his part in leading the author to this legend and documenting it, 
as follows: (i) H. Freedman and M. Simon, translators and eds., Midrash Rabbah, 
Genesis I (Soncino Press, London, 1939), p. 238, commentary on "Noah walked 
with God": "The God before whom my fathers Abraham and Isaac did walk, etc. (Genesis 
48:15). R. Berekiah in R. Johanan's name and Resh Lakish gave two illustrations 
of this. R. Johanan said: It was as if a shepherd stood and watched his flocks. Resh 
Lakish said: It was as if a prince walked along while the elders preceded him 
[Footnote: As an escort, to make known his coming. Similarly, Abraham and Isaac 
walked before God, spreading His knowledge]. On R. Johanan's view: We need 
His proximity. On the view of Resh Lakish: He needs us to glorify Him [Footnote: 
By propagating the knowledge of His greatness]." (ii) Ibid, p. 357, commentary 
on, "And he blessed him, and said: blessed be Abram of the God most high, who 
has acquired [Koneh = maker of] heaven and earth" (Genesis 14:19): "From 
whom then did He acquire them? — Said R. Abba: [Acquired is attributive,] as 
one says, So-and-so has [Koneh = in possession of] beautiful eyes and hair. R. 
Isaac said: Abraham used to entertain wayfarers, and after they had eaten he 
would say to them, 'Say a blessing,' 'What shall we say?' they asked. 'Blessed be the 
God of the Universe of Whose bounty we have eaten,' replied he. Then the Holy 
One, blessed be He, said to him: 'My Name was not known among My creatures, 
and thou hast made it known among them: I will regard thee as though thou wast 
associated with Me in the creation of the world'. ..." (iii) Deuteronomy 32:10: 
"He found him [Jacob] in a desert land, and in the waste howling wilderness; he 
led him about, he instructed him, he kept him as the apple of his eye," as com
mented on in Sifrei [analogous to the Midrash of (i) and (ii) but contains in addition 
to the Aggadic or legend of the Midrash the Halakhic or law; ed. in the Holy 
Land before the end of the 4th century A.D.] §313, "he led him about": "This is 
related to Genesis 12:1, 'Get thee out of thy country' . . . .; 'he instructed him': 
. . . before our father Abraham came into this world it seemed as if the Lord, 
Blessed Be He, reigned only in Heaven, since it is said, 'The Lord, God of Heaven, 
which took me from my father's house' (Genesis 24:7). But once Abraham had 
come into the world [= was born], he Abraham [thereby] enthroned Him over 
Heaven and Earth" (translation from the Hebrew by Y. Ne'eman). (iv) Isaiah 43:10: 
"Ye are my witnesses, saith the Lord, and my servant whom I have chosen; that ye 
may know and believe me, and understand that I am he: before me there was no 
God formed, neither shall there be after me." 
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t 
TIME 

BANG 

SPACE 
Fig. 8. Symbolic description how all that "has happened" in the past is influenced 
by choices made in the present as to what to observe. The upper tip of each "leaf" 
stands for the elementary act of registration. The lower end of each leaf stands for 
the beginning of the elementary phenomenon being investigated by the observa
tional means at hand. Is anything else required to make up space and time and all 
their burden of physical content except the information carried in the elementary 
quantum acts thus symbolized? [Details in the original publication.] 
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be no after after I cease to exist. You are an unimportant bit 
of matter located in an unimportant galaxy." 

How shall we reply? Shall we say, "Yes, oh universe, 
without you I would not have been able to come into being. 
Yet you, great system, are made of phenomena; and every 
phenomenon rests on an act of observation. You could never 
even exist without elementary acts of registration such as 
mine"? 

Are elementary quantum phenomena, those untoucha
ble, indivisible acts of creation, indeed the building material 
of all that is? Beyond particles, beyond fields of force, beyond 
geometry, beyond space and time themselves, is the ultimate 
constituent, the still more ethereal act of observer-partici-
pancy? For Dr. Samuel Johnson the stone was real enough 
when he kicked it. The subsequent discovery that the matter 
in that rock is made of positive and negative electric charges 
and more than 99.99 per cent empty space does not diminish 
the pain that it inflicts on one's toe. If the stone is someday 
revealed to be altogether emptiness, "reality" will be none the 
worse for the finding. 

Roland M. Frye, in reminding us37 of Shakespeare and 
of ways of seeing, gives us opportunity to recall those words 
of almost four hundred years ago, 

And as imagination bodies forth 
The form of things unknown, the poet's pen 
Turns them to shapes, and gives to airy nothing 
A local habitation and a name. 

Are billions upon billions of acts of observer-partici-
pancy the foundation of everything? We are about as far as 
we can be today from knowing enough about the deeper 
machinery of the universe to answer this question. Increasing 
knowledge about detail has brought an increasing ignorance 
about plan. The very fact that we can ask such a strange 
question shows how uncertain we are about the deeper foun
dations of the quantum and its ultimate implications. 

" R.M. Frye, "Ways of seeing: unities and disunities in Shakespeare and Elizabethan 
painting," infta, pp.43 ff 
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THE QUANTUM: ITS USES — AND ITS USE 

To encounter the quantum is to feel like an explorer 
from a faraway land who has come for the first time upon an 
automobile. It is obviously meant for use, and an important 
use, but what use? One opens the door, cranks the window 
up and down, flashes the lights on and off, and perhaps even 
turns over the starter, all the time without knowing the central 
point of the thing. The quantum is the automobile. We use 
the quantum in a transistor to control machinery, in a mole
cule to design an anesthetic, in a superconductor to make a 
magnet. Could it be that all the time we have been missing 
the central point, the use of the quantum phenomenon in 
the construction of the universe itself? 

We have turned over the starter. We haven't got the 
engine going. 

 ̂ £|ζ 

1. — Law without law. 

species will never vary, and have remained 
the same since the creation of each species. 

Cliarlcs LYELL [1], writing almost three 
decades before The Origin of Species 

[The astronomer Sir John Frederick William] 
IIerschel says my book 
is ' the law of higgledy-piggledy '. 

Charles DARWIN [2], 18 days after 
the Xovember 24, 1859 publication 
of The Origin of Species 

Are the laws of physics eternal and immutable? or are these laws, like 
species, mutable [3] and of « higgledy-piggledy » origin? 

The, hierarchical speeiation of plant and animal life, we ΠΟΛΎ know, arises 
out of the blind accidents of genetic mutation and natural selection [5, 6]. 
Likewise the gas laws, the pressure-volume-temperature relation for water 
and for other substances, and the laws of thermodynamics take their origin 
in the chaos of molecular collisions. But as for the molecules themselves, the 
particles of which they are made and the fields of force that couple them, 
is it conceivable that they too derive their way of action, their structure and 
even their existence from multitudinous accidents? 

Such questions about the «plan » of physics Ave would hardly raise if we 
had the skeleton of it in hand. But we don't. Now and then we meet a colleague 
in another realm of thought who still thinks physics is in possession of this 
plan. He cites the words of Laplace [7] and reiterates the Laplacean vision 
as he understands it: the laws are definite, the initial co-ordinates and mo
menta are definite, and therefore the future is definite. The Universe is a machine. 
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No, we Iiavo to tell him; that is a cracked paradigm. Quantum mechanics 

allows us to know a co-ordinate, or a momentum, but not both. Of the initial-

value data that LAPLACE needed, the principle of complementarity [8] or 

indeterminacy [9] says half do not and cannot exist. 

You tell me what isn't the plan of physics, our friend rejoins. If you under
stand quantum mechanics so well, why (lon't you tell we what is the plan of 
physics? 

No one knows, we reply. We have clues, clues most of all in the writings 
of Kohr [23-25], but no answer. That he did not propose an answer, not 
philosophize, not go an inch beyond the soundest fullest statement of the in
escapable lessons of quantum mechanics, was his \vay to build a clean pier for 
some later day's bridge to the future. 

What kind of a «plan of physios » do you think BOIIR had in mind, our 
colleague asks. I know Einstein's words [26], « Physics is an attempt to grasp 
reality as it is thought independently of its being observed». I know Bohr's 
reply [28], « Tliese conditions [of measurement] constitute an inherent element 
of any phenomenon to which the term ' physical reality ' can be attached .... 
[This requires] a final renunciation of the classical ideal of causality and a 
radical revision of our attitude towards the problem of physical reality ». But 
if Γ could have asked BOHR, how did he think the Universe came into being, 
and -what is its substance, what would he have said? 

It is too Lite to ask. The plan is up to us to find. 
Tlie Universe can't be Laplacean. It may be higgledy-piggledy. But have 

hope. Surely someday wo will see the necessity of the quantum in its construc
tion. AVould you like a little story along this line? 

Of course! About what? 
About the game of twenty questions. You recall how it goes—one of the 

after-dinner party sent out of the living room, the others agreeing on a word, 
the one fated to be questioner returning and starting his questions. «Is it a 
living object? » «No. » «Is it here on earth? » «Yes. » So the questions go 
from respondent to respondent around the room until at length the word 
emerges: victory if in twenty tries or less; otherwise, defeat. 

Then comes the moment when we are fourth to be sent from the room. 
AVe are. locked out unbelievably long. On finally being readmitted, we find 
a smile on everyone's face, sign of a joke or a plot. We innocently start our 
questions. At first the answers come quickly. Then each question begins to 
take longer in the answering—strange, when the answer itself is only a simple 
«yes» or «no ». At length, feeling hot on the trail, we ask, «Is the word 
'cloud'?» «Yes», comes the reply, and everyone bursts out laughing. 
When we were out of the room, they explain, they had agreed not to agree in 
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advance on any w ord at all. Eaeh one around tlie circle could respond « yes » 

or « no » as he pleased to whatever question we put to him. But however he 

I( iJ)Iied he had to have a word in mind compatible with his own reply—and 

with all the replies that went before. No wonder some of those decisions be

tween « yes » and «110 » proved so hard! 

And the point of your story? 

Compare the game in its two versions itli physics in its two formulations, 

classical and quantum. First, we thought the word already existed «out 

there » as physics once thought that the position and momentum of the electron 

existed «out Ihere », independent of any act of observation. !Second, in ac

tuality the information about the word was brought into being step by step 

through the questions we raised, as the information about the electron is 

brought into being, step by step, by the experiments that the observer chooses 

to make. Third, if we had chosen to ask different questions we would have 

ended up with a different wont—as the experimenter would have ended Up 

with a different story for the doings of the electron if he had measured dif

ferent quantities or the same quantities in a different order. Fourth, whatever 

power we had in bringing the particular word « cloud » into being was partial 

only. A major part of the selection—unknowing selection—lay in the (.yes» 

or « no » replies of the colleagues around the room. Similarly, the experi

menter has some substantial influence on what will happen to the electron 

by the choice of experiments lie will do 011 it; but lie knows there is much un

predictability about what any given one of his measurement» will disclose. 

Fifth, there was a « rule of the game >> that required of every participator that 

his choice of yes or no should be compatible w it h some word. Similarly, there 

is a consistency about the observations made in physics. One person must 

be able to tell another in plain language what he finds and the second person 

must be able to verify the observation. 

Go on! 

That is difficult! Interesting though our comparison is between the world 

of physics and the world of the game, there is an important point of difference. 

Tlie game has few participants and terminates after a few steps. In contrast, 

the making of observations is a continuing process. Moreover, it is extraor

dinarily difficult to state sharply and clearly where the community of observer-

participators begins and where it ends. 

This comparison between the world of quantum observations and the game 

of twenty questions misses much, but it makes the vital central point. In the 

real world of quantum physics, no elementary phenomenon is u ;phenomenon 

until it is an observed phenomenon. In the surprise version of the game no word 

is a word until that word is promoted to reality by the choice of questions asked 

and answ ers given. « Cloud » sitting there waiting to be found as we entered 

the room? Pure delusion! Momentum, p, = 3.4-IO-19 gem s, or position, 

χ = 0.31 -10 8  em, of the electron waiting to be found as we start to probe 

the atom? Pure fantasy! Mana may be going too far when lie suggests [29] 

that «... we are actually bringing about what seems to be liappening to us ». 

However, it is undeniable that each of us, as observer, is also one of the par

ticipators in bringing « reality » into being. 
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To say «no elementary phenomenon is a phenomenon until it is an ob

served phenomenon» is to make no small change in our traditional view that 
something lias « already happened » before we observe it. The word « cloud », 

we mistakenly thought, already existed in the room before we «uncovered » 

it. The photons of the primordial cosmic fireball radiation that enter our tele

scope today, we customarily assume, already had an existence, in the very 
earliest days of the !'inverse, long before life evolved. However, not until 

we eateh a particular one of those photons in a particular state with particular 

parameters, not until Ihe elementary phenomenon is an observed phenomenon, 
do Ave have the right even to call it a phenomenon. This is the sense, the limited 

sense, but the inescapable sense, in which we, here, now, have a part in bringing 

about that which « had already happened » at a time when no observers existed. 

Hut· what about the unbelievably more numerous relict photons that escape 
our telescope? Surely you do not deny them «reality »? 

Of course not; but their «reality» is of a paler and more lheoretic hue. 
The vision of the Universe that is so vhid in our minds is framed by a few 
iron posts of true observation—themselves also resting on theory for their 

meaning—but most of the walls and towers in the vision are of papier-mache, 
plastered in between those posts by an immense labor of imagination and theory, 

in this labor, «... we can never neatly separate what we see from what we 
know... what we call seeing is invariably coloured and shaped by our knowl
edge (or belief) of what we sec» [61]. «Without some initial system, without 

a first guess to -which we can stick unless it is disproved, we could... make 
no '.sense' of the milliards of ambiguous stimuli that reach us from our environ
ment. In order to learn, we must make mistakes ... the simplicity hypothesis 

cannot be learned. It is ... the only condition under which Ave could learn at 
all» [ti2j. «... our mind will still react to the challenge of this conundrum 
[of what we 'see'J by throwing out a random answer, making ready to test 
it in terms of consistent possible worlds. It is these answers that will transform 

the ambiguous stimulus pattern into the image of something 'out there' »[03]. 
Wliat keeps these images of something « out there » from degenerating into 

separate and private universes: one observer, one universe; another observer, 
another universe''. 

That is prevented by the very solidity of those iron posts, the elementary 

acts of observership-partieipancv. That is the importance of Bohr's point 
that no observation is an observation unless we can communicate the results 

of that observation to others in plain language [49]. 

The only thing harder to understand than a law of statistical origin would 

be a law that is not of statistical origin, for then there would be no way for 
it—or its progenitor principles—to come into being. On the other hand, when 
Ave view each of the laws of physics—and no laws are more magnificent in 

scope or better tested—as at bottom statistical in character, then we are at 
last able to forego the idea of a law that endures from everlasting to everlasting. 
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Individual events. Events beyond law. Events so numerous and so unco
ordinated that, flaunting tlieir freedom from formula, they yet fabricate firm 
form. 

«Fabricate form»? Do you suggest that even the 4-dimensional space-
time manifold is only a fabrication, only a theory—irreplaceable convenience 
though that theory is? 

Yes! Compare space-time with cloth. Each it is useful under everyday 
circumstances to call a manifold. Yet each is exactly then most obviously 
not a manifold where it comes to an end, whether in the selvedge made by the 
loom, or in the geodesic terminations made by one of the « gates of time»— 

big bang or big crunch [31, 32] or black hole [33]. Nowhere more clearly than 
in the ending of space-time are we warned that time is not an ultimate category 
in the description of Nature [34], 

Aren't you being extreme? I see the lesson of the game of twenty questions. 
I begin to believe AviDi you that no elementary phenomenon is a phenomenon 

until it is an observed phenomenon. I accept that events of observer-partici-
pancy, as you call them, occupy a special place in the scheme of things. 
I agree that that word « cloud » was brought into being entirely through such 
elementary events. But that such events, however numerous, should be the 
sole blocks for building the laws of physics—and space and time themselves— 
seems to me preposterous. You surely have been involved enough in times 

past with nuts-and-bolts physics to know the difference between science and 
poetry; yet if I appreciate the drift of what you say, you might as well be quoting 
SLUKFNREARF. [35], 

...These our actors, 
As I foretold you, were all spirits and 
Are melted into air, into thin air: 
And, like the; baseless fabric of this vision, 
The cloud-capp'd towers, the gorgeous palaces, 

The solemn temples, the great globe itself, 
Yea, all which it inherit, shall dissolve 
And, like this insubstantial pageant faded, 
Leave not a rack behind. We are such stuff 
As dreams are made on ... 

T can't believe any such dreamlike vision of the physical world. As 
Siiniiicl JOHNSON used to say, I have only to kick a stone to find it real enough. 

Why do you say «preposterous»? Perhaps SHAKESPEARE understood 
this universe of ours better than we do ourselves! You have known for years 
that the atom is more than 99.99 percent emptiness. If matter turns out in 
the end to be altogether ephemeral, what difference can that make in the pain 
you feel when you kick the rock? And how can matter—and space-time—be 
anything but mutable, coming into being at one gate of time and fading out 



1.13 LAW WITHOUT LAW 205 

of existence at the other? No physics before the big bang, or after the big 

crunch? Xo! The lesson of Einstein's standard closed-space cosmology is 
different and stronger. It denies all meaning to such terms as «before the 
big bang and « after the big crunch ». 

Particles or fields or mathematics won't do for ultimate building blocks. 

They can't come into being or fade out of existence [30]. 

Yes, I appreciate the reasons given [36] against believing in any «magic 
particle »> or any « magic field » or [37] any «magic mathematics » as the foun

dation of physics; but isn't it even more difficult to think of acts of observer-
participancv as the magic ingredient? 

Difficult, yes; inconceivable, no. 
Go on! 

Xo, we have to stop here. It is beyond the power of today to fit together 
the pieces of the puzzle. 

Don't stop! You've carried me halfway into an exciting· mystery story. 

You can't leave me without the traditional half-way-point review of the im

portant clues and first try at a working hypothesis. 
Review? A proper review would be impossibly ambitious. And how can 

one advance a working hypothesis that will not be wrong tomorrow and 
ridiculous the day after? 

I appeal to you to go on. You have told me more than once that science 
advances only by making all possible mistakes; that the main thing is to make 
the mistakes as fast as possible—and recognize them. You like to quote the 

motto of that engine inventor, John KKIS: «Start her up and see why she 
don't run ». You point to Einstein's definition of a scientist, «An unscrupulous 
opportunist». If you believe all this, and are a true colleague of mine, you 
must go on. 

You leave no escape! 
Good! 

Then let us agree to go on; but let us replace the comprehensive review of 

clues that you wanted by something more modest. How would it do, for ex
ample, to survey some of the lessons we have learned from the study of time, 
and how those lessons bear on «observer-participancy »? 

I accept, and with many thanks. But first tell me the central point as 
you see it. 

The absolute central point would seem to be this: The Universe had to 
have a way to come into being out of nothingness, with no prior laws, no Swiss 
watch works, no nucleus of crystallization to help it—as on a more modest 
level, we believe, life came into being out of lifeless matter with no prior life 
to guide the process [5, 6, 38]. 

When Ave say «out of nothingness » we do not mean out of the vacuum of 
physics. The vacuum of physics is loaded with geometrical structure and 
vacuum fluctuations and virtual pairs of particles. The Universe is already 
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in existence when we have such a vacuum. No, when we speak of nothing

ness we mean nothingness: neither structure, nor law, nor plan. 
A conception more clearly impossible I never heard! 
Preposterous we have to agree is the idea that everything is produced out 

of nothing—as preposterous, but perhaps also as inescapable, as the view that 

life had its origin in lifeless matter. 
But how? 
«Omnibus ex nihil ducendis suffieit unum», LKIRMZ told us [39]; for pro

ducing everything out of nothing one principle is enough. Of all principles 
that might meet this requirement of Leibniz nothing stands out more strikingly 

in this era of the quantum than the necessity to draw a line between the ob
server-participator and the system under view. Without that demarcation 
it would make no sense to do quantum mechanics, 110 sense to speak of quantum 

theory of measurement, no sense to say that «No elementary phenomenon is 
a phenomenon until it is an observed phenomenon ». The necessity for that 
line of separation is the most mysterious feature of the quantum. We take 
that demarcation as being, if not the central principle, the clue to the central 
principle in constructing out of nothing everything. 

Let me ask if your reasoning couldn't be turned around. You talk of the 
observer-partieipancy of quantum theory as the mechanism for the Universe 
to come into being. If that is a proper way of speaking, would the converse 
not also hold: The strange necessity of the quantum as we see it everywhere 

in the scheme of physics comes from the requirement that—via observer-
participancy—the Universe should have a way to come into being? 

Your point is exciting indeed. If true—and it is attractive—it should provide 
someday a means to derive quantum mechanics from the requirement that the 
LTniverse must have a way to come into being [40]. 

I know that in that empty courtyard many a game cannot be a game until 
a line has been drawn—it does not matter where—to separate one side from 

the other. I know that no Gaussian flux integral can be a flux integral until 
the 2-surface over which it runs—bumpy and rippled though wc make it and 
deform it as we will—has been extended to closure. But how much arbitrariness 
is there in this more ethereal kind of demarcation, the line between « system » 
and << observing device »? 

Much arbitrariness! Bonn stresses [42] that the stick we hold can itself 
be an object of investigation, as when Ave run our fingers over its surface. The 
same stick, when grasped firmly and used to explore something else, becomes 
an extension of the observer or—when vie depersonalize—a part of the meas
uring equipment. As we withdraw the stick from the one role, and recast it 
in the other role, we transpose the line of demarcation from one end of it to 
the other. The distinction between the probed and the probe, so evident at 
this scale of the everyday, is the without-which-nothing of every elementary 
phenomenon, of every « closed » quantum process. 
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Do we possess today any mathematical or legalistic formula for what the 
line, is or where it is to be drawn? 

No. 

Then what is important about this demarcation? 

Existence, yes; position, no. It is the mark of an observation to leave an 
«indelible » record, according to Belxmfamte [43], Wigmek argues that an 

observation is only then an observation when it becomes part of «the con

sciousness of the observer :> [44] and points to « the impressions which the ob
server receives as the basic entities between which quantum mechanics pos

tulates correlations »[45], For Boim the central point is not « consciousness », 
not even an « observer», but an experimental device—grain of silver bromide, 

Geiger counter, retina of the eye—capable of an «irreversible act of ampl,-

fication »[47]. This act brings the measuring process to a « close »[48], Only 
then, he emphasized, is one person able «to describe the result of the meas

urement to another in plain language»[49]. He. adds that «all depar tures 
from common language and ordinary logic are entirely avoided by reserving 
the, word 'phenomenon' solely for reference to unambiguously communicable 
information »[50]. 

I would IiaA C felt very uncomfortable if Bohk had used the term « con
sciousness » in defining the elemental act of observation. I would not have 
known what he meant. However, I am beginning to understand and accept 
the terms lie actually adopts, «brought to a close by an reversible act of 
amplification » and « communicable in plain language ». "What iras his position 
on consciousness? 

We have asked Jorgen KalckaH, who collaborated with Hour in his iast 
months, and lie has kindly replied [51], «During work on the preparation of 
some lecture, to define the phenomenon of consciousness, Bon u used a phrase 
somewhat like this: a behaviour so complex that an adequate account would 
require references to the organism's 'self-awareness'. 1 objected jokingly 

that with this definition lie would soon ha\'e to ascribe a consciousness to the 
highly developed electronic computers. This did not worry Bohk. ' I am 

absolutely prepared', said he, 'to talk of the spiritual life of an electronic 
computer; to state that it is reflecting or that it is in a bad mood.... The 
question whether the machine really feels or ponders, or whether it merely 
looks as though it did, is of course absolutely meaningless'.» 

Other outstanding thinkers have argued otherwise. For them « conscious

ness » makes an unclimbable difference of principle between even the most 
powerful imaginable computer and the brain [52]. 

Do you agree with that argument? 
IIow can we possibly accept such a difference of principle? 
Do Ave not believe that brain function itself will someday be explained en

tirely in terms of physical chemistry and electrochemical potentials? What 
escape is there from the reasoning of von Neumann [53] and Bohr and many 
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active present-dav investigators? When one of the three discoverers of the 
mechanism of superconductivity today gives us, chapter by chapter and verse 
by verse, an entirely cellular account of the mechanism of memory [54-56], 
who can dismiss it? 

When a distinguished computer expert and student of the structure of 
society details, one by one, the distinctions proposed in times past between 

« consciousne.ss » and the computer, and painstakingly analyzes each down to 
nothingness [57], what case can anyone possibly maintain for any distinction 
of principle between the computer and the brain? 

I am Iiappv not to have to delve today into the term «consciousness». 
I find it hard enough to know what to make of «irreversible act of ampli

fication ». Xcver have I heard of an act of amplification that was not charac
terized by an amplification factor, or an equivalent quantity; and never an 
amplification factor that was not a finite number. 

Iietvveen infinity and a finite number there may be a difference of principle; 

but between one finite number and another there is only a difference of degree. 

How big does the grain of silver bromide have to be, or the avalanche of elec
trons in the Geiger counter, before we count the measuring process as brought 

to a close by an irreversible act of amplification? 

According as I specify one or another number as the critical level of ampli
fication. don't I make all the difference between rating or not rating a given 

process as an « elementary phenomenon »? 

According as the closed Gaussian surface encloses a given elementary charge 
or not, we find an unmistakable difference in the surface integral of the electric 
flux. Nevertheless, Ave know enough about the relevant invariance principle 

never to question the correctness of always identifying flux with enclosed charge. 
About «elementary quantum phenomenon » we have not today learned, but 

have a deep obligation someday to learn, enough to display a similar covariance 
with respect to where we draw the line. That is what « complementarity » 
is all about. 

Even if neither you nor I know how to define that line, I like the idea that 
the « game » in the empty courtyard is only then possible when a line is drawn. 
May I question you now about the game itself? How would you describe it 
if forced to commit yourself! 
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From "nothingness ruled out as meaningless,'"06 to the line of distinction that rules it out; 
from this dividing line to "phenomenon"; from one phenomenon to many; from the statistics of 

many to regularity and structure: these considerations lead us at the end to ask if the universe is 
not best conceived as a self-excited circuit107 (Fig. 22.13): Beginning with the big bang, the universe 
expands and cools. After eons of dynamic development it gives rise to observership. Acts of 
observer-participancy — via the mechanism of the delayed-choice experiment — in turn give tangi
ble "reality" to the universe not only now but back to the beginning. To speak of the universe as a 
self-excited circuit is to imply once more a participatory universe. 

Fig. 22.13 The universe viewed as a self-excited circuit. Starting small (thin U at upper right), it grows (loop 

of U) and in time gives rise (upper left) to obsever-participancy — which in turn imparts "tangible reality" 

(cf. the delayed-choice experiment of Fig. 22.9) to even the earliest days of the universe. 

toe, 107 See (he original publication for these rather long references. 
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If the views that we are exploring here are correct, one principle, observer-participancy, suf
fices to build everything. The picture of the participatory universe will flounder, and have to be re
jected, if it cannot account for the building of law; and space-time as part of law; and out of law 
substance. It has no other than a higgledy-piggledy way to build law: out of the statistics of billions 
upon billions of acts of observer-participancy each of which by itself partakes of utter 
randomness. 

Two Tests 

No test of these views looks more like being someday doable, nor more interesting and more 
instructive, than a derivation of the structure of quantum theory from the requirement that 
everything have a way to come into being108 — as the word "cloud" was brought into being in the 
surprise version of the game of twenty questions. No prediction lends itself to a more critical test 
than this, that every law of physics, pushed to the extreme, will be found to be statistical and 
approximate, not mathematically perfect and precise. 

The Challenge of "Law without Law" 

We can ask ourselves if it is not absolutely preposterous to put into a formula anything at first 
sight so vague as law without law and substance without substance. How can we hope to move 
forward with no solid ground at all under our feet? Then we remember that Einstein had to per
form the same miracle. He had to reexpress all of physics in a new language. His curved space 
seemed to take all definite structure away from anything we can call solidity. In the end physics, 
after being moved bodily over onto the new underpinnings, shows itself as clear and useful as ever. 
We have to demand no less here. We have to move the imposing structure of science over onto the 
foundation of elementary acts of observer-participancy.10' No one who has lived through the 
revolutions made in our time by relativity and quantum mechanics — not least through the work 
of Einstein himself — can doubt the power of theoretical physics to grapple with this still greater 
challenge. 

Recent decades have taught us that physics is a magic window. It shows us the illusion that lies 
behind reality—and the reality that lies behind illusion. Its scope is immensely greater than we once 
realized. We are no longer satisfied with insights only into particles, or fields of force, or geometry, or 
even space and time. Today we demand of physics some understanding of existence itself. 

108,109 see the original publication for these rather long references. 
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PREFACE OF PAUL LANGEVIN 

Quantum physics has brought an essential advance to science, the finding that in 
every experiment or measurement there inescapably enters the duality between 
subject and object, the action and reaction of observer and system observed, the 
observer and the measuring apparatus being viewable as one entity. 

The classical view, disregarding the necessarily limited character of our knowl
edge and the retroactive effect of the measurement on the system observed, always 
postulated the possibility of an infinitely precise knowledge of the simultaneous 

values of all the parameters used for the description of the system. Heisenberg, in 
giving concrete significance to his principle of indeterminism, has shown how the 

Originally published as La theorie de Γobservation en mecanique quantique, No. 775 of Actualites 

scientifiques et mdustrielles · Exposes de physique generate, publies sous la direction de Paul Langevin, 

Hermann, Paris (1939). English translations—including a new paragraph by Professor Fritz London— 

done independently by A. Shimony, and by J. A. Wheeler and W. H. Zurek, and by J. McGrath and 

S. McLean McGrath; reconciled in 1982. Copyright 1982 by Princeton University Press. 
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very existence of quanta excludes the possibility of knowing precisely at the same 
time all the quantities which might be the object of our measurement. 

The form in which quantum mechanics is presented today provides an admirable 
translation of this new situation. The wave function it uses to describe the object 
no longer depends solely on the object, as was the case in the classical representa
tion, but, above all, states what the observer knows and what, in consequence, are 
his possibilities for predictions about the evolution of the object. For a given 
object, this function, consequently, is modified in accordance with the information 

possessed by the observer. The introduction of the wave function at the very 
foundation of our representation common-sensibly recognizes what is almost 
ignored by classical physics, that our possiblities for prediction depend, above all, 

on our information. It also expresses quite exactly the fact that certain quantities, 
called noncommutable, cannot be known simultaneously with complete certainty. 
It characterizes the system by a certain number of observable quantities, different 
forms of "maximum knowledge" corresponding to different so-called "pure cases." 

The present work, where the authors expand lectures given by one of them at the 
Sorbonne, demonstrates the precision and clarity with which the formalism of 
quantum theory expresses this representation by the wave function of the informa
tion acquired by the observer, and the manner in which each new measurement 

intervenes to modify this representation. 
The act of observation is analyzed here in a particularly penetrating way. The 

essential character of the new physics emerges with complete clarity in the two 
stages of change of the wave function: by coupling of the system observed with 
the measuring device; and by the intervention of the observer, who becomes aware 
of the result of the measurement and thus determines the new wave function— 
following the observation—by using the new datum to reconstitute his information 
bank. 

This treatise does a valuable service. It brings out the important finding of the 

new physics: how we express our knowledge of the external world. 

AUTHORS' PREFACE 

The majority of introductions to quantum mechanics follow a rather dogmatic 
path from the moment that they reach the statistical interpretation of the theory. 
In general, they are content to show by more or less intuitive considerations how 
the actual measuring devices always introduce an element of indeterminism, as 
this interpretation demands. However, care is rarely taken to verify explicitly that 
the formalism of the theory, applied to that special process which constitutes the 
measurement, truly implies a transition of the system under study to a state of 
affairs less fully determined than before. A certain uneasiness arises. One does not 
see exactly with what right and up to what point one may, in spite of this loss of 
determinism, attribute to the system an appropriate state of its own. Physicists are 
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to some extent sleepwalkers, who try to avoid such issues and are accustomed to 

concentrate on concrete problems. But it is exactly these questions of principle 

which nevertheless interest nonphysicists and all who wish to understand what 

modern physics says about the analysis of the act of observation itself. 

Although these problems have already been the subject of deep discussions (see 

especially von Neumann, 1932), there does not yet exist a treatment both concise 

and simple. This gap we have tried to fill. 

Paris, June 1939 

INTRODUCTION 

It is well known that theoretical physics has been transformed since the beginning 

of the century into an essentially statistical doctrine and that the discovery of 

quanta made this revolution inevitable. 

The principal aim of this study will be the statistical interpretation of the for

malism of quantum theory. Although these questions of interpretation were 

systematized about ten years ago (Heisenberg, 1927; von Neumann, 1927; Dirac, 

1927), one still often meets rather fuzzy ideas about what it means that probabilities 

appear in modern physics. 

According to some, this statistical character shows that our knowledge of laws 

at the atomic level is still incomplete: that there remain to be found some hidden 

parameters, determining those processes which, provisionally, we are content to 

describe in a statistical language. To believe them, one might hope some day to 

recast the theory in a deterministic mold. 

Others would have it understood that the action of the observer is involved. 

They sometimes consider that this would be an action that is causal, but incom

pletely known, because one never knows the exact state of the observer. From this 

circumstance would arise the statistical spread of measurements, the exact results 

of which might be predictable if one could take better account of the intervention 

of the observer. 

It has also been said that the law of causality may be correct but inapplicable 

because there is never any way to reproduce identical conditions. 

The discussion of these questions is not at all a matter of speculation. It is a 

definite problem. To treat it one ought to apply quantum theory to—and thereby 

extract the central features of—the very process of measurement. One can convince 

oneself that statistical distributions, such as are given by quantum mechanics and 

verified by experiment, have such a structure that they cannot be reproduced by 

hidden parameters. It is not, as often claimed, a question of philosophical interpre

tation; quantum mechanics ought to be testably false, if atomic processes in fact 

were deterministic and only incompletely known. It would be necessary to change 

the theory fundamentally and give up some battle-tested results, if one wished to 
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reconstitute it on a deterministic basis. Causality is no longer applicable, it is true; 

but the reason for this fact is not the impossibility, in the last analysis, of repro

ducing identically the conditions of an experiment. The heart of the matter is the 

difficulty of separating the object and the observer. 

Modern physics often advances only by sacrificing some of our traditional 

philosophical convictions. The case of quantum mechanics is especially instructive. 

In all innocence one sought to construct a theory which would contain only 

relations between the "observable" quantities of Bohr's theory, such as the fre

quencies and the intensities of spectral lines. Heisenberg followed this route and 

in this way succeeded in obtaining a formalism which would resolve this problem. 

But, as often happens in theoretical physics, the formalism of the theory, once 

established, carried one further than one expected. It implied more relations than 

its founders had started with, relations between quantities altogether disconnected 

from the original spectroscopy, but themselves also observable (coordinates, 

momenta, etc.). One was led quite naturally in this way to try—after the initial 

shock—to interpret these relations which had been exposed automatically by the 

theory. In this way the discussion of this formalism taught us that the apparent 

philosophical point of departure of the theory, the idea of an observable world, 

totally independent of the observer, was a vacuous idea. Without intending to set 

up a theory of knowledge, although they were guided by a rather questionable 

philosophy, physicists were so to speak trapped in spite of themselves into dis

covering that the formalism of quantum mechanics already implies a well-defined 

theory of the relation between the object and the observer, a relation quite different 

from that implicit in naive realism, which had seemed, until then, one of the 

indispensable foundation stones of every natural science. 

To discuss the process of measurement it is necessary to consider at least two 

systems, the observer and the object. It is therefore necessary to apply the quantum 

theory of the many-body system. This exists at present only in the nonrelativistic 

approximation. We are therefore forced to limit ourselves to this approximation, 

which still neglects all effects of the time delay in the propagation of forces. 

It is not possible to give here a detailed introduction to quantum mechanics. 

We will limit ourselves (§1 and 2) to recalling briefly, and a bit dogmatically, the 

definitions and the laws that we will need. For a more detailed exposition of 

quantum theory see, for example, de Broglie, 1930; Bloch, 1930; Kemble, 1937; 
Dushman, 1938. 

§1. RESUME OF THE PRINCIPLES OF QUANTUM PHYSICS 

In atomic physics the use of statistical concepts came far earlier than wave me

chanics. The first step in this direction was probably made at the moment when one 

described spontaneous radioactive decay by the laws of probability. Of course, 

at the beginning we thought that this was a provisional approach, forced by our 
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ignorance of what is going on inside the nucleus. But when Bohr, obviously guided 

by an analogy with statistical concepts, constructed his model of the atom with 

its spontaneous quantum jumps, and, above all, when Einstein gave his famous 

demonstration of Planck's radiation law on the basis of the idea of spontaneous 

and stimulated transition probabilities (Einstein's A and B coefficients), one already 

had the strong feeling that these probabilities ought to be something basic and 

primordial. In a world of discontinuous phenomena, the appearance of a statistical 

form for the elementary laws would seem almost inescapable. The theory of Bohr, 

although it does not yet furnish a mathematical scheme that is complete and co

herent, has already allowed us to state questions of principle to which quantum 
theory must address itself. In a physics that deals with magnitudes, whose domains 

of variation are not necessarily continuous, one wants to know: 

(1) What are the possible values of a physical quantity; 
(2) With what probabilities are they realized in a given system and under given 

circumstances. 

Quantum mechanics furnishes us with a precise scheme which allows a quantita
tive treatment of questions of this kind. We can summarize it in the following way: 

"The state" of a system—given in classical mechanics at each instant t by the 
2/ values of the variables ί/,(ί). q2it) • • • qf(t), pt(t), ρ2(ή • • • Pfit)—is represented 
in quantum mechanics by a complex function of the / variables ^1, q2 • • • qf and 
of t, the "Schrodinger wave function" 

The evolution of the system in time is governed in classical mechanics by a 
"Hamiltonian function" H(q, p), characteristic of the system in question. This 
function of the coordinates qu q2 . .. qf and of the momenta P1, p2 ... pf, which 
is nothing other than the energy, permits one to write the Hamiltonian equations 
of motion. This is Cssentiallyt the same function H(q, p) which in quantum me
chanics also gives the law of evolution of the ψ that represents the state of the 

system: one forms the operator* H(q, — ihd/dq) by replacing pk in the Hamiltonian 

* In what follows the integrals j dq are always taken over the entire configuration space ιJ1, q2  • • • <J/, 
and ψ* is the complex conjugate of ψ 

t Completed by a term referring to "spin." 
' Here the symbol hjln employed by London and Bauer has been replaced for convenience, and in 

accord with modern practice, by the Dirac notation for the quantum of angular momentum, ft. —Eds. 

Xjziq1, q2...q f; t), 

which is normalized in such a way that* 

(1) 
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by the differential operator — itic/dqk  and qk  by the operation of multiplication by 
qk. Here a certain ambiguity enters in the ordering of factors, because the operations 

qk and Sjdqk are not commutable. It is enough for us to know that there are pre
scriptions which ordinarily suffice to determine uniquely the order of the operators, 
but we will not go into this in detail here. The operator H(q, — ihd/dq), once given, 
allows us to write the equation of evolution :§ 

H(q, — ih8/dq)\p = ih\pd/dt. (2) 

This equation, discovered by Schrodinger, has the important property of leaving in
variant the integral J φφ* dq, which is necessary for our normalization J φφ* dq = 1 

to be possible. Thus φ, once normalized, always retains its normalization. 

\j/(q, t 0) represents a "state" of the system at an instant i0. Here we take this 

term in a sense completely analogous to that which it has in classical mechanics, 

where one says that the data ^1(J0) · · · qf(t0), Piit0) • · · ρf(t0) "represent a state." 

The knowledge of the representative of the state at a given instant is necessary 

and sufficient for an unambiguous calculation, with the aid of the dynamic law, 

of the representative of the state at every subsequent moment. We cannot forgo a 

part of these data without losing the ability to calculate the future. Neither can we 

add to them supplementary data without introducing useless tautologies or con
tradictions of the data already in hand. 

The stationary states of Bohr correspond to special solutions of the Schrodinger 

equation, solutions exactly periodic in time and of the form: 

ιp = exp ( — iEt/h)u{q). (3) 

In consequence of (1) and (2) the "amplitude" u(q) obeys a time-independent 
equation, 

Hu = Eu, (4) 

and the condition of normalization, 

juu*dq = 1. (5) 

The pair of equations (4) and (5) ordinarily does not have a solution for every 
value of E. They present a "proper value" or "eigenvalue" or "characteristic value" 
problem. Only for a "spectrum" of special values E1, E2, E3.. ., possibly also 

5 In accordance with present-day practice we omit the square brackets in which the authors enclose 

the left-hand side of this and subsequent similar equations; and we use on the right-hand side the 
opposite sign of i from that which they use whenever they write the time-evolution operator. —Eds. 
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containing continuous intervals,* can condition (5) be fulfilled. For other values 

of E the linear equation (4) of course also possesses solutions u containing an ar
bitrary factor; but they are not square integrable, ruling out the normalization (5). 

The allowed values, 

E u  E 2 , . . .  E k , . . .  

are called the "eigenvalues" of the operator H. The corresponding solutions u  

are called "eigenfunctions" and designated by corresponding indices, 

M i ,  U 2 ,  •  •  •  U k ,  . . . .  

It was the fundamental idea of Schrodinger to identify the spectrum of eigen
values, Ei, E2,..., which have the dimensions of energy, with the allowed values 
of the energy in Bohr's theory, and the success of this ingenious idea is well known. 

One knows also that the founders of wave mechanics were guided in the begin
ning by the conviction that it was necessary to get rid of discontinuities, or rather 
to derive them from an essentially continuous substructure, from a field theory, 
and thus overturn the basically statistical picture of Bohr and Einstein. But this 
program did not turn out to be realizable. 

The statistical interpretation of quantum mechanics may be considered to be 
a particularly conservative attempt to maintain the picture worked out by Bohr 
and Einstein and to embody it in a coherent theoretical system. 

Now that we know how to interpret the "monochromatic" solutions of the 
wave equation (2) such as 

φ = exp {-iEktft\)uk{q) 

as describing a state of energy Ek, we have to discover the meaning of the most 

general solutions. One can show that if one limits oneself to square integrable 
functions (1), the most general solution of equation (2) is written in the form: 

Ά = Σ ck exp (- iEkt/h)uk(q), (6) 
k 

where the ck are complex constants. 
Born, replying to this question, formulated the foundations of the statistical 

interpretation of quantum theory. He postulated that the quantity |ck|2 gives the 

* In the case of a continuous spectrum condition, (5) has to be imposed on a function u associated 

with a small interval of E of the continuum ("proper differential")· In what follows we will not take 

account of these sophistications, which do not concern questions of principle, and we will write all 
formulas as if there were nothing but discrete spectra. 
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probability of finding the value Ek of the energy when the system in the state (6) 
is subjected to a measurement of energy. 

If we introduce the abbreviation we can write 

(6') 

The coefficients depend only on the time, and, as we can also 
interpret the quantity as the probability of finding the value for the 
energy in the state 

The coefficients may, moreover, be calculated very easily with the help of 
two basic properties of eigenfunctions: 

(1) "Orthogonality": 

(V) 

where 

(2) "Completeness": for an arbitrary square integrable function (that is, 
finite) one has the identity: 

Orthogonality immediately gives the form of the coefficients of the expan-
sion (6'). Multiplying (6') by and integrating, one obtains: (9) 

Completeness guarantees that the series thus defined converges to the function 
Thus, the integral of the square of the absolute value of the difference, 

goes to zero, 

* N o t a customary abbreviation and one possibly confusing to the reader, but well adapted to the 
purpose of the next few sections. —Eds. 
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from which also follows the result 

In other words, the sum of the probabilities of finding the various values of the 
energy is unity. Thus if we ask what is the energy, we can be assured of always 
finding some value. Naturally, it is necessary that things be so if the definitions of 
Born are to make sense. 

Thus we see how, for energy at least, quantum theory answers the two questions 
which show up (first paragraph of §1) in every theory of the discontinuous: 

1. The possible values of the energy are the eigenvalues . . . of the 
operator 

2. The probability of finding the value Ek of the energy in the state represented 
by i// is given by 

(10) 

where uk is the eigenfunction associated with the value Ek of the energy. 
In particular, if by chance this state is represented by an eigenfunction of the 

energy; that is, if 

then equation (10) gives the probabilities 1 for the eigenvalue Ek and 0 for all other 
eigenvalues of the energy. 

In the original theory of Bohr one was occupied above all with the energy. 
However, in our present formalism energy does not play an exceptional part 
except for the time-evolution of the state as represented by its function (equation 
2). If is given at a certain instant, we can also look for statistical predictions for 
an arbitrary physical quantity F(q, p) at that moment. 

The generalization of our definitions for other quantities (as, for example, 
is fully specified as follows. 

We form the operator and define, with the help of the equations 
of the eigenvalue problem, 
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(ID 

the eigenvalues . . of the operator F and the corresponding eigen-
functions . . . . Mathematicians have shown that these eigenfunctions, 
too, under rather general conditions, form a complete system of orthogonal func-
tions; that is, that we have the relations 

(12) 

and that we can expand the function at a given moment in a convergent series 
of these functions 

where 

The generalization of our previous definitions is immediate: 

1. The possible values of the physical quantity F are given by the eigenvalues of 
the operator 

2. The probability for finding the eigenvalue of the quantity for the 
state represented by is given by 

(13) 

In particular, if by chance the state is represented by the eigenfunction of F ; 
that is, if 

one obtains the probability 1 for finding the value of the quantity F and 0 for 
the probability for every other eigenvalue. 

From these definitions immediately follows the mean value of F in the state 

(14) 

This expression can be written in a more convenient form, which allows one to 
calculate immediately the mean value without having to go back to an explicit 
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evaluation of the individual eigenvalues or the expansion of as a series in the 
eigenfunctions One easily checks that 

(14') 

because, as consequence of (11) and (12) this expression lets itself be written as 

§2. VECTOR NOTATION 

Our definitions are now complete. We have only to introduce a slightly more 
convenient notation, that of the language of vectors. 

Vectors. We will say that the function representing the instantaneous state 
of a system, is a "vector" in a space of an infinite number of dimensions, the function 
space of Hilbert. The integral of the product of the two functions and taken 
over all coordinates will be called the "scalar product of 

(1) 

The quantity will be called the square of the length 

of the vector. 
means that the vectors and are "orthogonal." 

The eigenfunctions . of an operator F satisfy the relation (§1, 
equation 12), 

They form therefore a system of orthogonal unit vectors that define an "orthog-
onal coordinate system" with the help of which one can represent any vector 
whatsoever in the form, 

(1)* 

The "components" of the vector are defined by the "projection" 

* Both equations are numbered (1), presumably an oversight. —Eds. 
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of in the direction of the unit vector 
This decomposition into components is quite analogous to the resolution of a 

vector in ordinary space into projections. We can consider the set of as equiva-
lent to the function itself; it is one particular decomposition of the vector 
into orthogonal components. The coefficients 

give an analogous decomposition of the same vector with respect to another 
system of orthogonal axes . . . 

The representation of by itself, that is, the function may be regarded as a 
special case of representation in terms of orthogonal components—specifically, 
the orthogonal system composed of the eigenfunctions of the particular operator 
F = q. The eigenvalue problem for this operator has the form, 

or 

The solutions are the "limiting" or symbolic functions of Dirac, 

Such a function by definition vanishes for but for is so singular that 

In terms of these special eigenfunctions one obtains for the trivial expansion, 

where the 

are the coefficients in the expansion. 
From our general definitions thus follows the particular result, 

(probability to find q in the interval from q to 
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Tensors. In the present picture the typical operator j representing 
a physical quantity, is a tensor; that is, a linear transformation of vectors. Applied 
to a vector it transforms it into another vector, 

It is linear because, for every combination of multiplications and differentiations, 
one always has the distributive relation, 

(2) 

and because, for every constant c, one has 

As it represents a real (noncomplex) physical quantity, it has one more important 
property, 

(3) 

Such an operator is termed "Hermitian." Relation (3) is easily demonstrated by 
an integration by parts that takes account of the facts that every operation of 
differentiation contained in F brings in a factor i, and that F, considered as a 
function of q and , is a real function. 

When we are using foi , a representation in terms of the —that is, when we 
refer the state vector to a system of coordinates . . . , we must also 
decompose the operator F into components referred to the same coordinates. In 
this way F evidently finds itself expressed as the linear transformation brought 
about by the matrix 

(4) 

Thus if one applies this transformation to a vector 

one obtains the kth component of the function 
From (3) immediately follows the relation 

(5) 

of "Hermitian matrices." 
There is a system of coordinates in which the matrix representing the operator 
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F shows an especially simple form. These are the coordinates defined by the 
eigenfunctions - of this operator itself. In terms of them one finds, 

In its "eigen"-basis the matrix F therefore takes a diagonal form and its diagonal 
elements are the eigenvalues of F, 

(6) 

In the system of coordinates used to expand in a series of eigenfunctions 
• of an arbitrary operator F, the Hamiltonian operator H takes the 

form 1 and the Schrodinger equation becomes 

(V) 

the discontinuous form in which Heisenberg, Born, and Jordan found the equations 
of quantum mechanics in the first place. 

Invariants. We use capital letters H, F, etc. for tensors, and Greek letters 
etc. for vectors. We can then suppress indices (or arguments) associated with any 
special decomposition into components and write (7) in an invariant form, inde-
pendent of the system of coordinates, or rather encompassing all possible systems 
(see §1, equation 2), 

Two distinct representations of the same vector for example 
and are related by a linear transformation, 

(8) 

Thus, as one has, 
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For the coefficients one easily finds the relations, 

(9) 

where 
These relations characterize the transformation (8) as a "unitary" transformation. 
Two different representations of the same tensor F, for example 

and , are related, as one easily verifies, by the relations, 

Thus, as one has 

Physically significant numerical values naturally ought to be scalars invariant 
under these unitary transformations. The only scalar invariants that we will meet 
are the "scalar product" of two vectors and 

and the "trace" of a tensor 

Thus, for example, mean value of a physical quantity F in a state is given in 
invariant form by the scalar product 

The other results of the theory can also be expressed in invariant form. We will 
come back to this in §5. 

The scalar product can also be considered as the trace of a special matrix 
defined by 

(10) 

termed the "direct product" of the vectors ' and '. 
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§3. STATISTICS AND OBJECTIVITY 

Already in the classic memoir (Born, 1926) where he proposed foundations for the 

statistical interpretation of quantum mechanics, Born remarked that the proba

bilities which he introduced there must have a strange character, quite different 

from what one normally understands when one speaks of probability. 

This feature he expressed in a form a bit paradoxical: "Although the movements 

of particles are not determined, except by probabilities, these probabilities them

selves evolve according to a causal law." What he understands here by "causal 

law" is a connection between the "states" at different moments, such that a knowl

edge of the initial state at an arbitrary instant uniquely implies a knowledge of 
the state at every subsequent time. A "state," on the other hand, is a well-defined 
collection of data on the system in question at a given moment. 

Naturally, there is no way of predicting a priori whether, in a given domain of 

science, there exist causal laws as so defined, nor what are the necessary and suf

ficient conditions for giving rise to such laws. If one does not end up with unique 

predictions, if one finds oneself forced to be satisfied with probabilities, that may 

be either because our knowledge of the "state" is not yet complete or because 

causality does not hold. But conversely, when one has succeeded in establishing 

causal laws, that is evidently a criterion for deciding that one has attained a com

plete knowledge of the object in question and thus, in some measure, a maximum 

description. 

But the Schrodinger equation has all the features of a causal connection. If the 

ψ function is known at a given moment, it is determined at every subsequent time. 

It therefore seems difficult to believe that this function nevertheless contains a 

statistical collection. At first sight it seems impossible to avoid the following 

dilemma. 

1. One might imagine that the ψ function has the character of the ordinary 

probability function such as one uses, for example, to describe Brownian motion. 

A function of this type contains certain statistical predictions that we can test. 

We then verify which of the possibilities foreseen in the theory is realized in fact 

in a given case. After this observation we are naturally entitled to use, for the 

subsequent predictions, the knowledge thus obtained and to replace our original 

probability function by a function of the same type, but better tuned. Evidently 

this is only possible by virtue of the enrichment of our knowledge, which is always 

partial. Of course we do not claim that the object itself has changed its state as a 

consequence of our observation. All that has changed is the discrepancy between 

our knowledge and the object. In this case the ψ function will therefore represent 

the state of our partial knowledge of the object and not the state of the object 

itself. 

2. Imagine, on the contrary, that the ψ function has an "objective" character, 

as, for example the wave functions of optics. It then claims to represent, in an 

idealized and simplified form, something complete, a maximum picture of the state 
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of the object. But if this is the situation, it seems difficult to understand how 

this φ function implies a statistic. If one checks experimentally predictions that 

can be made from it, and if one observes which of the possible outcomes is 

realized—an outcome predicted by the theory, but only with a certain probabil
ity—by what right can we add this new knowledge to the supposedly complete 
knowledge that we already had? 

Heisenberg found the solution to this dilemma. He emphasized that it is the 

process of measurement itself which introduces the element of indeterminacy in the 
state of the object. 

Thus the statistical feature would not show up except on the occasion of a 

measurement. If the φ function gives us probabilities, it does so only in anticipation 

of an eventual measurement. Thus these are only, so to speak, "potential" proba

bilities which come into force only on the occasion of an actual measurement. 

They do not affect the precision with which the state of the system is currently 
known; thus it is already maximal when the φ function is given. 

Of course it may happen that there is an additional uncertainty in the state of 

the system—that is, in the φ function itself. In this case it is a question of proba

bilities in the ordinary sense of the word. They arise from an incomplete knowl
edge of the state of the object. It is necessary to distinguish clearly between these 

probabilities and the "potential" probabilities furnished by φ functions. 

§4. MIXTURES AND PURE STATES 

That an essential distinction is in question can be seen most clearly by an example. 

I. Let us consider first the case where the system is represented by a wave 
function, 

Φ = Σ 
k 

where U1, u2 • · · uk • · · are, for example, eigenfunctions of the energy. We know 
that the quantity \φk\2 gives us the probability of finding the value Ek of the energy 

when an energy measurement is made on a system in a state φ. 

II. It has often been considered that this case corresponds straightforwardly to 

a virtual ensemble of identical systems in different states possessing respectively 

energies E1, E2 •.. Ek..., each one of them being contained in an ensemble with 
a relative weight pk = \φ^2. 

However, this latter case (II), which will interest us also, is basically different 

from the pure state (I) represented by a single function φ. It is a mixture of several 

distinct pure states, each represented by its wave function* 

(1) (2) («) 
* In what follows the upper indices {φ, φ, ... ψ) always designate distinct pure states. 
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with the respective fractional abundances One easily verifies that case I and case II give two completely different statistical distributions. Of course they are identical for energy, because we have arranged that their statistics should be the same. But let us consider another physical quantity, F for example, not having the same eigenfunctions as energy. In case I the mean value of F takes the form (see §1), (I) (k) while in case II each component gives a contribution of this kind: When this component appears with the probability pk in the mixture, one obtains altogether (II) If in particular we consider the case of a mixture where we find, (IF) Thus, provided that is not by a chance a diagonal matrix (that is, F does not have the same eigenfunctions as H), the two cases I and II are completely different. 
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It is evident that in case II our knowledge of the system is much more restricted 

than in case I. If our knowledge is limited to the statistics of energy—that is, if 
we have only the equations 

Pi =  N2> Pi = \Φ2\2 • • · Pk =  |<K|2— 

we do not know the coefficients ιjtk themselves, but only their absolute values. 

Given that the \pk are normally complex quantities, we can write them in the form 

= Vft exp(iak), 

where the phases ak are still indeterminate. One easily verifies that the difference 

between cases II and I arises from this ignorance about the phases ak. Thus, in 

introducing (1) in the expression Mean1(F), we find 

Mean l (F)  = £ Sfp kP lF k l  exp [i(a, - Cik)] .  

kl  

If we then average over the unknown phases we find that all of the terms with 
k φ I drop out and we get precisely Mean n (F).  

One thus sees that it is necessary to make a careful distinction between: 

I. A pure s tate  described by a single wave function φ that represents, we see, 

something irreducible, the probabilities that it implies being only "potential" 

probabilities; 

II. A mixture,  composed of different pure states 

(1) (2) (n) 
φ, φ ·  ·  ·φ,  

realized with probabilities P 1 ,  p 2  ' ' '  P„ • •  •  •  These latter probabilities are under
stood in the ordinary sense of the word. Naturally, they are all non-negative. 
We suppose them to be normalized: 

Σ Pn = I-
η 

§5. THE STATISTICAL OPERATOR 

It will be useful to introduce here a concise notation to describe statistical 
ensembles in all generality. We will consider a mixture such as we have just defined 
(§4, case II). The mean value of a physical quantity G in this mixture is 

(«) (H) 

Mean(G) =  £  ρ„(φ,  Gij/),  
η  
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or, referred to a concrete coordinate system, 

which can be written 

(1) 

when one introduces a Hermitian matrix P, the statistical matrix, defined by 

(1) 

that is, in some chosen system of coordinates, 

d ' ) 

The case of a pure state is included in these formulas as the special 
case of a mixture where all the pn are zero except for the single one, which is equal to 
unity. Its statistical matrix takes the form 

(2) 

Let us call the statistical matrix for a pure state an elementary matrix (Einzel-
matrix). The matrix P for a general mixture can thus be considered a? a linear 
superposition of "elementary matrices," 

The elementary matrix for a pure state takes an especially simple form in a 
system of coordinates in which the wave function is identical with 
one of the axes. For example, let be equal to Then one has 
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(2') 

Let us now calculate the probability of finding the value of G in the ensemble 
characterized by the statistical matrix P. 

Let us take as axes the eigenfunctions of the operator G. For the pure com-
ponent 

with the index n we have equation 13) 

When this component occurs in the ensemble with the p r o b a b i l i t y o n e has 
altogether 

(=0 
If we make use of the elementary matrix P for the pure state in which 
(see 2'), 

we can express the probability of finding the value ga in the mixture P in the invari-
ant form, 

(II) 

(n) 

In particular, if P = P designates the case of the pure state where an arbitrary 
physical quantity F has the eigenvalue one sees that 
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(III) 

is the probability of finding the value for the pure state in which 
One notes that this expression is completely symmetric between F and G. The 
same expression (III) also gives the probability of finding for the pure state 
in which 

The statistical matrices P therefore present an evident advantage. They permit 
us to express all our definitions so that the very form (I, II, III) already indicates 
the invariant character. 

§6. SOME MATHEMATICAL PROPERTIES OF STATISTICAL MATRICES 

(a) Let us calculate the trace of an arbitrary statistical matrix P, 

In this way we obtain the relation 

(1) 

which expresses in brief form the normalization of probabilities. 
(b) In particular, the elementary statistical matrices P for pure states possess 

the additional property 

(2) 

which results immediately from the definition (§5, equation 2) of these matrices, 

Relation (2) is in any case evident if one recalls the diagonal representation (§5, 
equation 2') of elementary matrices. 

One perceives immediately that the converse is also true. From P2 = P and 
from Trace P = 1 it follows that P is an elementary matrix. Thus when P is 
written in its diagonal form, is likewise diagonal, and implies 
The eigenvalues are therefore zero or unity. From the equation Trace P 
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it follows, finally, that a single one of is equal to unity, and that all the others 
vanish. The relation is therefore necessary and sufficient for the sta-
tistical matrix P to be the matrix for a pure state. 

(c) We have not yet placed any restrictions on the choice of the pure states which 
constitute the mixture. In particular, we have not assumed that they were rep-
resented by orthogonal wave functions (later to be distinguished from one 
another by an index (n) written directly above the But one can show very 
easily that an arbitrary mixture composed of arbitrary pure states can always be 
written in the form of a mixture of orthogonal pure states with non-negative rela-
tive probabilities 

Let us first verify that a matrix P is a semi-definite matrix; that is, that for our 
arbitrary vector >ne always has 

(3) 

Thus the definition (§5, equation 1') of P gives 

an expression which cannot be negative because 
f 

But P is a Hermitian matrix. Therefore, there exists an orthogonal coordinate 
system in which P takes its diagonal form, (4) 

The values of the diagonal e l e m e n t s c a n n o t be negative. Thus, 
again one has in these coordinates 
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which is not possible for an arbitrary vector u n l e s s f o r every p. The 
matrix P therefore can always be written in the form 

(4') 

(P) 

where the P are the elementary matrices for a certain system of orthogonal pure 
s t a t e s T h e 0 are the relative probabilities for these 
states. 

As Trace P = 1, we also have 

and 0 implies 

(d) From this inequality follows another, 

From this equation we conclude that for an arbitrary vector 

(5) 

The matrix P — P2 is therefore likewise semidefinite. 
In particular for a pure state the quantity vanishes (see equation 2). 
Elementary statistical operators like can be considered as "pro-

jectors" or "projection operators." Applied to an arbitrary state vector P 
singles out the projection of this vector in the direction of the vector 

The magnitude of this vector is and its direction is that of the unit vector 
The iteration of the projection produces no further change: 

§7. THE STATISTICAL OPERATOR AND THERMODYNAMICS 

The operator P describes an ensemble of identical systems which are distributed 
in an arbitrary way among the different states. It plays the role analogous to that 
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of a distribution function in ordinary statistical mechanics. Therefore there ought 

to exist a connection between operator P and the macroscopic thermodynamic 

quantities. It will be enough for us to point out briefly the main features of this 

connection without stopping for proofs (see von Neumann, 1927, p. 273). Every
thing is summarized in the definition of entropy, S: 

S = -kN Trace(PlnP), (1) 

where 

k = Boltzmanrts constant 
and 

N = the total number of systems. 

This relation becomes quite plausible when one recalls that in statistical mechanics 
one has 

S= — fc £ (¾ In πα — Nln Ν), 
α 

where n y  is the number of systems in the state a. Therefore if p x  = η JN represents 

the probability for a system to be in the state oc, one has again 

S = -kN Σ PJ^ aPa + In Ν) - IniV 

which is identical with (1) in a system of coordinates in which P is diagonal (§6, 
equation 4). Our definition of entropy is therefore the entirely straightforward 

generalization of the usual definition. One sees immediately that for a pure state 
the entropy thus defined is zero. Thus, if one represents P in diagonal form, the 
entropy becomes 

S = -kN Yd  px  Inpa. 

Every term p3  In px  of the sum vanishes, because in a pure state the pa  are all zero 
except for a single one which is unity. One also sees immediately that the entropy 
of a mixture is always positive. 

To maximize the entropy for a given total energy E is to impose on P the fol

lowing conditions: 

— kN Trace(P InP) -> Max; 

TraceP = 1; 

N Trace(PH) = E. 
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The solution of this extremum problem is represented by the matrix, 

(2) 

where 

The Lagrange factor is determined, as always, by equilibrium with a perfect 
gas; thus, where T is the absolute temperature. 

One thus obtains for the entropy of the most probable distribution, 

and for the energy, 

from which one easily gets all the other thermodynamic quantities, for example 
the free energy 

et cetera. 

§8. THE IRREDUCIBILITY OF THE PURE CASE 

Our definitions would be worthless if pure cases were not characterized by some 
kind of irreducibility. We have to show that it is not possible to represent a pure 
case in the form of a mixture. For this purpose we will show that a statistical 
matrix P, obtained as a mixture of two statistical matrices Q and R, 

(1) 

with 

cannot be an elementary statistical matrix (such that except if 
R — P. Let us calculate 
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where we used the condition oc + β = 1. Thus 

P — P2  = a(Q — Q2) + j8(R -  R2) + otj3{Q -  R)2 .  

We now recall that the matrices Q - Q 2  and R — R2 ,  as well as (Q -  R)2 ,  are 

always semidefinite (§6, equation 5). Therefore it is necessary that all these quan

tities should vanish for P to be an elementary matrix (P = P2). In particular, we 

have (Q — R)2 = 0, from which we conclude 

because the square of a Hermitian matrix cannot vanish unless the original 

matrix vanishes, 

From Q  = R  and from (1) it follows that Q  =  R  =  P .  
Statistical operators thus form an ensemble of a characteristic structure, called 

convex ensemble. Its boundary is formed by the operators for pure cases. No pure 

case can be constructed by linear superposition with positive coefficients—that is, 

by mixture—of two nonidentical pure cases. 

Although the statistical operator P of a pure case cannot be decomposed, one 

might imagine that there perhaps exists some other means to reduce directly the 

corresponding statistics. 

In actuality this problem does not differ from the problem that we have just 

discussed. However, it would perhaps be useful to consider it explicitly. 

Of course we always take as our foundation the statistical distributions as 

predicted by the formalism of the theory and verified by so many experiments. 

Therefore we will not discuss the validity of these statistical predictions. We will 

ask ourselves rather if, once assumed, they might not be represented by mixtures 

of arbitrary form, but belonging to systems that are well defined in the ordinary 

sense of classical mechanics. 

Let us take a concrete example that is as simple as possible, that of the statistical 

description associated with a "spin." Let us consider an atom of angular momen

tum h/2 and let us focus attention on the component of this angular momentum 

in an arbitrary direction. For any given direction there are only two values possible 

for this component of the spin: +h/2 and -h/2. Let us fix in space the axis of a 

system of spherical polar coordinates. Let u+ and w_ be the eigenfunctions asso

ciated with the two possible values for the component along this axis. To be 

concrete, suppose that 

Q = R, 

(ς ̂ iiiAki — Σ 
\ Jt k 

ψ = u + 
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is the wave function of the state in question—that this state is a "pure case." 

Let us now consider, for the same state φ, the component of the spin in another 

direction, oblique to the polar axis and characterized, for example, by the polar 

coordinates 0, φ. The only possible values for the component of the spin in this 

direction are again +h/2 and — h/2. To evaluate the probabilities for finding each 
of these two values it is necessary to represent φ in terms of the two eigenfunctions 

associated with those two possibilities. We will call them u'+ and u'_. A calculation 

gives 

u+ = c + u'+ + C_M'_, 

with 

c+ = ειφί2 cos θ/2, 

c_ = ε~ιφΙ2 sin0/2, 

The squares of the absolute values of the coefficients u'+ and u'_ represent the 

probabilities for finding the one or the other of the two possible components in 

the direction 0, φ; thus, 

p'+ = |c+|2 = cos2 0/2, 

p'_ = |e_|2 = sin2 0/2. 

But, in the same state, the probabilities of the two values for the component along 

the original polar axis are, respectively, 

P +  =  1  

and 

p_ = 0. 

Evidently it is impossible to decompose these statistics into a mixture of defi
nitely oriented spins. In such a mixture it would be necessary that a fraction 
cos2 0/2 of the atoms should have a component h/2 in the direction 0, φ and that 

a fraction sin2 0/2 should have the opposite orientation. This, by itself, would be 

possible. But we ought, in addition, to have 100% of the atoms with the same 

component ft/2 along the direction of the polar axis, and yet a fraction cos2  θ'/2 
along any other direction 0'. That would be a juggling trick rather difficult to 

bring off! 

Evidently it is impossible to arrange a virtual ensemble of oriented atoms that 

meets simultaneously all of these statistical requirements. The mathematics of the 

probability calculations already precludes this possibility. 

We will use the same simple example in section §12 to study in detail how, by 
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his own intervention, the observer succeeds in doing the juggling trick. However, 

to keep the discussion clear, it is first necessary for us to bring out an aspect of 

quantum mechanics which we have not yet mentioned, but which contains 

the very essence of the theory, the feature responsible for the appearance of 

probabilities. 

§9. STATISTICS OF A SYSTEM COMPOSED OF TWO SUBSYSTEMS 

At first sight the mathematical formalism of quantum mechanics seems entirely 
analogous to that of the theories of "classical" physics: a differential equation 
uniquely prescribes the evolution of the wave function φ that describes the state 

of the system. Therefore it seems as though our task, faced with Schrodinger's 

equation, is no different from that of Laplace faced with the equations of Newton. 

The state of a closed system, perhaps the entire universe, is completely determined 

for all time if it is known at a given instant. According to the Schrodinger equation, 

a pure case represented by a φ function remains always a pure case. One does not 

immediately see any occasion for the introduction of probabilities, and our 

statistical definitions might appear in the theory as a foreign structure. 

We will see that that is not the case. It is true that the state of a closed system, 

once given pure, always remains pure. But let us study what happens when one 

puts into contact two systems, both originally in pure states, and afterwards 

separates them. 

Let us therefore consider two systems, I and II, originally separated. Let χ be 

the ensemble of the coordinates of I and y the coordinates of II. Each of the two 

systems is assumed to be in a pure state given by its wave function: 

φ(χ) = Y j  \j/ ku k(x) (system I), 
k 

= Y<l )p vp(y) {system II). 
P 

We have expressed the functions φ and φ as series built on the orthogonal functions 

uk(x) and vp(y). The coefficients φΙί and φρ depend only on time. 

Although the two systems are originally taken to be separated, we can never
theless describe them by a combined wave function Ψ(χ, y), whose evolution is 

governed by a combined Hamiltonian. The fact that the two systems are isolated 

from each other is expressed in the form of the Hamiltonian. It is the sum of two 

terms, each depending only upon the coordinates of one of the two systems; thus, 

H{x, p x, ) · ,  py) = H[(x, px) + Ii1Jiy, Py)-

It is easily verified that the combined wave function Ψ(χ, y), which unites the 

statistics contained in φ(χ) and φ( ν), is the simple product of the two separate 
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wave functions. It obeys the wave equation with Hamiltonian . One has 
therefore before contact 

(1) 

Let us now bring the two systems into contact. That makes it necessary to add 
to H an interaction term, , containing the two sets of variables 
and in a form that is not simply additive. It is evident that the combined 
function for the pair of systems will no longer in general keep the form of a 
product of two functions each depending on a single set of variables. However, it 
naturally can be expanded at each instant as a series of products with 
coefficients that will depend on the instant chosen. Thus, if form 
complete systems of orthogonal functions in their own domains, x and y, the 
products also form an orthogonal system that is complete in the space 
of functions on the domain (x, y) of the ensemble. During or after the contact the 
wave function will be written in every case in the general form, 

(2) 

where the coefficients in the generic case will not have the special form of a 
product, As we are always dealing with a unique wave function evolving in 
accord with a Schrodinger equation, we have for the combined system a constantly 
pure case. Its statistical matrix is an elementary matrix, 

As one pair of indices, k, p, is needed here to characterize a state of the total system, 
the elements of the statistical matrix of this system will evidently depend on two 
pairs of indices, k, p and /, a. 

Let us now focus attention on the system I. What is its statistical matrix? 
Let F be a function solely of the variables of system I and its representation 

in the coordinates The mean or expectation value of F in the state will be 
given by 

Therefore the matrix 
(3a) 
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plays the role of statistical matrix for system I. Similarly one obtains for system II 
the statistical matrix 

(3b) 

and are evidently no longer elementary matrices. We are dealing with 
mixtures. What are their components? And what are the relative probabilities or 
concentrations of these components? 

We note that the are normalized in the space of the indices k, p; thus, 

(p) 

Therefore the magnitude with the components 

is a normalized state vector for system I and represents a pure case. 
We can therefore give to P' the following form, 

(3a) 

where 
(4a) 

(P) 

is the concentration with which the pure case is contained in the mixture I. 
In the same way one has 

(3b') 

where 

is a unit vector, representing a pure case in II; and 
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Pk = Σ W2 (4b) 
σ 

( k )  

is the concentration with which φ is contained in the mixture II. 

While the combined system I + II, which we suppose isolated from the rest 

of the world, is and remains in a pure state, we see that during the interaction 

systems I and II individually transform themselves from pure cases into mixtures. 

This is a rather strange result. In classical mechanics we are not astonished by 

the fact that a maximal knowledge of a composite system implies a maximal knowl

edge of all its parts. We see that this equivalence, which might have been considered 
trivial, does not take place in quantum mechanics. There a maximal knowledge 

of a composite system ordinarily implies only mixtures for the component parts— 
that is, a knowledge that is not maximal. 

The mixtures represented by P1 and Pn naturally cannot express all that it is 
possible to know about the combined system I + II. It is evident that the ele
mentary combination of statistical mixtures for two individual systems cannot by 
itself reproduce a pure case for the combined system. Thus the function Ψ(χ, j·) 
for the combined system contains still other relations, to wit, statistical correlations 

between the components of the two mixtures I and II. 
The fact that the description we obtain for each of the two individual systems 

does not have the character of a pure case warns us that we are renouncing part of 

the knowledge contained in Ψ(χ, y) when we calculate probabilities for each of the 

two individual systems separately. This renunciation expresses itself by the sum
mation over the index ρ in the definition of P1, where we abstract away from what 

might be known about the state ρ of system II and about its connection with 

system I. This loss of knowledge expresses itself by the appearance of probabilities, 

now understood in the ordinary sense of the word, as expression of the fact that 

our knowledge about the combined system is not maximal. 

It is evidently necessary to make a characteristic distinction between two essentially 

different modes of evolution of an individual system, a distinction which has no 

analog in classical mechanics. 

I. Reversible or i iCausaF transformations. These take place when the system is 

isolated. They can be described by the change with time of a ψ function (or of a 

certain number of distinct φ functions when one deals with a mixture). If ^(J0) 

represents a pure case at the instant i0, its evolution can be written in the form 

§10. REVERSIBLE AND IRREVERSIBLE EVOLUTION 

ψ(ή = Τφ{ί0), (1) 

with the operator 
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In the case of a mixture, the time dependence of the statistical operator 

is thus given by the equation 

where is the abbreviation for the matrix One verifies that 

and that It is therefore a unitary transformation that characterizes a causal evolution. It transforms a pure case into a pure case. A unitary transformation, keeping invariant—as it does—the trace of a tensor, does not change the value of the entropy; the quantity Trace (P, In P) stays constant. II. Irreversible transformations, which one might also call "acawsa/." These take place only when the system in question (I) makes physical contact with another system (II). The total system, comprising the two systems > again in this case undergoes a reversible transformation so long as the combined system is isolated. But if we fix our attention on system I, this system will undergo an irreversible transformation. If it was in a pure state before the contact, it will ordinarily be transformed into a mixture. If it was already a mixture, it will be transformed into another mixture, the entropy of which (§7, equation 1) will be increased. Once thus degraded, the system has no chance in and by itself ever to regain its initial degree of determination. We shall see specifically that measurement processes bring about an irreversible transformation of the state of the measured object, such that the initial statistical operator for a pure case is transformed, by interaction with the measuring apparatus, into the mixture, 
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F = Σ W2(«- x "»)' 

the u„ being the eigenfunctions of the quantity measured. The transition from 

P to P' clearly cannot be represented by a unitary transformation. It is associated 

with an increase of the entropy from 0 to — k £ \φ„\2 In \ψ„\2, which cannot come 
η 

about by a unitary transformation. 

The distinction between these two modes of evolution has no analog in classical 

mechanics, where it is always possible to give a maximal description of the state 

of an object by its 2/ coordinates and momenta qu q2 ''' Pf, whatever the inter

actions between systems. 

§11. MEASUREMENT AND OBSERVATION. 

THE ACT OF OBJECTIFICATION 

We are now ready to analyze what happens in the act of measurement. We will 

first outline a protocol for this process and then verify in the following section 

that it describes properly the typical course of a measurement. 

Suppose that we want to measure the quantity F(x, px)  of a system ("the object") 

given to be in the state φ = £ i j jkuk(x) where uk  is an eigenfunction corresponding 
k  

to the value fk  of F. We couple it with an apparatus capable of measuring F. 

Let G(y, p y)  be the coordinate specifying the position of the "needle" of the 

measuring device, and g0 ,  g t  . . .  gp  its eigenvalues, with eigenfunctions v0(y),  

V1Iy)... vf)(}-). The state v0(y) corresponds to the zero of this apparatus. 

Before the coupling we will attribute to the combined system a collective wave 

function of the form, 

Ψ(χ, }') = v 0 ( J') £ i j /kuk(x).  (1) 
k  

This is a pure case for each of the two individual systems. After the interaction the 

wave function will be of a more general character, 

Ψ(*> V) = Σ ^kpUk(X)Vpiy)- (2) 
k , p  

But an arbitrary interaction does not provide a measurement. In order for it to 

do so, it is necessary that it disturb the state of the object as little as possible and in 

addition that it should let one deduce from a gp the corresponding fk. Thus the 

values of the measurement scale gp should be coordinated one-to-one with the 

values fk of the quantity under consideration, so that one can inscribe directly 

onto the gp scale the corresponding values of F. That occurs by replacing the 

index p ( k )  by k. Thus g k  = g P ( k )  will correspond to j k .  
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We will see (§12) that after a measurement of the quantity the wave function 

takes the special form, 

ψ(*> )•') = Σ ΆΛί-Φ/ίΟ')· (2') 

According to the preceding section, this function represents a state of the combined 

system that has for each separate system, object, and apparatus, the character of 

a mixture. According to §9, equation (4), the quantity pk = \ij/k\2 gives the prob
ability of finding the object in the pure state uk with F = fk; and the same quantity 

Pk  = I"Afcl2  also gives the probability of finding the apparatus indication G = g k .  

Moreover, we have a correlation between the two mixtures: specifically, we know 
with certainty that if G = gk, then F = fk. But of course quantum mechanics 

does not allow us to predict which value will actually be found in the measurement. 
The interaction with the apparatus does not put the object into a new pure state. 
Alone, it does not confer on the object a new wave function. On the contrary, it 

actually gives nothing but a statistical mixture: It leads to one mixture for the 
object and one mixture for the apparatus. For either system regarded individually 
there results uncertainty, incomplete knowledge. Yet nothing prevents our re

ducing this uncertainty by further observation. And this is our opportunity. 
So far we have only coupled one apparatus with one object. But a coupling, 

even with a measuring device, is not yet a measurement. A measurement is 
achieved only when the position of the pointer has been observed. It is precisely 
this increase of knowledge, acquired by observation, that gives the observer the 
right to choose among the different components of the mixture predicted by theory, 

to reject those which are not observed, and to attribute thenceforth to the object 
a new wave function, that of the pure case which he has found. 

We note the essential role played by the consciousness of the observer in this 
transition from the mixture to the pure case. Without his eifective intervention, 

one would never obtain a new ψ function. In order to see this point clearly, let us 

consider the ensemble of three systems, (object χ) + (apparatus y) + (observer z), 

as a combined and unique system. We will describe it by a global wave function 

with a form analogous to (2), 

Ψ(χ, y, ζ) = Yj  i//kuk(x)vk(y)wk(z), 
k  

where the wk  represent the different states of the observer. 

"Objectively"—that is, for us who consider as "object" the combined system 
x, y, ζ—the situation seems little changed compared to what we just met when we 
were considering only apparatus and object. We now have three mixtures, one 
for each system, with those statistical correlations between them that are tied to 
a pure case for the combined system. Thus the function Ψ(χ, y, ζ) represents a 

maximal description of the combined "object," consisting of the actual object x, 
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the apparatus y, and the observer z; and nevertheless we do not know in what 

state the object χ is. 

The observer has a completely different impression. For him it is only the object 

χ and the apparatus y that belong to the external world, to what he calls "objec

tivity." By contrast he has with himself relations of a very special character. He 

possesses a characteristic and quite familiar faculty which we can call the "faculty 

of introspection." He can keep track from moment to moment of his own state. 

By virtue of this "immanent knowledge" he attributes to himself the right to 

create his own objectivity—that is, to cut the chain of statistical correlations 

summarized in £ ̂ kuk(x)vk(y)wk(z) by declaring, "I am in the state vvk" or more 
k 

simply, "I see G = gh" or even directly, "F = /t." 

Accordingly, we will label this creative action as "making objective." By it the 

observer establishes his own framework of objectivity and acquires a new piece of 
information about the object in question.* 

Thus it is not a mysterious interaction between the apparatus and the object 

that produces a new φ for the system during the measurement. It is only the con

sciousness of an "I" who can separate himself from the former function Ψ(χ, y, ζ) 

and, by virtue of his observation, set up a new objectivity in attributing to the object 

henceforward a new function ψ(χ) = uk(x). 

Neither is it some ignorance as to the state of the observer that creates quantum 

indeterminacy. On the contrary, in assuming a pure case for the combined system, 

we have implicitly presupposed an equally perfect knowledge of the initial state 

w0(z) of the observer and of the apparatus v0( y), that is, maximal information. 

Moreover, we have assumed that the observer can keep track perfectly of his own 

state. 

Of course there might also be restrictions on the immanent knowledge of the 

observer. But these, if they existed, would in any case have nothing to do with 

quantum indeterminism; they would be additional restrictions of a completely 

different character. Moreover, it is not ordinarily required for a discussion of the 

measuring process that one should have an all-encompassing knowledge of the 

state of the observer; for example, there is little chance of making a big mistake 

if one does not know his age. 

§12. AN EXAMPLE OF MEASUREMENT 

It only remains for us now to verify the protocol for measurement that we have 
just discussed. Let us take as a typical example the determination of the value of 

* This paragraph is new. We have translated it from a typed addition inserted by Professor Fritz 
London in his own copy of the printed book, kindly sent to us October 24, 1980, by Mrs. Fritz 
London.—Eds. 



II. 1 OBSERVATION THEORY 253 

one component of the magnetic moment of an atom by the method of Stern and 

Gerlach. The formulas that we will get can be generalized without difficulty to an 

arbitrary measurement. 

This measurement is made, as is well known, by observing the motion of an 

atom through a nonuniform magnetic field. The field points in the direction along 

which one wants to determine the component of the magnetic moment of the 

atom. The coordinates, y, of the center of gravity of the atom play the role of 

the pointer reading G(y, jiy). The internal coordinates of the atom, relative to the 

center of gravity, serve as object coordinates x. Specifically, we are concerned with 

the component, M = M(x, px), of the magnetic moment in the direction of the 

field. 

Let us write the wave equation for this problem in the form 

{-( i i 2 /2m)A y  + H 0 (x ,  d/dx)  + [M(x, p x ) ,  F(y j]}V(x,  y)  =  HW(x,  y) .  (1) 

Here H0 is the Hamiltonian operator for the field-free atom after one has separated 

off the center-of-gravity variables, — (ft2/2m)Av is the operator of the "apparatus" 
corresponding to the kinetic energy of the center of gravity, (M, F) is the contri
bution arising from the magnetic field F, and M is the operator for the magnetic 
moment of the atom in the direction of the field. 

So long as the field F is constant—that is, so long as it does not depend on the 
coordinates y—the variables χ and y can be separated in equation (1). For the 

different states of the "object" we must deal with the eigenvalue problem, 

(H0 + MF)u k (x)  =  E k U k ( X ) .  (2) 

Let us limit ourselves to the lowest state of the atom, a state which we assume to be 

degenerate, with its components splitting in the field in proportion to the field 
strength F,  

E k  = E 0  + (Ιίμ/ ' j )F .  (3) 

Here μ is the magnetic moment of the atom and k is the magnetic quantum num
ber, k = j, j — 1, j — 2, j — 3 ... — j, where /ft represents the total magnetic 
moment of the atom. When the field is no longer constant, F = F(y), equation (2) 
contains the coordinates y as parameters. Consequently the eigenvalues of (2), 

E k (y )  =  E 0  + 0<,μ/j)F(y), (3a) 

will also depend on these parameters y ;  likewise the eigenfunctions u k (x) ,  which 

will be written more appropriately as uk(x, y). In practical terms the perturbation 
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of the u k  by the nonuniformity of the field is so slight that we can forget this de
pendence of the uk  on the parameter y.  

Let us now develop Ψ(χ, y) in a series in terms of the functions u k {x),* 

ψ(*, >') = Σ v k(t,  y)u k (x),  
k 

and let us introduce this development into the Schrodinger equation (1). After 

multiplication by uk and integration over χ we find for the coefficients vk(t. y) the 

following equations: 

{-(h2/2 m)A y  + E k (y)}v k (y) = iU k (y).  (4) 

They are still of the Schrodinger type but now refer solely to the motion of the 

center of gravity. In a typical such equation, the eigenvalue (3a) of (2), Ek(y), plays 

the role of the potential. Let us now consider an atomic beam and let us develop 

Ek(y) in the neighborhood of this beam, 

E k  = E 0  + Wj)[F 0  + (y,  grad F) + •  •  ·  ] .  

In first approximation the "potential" Ek{y)  varies linearly; thus it behaves like 
the potential of gravity near the earth's surface. Consequently equation (4) is 
nothing other than the equation of free fall. But in it the acceleration is proportional 
to the quantum number k. Thus the acceleration depends on the value of the com
ponent of the magnetic moment in the direction of the field, and can be positive or 
negative. Therefore it is easy to foresee in general terms and without detailed 
calculation the shape of the various trajectories which come from a well-collimated 
and initially monokinetic source and then travel through the nonuniform mag
netic field. A single beam V00 splits into separate beams belonging to different 
values of k. The cross-hatched regions in Figure 1 show where the functions vk  

are appreciably different from zero. 

/ / / / / / / / / / /  / / / / / / / / 1 /  i i n u i j n u m M J IIljfmii i i i i i i  / / / / / / / / / /  minium u 

\ Region of the | 
I field ! 

FIGURE 1. Splitting of the atomic beam in a non-uniform field. 

* This is certainly permissible. The vk( y, t) show up in this development, not as given eigenfunctions, 
but as the still unknown coefficients of the functions uk(x). 
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So far we have been discussing the not-yet-normalized solutions of the auxiliary 
equations (4). A complete solution of the Schrodinger equation (1) will have the 
form 

(5) 

Let 

with 

be the state of the atom before the measurement in the region at the left of the figure, 
where we can still separate off the motion of the center of gravity and where all 
the functions are identical 

The total wave function of object-plus-apparatus before entry into the region of 
the field is 

On the other side of the field region, according to (5) and the principle of continuity, 
it is 

A measurement of the y coordinate of the center of gravity of an atom that has 
crossed the field is equivalent to a determination of k because each differs 
from zero only in a limited region, fixed by k, and because a determination of k is 
equivalent to a knowledge of the component of the magnetic moment parallel to 
F. This is exactly the type of statistical link that we presumed in §11. 

Let us take, for example, an atom of total angular momentum 1, for which k is 
restricted to the values 1,0, — 1. The effect of the measurement shows up in the 
transition of the coefficients of the wave function of the combined system from 

(before the measurement) 

to 
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(after the measurement). 

Before the measurement the statistical matrices and have the form of two 
pure cases, 

and 

The action of the magnetic field transforms them into mixtures, 

and 

Here the components have a one-to-one correspondence, implying the associated 
correlations. For the combined system the transition is a unitary trans-
formation, 

where 

it being understood that 
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§13. INDIVIDUALITY AND PURE CASE 

A measuring arrangement, such as we have just finished describing in the previous 

section, can be used to "filter" through objects possessing a prescribed value of a 

certain physical quantity. It is enough to make a suitable slit through the screen 

on which the atoms fall to transform the Stern-Gerlach apparatus into a source of 

identically oriented atoms. It thus becomes a good set-up for producing pure 

cases. 

Does not this conclusion contradict what we just learned (§11), to the effect that 

a pure case is brought about only by an "act of objectifying," accomplished by the 

appropriate intervention of an observer? It is necessary, however, to be more 

precise: the filter never puts any individual object whatsoever into a new pure 

state. It can only put it into a mixed state. This is what always happens when one 

couples one system with another. By contrast, we can evidently say that the states 

of atoms which have gone through the slit have the desired property. We can 

attribute to them the wave function of the pure case in question. But this attribu

tion only works out, so to speak, at the expense of the individuality of the object, 

as one does not know in advance which are the atoms that have the property in 

question. We can easily attribute to the objects that get through the slit the φ 

function of the pure case, but we cannot say which object, that is, which variable 

is the argument of this φ function. Without a supplementary check by an observer, 

it is not possible to guarantee whether a given atom has gone through the filter 

or been caught in it. The filter alone thus truly produces pure cases, but in an 

absolutely anonymous form. Of course we can attribute to these cases afresh some 

names of their own, for example by numbering in sequence the atoms that really 

get through the slit. But that is no different from a true measurement, and we 

would be led back in that way to what we have already discussed. 

Moreover, anonymous objects are precisely the focus of one's interest in many 

experiments. The majority of the measurements in atomic physics really do not 

deal with an individual system; rather, they seek to find out the general properties 

of an entire species of atoms—or of molecules, or of elementary particles. Thus 

for example the Stern-Gerlach set-up just discussed is ordinarily used, not to 

measure a component of the spin of an individual atom, but rather to determine 

the spin of the silver atom. 

Quantum mechanics, truly a "theory of species," is perfectly adapted to this 

experimental task. But given that every measurement contains a macroscopic 

process, unique and separate, we can hardly escape asking ourselves to what 

extent and within what limits the everyday concept of an individual object is still 

recognizable in quantum mechanics. 
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§14. SCIENTIFIC COMMUNITY AND OBJECTIVITY 

At first sight it would appear that in quantum mechanics the concept of scientific 

objectivity has been strongly shaken. Since the classic period, the idea has become 

familiar that a physical object is something real, existing outside of the observer, 

independent of him, and in particular independent of whether or not the object 

has been subjected to measurement. The situation is not the same in quantum 

mechanics. Far from it being possible to attribute to a system at every instant its 

measurable properties, one cannot even claim that to attribute to it so much as a 

wave function has a well-defined meaning, unless referring explicitly to a definite 

measurement. Moreover, it looks as if the result of a measurement is intimately 

linked to the consciousness of the person making it, and as if quantum mechanics 

thus drives us toward complete solipsism. 

Actually, however, we know that the relations between physicists have under

gone practically no change since the discovery of quantum mechanics. No physi

cist has retired into a solipsistic isolation. Physicists use the same means of 

scientific exchange as in the past and are capable of cooperation in studying the 

same object. Thus there really exists something like a community of scientific 

perception, an agreement on what constitutes the object of the investigation, and 

it is this that still has to be looked into. 

First of all, it is easy to recognize that the act of observation, that is, the coupling 

between the measuring apparatus and the observer (see our example in §11), is 

truly a macroscopic action and not basically quantal. Consequently one always has 

the right to neglect the effect on the apparatus of the "scrutiny" of the observer. 

Tracing things back in time, one will obtain definite conclusions about the state 

of the apparatus (or the photographic plate) and consequently the state of the 

object before the observation (but of course after the coupling is turned off). 

Moreover, nothing prevents another observer from looking at the same apparatus; 

and one can predict that, barring errors, his observations will be the same. The 

possibility of abstracting away from the individuality of the observer and of 

creating a collective scientific perception therefore in no way comes seriously into 
question. 

It might appear that the scientific community thus created is a kind of spiri

tualistic society which studies imaginary phenomena—that the objects of physics 

are phantoms produced by the observer himself. In classical physics, one can 

picture a system at every instant in a unique and continuous way by the set of all 

of its measurable properties, even when it is not subjected to observation. It is 

exactly the possibility of this continuity of connection between properties and 

object that has ordinarily been considered as proof that physics deals with some

thing "real," that is, having in principle an existence "independent of all observers." 

In quantum mechanics an object is the carrier, not of a definite set of measurable 

properties, but only of a set of "potential" probability distributions or statistics 
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(§3) referring to measurable properties, statistics which only come into force on 

the occasion of an effective, well-defined measurement. If one abstracts away 

from all acts of measurement, it is meaningless to claim these measurable prop

erties as realized; the very mathematical form of the statistics does not allow it 

(see §8). 

But that does not keep us from predicting or interpreting experimental results. 

Theory fixes the rules. It teaches us first of all how to filter an object to get a pure 

case—that is, reproducible conditions; then it suggests how to make measure

ments, either to check theoretical predictions or to discover new empirical regu

larities. The theory adapts itself truly marvelously to the realities of experiment. 

It gives answers on all desired details and is silent on hypothetical questions with

out experimental meaning. 

In present physics the concept of "objectivity" is a little more abstract than the 

classical idea of a material object. Is it not a guarantee of "the objectivity" oj an 

object that one can at least formally attribute measurable properties to it in a 

continuous manner even at times when it is not under observation? The answer is 

No, as this new theory shows by its internal consistency and by its impressive 

applications. It is enough, evidently, that the properties of the object should be 

present at the moment they are measured and that they should be predicted by 

theory in agreement with experiment. 

In the limiting case of macroscopic phenomena, quantum theory rejoins classical 

theory. Thus it justifies the use of the "naive" concept of "objectivity" and at the 

same time specifies the limitations of this concept. 

What has just been said relates to an important philosophical problem that we 

cannot enter into here: the determination of the necessary and sufficient conditions 

for an object of thought to possess objectivity and to be an object of science. This 

problem was perhaps posed for the first time in any general way by such mathe

maticians as Malebranche, Leibniz, and especially by B. Bolzano. More recently 

Husserl (1901, 1913; see also the rather similar ideas in Cassirer, 1910, 1936) has 

systematically studied such questions and has thus created a new method of 

investigation called "Phenomenology." 

Physics insofar as it is an empirical science cannot enter into such problems 

in all their generality. It is satisfied to use philosophical concepts sufficient for its 

needs; but on occasion it can recognize that some of the concepts that once served 

it have become quite unnecessary, that they contain elements that are useless and 

even incorrect, actual obstacles to progress. One can doubt the possibility of 

establishing philosophical truths by the methods of physics, but it is surely not 

outside the competence of physicists to demonstrate that certain statements which 

pretend to have a philosophical validity do not. And sometimes these "negative" 

philosophical discoveries by physicists are no less important, no less revolutionary 

for philosophy than the discoveries of recognized philosophers. 
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§1. PROBLEMS RAISED BY QUANTUM THEORY BEFORE THE 
ADVENT OF QUANTUM MECHANICS 

The conceptual problems generated by the generally accepted interpretation of 
quantum mechanics overshadow in philosophical depth those generated by the 
older quantum theory (see for example the collections of basic papers edited by 
ter Haar, 1967, and Kangro, 1972) to such an extent that one is likely to forget 
the latter. Nevertheless, these were very real also, though more concrete and lying 
more within physics proper than those generated by quantum mechanics. 

The idea of the quantum emission and absorption of radiation was conceived 
by M. Planck (1900a,b) in order to explain the finite energy density of the black 

body radiation. Classical electrodynamic theory gave an infinite density for this 
radiation. The energy density per unit frequency, as calculated on the basis of 
this theory, was 

%nv2k.T/c3 

and the integral of this over the frequency ν is clearly infinite. Partly on the basis 

of experimental information, partly on intuition, and partly to maintain con
formance with Wien's displacement law, Planck replaced this by 

8 nhv3/c3 
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and in order to "explain" it, postulated that both emission and absorption of 

radiation occur instantaneously and in finite quanta. It may be worth mentioning 

that, somewhat later, realizing how drastic this assumption was, he modified it 

somewhat, postulating that the absorption is a continuous process. [An account 

of the history of Planck's black body theory and of its influence on the development 

of quantum mechanics can be found in a book by Kuhn (1978) which contains also 

an extensive list of references. —Eds.] 

Bohr's postulate of the quantum condition for the electronic orbits was the 
second building block of pre-quantum-mechanical quantum theory. This also was 

highly successful, explaining the spectrum of atomic hydrogen clearly and also, 

in a qualitative, but only qualitative way, the periodic system and hence some 
basic properties of all atoms (Bohr, 1913a,b,c; 1914; 1915a,b). The latter consid

erations were qualitative and it remains true that, in spite of many efforts, no 

mathematically consistent rules could be formulated specifying the orbits of 
electrons in systems with more than a single electron. In spite of this, the picture, 
analogous to the present Hartree-Fock picture, was quite successful. Nevertheless, 
the absence of mathematically consistent rules on the basis of which the electronic 
orbits, and hence the energy levels, could be determined was greatly disturbing. 
In addition, it was, of course, a mystery how the electron jumps from one precisely 
defined orbit to another. The problems which were most deeply felt were, however, 
different, and were concerned principally with the flow of the conserved quantities, 
such as energy. 

The large cross section of atoms for the absorption of light, which, for instance, 
for the Na resonance radiation is around 10" 9 cm2, was in agreement with classical 

electromagnetic theory but difficult to understand if light consisted of quanta with 
a point-like structure, since the radii of atoms are around 3 χ IO-8 cm. On the 

other hand, the uniform spread of the radiation energy over the area of the light 

beam, as postulated by classical theory, was in apparent contradiction with the 

fact that the emission of the photoelectrons was not delayed by a decrease of the 

intensity of the light beam—not even if the average energy incident on an atom 
on the surface of the electron emitter was less than a thousandth of the energy 
needed to liberate the electron. This did indicate a concentration of the energy 

in point-like quanta, so that the striking of an atom by a quantum could furnish 
the energy needed to liberate the electron. In order to reconcile the two phenomena, 
Bohr, Kramers, and Slater (1924) postulated that the conservation law of energy 

is valid only statistically. However, the experiments of Bothe and Geiger (1924), 
and of Compton and Simon (1952a,b,c), refuted this assumption. 

Another phenomenon which was difficult to explain was the Stern-Gerlach 
effect (Gerlach and Stern, 1921; 1922). A beam of silver atoms is split, by an inhomo-
geneous magnetic field, into two beams, such that the angular momentum of the 
atoms in one of the beams has a definite direction, and that of the atoms in the 
other beam has the opposite direction. Originally, evidently, the angular momenta 
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were randomly oriented. How could they all assume one of two definite directions? 

Surely the final state must depend continuously on the intial state. It was also 
perturbing that the classical picture, developed by Ehrenfest, could not account 
for the transfer of the angular momentum to those atoms whose angular momen
tum included, originally, a considerable angle with both of the two final momentum 
directions (Einstein and Ehrenfest, 1922). 

As the last example of the difficulties, chemical association reactions may be 
mentioned. An illustration is 2N02 ->· N2O4. For such a reaction to take place, 
the two associating molecules must collide with an energy which corresponds to 
one of the energy levels of the compound molecule, N2O4 in the example cited. 

This has a small probability but since the levels of the compound molecule have 
a certain width—this was already recognized before the advent of quantum 

mechanics—it is not entirely impossible. However, the angular momentum of the 

compound is strictly quantized and the probability of a collision with a sharply 
defined angular momentum surely has zero probability. In spite of this, association 
reactions do take place. How this happens was at least as much of a mystery as 
how the electron from one orbit of the hydrogen atom jumps into another, equally 
sharply defined, orbit. An explanation was proposed by Polanyi and Wigner (1925): 

that the angular momentum (as considered from the coordinate system in which 
the total center of mass is at rest) is increased, as a result of the collision, to the 

nearest integer multiple offi—an assumption leading to very nearly correct results 
but surely in contradiction to a basic conservation theorem. 

All the phenomena mentioned were very puzzling—so puzzling indeed that 
many physicists doubted that a rational explanation of quantum phenomena 
would ever be found. It may be worthwhile, therefore, to mention Einstein's 

suggestion for overcoming the paradox mentioned in connection with the photo
electric effect. He believed in the concentration of the energy in quanta and that 
these quanta have structures similar to particles. However, their motion is governed 
by what he called Fuhrungsfeld—that is, "guiding field"—and this obeys the equa
tions of electrodynamics. In this way the existence of interference phenomena 
could be reconciled with the concentration of energy in very small—perhaps 
infinitesimally small—volumes. However, the picture could not be reconciled 
with the conservation laws for energy and momentum, and Einstein firmly believed 
in these. As a result Einstein never published the Filhrungsfeld idea. Schrodinger's 
theory (1926) reconciled the two postulates: his Fiihrungsfeld the Schrodinger 
wave, moved not in ordinary space, but in configuration space and referred not 
to single particles, but to the change of the configuration of the whole system, i.e., 
the motion of all particles. However, his theory was not a pre-quantum-mechanical 
theory but a fascinating reformulation and even reinterpretation of the original 
Heisenberg-Born-Jordan (Heisenberg, 1925; Born and Jordan, 1925; Born, 
Heisenberg, and Jordan, 1926) quantum mechanics which, originally, attempted 
only the calculation of energy levels and transition probabilities. 

It may be useful, at this point, to recall a few dates: 
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1900-(Dec. 14) Μ. Planck announces his quantum theory (Planck, 

1900a,b). 

1905-Einstein proposes his law of the photoelectric effect (actually, 

the Nobel prize was awarded to Einstein for this, not for his 

theory of relativity) (Einstein, 1905). 

1913-N. Bohr's theory of the H atom (Bohr, 1913a,b,c). 

1914 The experiment of Franck and Hertz (1914). 

1916 -Einstein's derivation of Planck's black-body-radiation for

mula (Einstein, 1916a,b; 1917a). 

1921-Stern-Gerlach experiment (Gerlach and Stern, 1921). 
1923-L. de Broglie suggests that matter also has a wave nature (de 

Broglie, 1923a,b,c; 1924a,b,c,d,e; 1925; 1926). 
1925-W. Heisenberg's article which was to form the basis of matrix 

mechanics (Heisenberg, 1925). 
1925-M. Born and P. Jordan establish matrix mechanics (Born and 

Jordan, 1925). 
1926-E. Schrodinger proposes his equations of wave mechanics 

(Schrodinger, 1926, 1930). 
1927-Davisson and Germer verify the wave nature of matter by 

their interference experiment (Davisson and Germer, 1927). 
1927-W. Heisenberg's article "Ober den anschaulichen Inhalt der 

quantentheoretischen Kinematik und Mechanik"—the un

certainty principle (Heisenberg, 1927). 

At first, it was difficult for the community of physicists to accept Planck's 

quantum idea of absorption and emission of radiation. In fact he himself proposed 
a modification of it which, he expected, would make it more palatable: he suggested 
that only the emission process is instantaneous, while the absorption of light is 

a continuous process (Kuhn, 1978). Einstein was the first to accept Planck's 
original idea at face value and his proposal of the law of photoelectric emission 
was a result of this. As to the interpretation of the Schrodinger waves as Fiihrungs-

feld, this became generally accepted as a result of Heisenberg's 1927 paper. This 
paper also convinced most physicists that it is not meaningful to attribute a 
definite orbit, or a definite path, to particles—that the concepts in terms of which 
classical mechanics characterizes the states of a particle are not applicable in the 
microscopic domain. 

Actually, Heisenberg's argument was not entirely rigorous—it was based on 

the analysis of measurements by means of a γ-ray microscope, but the analysis 

was not complete in all details. Nevertheless, the article had a profound influence. 

One can substitute for Heisenberg's y-ray microscope the measurement of position 

by means of a light quantum sent out toward the object at time tlt reflected by it, 

and received at the position of the emission at time t2 (Figure 1). The collision of 

the light quantum with the object occurred at time 
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FIGURE 1. The uncertainty principle, illustrated for the particle, P. The observer, 

O, sends out a pulse of light at tx and receives this pulse, reflected, at t2. The distance 

of the particle is determined to be (t2 - f i)/2, but only with the accuracy of the length 

of the pulse. The momentum of the particles is uncertain to the extent of the kick 

the photon has given to it—i.e., at least ~ hf[ the length of the pulse], 

tcollision 2(^1 ^2) 0) 

and the object's position at that time was 

collision 2^{^2 ^l)' (1<^) 

However, the times ^ and i2 cannot be measured exactly because the light quan
tum's field had to have a finite extension, to be denoted by Δχ. Its frequency, 

hence, was indeterminate to the extent c/Ax, its energy had an uncertainty hc/Ax, 

and its momentum h/Ax. It imparted twice its momentum to the particle; thus 

even if the momentum of this was accurately known before the measurement, 

after the measurement it was uncertain to about Ap = IhjAx. Hence the mea
surement described permitted the determination of the position only with an 
accuracy of the order Δχ « /ι/Δρ—the conclusion arrived at by Heisenberg. The 
point is that the measurement described could be made accurate only if one had a 
light wave of sharply defined frequency which was at the same time accurately 
localized in space. The two requirements cannot be met simultaneously. 

Let us now give a mathematical proof of the uncertainty relation. We will give 
two different proofs, the second one of which is due to H. P. Robertson (1929). 
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We consider a system of units in which 1. Then we have 

(2a) 
with 

(2b) 

Now it will simplify the calculation a bit to set This represents 
no loss of generality as it merely amounts to a change of the integration variable 
as far as x is concerned and a multiplication of by exp to annul the new 
The uncertainties are then defined by 

(3a) 
and 

(3b) 

We want to prove that for every state 

We can restrict ourselves without loss of generality to the case where the two 
uncertainties are equal. This is so because the substitution of 
(the is inserted to k e e p n o r m a l i z e d ) decreases by and increases 
by It does not change but makes it possible to adjust them so that 
and become equal. Hence, we can assume that this is the case and we can set 

(4) 

This is the functional that gives the energy of the harmonic oscillator. It is mini-
mized by (c is the normalization constant, The two 
terms inside the integral of (4) are then indeed equal, and equal to and add to 
unity. Hence we find, in this case, 

(5) 

and, by virtue of the remark before (4), this holds also generally, as we wanted 
to show. 

The second proof goes as follows. One writes 
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(6) 

the star denoting transition to the conjugate complex. Then, because of the 
normalization of we know that 

or 
a + b = 1. (6a) 

Now, by Schwartz's inequality, we have 

(7) 

so (again assuming for simplicity 

(8) 

Next one recognizes by partial integration that 

(9) 
This means that if we set 

(9a) 
we must have, by (6a), 

(9b) 
This result in turn implies 

(10) 

and this together with (7) again proves (5). 
It is worthwhile to remark here that the above "proof" for the uncertainty 

relation is fundamentally different from Heisenberg's. Like equations (3a) and (3b), 
it is based on the statistical interpretation of (nonrelativistic) quantum mechanics. 
Those equations do not refer to the actual ways x and p could be measured—the 
subjects of Heisenberg's article. Thus, they avoid the basic question: how is a 
measurement to be carried out, how do we prepare the object on which the mea-
surement is taking place? They assume that the probabilities of the various out-
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comes of the measurement of χ and ρ are correctly given by the present quantum 

mechanics. The conclusion we obtained is of a statistical nature: There is no state 

of any system such that the results of the measurements of χ and ρ would be pre

dictable with greater accuracies Δχ and Δρ than are indicated by (5). Evidently, the 

verification of this statement requires, first, the repeated production of the same 

state many times so that the statistical distribution of the outcomes of the measure

ments of χ and of ρ can be ascertained. This is in itself a difficult problem; one can 

never be absolutely sure that one has produced the same state of the system. 

At the first preparation somebody may have looked on—can we be sure that this 

did not affect the state of the system produced? Similar remarks apply to the mea
surements. There is also the question: When is the measurement completed? We 

will see that, if we adhere strictly to the principles of quantum mechanics, the 
measurement is completed only when we have observed its outcome, i.e., have read 

the recording of the measuring apparatus. Apparently, this is not a precisely re-

peatable process. Could the fluctuations of the outcome of the measurements of 
χ and ρ come from these sources? Evidently we believe that this is not the case; 

but it would be difficult to explain this belief convincingly to a fully detached 

person. In spite of this, we are all fully convinced of all this and do not believe that 

any refinement of the preparation of the system the χ and ρ of which is to be mea
sured, or any improvement of the measuring technique, would lead to a violation 
of (5). 

Before going into a more detailed discussion of these questions, we will review 

the mathematical structure of quantum mechanics, its description of states, and 
its calculation of the probabilities of the outcomes of measurements. The equations 

used to derive (5) will naturally appear as special cases of the general theory. 

§2. THE MATHEMATICAL FORMALISM OF QUANTUM MECHANICS 

Hilbert Space 

In quantum mechanics, as in classical physics, we postulate the existence of 
isolated systems. In both theories, if a complete description of an isolated system 
is given at one time, a complete description for any other time is uniquely deter
mined as long as the system remains isolated—i.e., is not influenced by any other 
system. In this sense, both theories are deterministic. The means of description 

of the state of the system have, however, undergone drastic changes over the 
course of the history of physics. In the original Newtonian mechanics, the state 

of the system was described by the positions and velocities of its constituents. In 
the later field theories, it was described by the field strengths at all points of 
space—that is, by one or more—in the case of electrodynamics six—functions 
of three real variables, the latter characterizing the points of ordinary space. 
The usual quantum-mechanical description of the state of a system is much more 
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abstract; it is given by a vector (or, more accurately, by a ray) in an abstract 
complex Hilbert space. This vector is usually called the state vector. Since the 
Hilbert space has infinitely many dimensions, this amounts to the specification 
of the state by an infinite set of complex numbers, . . , the components 
of the state vector in Hilbert space, which however, satisfy the condition that 
the sum 

(1) 

is finite. This means that the length of the vectors in Hilbert space is finite. Further-
more, it is postulated that two state vectors which have the same direction, i.e., 
the components of which differ only by a common factor, characterize the same 
state. The set of vectors the components of which differ only by a common factor, 
e.g., the vectors with the components . . . and the vectors 
for any c 0, are said to form a ray. We can choose, therefore, one of these 
vectors to describe the state, and we usually choose one that is normalized, i.e., 
one for which 

(la) 

The different normalized vectors describing the same state differ only by a factor 
co of modulus 1. 

Schrodinger's original formulation of his "wave mechanics" was, of course, 
not in terms of the Hilbert space. Wave mechanics characterized the states of 
systems in terms of complex valued functions, actually functions in configuration 
space. However, if one introduces an orthonormal set of functions 
in any space, 

(2) 

one can expand the wave function of any state in terms of this set. Thus, 

(2a) 
(2b) 

and the numbers an can be considered to be the components of a vector in Hilbert 
space as long as 

(2c) 

is finite—which we assume to be the case for Schrodinger's wave functions. 
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It may be worthwhile to observe at this point that the correspondence between 

functions φ and the corresponding vector a in Hilbert space is not one to one. 

Two functions φ and φ' which differ only on a set of measure 0 (for instance 

only on a denumerable set of points) correspond to the same vector in Hilbert 

space. However, this observation rarely plays an important role in actual 

calculations. 

The most important derivative concept in Hilbert space is that of the scalar 

product. The scalar product of two vectors a and b is defined as 

(a,  b)  =  Yj  a*b„.  (3) 

In terms of the wave functions this is 

{φ,  φ)  = J- · · J φ{χ ι ,  X 2  . .  . )*φ(χ  1 ,  X 2  . .  ̂ dx i  dx 2 · · ·  

= Σ a*bn> (3a) 

the last part of the equation being valid if the a are, according to (2a), the expansion 

coefficients of φ and the b are, similarly, the expansion coefficients of φ. That 

the  sum in  (3)  i s  f in i te  fo l lows  f rom (1),  and the  s imi lar  res tr ict ion fo l lows  for  b,  

by means of Schwartz's inequality. It follows from (3) or (3a) also that 

(a,  b)  =  (b,  a)*,  (3b) 

the star denoting, as before, the conjugate complex. 

If a and b  are normalized according to (la), the absolute square |(a, b)\ 2  of the 

scalar product (a, b) is called, for reasons which will appear soon, the transition 

probability from the state a into the state b—or conversely, because of (3b). 
Otherwise, the transition probability is 

Ifa b)\2 (4) 
{a ,  a ) (b ,  b )  

It may be worth remarking that (a ,  a )  is real and also positive unless a =  0, and 

that the scalar product is linear in the second factor, 

(a,  b  +  pb' )  =  β{α,  b)  +  β'(α  b ' \  (5) 

and antilinear in the first factor, 

(a a + a 'a', b)  =  a *(a, b)  +  a'*(a', b) ,  (5a) 
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where α, α', β, and β' are arbitrary complex numbers. These equations are immediate 

consequences of the definition (3) of the scalar product. 

Linear Operators in Hilbert Space 

An operator in Hilbert space transforms a vector in Hilbert space into another 

(or the same) vector in the same space. One should really write Α(φ) for the vector 

into which the operator A transforms the vector φ, but, at least for linear operators 

A, one writes Αφ instead. An operator A is called linear if for any two vectors φ, 

φ and any two numbers α, β 

Α(αφ + βφ) = οίΑφ + βΑφ (6) 

holds. More generally, one can write 

Λ(Σ α„φη) = Σ αηΑΦη· (6a) 

Hence if we assume that the φη in (6a) form a complete orthonormal set of vectors, 

and if we expand the Aijzn in terms of these vectors, we can write 

Αφη = Σ Αηηφ„. (7) 
m 

Then (6a) gives for the transformation properties of the coefficients a„, 

A
nmam· (7a) 

m 

The operation A acts on the expansion coefficients as the matrix (Anm), the matrix 
elements of which are, because of (7) 

Amn = {φ„, Αφ„). (7b) 

The last two equations are valid if the φ,η form a complete orthonormal set; but 

(6a) is valid as a consequence of (6) for any set of vectors φ„. 

Two special kinds of linear operators play particularly important roles in 

quantum mechanics. The invariance transformations, such as the time-dis
placement transformation, are mediated by unitary transformations U which 
leave the scalar products, and hence the transition probabilities (4), between any 
two vectors unchanged: 

(ϋφ,υφ) = (φ,φ). (8) 

They will play a lesser role in the considerations which follows. The other special 

kind of linear operators of basic significance for what follows are the self-adjoint 
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operators. In order to define them, one first defines the adjoint A t  to an operator A. 
This is  so defined that for any two vectors φ and φ, 

(φ, Αφ) = {Α*φ, φ) (9) 

is valid. One concludes from (9) and (3b) that 

(Αφ, φ) = (φ, A t φ), (9a) 

so that A is the adjoint of A 1  if A t  is the adjoint of A. The matrix elements of 
Af are, as one can infer from (7b), 

(A f ) n m  = A* m n ,  (9b) 

i.e., the matrices of A and A 1  are what we call hermitian adjoints. The second 
type of operators of basic significance can now be defined. They are those which 
are equal to their adjoints, 

A = A t .  (10) 

In the corresponding matrices the matrix elements which lie symmetrically with 
respect to the main diagonal are the conjugate complexes of each other. 

For the sake of accuracy it should be pointed out that the existence of the 
adjoint Af to an arbitrary linear operator is by no means obvious, and requires, if all 

the questions of convergence are to be treated rigorously, a reasonably elaborate 

proof (von Neumann, 1932). Once its existence is established, i.e., once it is shown 
that there is a φ' independent of φ satisfying the equation 

(φ, Αφ) = (φ',φ) (11) 

(φ'  depending only on A and φ), the linear dependence of this φ' = A f φ on φ  is 
easily proved. We have on the one hand, 

(<#! + βφ 2 ,  Αφ) = \_Α\αφ ι  + βφ 2 ),φ],  (12) 

and on the other, 

{αφ 1  + βφ 2 ,  Αφ) = α*(φ ι ,  Αφ) + β*(φ 2 ,Αφ) 

= α*04+Φι,</0 + β*(Α τ φ 2 ,φ) 

=  M V 1  +  β Α ^ φ 2 ,  φ ) .  (12a) 

Hence the right sides of (12) and (12a) are equal and, since this is true for every φ, 
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Α^(αφ ι  + βφ2) = αΑ ίφ1  + βΑ^φ2, (12b) 

i.e., A f  is linear. 

Normal Form of Self-Adjoint Operators 

Except for the proof of the existence of the hermitian adjoint A\ the preceding 

discussion is straightforward and easy. This is not the case for the following 

discussion, particularly not if the concept of the operator is extended so that it 

encompasses also unbounded operators. The following discussion gives only the 

results. The detailed proofs can be found, for instance, in the book of J. von 

Neumann (1932) or in the book of G. R. Mackey (1963). 

Let us consider first bounded self-adjoint operators, i.e., operators such that 

{Αφ, Αφ) has an upper limit. The usual procedure to obtain the normal form is 

to look for the characteristic vectors φ ν  of A 

Αφ ν  = λ νφ ν. (13) 

One easily sees that the characteristic values λ ν  have to be real and the charac
teristic vectors ψν, which are solutions for different λν, are orthogonal. We assume 

that they are also normalized, i.e., that (φν, t//v) = 1. If the characteristic vectors 

φν form a complete orthonormal set, we say that A has only a point spectrum, 

this consisting of the λ ν. The effect of A on an arbitrary vector φ 

Φ = Σ (Άν,  Φ)Φν ( 1 4 )  

is then, because of its linear character, 

Αφ = AY j  ( i/Iv, φ) φ ν  = Σ (φ ν, Φ)Αφ ν  

= Σ φ)λ νφ ν. (14a) 

The measurement theory then postulates that the measurement of A on a 

system in the state φ gives one of the values λ and that it gives the value λν with 

the probability 

Pv = \(Φν,  Φ)I2· (15) 

It is assumed here that φ and the φ ν  are normalized, 

{φ, φ) = {φ ν >  φ ν) = 1. (15a) 

It is also reasonable to assume that the system which was originally in the state 

φ is, after the measurement—if the result of that is —in the state φν. Naturally 

it would be good to justify this postulate of measurement theory by means of 
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the equations of motion of quantum mechanics—that is, to decribe the mea-
surement process. Such an analysis would have to treat in quantum-mechanical 
language the apparatus used for the measurement of A. We will discuss later the 
extent to which this has so far proved to be possible, and the examples which 
show that for certain A it is impossible. 

The preceding remarks apply to a self-adjoint operator which has a point 
spectrum only. One can well say that most operators do not have such a spectrum. 
A self-adjoint operator may have a continuous spectrum also—or only a con-
tinuous spectrum. In other words the solutions of (13)—with a finite length 
so that (15a) can be made valid—may not form a complete set. In fact, there 
may be no such solution at all; that is, there may be no vector in Hilbert space 
which satisfies (13) for some . In the general case the preceding equations have 
to be replaced by much more complicated ones. In order to illustrate this point, 
it is helpful to rewrite (14) and (15) somewhat by decomposing A into projection 
operators A projection operator is defined by 

(16) 

It then follows from (14) that 

(17) 
and from (14a), 

(17a) 

One easily verifies that the are self-adjoint, identical with their squares, and 
more generally satisfy the equations, 

(17b) 
In fact, 

(17c) 

The expression for the transition probability into -which is also the prob-
ability that the outcome of the measurement of A on will be becomes, in 
terms of 

(18) 

One can also write this in the form 

(18a) 
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as, because of the self-adjoint nature of Pv and (17), 

( Ρ ν φ ,  Ρ ν φ )  =  ( φ ,  Ρ ξ φ )  =  ( φ ,  P M  (18b) 

The derivation so far has supposed that A  has only a discrete spectrum, a condition 

for the validity of equations (17). 

We now proceed to the more general case that A  may also have a continuous 

spectrum. In this case one has to admit that the measurement will not yield a 

mathematically precise value—no one asks whether the outcome of this measure
ment is a rational or irrational number. It is more reasonable to ask, for instance, 
whether the outcome is smaller than a number A. The probability for a "yes" 

answer to this question can be written, in the case of a discrete spectrum, as 

p(A) = [ φ ,  Ρ ( λ ) φ ]. (19) 

Here 

P(A)= Σ iV (19a) 
λ ν <  λ  

It then follows from (18) that the probability for an outcome of the measurement 

between A' and A > A' is 

ρ ( λ )  -  ρ ( λ ' )  =  { φ ,  [P(A) - Ρ ( λ ' ) ] φ } .  (20) 

It follows from the theory of self-adjoint operators in Hilbert space that the 

operators Ρ(λ) can also be defined if the spectrum is not exclusively discrete. In 

other words, the Ρ(λ) can be defined for every self-adjoint operator, for any real A. 

One clearly has 

Ρ ( λ )  -> 0 for A-> — GO; (21a) 

and the analogs of (17) and (17b) are 

P(A) -> 1 for A -» GO (21b) 

and 

P(A)P(Ai) = P(A')P(A) = P(A') for A' < A. (21c) 

These equations, of course, do not determine the P(A) since they do not involve A.  
In order fully to define the P(A), one has to write the analog of (17a). This becomes, 
in the general case, a somewhat complicated expression—a limit of a sum with 
increasingly many terms. One has to form series of increasingly many A values 
which cover the real line with increasing density. If the density is 1/N, one has the 
series 
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GO N  

A =  Y j  Σ  ( η  +  w/N)[P(n + m / N )  —  P ( n  +  ( m  —  1)/N)], (22) 

and this is valid in the limit N  = oo. Naturally, this is a special form for A  in 
which the distance between successive λ values is uniformly 1/7V. There are infi
nitely many other ways to increase the density of the λ. The mathematician writes a 

Stieltjes integral for (22) and, in fact, (22) is the definition of the Stieltjes integral. 

The expression for A is written in the elementary form (22) because it does not 

presuppose familiarity with that integral. The point is that (22), together with the 

equations (21), fully defines the λ and hence determines the mathematical expression 

( 2 0 )  f o r  t h e  p r o b a b i l i t y  o f  t h e  o u t c o m e  o f  t h e  m e a s u r e m e n t  o f  A  l y i n g  b e t w e e n  X  

and λ .  

A few remarks are needed to complete the discussion. First, the possibility of 

finding a mathematical expression for the outcome of the measurement of an 

operator obviously does not guarantee the possibility of such a measurement. 

Second, the theory postulates measurements corresponding to operators, not to 

classical quantities. Originally, the attempt was made to define operators to cor
respond to classical quantities. The present theory does not strive for such a 
coordinat ion.  Thus,  one does  not  try  to  choose ,  for  instance,  between (px 2  + x 2 p) /2  

and xpx as operators to correspond to the classical quantity, "product of the 
square of the coordinate and first power of the momentum." Instead, one asks 
if an experimental device can be constructed that will realize a measurement of the 
operator  (px 2  + x 2 p) /2 and whether another can be  bui l t  that  wi l l  measure xpx .  

On the mathematical side: if is bounded, F(A) remains 0 up to the lower bound 
of A and becomes 1 at the upper bound. Hence that part of the sum in (22) vanishes 
for which η + m/N is below the lower bound; and so does that which is above the 

upper bound. However, and this theorem is due to von Neumann (1932), the pre
ceding equations as written are valid also for general self-adjoint operators, not 
only for bounded ones. It is worthwhile, nevertheless, to add a few words relating 
to the former, since most common operators are not bounded. There are vectors 
in Hilbert space to which an unbounded operator cannot be applied. Both multi
plication by χ and id/dx are unbounded operators. For instance, multiplication 

of  the  state  vector  l/( i  +  x)  by  χ  does  not  produce  a  state  vector,  s ince  φ { χ )  =  

x/(i + x) is not square integrable; for it the expression (2c) is infinite. For an 

unbounded operator it is postulated only that there be an everywhere dense set of 

vectors to which it can be applied—i.e., that in the neighborhood of any chosen 
vector there be vectors arbitrarily close to it to which the operator can be applied. 
In the case of 1/(/ + x) such vectors are, for instance β~εχ2/(ί H- χ) with decreasing 

values of ε. In fact, the square of the difference vector, 

d x .  (23) 
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goes to zero as ε goes to zero. Moreover, multiplication with χ leaves β~εχ2/{ί + χ) 

within the Hilbert space no matter how small ε is, as long as it remains positive. 

It is remarkable that the probability of the outcome of measurements, given by 

(20), is well defined even for unbounded operators, even in the case of state vectors 

φ to which the unbounded operator cannot be applied. The intrinsic reason for 

this is that the measurement hardly refers to the operator and its spectrum—what 

it really purports to define is the transition probability into the state [P(A) — 

Ρ(λ')]φ if the original state was φ. The projection operators P(X) could be given 

other labels, such as λ/(λ2 + 1)1/2, and the measurement would still be the same, 

only its outcome would be called differently. To repeat, however, all this is theory, 

and there is no mathematical guarantee that even a transition probability into an 

arbitrary state can be measured. In order to guarantee the possibility of such a 

measurement one would have to describe a way to do it. The mathematical theory 

of the measurement, as formulated first by von Neumann but now generally 

accepted, ingenious as it is, does not do that. 

It may be worthwhile to observe, nevertheless, that the self-adjoint nature of an 

unbounded operator imposes rather rigorous criteria. First, the operator and its 

adjoint must give the same vector if applied to a vector which lies in the inter

section of the domains of definition of the two operators. Second, the two domains 

of definition must be identical (von Neumann called them hypermaximal). For

tunately, this criterion apparently plays no practical role in the theory. 

§3. DIRECT PRODUCT AND QUANTUM MECHANICAL DESCRIPTION OF 

THE MEASURING PROCESS 

The Direct Product of Hilbert Spaces 

Starting from two Hilbert spaces, one can construct a single larger Hilbert space, 

a sort of union of the two. If the axes of the first Hilbert space are specified by 

Greek indices v, and of the second by Latin indices such as n, then the axes of 

the direct product are specified by a double index, such as vn. Thus vn specifies 

a single axis of the Hilbert space which is the direct product of the original two 

Hilbert spaces. The number of axes vn is still denumerable even though it appears 

to be greater than the number of axes of the factors: one can order pairs of ordered 

numbers into a single series such as 11; 12, 21; 13, 22, 31; 14, 23, and so on. The 

components Ψν„ of a vector Ψ in the space of the direct product have two indices, 

and the scalar product of two vectors Ψ and Φ in that space is 

(Ψ,Φ) = ΣΨ*Φν„. (24) 
Vti 

The Hilbert space which is the direct product of two Hilbert spaces H1 and H2 is 

usually denoted by H1 (x) H2. 
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One also defines the direct product of two vectors, one of which, is in 
and the other, in This direct product, denoted by is in the space 

Its vn component is 

(25) 

The direct product is linear in its two factors. Thus 

(25a) 

and a similar equation applies if is replaced by . In order to verify 
(25a), one compares the vn components of the two sides. These are 
and and the two are equal. 

The square length of 

(25a) 

and is the product of the squares of the lengths of the two factors and The 
scalar product of two direct product vectors in the new Hilbert 
space becomes, similarly, 

(25b) 

that is, the product of the scalar products of the two factors. 
It is important to remark, finally, that the direct product of two factors and 

is the same vector in the new Hilbert space no matter which coordinate systems 
are used for its definition in (25). If the unit vectors in the direction of the coordi-
nate axes used in (25) for the two Hilbert s p a c e s a n d are denoted by ev 

and the vn component of is, by (25), 

(26) 

This equation remains valid for any other choice of the coordinate axes in the 
original Hilbert spaces. One can verify this statement by explicit calculation. It 
follows from (26) that 

(26a) 
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Hence, the component of the state vector in the new β' μ  ® f'm  direction becomes 

K ® f'm, Φ ® Φ) = Σ ( β ν ,  Φ)(/η, Ψ){β' μ  ® f'm,  ̂  ® fn) 
VM 

= Σ (βν, <£)(/„, Ψ){ε'μ, e v)(fm, fn) ·  (2 6 b) 
νη 

But we have the equality, 

Σ (e^ ev)(ev, φ) = Σ ((eV, Ον> φ) = φ); (26c) 
V V 

and a similar equation applies for the /. Therefore, we have verified explicitly that 

« ,  ® Γ „ , Φ ® Φ )  =  Κ ,  Φ Κ / m .  Ά ) ·  ( 2 6 d )  

This result proves that the equation (25) defining the direct product of the two 

vectors is independent of the coordinate systems used in the original Hilbert 
spaces. 

The direct product of two Hilbert spaces, and the direct product of vectors in 

them, is introduced in order to describe the joining of two systems into a single 

system. This is important if one wants to describe the interaction of two systems 

which were originally separated—in our case the interaction between the mea
suring apparatus and the system on which the measurement is undertaken. If it 
is possible to describe the two systems in separate Hilbert spaces, their union can 

indeed be most easily characterized in the direct product of these Hilbert spaces. 
In this "product space" the state vector of the union is the direct product of the 
state vectors of the components. Indeed, if one wants to calculate the probability 
that the first system is in state φ' and the second is in state φ' when their actual 

state vectors are φ and φ, one obtains by (25b), 

1(0' ® Φ ' , Φ ®  φ ) \ 2  =  I (Φ', Φ)\ 2\(Φ', Φ)\ 2,  (27) 

which is the product of the transition probabilities from φ into φ' and from φ into 

φ'. Since the two system are assumed to be independent, this is the expected 
result. 

Direct Products of Operators 

In order to obtain the more general expressions corresponding to (18), etc. for 

the joint system, it is useful to introduce the concept of the direct product of two 

operators A and B, acting in the two original Hilbert spaces H1 and Zi2. The action 

of A is described by the equation 
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(28a) 

that of B by 
(28b) 

Their direct product, to be denoted by B, will then transform with the 
components into , the components of which are 

(28) 

This is the definition of A B. Clearly, if is a direct product, 
The action of B on this will give 

(29) 

the direct product of the results of the actions of A and of B in their respective 
Hilbert spaces. 

The concept of the direct product of two operators enables us to generalize 
the expression for the transition probability (27) as the similar expression (15) for a 
single system was generalized, first in (18) for the case of a discrete spectrum, and 
then in (19) and (20) to the case where a continuous spectrum may also be present. 
First, if both operators A and B, to be measured on the two systems, have only a 
discrete spectrum, then let us denote the projection operators which correspond 
to the characteristic values of A and of B with and respectively. The 
probability that the outcome is for the measurement of A on ' is then 
The probability that the outcome is for the measurement of B on 
The probability that the two outcomes on the joint system be and is then 
given by 

(30) 

as follows from (29). We conclude that is the projection operator for the 
outcome of A and of B. Similarly, we can generalize (19): the probability for 
A giving a result smaller than and B giving a result smaller than I is 

(31) 

Here , is defined for operator A as in (19a) and Q(l) is defined similarly for B. 
Equation (31) is valid even when there is a continuous spectrum. The formula for 
the probability that the outcomes will fall in the intervals and /, I', respectively, 
is obtained equally easily as 
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[ρ{λ', Γ) - ρ(λ, /')] - [ρ(λ', 1) - ρ(λ, I j] 

= (Φ (X) φ, \_Ρ(λ') - Ρ(Λ)][β(/') - 2(/)1(/) (X) ψ), (32) 

in generalization of (20). The first two terms provide the probability that B will fall 

below Γ and A between λ and λ'. The square bracket gives the probability for the 

same interval of A and that B will fall below I. Hence (32), the difference between 

the two, gives the probability that A will fall between λ and λ' and B between I and 

The right side is a symmetric expression for this probability. Actually, these 

formulae are given only for the sake of completeness; they will not be used. The 

same applies to the general formula, 

(Α (χ) B)(A' ® B') = (AA' (x) BB'). (33) 

It is worth remembering, though, that the projection operator in the direct 

product space for the probability of the outcome av for A without specification of 

the outcome for any measurement on the second system is Pv ® 1; and conversely, 

it is 1 (χ) Qn for the outcome b„ of B as measured on the second system if no measure

ment on the first system is undertaken. This concludes our mathematical dis

cussion of the direct product concept. 

It should be admitted, however, that the exclusion principle's requirement of 

the antisymmetrization of the state vector puts a certain restriction on the postu

late that the states of the two noninteracting systems be described in separate 

Hilbert spaces. As a result of the antisymmetrization, this separation is not actually 

directly possible. A similar remark applies for particles obeying Bose statistics 

and demanding a symmetrized state vector. It does not seem, though, that this 

restriction is truly relevant in the case to be considered: the two Hilbert spaces 

may describe not the two different objects but the conditions in two distinct parts 

of space, in our case that of the object and that of the apparatus. It seems that field 

theories might not encounter this difficulty, but since actually no one seems to 

believe that a more precise discussion, taking the symmetric or antisymmetric 

nature of the Schrodinger wave functions into account, would alter any of the 

conclusions, such a prdfcise discussion of this point does not appear in the literature. 

It may be true that it would be good to provide such a discussion for the sake of 

accuracy. 

The Quantum Mechanical Description of Measurement 

The concept of the direct product greatly facilitates the quantum mechanical 

description of the measurement process. This consists of a temporary interaction 

between the object on which the measurement is undertaken and the apparatus 

which performs the measurement. Let us consider, first, a measurement on an 

object which is in a state for which the outcome is surely determined—i.e., a state, 

the state vector σκ of which is a characteristic vector of the quantity to be measured. 
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If we denote the initial state vector of the apparatus by a 0 ,  then the initial state 

of apparatus plus object is a0 ® σκ. After the measurement, the apparatus has 

assumed a state which shows the outcome of the measurement; we denote its 

state vector by aK. Hence, if the object did not change its state as a result of the 

measurement—this assumption will be discussed further later—the interaction 

between apparatus and object transforms a0 ® σκ into 

and this is assumed to be valid for all κ. Thus, the art of measuring the quantity with 

the characteristic vectors σκ consists in producing an apparatus the interaction 

of which with the object has the result indicated by (34). 

It now follows from the linear nature of the quantum-mechanical equations of 

motion that if the initial state of the object is a linear combination of the σκ, say 

Σ ακσκ, the final state of object plus apparatus will be given by 

The second member of (35) follows from the linearity of the direct product in 

terms of its factors, an immediate consequence of (25); the last member, from the 

linear nature of the time-development operator. 

Do the processes postulated in (34) and (35) fully describe the measurement? 

In the case of (34) this is true: the apparatus assumes a definite state which indicates 

the state of the object. In the general case, described by (35), this is not the case: 

the apparatus is not, with the desired probability |ακ|2, in the state aK. In fact, the 

joint state of object and apparatus appears quite complicated. This could not have 

been expected to be otherwise: the transformation indicated by the arrow is a 

consequence of the quantum-mechanical equation of motion and this is determin
istic. The outcome of the measurement in the general case of (35) has a probabilistic 

nature. What the final state of (35) does show is that a statistical correlation between 
the state of the apparatus and that of the object has been established: the prob
ability of finding both in the state ν is, according to the stancjard postulate of quan
tum mechanics, 

a O ®  σ κ  - >  α κ  ® σ ι  (34) 

a 0  ® Σ aA = Σ α κ ( α 0  ® σ κ )  - •  Σ α*(ακ ®  σ * ) ·  (35) 

2 2 

α ν  ® σν, Σ «κ(«κ ® σκ) = Σ α κ ( α ν ,  α κ ) ( σ ν ,  σ κ )  

K  

2  

= Σ α Α* = ΚΙ2· (36) 
K  

Both (αν, α κ )  and (σν, σ κ )  have been set equal to δ κ —the former because the 

states a,, and aK are supposed to be distinguishable even at the macroscopic level, 

the latter because the σ are normalized characteristic vectors of the self-adjoint 
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operator which is being measured. A calculation entirely similar to (36) then shows 
also that the probability is zero of finding the apparatus in state αλ and the object 
in the state σκ with κ φ λ—i.e., that indeed the right side of (35) represents a joint 
state of object and apparatus with the statistical correlation between the states as 
indicated. 

It is evident, therefore, that interesting and suggestive as (35) may be (it is due, 
essentially, to von Neumann, 1932) it does not completely describe the quantum-
mechanical measurement. In order to give (35) the meaning just outlined, we must 
assume that a measurement on the state of the right side of (35) is possible and 
that it gives the different possible values with the probabilities postulated by the 
usual interpretation. Actually, in order to obtain the state of the object, it is 
necessary only to measure the state of the apparatus. However, the quantum-
mechanical description of this measurement suffices no more than before to pick 
out one definite value of κ from many. The equations, being deterministic, lead 
always from a superposition to a superposition. Nevertheless, if (1) one measures 
the state of the apparatus α by a second apparatus b, and if (2) the states aK  of a 

definitely put the apparatus b into the state bK; in other words, if 

b0  ® aK -• bK (x) aK, (37) 

then (3) the interaction of this apparatus with the state (34) resulting from the 
measurement on σκ by a, will give 

b0  0 (aK  ® σκ) -> bK  ® ακ  ® σκ. (37a) 

This is true, at least, if b interacts only with a, not with the object. Hence, in this 
case, the interaction of b0 with the result of the measurement on the general state 
(cf. [35]) will give 

bo ® Σ ακ(«κ ® σκ) -+ Yj  αK(bK  (χ) ακ  ® σκ). (37b) 
K K 

Thus, a correlation bJfween the states of all three systems—object, apparatus a, 
and apparatus b—is established; but, naturally, no choice between the different 
states σκ is made. A similar statement applies if a fourth apparatus is used to 
"measure" the state of b, and so on. The measurement process, as far as it can be 
described by standard quantum mechanics, only establishes statistical correlations 
between the states of the apparata and those of the object. No choice for a definite 
state emerges, except if the object was, to begin with, in a state in which the out
come of the measurement is unique, as it is in the case considered in (34). 

Before discussing some further problems arising from the assumption embodied 
in (34) and (35), and before proposing a possible resolution of the problem here 
encountered, it may be worth pointing out the obvious fact that while it may be 
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possible to envisage an interaction of the form (34) between apparatus and object, 
this in no way guarantees that an apparatus with this interaction with the object 
can be found. This also will be discussed further later. 

§4. THE PHYSICS OF THE MEASUREMENT DESCRIPTION (35) 

The description of the measurement indicated by (34) and (35) has one very happy 
consequence: it shows that only self-adjoint operators are measurable. This follows 
from the unitary nature of the transformation indicated by the arrow. If one writes 
(34) for two different indices, say K and the final states of the corresponding 
transformations are orthogonal. 

We have 
(38) 

Moreover, and are two clearly distinguishable states—distinguishable, as a 
rule, even macroscopically. Therefore 0. Hence, it follows from the 
unitary nature of the transformation indicated by the arrow that the initial states 
were also orthogonal: 

(38a) 

In addition we know that 1. We conclude that = 0 if and 
indicate two different outcomes of the measurement. If we further postulate that 
the outcomes are described by real numbers, i.e., that the characteristic values of 
the operator Q of which the are characteristic vectors are real, 

(38b) 

then the operator Q is necessarily self-adjoint. This means that for any two functions 
we have 

(38c) 

and one obtains the same expression for This is satisfactory. 
It may be worth observing that all the preceding calculations seem to imply a 
discrete set of outcomes of the measurement—the last proof implies that the 
measured quantity Q has a discrete spectrum. This is both realistic and essentially 
unavoidable: the outcome of a measurement is restricted to a discrete set; in the 
case of the measurement of a continuous quantity, such as the momentum, the 
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finite accuracy of the measuring device still guarantees that the different outcomes 
realized form only a discrete set, which in practice is even finite. If one does not 

want to accept this argument, it is ncessary to rewrite the preceding discussion, 

essentially in terms of Stieltjes integrals, and this is quite possible, though, in the 
opinion of this writer, unnecessary. 

This is on the favorable side. One has to admit, on the other hand, that (35) 
is a highly idealized description of the measurement. It does not specify the duration 

of the measuring process. In fact, most writers, including von Neumann, at least 
imply that the transition indicated by the arrow in (35) is instantaneous. Of course, 
even if one accepts this idealization,unless the quantity to be measured commutes 
with the Hamiltonian of the system, its value will change after the measurement, 

and this applies also for the microscopic, that is, quantum-mechanical, description 
of the apparatus. However, these changes in the system and in the apparatus do 
not introduce basic problems. Thus, if the σκ are orthogonal to each other im
mediately after the measurement, orthogonality will continue also after the 
measurement as long as the system remains isolated. 

The fact that the measurement is of finite duration introduces a more serious 
problem. If the operator of the quantity which is being measured does not commute 
with the Hamiltonian of the system, as is the case, for instance, when position is 
measured, it will change in the course of the measurement. To which position at 
which time does the measurement then refer? This issue is unclear and is rarely 
discussed. The existence of this issue reemphasizes that the quantum-mechanical 
description of the measurement, embodied in (34) and (35), is a highly idealized 
description—unless, as was mentioned before, the quantity to be measured is 
stationary. 

In view of all these reservations, it is worthwhile to give a practical example of a 
measurement (Wigner, 1963). The example most often given is the measurement 
of the operator sz—that is, the component of the spin of a particle in a fixed direc
tion. This is a quantity which, for the free particle, is stationary; it commutes with 
the Hamiltonian. The measurement is called the Stern-Gerlach experiment and 
was discussed above in a cursory fashion. A particle with spin is passed through an 
inhomogeneous magnetic field. It is easiest to discuss the case of total spin 
When the magnetic moment of the particle points in the direction of increase of 
the field, the particle experiences a force—and is deflected—in the direction of 
decrease of the field, and conversely. The incoming beam is split into two beams. 
In one, the spin variable in the field direction has one value, and in the other beam, 
the other value. Hence, a statistical correlation is established between the position 
of the particle and its spin direction. The "a" of (34) or (35) is, in this case, the 
position of the particle. The two σκ are the two states of the spin, one parallel, the 
other antiparallel to the magnetic field. The right side of (35) resembles an ex
pression such as 
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+ α_e-x 2~y 2-< z + c ) 23(s z, (39) 

Of course, even if the beam is split, one does not yet know what the spin of the 

particle is; (39) is still a consequence of the quantum-mechanical equation of 

motion. In order to have a particle with a definite spin direction one must make an 

additional measurement, determining whether it is in one beam or the other— 

whether its ζ coordinate is positive or negative. This is the process indicated in 

equations (37a) and (37b)—and it is much more difficult to describe quantum 

mechanically because the quantum-mechanical description of the position mea

surement is not at all unique. Nevertheless, this example is instructive, and the 

expression for the state vector after the original measurements, indicated in (39), 

is a relatively easy consequence of the quantum-mechanical equations of motion. 

This is not the case for the measurements of most quantities—including the 

position of a particle. 

Conceptual Problems of the Measurement Description 

It was pointed out at the end of §3—and also sometime ago, particularly by von 

Neumann—that the description given is incomplete. Even if we accept the validity 

of the equations postulated, (34) and (35), we can account only for the establishment 

of a statistical correlation between the states of the object and those of the ap

paratus, not for the fact that the measurement gives one result once, another 

result another time—i.e., not for the statistical nature of the outcome of the 

measurement process. As was also pointed out earlier, this is hardly surprising 

because the deterministic nature of the equations of motion prevents them from 

accounting for a probabilistic result. The present section will deal with the problem 

resulting from this circumstance. 

Naturally, one way out of this difficulty would be to postulate that the equations 

are not fully correct, or, at least, that they do not fully describe the actual situation. 

This has often been suggested, by various writers, and this possibility will be 

discussed in some detail later—on the whole with a rather negative, but not 

completely negative result. A more natural explanation would be that the statistical 

nature of the measurement outcome arises because the initial state of the 

apparatus—of a macroscopic apparatus—is not unique. Some initial states of the 

apparatus give one, others another result, and the statistical nature of the mea

surement outcome is due to the statistical nature of the initial state of the apparatus. 

Of course this proposed explanation would not apply to all processes of measure

ment. It does not apply to the Stern-Gerlach experiment insofar as it leads to a 

state like that given by (39). However, the final process of observation always 

involves some macroscopic apparatus, and the statistical explantion could be 

imagined to apply to that phase of the measurement. We shall see, however, that 

this proposed way out is also unacceptable. If the outcome of the measurement 
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obeys the statistics postulated by quantum-mechanical theory, this correctness of 

prediction cannot be explained by the statistical nature of the initial state of the 

apparatus if we continue to believe in the unlimited validity of the present quantum-

mechanical equations. 

Let us consider, for the sake of simplicity, a measurement which can have, as in 

the Stern-Gerlach experiment discussed before, only two outcomes. For σ+ it will 

have the outcome 1, for σ_ the outcome — 1, for ασ+ + βσ_ (with |oe|2 + \β\2 = 1) 

the outcome 1 with probability |a|2, the outcome — 1 with probability \β\2. The 

possible initial states of the apparatus will be denoted by a'0, α'ό, α'ό', and so on. 

If the object's initial state is, for instance, (σ+ + σ_ )/-^2, we would expect on this 

view that half of the states a'0, α'ό, α'ό' • · • will give the result 1, half of them — 1. 
This expectation, however, is at odds with the linear nature of the equations. 

We are supposing that each of the apparatus states a0 gives, with σ+, the result 1, 

with σ„ the result —1. This supposition means that 

a0 ® σ+ a+ ® and a0 (χ) σ^ -> α_ (χ) σ_ (40) 

or, in other words, that a+ shows a result +1, and a_ the result — 1. It now follows 

from the linear nature of the interaction operator that 

a0 ® (σ+ + σ_)/^/2  -> α+ 0 σ+/^β + α_ ® σ_/^/2; (40a) 

that is, that none of the α'0, α'ό, α'ό' ... can give definitely a = +1 or definitely 

a = — 1 as a result. We believe that each apparatus will give the correct result 

whenever the state of the object is definitely σ+, and also whenever the state of the 

object is definitely σ_. But we see from (40a) that as long as we maintain this 

belief, we cannot blame the statistical nature of the outcome of the measurement 

for the state (σ+ -I- σ_ )/^2 on the uncertain initial state of the apparatus. Thus, 

if (40) holds, none of the states a0 can give either purely a+ ® σ + or purely 

a . ® σ_. All give the linear combination (40a) of these two states. 

This situation suggests a drastic reformulation of the basic concepts of quantum 

mechanics. It appears that the statistical nature of the outcome of a measurement 

is a basic postulate, that the function of quantum mechanics is not to describe some 

"reality," whatever this term means, but only to furnish statistical correlations 

between subsequent observations. This assessment reduces the state vector to a 

calculational tool, an important and useful tool, but not a representation of 

"reality." The statistical correlations can be calculated with the aid of the state 

vector. If the first observation tells us that the state vector is σκ, we can calculate 

the probability of the outcome λ of an experiment the characteristic functions of 

the operator of which are bu b2 • • ·. This probability is \(aK, bx)\2. The probability 
that the next measurement of the quantity the characteristic functions of which are 
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will give the result n is t h e n a n d the probability of both outcomes 
is 

(41) 

The generalization to more measurements is obvious (Houtappel, Van Dam, and 
Wigner, 1963). 

It is of some interest that (41) can be given a more concise form. If the state 
vectors in (41) can be written as functions of a variable x, then (41) can be given the 
form, 

(41a) 

However, is the kernel of the projection operator P defined in (16) 
and equations (17) for the operator A. Hence, if we make of (41a) the first 
factor, the factors , and so on, are the kernels of the 
projection operators for the first quantity measured, for the second one, 

for the third, and again for the second. The integrations over give 
the product of these projection operators, and the integration over x'" the trace 
of the product. Hence, the first measurement having given the outcome K, the 
probability that the second one gives the third one etc. becomes 

(42) 

where P, P', P" .. . are the proper projection operators for the first, second, third, 
etc. measurement, respectively. The Trace in the denominator appears because 
the characteristic value K of the operator of the first measurement may not be 
simple—in which case one has to divide with the multiplicity of this characteristic 
value. It may be worth remarking that one can add a last factor in the numerator 
of (42) to make it more symmetric. This does not change its value because, with 

one can insert another factor on the left side of the expression the 
trace of which appears in the numerator. This extra factor can then be shifted 
to the right end of the numerator since, quite generally, Trace AB = Trace BA 
or, in our case, Trace Trace QPK where Q is the expression in the numerator 
of (42). The insertion of the PK factor on the right therefore does not change the 
value of (42); it only makes it appear more symmetric. 

The preceding derivation of (42) is incomplete, because the possibility of multiple 
characteristic values of the measured operators is not explicitly taken into account. 
This has little significance for (35)—it does not matter whether or not the same 
"pointer position" corresponds to several As far as the primed P are concerned 
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(that is, as far as the measurements after the initial one are concerned), the possi
bility of multiple characteristic values can easily be taken into account and the 
result is correctly represented by (42). However, (42) also contains the assumption 
that, if PK corresponds to a multiple characteristic value, that is, if Trace PK > 2, 
the state produced by this initial measurement contains the different states of 
this characteristic value with equal probabilities. This is an assumption which 
cannot be fully justified. 

It should be observed also that if the later measurements, those to which the 
primed P correspond, take place at later times, the corresponding P must be 

modified so that they are in the "Heisenberg picture." This means that if the 
measurement to which P[N> corresponds takes place at time t„ after the first mea
surement, the Ρ["] in (42) can be obtained from the P[N) applicable if the measure
ment η had taken place immediately after the first one by the formula, 

P{:\tn) = exp (- iHtJWm exP W Jh). (43) 

(Naturally < t 2  <  t 3  . .  . . )  

The preceding interpretation of the quantum-mechanical formalism reflects its 

concern with observations, and with giving probabilities for the outcomes of 

these observations. It does not eliminate the difficulty which the finite length of the 

measurement time creates, the difficulty mentioned at the end of the preceding 

section. Nor does it alter the fact that we have not specified how the measurements 

are to be carried out. A discussion of limitations on the possibility of measuring 

certain operators will be given in the next chapter. In spite of all these reservations, 

it remains essentially correct to say that the basic statement of quantum mechanics 

can be given in a formula as simple as (42). 

§5. OTHER PROPOSED RESOLUTIONS OF THE MEASUREMENT PARADOX 

The measurement paradox referred to in the title of this section is the contradiction 
between the deterministic nature of the quantum-mechanical equations of motion 
and the probabilistic outcome of the measurements—processes which should be 
describable by the quantum-mechanical equations of motion. Section 4 above 
proposed a resolution of the paradox: the quantum-mechanical equations of 
motion do not describe the measurement process; they only help in the calculation 
of the probabilities of the different outcomes. These probabilities form the real 
content of quantum-mechanical theory. The formalism of state vectors, equations 
of motion, etc., are only means to calculate these probabilities. The observation 
results are the true "reality" which underlie quantum mechanics. The state vector 
does not represent "reality." It is a calculational tool. It should be mentioned that 
von Neumann's idea was not truly different from this. He postulated that the 
state vector varies in two different ways. As long as the system is isolated, its 
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state vector is subject to the quantum-mechanical equation of motion and its 

behavior is deterministic. When an observation takes place, there is a second type 

of change of the state vector. Its change then has a probabilistic nature. It jumps 

discontinuously. It becomes one of the characteristic vectors of the operator 

which is being measured. Ifthe initial state vector (normalized) was φ, it jumps with 

the probability j(t//v, φ)|2 into the state i//v which is one of the (normalized) charac
teristic vectors of the operator which is being measured. Naturally, the sum of these 
probabilities must be 1 and this is the consequence of the normalized nature of φ. 

The second type of change of the state vector, the jump from φ into one of the 

Άν, according to von Neumann's picture, is not described by the quantum-

mechanical equations of motion. 

The other resolutions of the measurement paradox propose more "physical" 

pictures. The most popular of these is the picture of hidden parameters—embraced 

particularly by D. Bohm (1952a,b), Y. Aharonov (Bohm and Aharonov, 1957), 

J. Bub (1969), (see also Bohm and Bub, 1966a,b), J. P. Vigier (1951; 1956), and 
Bohm and Vigier (1954), but also by many others. The story of this picture is given 

in some detail by F. Belinfante (1973) as well as by M. Jammer in his book, The 

Philosophy of Quantum Mechanics (Jammer, 1974) which is worth reading for 
other reasons—it encompasses an amazing amount of information on the his

tory of our general subject. The other attempt at the resolution of the paradox is 
due to H. Everett (1957), B. S. DeWitt (1970), and J. A. Wheeler (1957) (see also 

DeWitt and Graham, 1973). This is the "relative state" theory, postulating that, 
as a result of an observation, the world splits into several new worlds, existing 
independently of each other. Both these pictures will be discussed in more detail, 

and arguments against them will be presented. It should perhaps be added now 
that J. A. Wheeler (1977) no longer supports this view. 

Theory of iiHidden Variables" 

The idea of "hidden variables" postulates that the description of states, by the 
quantum-mechanical state vector, is incomplete; that there is a more detailed 
description, by means of variables now "hidden," which would be complete and 
the knowledge of which would permit one to foresee the actual outcomes of 

observations—observations about whose outcomes present-day quantum me
chanics makes only probabilistic statements. The relation of the postulated theory 
of hidden variables to present quantum mechanics would be similar to the rela
tion of classical microscopic physics to macroscopic physics. The former uses the 
positions and velocities of the atoms as variables, while macroscopic physics, 
such as, for instance, hydrodynamics, describes only the average velocities of the 
atoms situated in volumes which are large on the microscopic scale and contain 
many atoms. 

There is no clear specification of the nature of the "hidden variables"—they are 

hidden. The best known replacement for Schrodinger's equation is Bohm's 
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(1952a,b), in which he reverses Schrodinger's analysis. Schrodinger derived the 
wave equation named after him by viewing the classical Hamilton-Jacobi equation 
as giving an incomplete and approximate description of this wave: incomplete, 
in the sense that it deals only with the phase, of this wave, 
approximate, in the sense that the equation for the Hamilton-Jacobi function S 
is nonlinear, whereas by demanding linearity Schrodinger got the right equation 
for Bohm turns this reasoning around. He assumes that Schrodinger's equa-
tion for 

(44) 

is valid (R and S being real and functions of the position coordinates) and obtains 
equations for R and S. The equation for S, 

(44a) 

differs from the classical Hamilton-Jacobi equation by containing an extra "quan-
tum term" Q. All the other terms are obtained from the Hamilton equation for the 
energy, by replacing E by b y e t c . The addi-
tional term, Q, is the "quantum potential," 

(44b) 

in the equation for S. The equation for R is the classical one: 

. (44c) 

One can obtain these equations by introducing (44) into Schrodinger's time-
dependent equation for and separating real and imaginary parts. 

The interpretation of these equations from the point of view of hidden variables 
theory is not so simple. It seems to be agreed that gives, as in the quantum 
interpretation, the probability of the configuration indicated by its variables, i.e., 
that it refers to an ensemble. For S, the classical interpretation is postulated, but 
it is difficult to understand then how the properties of the ensemble, described 
by can influence the motion of an individual system, the system which S is 
supposed to describe. Yet Q depends on R and R describes the ensemble containing 
the system the motion of which should be described by S. Is it that a system's 
behavior is different depending on the set of systems of which it may be a par t? 

This dependence of the individual on the ensemble is an objection against a 
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specific theory of hidden variables, not a general objection against all such 

theories; i.e., it is not an argument against the existence of a deterministic theory 

of the motion of atomic objects and constituents. Von Neumann was convinced 

that no such deterministic theory is compatible with quantum mechanics. The 

reason is easily illustrated by the Stern-Gerlach experiment, or rather, by an 

indefinite number of repetitions of that experiment. One may consider the mea

surement of the spin component first in the ζ direction, then in the χ direction, 

then again in the ζ direction, then again in the χ direction, and so on. If the total 

spin of the particle on which the measurements are undertaken is all measure
ments succeeding the first one give the two possible results with a probability 

If these results are, fundamentally, all determined by the initial values of the 

hidden parameters, the outcome of each measurement should give some informa

tion on the initial values of these parameters. Eventually, it would seem, the 

values of the "hidden parameters" which determine the outcomes of the first N 

measurements would be in such a narrow range that they would determine, if N is 
large enough, the outcomes of all later measurements. Yet this is in contradiction 
to the quantum-mechanical prediction. 

The preceding argument can be made more convincing by substituting other 

measurements, such as a position and momentum measurements, for the mea
surements of spin direction. Yet this argument apparently cannot be made mathe
matically rigorous and it was not published by von Neumann. The proof he 
published (see p. 173 of von Neumann, 1932; pp. 326-28 in English translation), 

though it was made much more convincing later on by Kochen and Specker 
(1967), still uses assumptions which, in my opinion, can quite reasonably be 
questioned. 

BelFs Argument 

In my opinion, the most convincing argument against the theory of hidden 
variables was presented by J. S. Bell (1964). His argument, in its simplest form, 
starts with a system of two particles with spins j, these spins being antiparallel, 

i.e., forming a singlet state. The spin part of the state vector is 

σ+(1)σ_(2) - σ_(1)σ+(2). (45) 

Here σ+(1) is the state vector of particle 1, with positive component in the ζ 

direction. The meaning of the other symbols should then be obvious. Actually, 

the state (45) is spherically symmetric. It is the only antisymmetric combination 

possible for the two spin functions. Thus the ζ direction mentioned above can 

be replaced by any other direction without changing the value of (45) (as can be 

verified, of course, by actual calculation). The state (45) is called the spin singlet 

state. The spin parts of the state vectors of the two electrons of the He atom, or 

of the H2 molecule, are actually in that state. In fact, the spin state remains essen-
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tially unchanged even if the electrons are torn away from the atom or -molecule 

by dipole radiation, so that their spins remain, to a very good approximation, in 
the state (45) even when they are widely separated from each other, as is demanded 
for some applications of Bell's argument. Even for that case, (45) represents a 
state of the two spins which is not only theoretically possible but also, to a good 
approximation, experimentally realizable. 

For the state (45), there is, according to quantum mechanics, a statistical 
correlation for the measurement of the spin components in two directions, C1 

and e2, which enclose an angle O12. The probability that both components are 
positive is 

and this is also the probability that the measurement of the spin components of 
the two particles, in the C1 and e2 directions respectively, will have a negative 
outcome for both. The probability that one component will be positive the other 
negative, or for the converse, is 

If 012 = 0, i.e., if the two directions are parallel, the probability (46) of both 
having the same component is zero. This vanishing of P+ + is what makes the 

aggregate spin 0, i.e., makes the total state a singlet. The expressions (46) and 
(46a) for the probabilities will not be proved explicitly. They are contained, at 
least implicitly, in the usual textbooks on quantum mechanics. 

Bell's inequality, based on the assumption that the "hidden variables" of the 
two particles uniquely determine the outcomes of the measurements of spin 
components in all directions, will be shown to be in conflict with equations (46) 
and (46a). Actually, it suffices to consider three directions, el5 e2, e3, and measure
ments of the spin components in these directions. Let us denote (H h ; l·) 
the probability-weighted integral over the values of the hidden variables, an 
integral taken over that domain of these variables which ensures that the first 
particle's spin has a positive component in the e, and e3 directions, and a negative 
component in the e2 direction, while the second particle's spin has a negative 
component in the c, and e2 directions, and a positive component in the e3 direc
tion. The meaning of the other combinations of six + and — signs is similar; 
thus (+ + + ; ) gives the probability that the spin component of the first 
particle is positive in all three directions, that of the second negative. Since the 
hidden variables are supposed to determine completely the properties of the 
objects to which they refer, all these quantities are fully defined and are, surely, 
non-negative. It appears that there are 26 = 64 of them. 

It can be noted, next, that most of the 64 symbols are 0. Thus (+ + - ; -I 1-) 
must vanish because it corresponds to such values of the hidden variables as 

P + +  = (I) Sin2 C e i 2/2) = P (46) 

P  +  _  = P _ +  =  (i)cos2(012/2). (46a) 
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give, for both particles, a positive component of the spin as measured in the 

direction. Because of (46), the probability for this spin configuration vanishes. 

That is, no value of the hidden variables produces a positive spin component for 

both particles in the e, direction, at least not if quantum mechanics, and hence 

(46), properly gives the probabilities of the outcomes of measurements. Similarly, 

if quantum mechanics is correct, all symbols vanish in which the same sign 

appears at the same position both before and after the semicolon. This then 

leaves 8 symbols such as (H ; — + +) which can have non-zero values. 

Next, we write down the probabilities for those outcomes of the measurements 
which indicate a positive spin component for both particles if these are measured 

in two different directions, and equate these with the corresponding quantum-
mechanical expressions. First, if the spin components are measured in the ej and 

e2 directions, respectively, the probability of finding positive components is, 
according to the theory of hidden variables (the first sign before, and the second 
sign after the semicolon must be +), 

(Η (-; —I—) 4- (H ; —l· +) = (j) sin2(012/2). (47) 

All other bracket symbols vanish in which the first sign before the semicolon 

and the second sign after the semicolon are +. Similarly, if the measurements 
are made in the e2 and e3 directions, respectively, we have 

(+-I— ; H) + (—I—; -I l·) = (i) sin2(023/2). (47a) 

Likewise we have 

(+-I— ; 1-) + (Η ; —H +) = (i) sin2 (θ13/2). (47b) 

It follows from equations (47) that 

sin2(012/2) + sin2( θ 2 3 / 2 )  =  sin2(013/2) + 2(H 1-; —I—) + 2(—I— ; H l·) 

> sin2(013/2). (48) 

This is the Bell inequality. It should be fulfilled if the theory of hidden variables 
is correct, and if, in addition, quantum mechanics correctly predicts—as it ap

parently does—the probabilities of all conceivable outcomes of a measurement. 
It is easy to find directions e l5  e2, e3, however, for which (48) is not valid. It is 

not valid, in particular, if the three directions are in the same plane and e2 is 
between ex and e3. Specifically, if Oi2 = θ23 = π/3, θι3 = 2π/3, then the left side 

of (48) is \ + £ = j, the right side f. Hence, the hidden variable theory, as applied 
here, leads to a contradiction. 

There are then two questions. First, is (46) correct, i.e., can it be confirmed 
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experimentally? This will be discussed later. Second, can one modify the theory 
of hidden variables in such a way that Bell's inequality (48) does not follow? The 
answer to this second question is "yes"; but the modified theory implies the use 

of hidden variables which specify not only the state of the two particles but also 
the states of the measuring devices, and postulates correlations between the state 

of the particles and the directions in which the spin is going to be measured. The 

theory that assumes that there are no such correlations is often called "local" 
hidden variable theory. The preceding argument shows that any theory of hidden 
variables conforming with the postulate of locality is in conflict with quantum 

mechanics. On the other hand, if one admits hidden variables which establish 
correlations between the measuring devices and the objects, i.e., describe the 

states of both together, one cannot see the limit of the complex that has to be 
described jointly. It seems highly questionable whether a theory which does not 

permit the specification of the states of isolated objects can be in any way useful. 
Of course, if future experiments were to demonstrate that Bell's inequalities, in 

particular (48), are correct and the quantum-mechanical equations, in particular 
(46) and (46a), incorrect, this finding would constitute strong evidence in favor of 
some theory of hidden variables. As was mentioned before, the present status of 
the experimental research will be discussed later. As of 1981 it appears to be 

definitely established that what is called "Bell's inequality" is strongly violated, 
whereas the quantum-mechanical predictions appear to be well supported. 

Many-World Theories 

"Many-world" theories are much more difficult to discuss than theories of hidden 
variables. They postulate—as mentioned earlier—that if a measurement with a 
probabilistic outcome is undertaken, the world splits into several worlds, and 

each possible outcome of the observations appears in the fraction of the new 
worlds given by the quantum-mechanical probability of that outcome. This re
establishes the determinism which the laws of nature are expected to exhibit. 

It is, of course, difficult to see the meaning of the statement that there are other 
worlds with which we never will have any contact, which have no influence on us, 
and which we cannot influence or perceive in any way. From a positivistic point 
of view, the statement that there are such worlds, and that they are constantly 
created in large numbers, is entirely meaningless. It can be neither confirmed nor 
refuted. 

Let us admit, however, in conclusion, that the weakness of the theories which 
have been proposed to replace the standard interpretation of quantum mechanics, 
and which form the subject of most of these notes, does not establish the full 
validity of quantum theory. The weaknesses of quantum theory, though not as 
marked as the deficiencies of the theories discussed in the present chapter, are 
real nevertheless. They will be discussed subsequently. 
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§6. EXPERIMENTAL TESTS OF BELL'S INEQUALITY 

The conflict between quantum theory and the theory of hidden variables, as 

manifested by Bell's inequality, was discussed in the last section. The original 

version of the present section was kindly provided by S. J. Freedman, then at 

Princeton University. It dealt, principally, with the experimental work then 

available and aimed at deciding which of the two formulations—Bell's inequality 

or the conclusions of quantum mechanics—was correct. Since that time (1976) 

the experimental information has been greatly extended, and also some errors in 

the earlier work have been detected. As a result, it would not be reasonable to 

repeat Freedman's analysis fully. Instead we refer the reader to Pipkin's (1978) 

summary of the experimental findings. These findings disagree with Bell's in

equality and seem to agree with the consequences of quantum theory. This is a 

very important point. 

In spite of the fact that the more recent experimental results are of great relevance 

and are, naturally, not contained in Freedman's original analysis, his discussion 

will be presented below, though in much abbreviated form, as being of some 

historical interest. It is also good to realize that experimental results can be in 

error. It is even better to realize that these errors can be corrected. 

Freedman also presented some remarks on three general, largely theoretical, 

questions on our subject. (1) He characterized the structure of a general hidden 

variable model. One of his "hidden variables" was the wave function (and, in 

many cases, this also is hidden). But he introduced a set of other variables which 

always remain hidden and which are supposed to give a complete description of 

the state of the system. (2) He presented a special model in order to prove that it 

is conceivable that hidden variables could be found which would determine the 

future of the system completely. He admitted, though, at this point, that in order 

to eliminate the difficulty (for hidden variables!) of the invalidity of Bell's inequality 

one has to abandon the postulate of the local character of the hidden variables. 

These must be so constituted, he said, that they establish statistical correlations 

between the state of the object on which the measurement will be undertaken, 

and the state of the apparatus which will carry out the measurement. These correla

tions, he supposed, exist before the measurement takes place. (3) Freedman also 

presented a modification of Bell's inequality which is more easily and more directly 

subject to an experimental test than is the original inequality. 

Perhaps the present writer will be permitted to voice his opinion on theories 

of hidden variables of the type which were crudely described under (2) and which 

are often proposed. In my opinion, it is not very meaningful to introduce variables, 

the magnitude of which cannot be determined. These variables could be defined 

as giving the state of the system for the entire future. Such a description would 

requi re  the  in t roduc t ion  of  one  addi t iona l  var iab le ,  mos t  na tura l ly  denoted  by  t ,  
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to describe the system. However, it is the purpose of physics to give information 
on the future based on facts ascertainable at present. The unqualified existence 
of "hidden variables" would nullify this purpose. 

Let us go over to a short description of the experimental information available 
at the time Freedman made his remarks. Actually, the first two experiments were 
not carried out with spin-j particles in the singlet state of (45) but with two 
photons emitted in succession by an atom. Their polarizations then give correla
tions similar to those of the two spin-^ particles discussed in the preceding chapter. 

The first set of experiments was carried out on Ca by Freedman in collaboration 
with Clauser (1972). The result was a correlation factor of 0.300 + 0.009. This 
agrees with the quantum-mechanical value of 0.301 but contradicts Bell's in
equality which postulates a value smaller than 0.25. 

The next set of experiments was done by Holt and Pipkin (1974) with iso-
topically pure Hg198 (zero nuclear spin). Their result was 0.216 + 0.013. This 
agrees with Bell's inequality but differs grossly from the quantum-mechanical 
value of 0.301. Perhaps fortunately, it was demonstrated not long after this section 
was originally written that an experimental error had crept into the original 
value (see Clauser, 1976). 

Still other experiments deal with the decay of positronium, in a ground state 
of spin zero, into two photons. Experiments on the correlation of the polarization 
of these two photons were originally suggested by Wheeler (1946). The early 
experiments, carried out before 1970, gave excellent agreement with quantum 
mechanics (Wu and Shaknov, 1950; Kasday, Ullman, and Wu, 1970). Their results 
did not really contradict Bell's inequality, but it is hard to believe that the laws 
of quantum mechanics are violated in any area under consideration if they are 
so well obeyed in the region investigated. But more recent work disagrees with 
these results, referring to conditions in which quantum mechanics and Bell's 
inequality are in contradiction (Faraci, Gutkowski, Notarrigo, and Pennisi, 1974). 
This creates a confusing situation. 

The last experiment referred to by Freedman related to the spin-spin correlation 
when a low energy proton is scattered by a proton at rest. Low energy scattering 
is dominated by proton pairs of zero orbital momentum. The space part of the 
wave function is therefore symmetric on interchange of the two particles. Con
sequently the spin part must be antisymmetric, of the form (45), corresponding 
to zero total spin. The original experiments did not seem to confirm quantum 
mechanics, but the later, improved ones, did, and were in contradiction with 
Bell's inequality (Lamehi-Rachti and Mittig, 1976). 

This will conclude the somewhat abbreviated review of the experimental 
material available in 1975 on the validity of Bell's inequality and hence on the 
possibility of explaining the statistical nature of the outcomes of measurements 
with hidden variables of a local and reasonable nature. As was mentioned before, 
the subject was treated in more detail in the original version of these lecture notes 
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as given by Freedman. As was also mentioned, more recent experimental data 

definitely deny the possibility that Bell's inequality is generally valid, and hence 

rule out any possibility of eliminating the statistical nature of the measurement 
process by the introduction of local hidden variables. 

The next section, the last one, will deal with problems of the standard inter
pretation. That interpretation assumes that the principle of determinism does not 
apply to the measurement process. It also shows weaknesses. Nevertheless, no 
current experimental information contradicts it. Its principal weakness is that it 
gives no clear and simple rule for the way the measurement can be carried out 
nor for the limits of the accuracy of the measurement process. The preceding 
discussion was confined to measuring the spin component or the state of polar
ization, both of which clearly appear to be determinable with high accuracy. 

§7. PROBLEMS OF THE STANDARD INTERPRETATION: UNMEASURABLE QUANTITIES 

Most physicists working on or with quantum mechanics were quite surprised 
that the experimental confirmation of some of its simple consequences, such as 
the violation of Bell's inequality, was as ambiguous as described in the preceding 
sections. Most of us are convinced, nevertheless, that the consequences of quantum 
theory, which were tested in the experiments described, will be unambiguously 
confirmed by further and perhaps more precise experiments. 

The present section will be devoted to a discussion of internal problems of the 
standard interpretation as discussed in §3. Let us admit that these problems do 
mar the mathematical beauty of the theory by demonstrating the difficulty of 
making measurements and the unavoidable limitations on the accuracy of most 
of them. These difficulties and limitations indicate, as do the remarks of §4, that 
quantum mechanics shares a degree of incompleteness with all other theories of 
physics. 

It is a reassuring feature of quantum theory, however, that the earliest problem 
of measurement—a problem which generated a great deal of discussion—was 
not really a problem. The apparent problem was to construct the proper quantum-
mechanical operator to correspond to a given classical expression. For example, 
what is the operator which corresponds to the classical expression xpl Surely 
xp, where ρ stands for (hβ)δ/δχ, has to be rejected because it is not self-adjoint. 
It is natural to choose, instead, 

However, in somewhat more complicated cases, such as x 2 p 2 ,  the choice is not 
unique. Two possible choices are \{x2p2 + p2x2) and xp2x (p here stands again 
for (h/i)d/dx), both of which are self-adjoint but not equal to each other. It should 

(49) 
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perhaps be mentioned that Weyl (1927) has proposed a definite operator to 
correspond to any classical function of position and momentum. But as long as 

no experimental prescription is provided for the measurement of that operator, 
the meaning of the Weyl prescription is not clear. 

The quandary just described has been resolved by considering the operator to 
be defined by the quantity which is measured. Thus one does not ask for the 

operator which corresponds to the classical expression x2p2 but asks for ways 
in which either \{x2p2 + p2x2) or xp2x (= px2p) can be measured. We will be 

concerned henceforth with questions of this nature. Unfortunately, as we shall 
see, there are serious limitations on the measurability of an arbitrary quantity. 
They blur the mathematical elegance of von Neumann's original postulate that 

all self-adjoint operators are measurable. Von Neumann does produce an ex
pression for the interaction between object and apparatus which would lead to 
equation (34) of our §3. However, the ensuing considerations show that for many 
if not most operators, this expression—or any other expression which might lead 
to that equation—contradicts some of the basic principles of quantum theory. 
What then are the limitations of measurability? 

Only Quantities Which Commute with All Additive Conserved Quantities Are 

Precisely Measurable 

This theorem, dating back to 1952 (Wigner, 1952; see also Araki and Yanase, 
1960; Yanase, 1961), will not be proved generally. Only a characteristic example 
will be given. The quantity to be measured is the component of the spin in the 
χ direction. The "additive conserved quantity" will be the angular momentum in 
the ζ direction. By "additive" we mean that the magnitude of the quantity for 
object-plus-apparatus is the sum of this quantity for object and for apparatus, 
both before and after the measurement. 

In the case considered, the argument is very simple. Let us denote the spin 
states with positive and negative 2-component by α and β respectively. The state 
vector associated with the positive x-component spin is then 2~1/2 (a + β), and 
that of the negative one, 2"1/2 (ι — β). Hence equation (34) of §3 reads in this 
case 

Let us decompose the apparatus states a, a+, and a into state vectors each having 
a definite angular momentum in the ζ direction, 

a ® (ot + β) -> α+ ® (α + β), (50a) 

(50b) α (χ) (α — β) -> a ® (α — β). 

β = Σ α ». ;  α + =Σ α ™; α = Y j O m .  

It then follows from the addition and subtraction of equations (51) that 
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(51a) 

(51b) 

It simplifies these equations to introduce the symbols 

(52) 

Hence (51a) and (51b) become 

(52a) 

(52b) 

The angular momentum of in the z direction is m that of is 
Since the angular momentum in the z direction (or any other direction) 

does not change as a result of the interaction, it follows that the interaction of the 
state alone with will yield 

(53a) 

and of alone with will give 

(53b) 

Now the lengths of the vectors on the left and right sides of (53a) must be equal. 
Moreover, the two terms on the right side are orthogonal. Therefore we have 

(54a) 

and similarly, from (53b) 

(54b) 

Hence, we have 

(54) 

which is a contradiction. Thus (54) means either (1) that the are all 0—in which 
case the so that whereas they should be orthogonal—or (2) 
that 

(55) 
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is infinite unless all (cm, cm) vanish. But this is impossible. Thus from (52) (c, c) = 

j because a+ and a~ are of the same unit length and are orthogonal. However, 

(55) already indicates how this difficulty will be overcome. We will recognize 

that (52a) and (52b) can be only approximately valid (see equations 56a and 56b). 

In other words, all (cm, cm) will be very small and they will not be absolutely equal 

(Gaussian dependence on m, with a very large spread in m-values). This means 

that the measurement is not absolutely accurate, as (52a) and (52b) would imply. 

However, the magnitude of the inaccuracy, i.e., the magnitude of the terms η in 

(56a) and (56b), will be minimized. 

The conclusion thus arrived at seems to deny the possibility of measuring the 

spin component precisely in an arbitrary direction, as described in §3. However, 
two points have to be remembered. First, the measuring equipment uses an external 
magnetic field. If that field is considered to be "external," it invalidates the law of 
conservation of angular momentum. The only way to remedy this difficulty is to 
consider the magnet as part of the apparatus—as it is. The thus enlarged apparatus 
becomes quite macroscopic. Second, as equation (39) indicates, the measurement 
is not perfect. The two beams, with positive and negative sz, overlap to a certain 
extent. These two points suggest first, that the measurement of a quantity not 

commuting with additive conserved quantities requires a large apparatus and, 
second, that the limitations on the possible accuracy of the measurement can 
decrease with increasing "size" of the apparatus. "Size," we shall see, means the 
amount of the additive conserved quantity that is contained in the apparatus. 

Instead of (50a) and (50b) we now write 

a ® (a + β) -> a+ g) (a + β) + η+  ® (a — β), (56a) 

α (χ) (α — β) -»• a~ (χ) (a — β) + η~ (χ) (a + β). (56b) 

Here the terms η+  and η~ express the error in the measurement. We will try to 

make η+ and η as small as possible. We write, similar to (51), 

»7+ = Z>7m> 1~ = Σ tIm (57) 

and, in analogy to (52), we set 

+ f™ = 2σ„ and η* - η„ = 2δ„. (58) 

Hence, (56a) and (56b) give as a result of the conservation of the ζ angular mo
mentum the relations 

am ® « -" (bm + CTJ <g) oc + (cm+1 - <5m + 1) <g> β, (58a) 

am  <8> β -> (bm  - om) <g> β + (cm_t + Sm  — t) ® a. (58b) 
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These are the analogs of (52a) and (52b). The arrow here, as there, denotes a unitary 
transformation. Can this requirement be satisfied? Previously, using only part of 
the unitary restrictions, we arrived at the contradiction (54). Now we have to take 
into account all the consequences of unitarity. 

The left sides of (58a) and (58b) are orthogonal to each other and orthogonal 
to all similar expressions with other m-values. Their unitary transforms must 
likewise be orthogonal. This they are automatically when they have different 
values of the conserved quantity, "total z angular momentum." When the left 
sides, say and have the same value for this quantity, orthogonality 
of the right sides gives 

(59) 

Since the lengths of the vectors are free, the only further relation imposed by 
the unitarity condition is that the lengths of the vectors on the right sides of (58a) 
and (58b) be equal. This gives, again for all m, 

(60a) 

(60b) 

As when (54) was derived, so here we take the dilference of these two equations. 
The term drops out to give 

(60) 

In the case of an ideal measurement, the left side vanished; we had 0; 
and we encountered a contradiction. The sums of (60a) and (60b) for definite 
m-values need not be considered; they only give the probabilities of the 
specified angular momenta of the measuring device in terms of the other quantities 
that appear in the state vector of the system after the measurement has taken 
place. The sum of these probabilities for all m-values, however, does give the 
normalization condition for the apparatus. Because 1, this 
condition becomes 

(61) 
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The second member of (61) gives as the average of the two expressions 
given by (60). We have a final condition. We require that at least the first terms 
on the right sides of (50a) and (50b) should represent different states—i.e., that 

In terms of the and this condition says, 

(62) 

Equations (59), (60) and (61), (62) represent the conditions which b, c, <r, and 5 
must satisfy in order to guarantee the unitary nature of the transformation indicated 
by (56a) and (56b). In equations (61) and (62) there is summation over m. They 
give the normalization condition and the requirement that the transformations 
(56a) and (56b) represent a measurement at least in the approximate sense. 

Next, we define the error e implicit in the measurement process indicated by 
these expressions, 

(63) 

The "size," M, of the apparatus which permits an error so small will be defined by 

(64) 

Again, the average of the right sides of (60a) and (60b) was substituted for 
The problem then is to find expressions for and satisfying equations 
(59) to (62) which, for a given error , make M as small as possible; or, equivalently, 
for a given "size" of the apparatus, M, make the error e as small as possible. 

This minimum problem will not be solved exactly but only under the assump-
tion that the error is small as compared with 1—i.e., that the and are small 
as compared with and This means that and are appreciable 
for a rather wide range of m-values. Therefore they will be assumed to depend 
continuously on m. Even though this idealization is not mathematically rigorous, 
we adopt it. We rewrite in terms of this continuum approximation all of the 
equations from (59) to (64) except for (60), which only gives in terms of 
the other quantities: 

(59a) 

(60c) 
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(61a) 

(62a) 

(63a) 

(64a) 

It now follows that the Hilbert space vectors and are best assumed to be 
parallel to and respectively, and indeed the proportionality constant between 
them is real. A part of which would be orthogonal to would not change any 
of the equations, except by adding to the error The same applies to with 
respect to The same argument shows that the proportionality factor between 

and and between and. , has to be real. Next, we assume that the lengths 
of and and of and are equal, but of course, wherever is positive, 

is negative, and conversely. Otherwise the derivative of would 
become 0 and we would face the same difficulty as in the case of the idealized 
measurement (cf. equation 54). The equalities assumed can be justified, but this 
will not be done here. Capitalizing on these observations, and writing for 
the length of and for we can restate the preceding set of 
equations: 

(60d) 

(61b) 

(63b) 

(64b) 

The other equations are automatically satisfied—except that the vectors bm and 
must be assumed to be orthogonal. 
It follows from (60a) that is the derivative of c(m), so that the error becomes 

(63c) 

The problem, therefore, reduces either to minimizing the size M (or its square) 
given by (64b) while fixing the error of (63c) and the normalization (61b)—or 
to minimizing the error but fixing the size and taking the normalization into 
account. The Lagrange equation of the minimum problem reduces in both cases 
to a linear relation between and the quantum-
mechanical equation of the oscillator. The solution is, therefore, that c{m) is a 
Gauss error curve 
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c(m) = oce (65) 

the constants of which are determined by (61b) and either (63c) or (64b). The 

relation between error ε and size naturally is the same no matter which procedure 
is used: 

This is an interesting result, due in this form to Araki and Yanase (1960). It 
shows that most measurements cannot be made mathematically precise. Moreover, 

the more accuracy we demand, the greater must be the "size" (equation 64b) of 
the measuring apparatus. 

Are there any quantities where the preceding size-accuracy correlation does not 

apply, quantities which, as far as this argument goes, may be measured precisely 
with a small apparatus? For elementary particles, only the mass and the magnitude 
of the spin are such precisely measurable quantities; none of the quantities spec
ifying the actual state is measurable with arbitrary precision. If one has a more 
complex system, the preceding quantities do depend on the state because the 
degree of excitation is determined by the Minkowski length of the four-dimensional 
momentum vector (the rest mass). In addition, if the system contains several 
particles, the scalar product of the momentum vectors and many other similar 
quantities do commute with all additive conserved quantities. Nevertheless, it is 
clear that the limitation on the measurability of many quantities with a small 
apparatus is very severe (Yanase, 1961). 

The preceding discussion, leading to equation (66), is incomplete—and this not 
only from the point of view of mathematical rigor. We considered only a system 
of spin j and only one conservation law, conservation of the angular momentum 
in one of the directions perpendicular to that in which the spin component is to 
be measured. It is true that the components of the linear momentum do commute 
with the spin components; but the other components of the angular momentum 
do not. It would be interesting to generalize the result (66) both as to the system 
considered, and as to the inclusion of all additive conservation laws. It should 
also be repeated that (66) represents only a necessary condition for the apparatus 
to measure the spin component, and even such a generalization as is suggested 
above would only give a necessary condition. To demonstrate the actual measur
ability, one would have to describe the measuring apparatus and its functioning— 
as was done to some degree in §3 with respect to the measurement here considered, 
but not generally. In fact we shall derive in what follows several other constraints 
on measurability. 

It has been observed that, in order to define a position coordinate, one has to 
have a coordinate system with a definite position in space and equipped with a 
clock with well-defined zero of time. The former requires that the apparatus which 
defines the coordinate system have a spread in momentum which corresponds to 

ε = 1/(2 M2). (66) 
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the position-momentum uncertainty relation, and a similar remark, to be discussed 

later, applies to the clock. Hence, in the case of the measurement of the position 

coordinate, the need to have an apparatus with a large momentum uncertainty, 
that is, momentum spread, is obvious. The same applies for many other measure
ments, but not with the generality established in the preceding discussion. In 
particular, the argument in this section also applies to the conservation laws for 
electric charge, for baryon number, etc., and already shows the difficulty of measur
ing any operator not commuting with these quantities. This last point will be 
taken up again when the superselection rules are discussed. 

The Boson-Fermion Superselection Rule 

The preceding section dealt with difficulties inherent in the measurement of a 
great many, if not most, operators, but the difficulties considered there could be 
overcome to an increasing extent by an increase in the "size" of the measuring 
equipment. The superselection rules absolutely exclude the measurability of certain 
operators. This exclusion is demonstrated in the first case, the boson-fermion 
superselection rule, on the basis of the postulate of the rotational invariance of the 
theory. The demonstration in the second case, the charge, baryon-number, etc. 
superselection rules, is more intricate and touches on a deeper philosophical 
problem. 

The boson-fermion superselection rule tells us that no operator is measurable 
which has a finite matrix element between two states, one of which has an integer, 
the other a half-integer, angular momentum. The former states are associated with 
bosons, the latter with fermions but, of course, in the sense here considered, % 
hydrogen atom is a boson—the half-integer spins of the electron and of the proton 
combine to an integer spin. If an operator with a finite matrix element is measured, 
and the measurement results in characteristic vectors of the operator being 
produced, some of these characteristic vectors will have components with both 
integer and half integer spin: b + /. 

From here on, the proof of the inconsistency with rotational invariance can 
proceed in many ways. A rather natural way to carry out the demonstration starts 
from the decompositions of b and / in terms of (1) total angular momentum and 
(2) z-component of the angular momentum, as viewed from some arbitrary coor
dinate system: 

b = Σ W, (6V) 
J m  

/ = X Z m m  (67a) 
J m  

Naturally, the J and m in (67) are integers, in (67a) half integers—this is the defini
tion of b and /. The index m appears in (67) and (67a) twice in order to remind us 
that the terms in (67) or (67a) are not partners in the sense of invariance theory. 
Rather, the effect of a rotation R on these is given by the formulae 
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(68) 

and the same formula applies to the the being the "partners" of the 
partners of If the rotation R is applied on we have 

(69) 

and a similar formula applies to the rotation of the The are the matrices 
of the representations of the rotation group in our three-dimensional space 
(Wigner, 1959). 

It now follows that the state vector of the state which looks like b + f from 
the point of view of a coordinate system obtained from the original one by a 
rotation R is 

(70) 

The , with absolute value 1, had to be introduced in (70) because the effect 
of a transformation is always indefinite within a factor of absolute value 1— 
the state determines the state vector only up to such a factor. Actually, the first 
term of (70) should also be provided with such a factor. However, one factor of 
this nature can be eliminated from all such equations. One has only to postulate 
that the state vector be one of the state vectors representing the state in question. 
The others can be obtained from it by multiplication with an arbitrary phase 
factor, i.e., a factor of modulus 1. Actually, the omission of this phase factor 
simplifies the calculation relatively little. 

It may be well to observe at this point that if the operator projecting into the 
state b + f is observable—and we have assumed it is—then the operator pro-
jecting into is likewise, by means of the same apparatus rotated by R. 
We shall take for R, first a rotation by n about z, to be denoted by Z. We then have, 
using the usual formulae for (remembering, though, that the m of b is an 
integer, that of / a half integer), 

(71) 

and 

(71a) 
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We recall that is the unit operation. Therefore (71a) should differ only by a 
factor from In the first term m is an integer and the factor in question 
indeed has the value unity. Hence must also be 1 for the half integer m of 
the second term. It follows that or 

(71b) 

Let us observe that, in order to derive this result, it was necessary to assume that 
neither b nor / is a null-vector. 

We consider next a rotation by about the y axis. The standard formulae give 

(72) 

Calculation of yields this time: 

(72a) 

The fact that the second factor in (71a) and the second coY factor in (72a) 
must be the same as the first follows from the unitary nature of the trans-
formations and Otherwise the scalar products and 

would not be equal. A similar remark applies to . Now 
can again differ from only in a factor. Moreover, the first term 

shows that this factor is 1. Also we have for the J of the second term. 
Therefore we arrive at a result similar to (71b), 

(72b) 

A similar calculation yields 

(73) 

as was to be expected. However, the product of rotations by about z and by 
7i about y is a rotation by about x. Therefore the vector can differ 
from only by a factor. Contrary to this requirement we find 

(55) 
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Comparison of this expression with that for Ox(b + /) shows that the factor in 

the first term is 1. Comparison of the second terms then shows that 

ωχ  = ω γω ζ, (74a) 

which is in contradiction to (71b), (72b), and (73). This disagreement shows that 

the existence of a state b + f, with finite b and finite /, is incompatible with the 

principle of rotational invariance. As was mentioned above, this "boson-fermion 

superselection rule" can be established in many different ways, each of which, 

however, relies to some degree on the theory of rotational invariance, in particular 

on the difference between the D(J) which apply to bosons and to fermions. 

Superselection Rules for Charge, etc. 

The creation of a state b + f with both b (boson integer spin) and / (fermion, 

half-integer spin) finite, or, in other words, "any violation of the boson-fermion 

superselection rule," would conflict, as we have just seen, with the postulate of 

the rotational invariance of the theory, provided that the basic ideas of quantum 

mechanics are valid. This deduction may be a blemish on the very general principles 

of quantum theory, but it does not affect any of its practical applications or 

conceivable experimental conclusions. 

According to the "charge superselection rule," it is also impossible to produce 

states 

I c -  ( 7 5 )  

with cn  representing a state with electric charge number η and more than one of 

the vectors c„ finite. According to the "baryon superselection rule," the same pro

hibition applies to the baryon number. In contrast to the situation with the state 

vectors b + f, no conflict with any of the fundamental principles has been derived 

from the possibility of producing a state with the state vector (75). Rather, the 

validity of the somewhat controversial superselection rules for charge, etc. is 

based on the physical impossibility of producing states such as (75). We do not 

know of any macroscopic object that would be in a state such as (75). Even if 

we do not know the exact electric charge of an object—and in the case of a macro

scopic object this is difficult to know—we cannot distinguish between (75) and 

other states, such as 

Σ e l*"cn, (75a) 

the exponentials in (75a) being phase factors of modulus 1. In the mathematical 

terminology of quantum mechanics this ambiguity is expressed by the statement 

that the actual state is not a superposition of the states cn but a mixture of them. 

The state then cannot be characterized by a state vector. The system can be in 
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any of the states c„. The probability that a measurement of the charge will give 
the value η is (c„, c„). The theory of mixtures has been given an elegant mathe

matical form, but it will not be elaborated here. 

State vectors with different charges do not interact with each other. Thus the 

time development of every c„ of (75) is the same as if it were present alone. There
fore the mixture character of the state remains preserved in time. Similarly, if 
two systems are united to form a joint system, and if each of the two is a mixture 

of states with definite charge numbers, the same will be true of the united system. 
It follows from this reasoning that unless nature supplies some superposition of 
different charge states, such as (75), no such superposition state will ever be found. 

Then the superselection rule for charge will be valid. The same applies to the 
superselection rules for baryon number, etc. 

The law of conservation of electric charge, the independence of the time devel

opment of the states with different charges, and our observation on the union 
of two systems, remain equally valid if "linear momentum" is substituted for 

"electric charge." It is natural to ask, therefore, why no superselection rule applies 
for the components of linear momentum or angular momentum. How is it that 
one can produce a state which is a superposition of states with different linear 
momenta? And how is it that one can ascertain the coefficients βιφ" in the expression 

corresponding to (75a) with η now referring to a component of linear momentum 

(:η a continuous variable) or to a component of the angular momentum? The 

answer to this question, it must be admitted, cannot be read out of the basic 

equations of quantum mechanics. We really do not know how we acquired the 

ability to see light signals and to feel objects, and why there are no similar phenom
ena in connection with electric charges. Superconductivity is often claimed to 

provide such signals. Indeed, the usual theory does use a description of the super
conducting state which is a definite superposition of states with different electric 
charges. However, it is evident that the conclusions of the theory, describing 
currents, magnetic fields, and similar observable phenomena, would not change 
in any way if the different charge states were multiplied with different phase factors 
as they are in (75a). None of the observables used has matrix elements connecting 
states with different charges. Only the finiteness of such matrix elements could 
permit one to distinguish (75a) from (75). As far as linear momentum is concerned, 
the situation is entirely different. Any position operator, for instance, has major 
matrix elements between states with different momenta. 

The question naturally arises whether and how phase relations between dif
ferent charge states could manifest themselves. Surely the fact that the observed 
phenomena of superconductivity do not prove the existence of such phase relations 

does not prove their absence. Naturally, the existence of such phase relations, that 
is, the breakdown of the charge superselection rule, would be very surprising. 
Present quantum mechanics would do as little to explain such a breakdown as to 
explain how the states of different energy in a thermodynamic ensemble could 
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manifest phase relations. Nevertheless, it may be interesting to find an experi
mental criterion to tell whether such phase relations exist—that is, to tell whether 
superpositions such as (75) or (75a) with definite ψη are distinguishable. 

The simplest experiment would consist in the uniting of two systems. Let each 

system be imagined to be in a superposition of states with the charges η and m. 

If these are superpositions such as (75) or (75a), their state vectors could be denoted 
by 

Φη + e'Vm and ιj/'n + (76) 

with definite φ and φ'. Their union would then have the state vector 

Ψ«®Ψ'η + ίε ί φ 'Ψη <8 <Am + W m  ® Φ'„] + β» + Ι φ , ψ Μ  (X) I jJ m .  (76a) 

This formula indicates that the component with charge η + m, given in the brackets 

of (76a), would have a definite structure and might well be distinguished by con
ceivable experiments from a mixture of the two states ψη (χ) φ'η, and φηι ® φ'η. The 

factor exp \_ί(φ — <//)] measuring the difference in phase between the two states 
of equal charge would be definite. There is no reason to believe that that factor 
would be unobservable. Needless to say, (76) and hence (76a) could be greatly 
generalized and, equally obvious, the experiment alluded to here is far from con
crete. Moreover, it may be impossible to carry it out. 

The Measurement of Position 

As was mentioned at the beginning of this section, the early interest in the cor
respondence of a quantum-mechanical operator to classical expressions, such as 
x2p2, has largely ceased. Nevertheless, there are classical quantities, such as linear 
and angular momentum, energy, and position, to which one would like to coor

dinate an operator. It appears, at least superficially, that these quantities have a 
simple meaning, and can be measured, and that it should be possible to find the 
proper operator for them. 

Whether easily measurable or not, the coordination of operators to energy, 
linear and angular momentum components (and the three other quantities 
associated with them in relativistic theory) can easily be made. The operators are 
the infinitesimal operators of the (special) relativistic invariance group, also called 
the Poincare group. Position is different. Quite apart from the difficulties of 
measuring position soon to be discussed, we find great problems in coordinating 
an operator to position. These difficulties have been most elegantly demonstrated 
by Hegerfeldt (1974) (see also Pryce, 1948; Moller, 1972; Wightman, 1962; and 

Fleming, 1965). The following discussion is based on his remark. It is more tech
nical than the rest of these notes, being based on the theory of the Poincare in

variance of quantum mechanics, and may be, for some, difficult to follow. 
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In order to simplify the demonstration, we shall use a spacetime with only 

one spacelike dimension. The generalization to three spacelike dimensions is not 

difficult but would make the discussion a good deal longer. The spirit of the 

demonstration is not impaired by the restriction to one spacelike dimension. 

Let us assume that there is a position operator and consider its projection 

operators P(x) as defined, for an arbitrary operator, by equations (21) of §2 ("all 

values up to x"). Let us then produce out of some initial state φ, by the operator 

P(x2) — P(X1) (with x2 > X1), a state φ for which the position is confined to the 

X1, X2 interval. We express the state vector of such a state in the momentum repre

sentation, as is usual in the quantum-mechanical invariance theory. Thus we write 

ψ = φ(ρ, σ), where ρ is the momentum vector (one-dimensional for our world 

with one spacelike dimension) and σ is a discrete variable, characterizing the other 

variables, such as spin component in one direction, etc. Because of the confinement 

of the position to the X1, x2 interval, that is, because of 

ψ ( ρ ,  σ )  =  [ F ( X 2 )  -  Ρ ( Χ ι )]Φ, 

we have 

Ρ ( χ ) ψ ( ρ , σ )  =  0  for all χ < X1, (77) 

and 

Ρ ( χ ) ψ ( ρ , σ )  =  ψ ( ρ , σ )  for all χ > x2. (77a) 

The scalar product of two vectors φ  and φ ' ,  expressed in the ( p ,  ̂ -representation, 

is 

(Φ, Φ') = Σ J Φ( ρ >  σ)*Φ' ( Ρ >  σ )  d p  I  ρ  ο ·  (78) 

Here c p 0  is the energy associated with the momentum p ,  

P0  = (m2c2  + p 2 ) 1 ' 2 ·  (78a) 

The po in the denominator of (78) will play no significant role. It is introduced in 

the usual definition for the scalar product because it simplifies the expressions for 

Lorentz transformations. We shall not make use of general transformations but 

only of displacements in space and time. The operator for a displacement in space 

by a and displacement in time by t is simply multiplication by 

e ~ip 0 t  +  ipa^  (79 )  

If |a| > x2 — X 1 ,  a space displacement by a  moves the original confinement into 

a  new,  nonover lapping  one  so  that  e i p a \p (p ,  σ )  w i l l  b e  o r t h o g o n a l  t o  φ ( ρ ,  σ ) ,  
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(80) 

for This can be proved also more formally by noting that 

(79a) 

and making use of (21c) of §2. From the validity of (79), and the confinement of 
to an interval of the width (80) should be evident anyway. 

Equation (80) expresses the fact that the Fourier transform of 

(80a) 

is confined to a region of width It then follows from the expression 
of (80a) in terms of its Fourier transform—an integral over a region of width 

—that the expression (80a) is a meromorphic function of p; that is, it 
has no singularity in the finite complexplane. The scalar product of a space dis-
placed i and a time displaced 

(81) 

evidently is the Fourier coefficient of the function 

(81a) 

This function, for finite t, is not a meromorphic function of p. To be sure, (80a) 
is such a function; but the p0 in the exponent has singularities at imc. Hence, 
there is no finite interval of a outside of which its Fourier transform, (81), will 
vanish. This means that the time displacement spreads the position, originally 
confined to the interval over all space. Otherwise there could be no finite 
transition probability to functions for arbitrarily large a, since the latter 
state is confined to the interval No matter how one defines the 
position, one has to conclude that the velocity, defined as the ratio of two sub-
sequent position measurements divided by the time interval between them, has 
a finite probability of assuming an arbitrarily large value, exceeding c. One either 
has to accept this, or deny the possibility of measuring the position precisely or 
even giving significance to this concept: a very difficult choice! And the author 
of these notes will admit that since writing them, he has devoted a good deal of 
attention to the problem (Ahmad and Wigner, 1975; O'Connell and Wigner, 
1977, 1978). 
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SUMMARY 

The present section starts with the observation that the measured quantities 
correspond to (self-adjoint) operators, not to the quantities of classical physics. 

It then points to the demonstrable difficulties of certain measurements, i.e., where 

it can be shown that it is difficult to find an apparatus the interaction of which 

with the object has the result indicated by the basic equation (34) of §3. 
It is shown, first, that no precise measurement of any quantity is possible unless 

this commutes with all conserved additive quantities. In some cases this conclusion 
can be derived, at least qualitatively, with ease. In other cases, such as operators 

which do not commute with the operator of electric charge, the situation is less 
obvious. It is shown then that a measurement which has a small probability of 

giving an incorrect result surely needs a large apparatus, i.e., one in a state in 

which the additive conserved quantities, not commuting with the quantity to be 
measured, have probabilities for values spread over a wide spectrum. 

The second type of case discussed refers to quantities which cannot be measured 

at all. Examples are, first, operators which have a finite matrix element between a 
state with integer and another state with half-integer angular momentum. The 
so-called boson-fermion superselection rule shows that it is impossible to produce 
states which are superpositions of states with integer and half-integer angular 
momenta. A similar statement is then made for the superposition of states with 
different electric charges and also with different baryon numbers, and perhaps 
other similar descriptors. 

Finally, we had to recognize, every attempt to provide a precise definition of a 
position coordinate stands in direct contradiction with special relativity. 

All these are concrete and clearly demonstrated limitations on the measurability 
of operators. They should not obscure the other, perhaps even more fundamental 
weakness of the standard theory, that it postulates the measurability of operators 
but does not give directions as to how the measurement should be carried out. 

This problem has already been emphasized at the end of §3, the description of the 
quantum theory of measurement. 

All the preceding discussion is based on the usual quantum-mechanical theory, 

as taught in classes, not on the more advanced axiomatic quantum field theory. 
The question therefore arises whether quantum field theory avoids the difficulties 
mentioned. Surely, as far as the superselection rules are concerned, it does not. 

As to the rest, my opinion is negative also. The best known discussion of the 
measurement of field strengths, that given by Bohr and Rosenfeld, postulates an 
electric test charge with arbitrarily large charge and arbitrarily small size (Bohr 

and Rosenfeld, 1933,1950). Naturally, the fact that the quantum field theory does 
not resolve our problems, though regrettable, should not be considered as an 
argument against that theory. 
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II.3 "RELATIVE STATE" FORMULATION OF QUANTUM MECHANICS* 

HUGH EVERETT 111 

1. INTRODUCTION 

THE task of quantizing general relativity raises 
serious questions about the meaning of the 

present formulation and interpretation of quantum 
mechanics when applied to so fundamental a structure 
as the space-time geometry itself. This paper seeks to 
clarify the foundations of quantum mechanics. It 
presents a reformulation of quantum theory in a form 
believed suitable for application to general relativity. 

The aim is not to deny or contradict the conventional 
formulation of quantum theory, which has demon
strated its usefulness in an overwhelming variety of 
problems, but rather to supply a new, more general and 
complete formulation, from which the conventional 
interpretation can be deduced. 

The relationship of this new formulation to the older 
formulation is therefore that of a metatheory to a 
theory, that is, it is an underlying theory in which the 
nature and consistency, as well as the realm of applica
bility, of the older theory can be investigated and clari
fied. 

The new theory is not based on any radical departure 
from the conventional one. The special postulates in the 
old theory which deal with observation are omitted in 
the new theory. The altered theory thereby acquires a 
new character. It has to be analyzed in and for itself 
before any identification becomes possible between the 
quantities of the theory and the properties of the world 
of experience. The identification, when made, leads 
back to the omitted postulates of the conventional 
theory that deal with observation, but in a manner 

which clarifies their role and logical position. 
We begin with a brief discussion of the conventional 

formulation, and some of the reasons which motivate 
one to seek a modification. 

2. REALM OF APPLICABILITY OF THE CONVENTIONAL 
OR "EXTERNAL OBSERVATION" FORMULATION 

OF QUANTUM MECHANICS 

We take the conventional or "external1 observation" 
formulation of quantum mechanics to be essentially 

* Thesis submitted to Princeton University March 1, 1957 in 
partial fulfillment of the requirements for the Ph.D. degree. An 
earlier draft dated January, 1956 was circulated to several physi
cists whose comments were helpful. Professor Niels Bohr, Dr. H. J. 
Groenewald, Dr. Aage Peterson, Dr. A, Stern, and Professor L. 
Rosenfeld are free of any responsibility, but they are warmly 
thanked for the useful objections that they raised. Most particular 

the following1: A physical system is completely de
scribed by a state function ψ, which is an element of a 
Hilbert space, and which furthermore gives information 
only to the extent of specifying the probabilities of the 
results of various observations which can be made on 
the system by external observers. There are two funda
mentally different ways in which the state function 
can change: 

Process 1: The discontinuous change brought about 
by the observation of a quantity with eigenstates 
φι, φ ι,···, in which the state ψ will be changed to 
the state φ,· with probability | {ψ,φ,) |2. 

Process 2\ The continuous, deterministic change of 
state of an isolated system with time according to 
a wave equation θψ/ΘΙ=Αψ, where A is a linear 
operator. 

This formulation describes a wealth of experience. No 
experimental evidence is known which contradicts it. 

Not all conceivable situations fit the framework of 
this mathematical formulation. Consider for example an 
isolated system consisting of an observer or measuring 
apparatus, plus an object system. Can the change with 
time of the state of the total system be described by 
Process 2? If so, then it would appear that no dis
continuous probabilistic process like Process 1 can take 
place. If not, we are forced to admit that systems which 
contain observers are not subject to the same kind of 
quantum-mechanical description as we admit for all 
other physical systems. The question cannot be ruled 
out as lying in the domain of psychology. Much of the 
discussion of "observers" in quantum mechanics has 
to do with photoelectric cells, photographic plates, and 
similar devices where a mechanistic attitude can hardly 
be contested. For the following one can limit himself to 
this class of problems, if he is unwilling to consider ob
servers in the more familiar sense on the same mechanis
tic level of analysis. 

What mixture of Processes 1 and 2 of the conventional 
formulation is to be applied to the case where only an 
approximate measurement is effected; that is, where an 
apparatus or observer interacts only weakly and for a 
limited time with an object system? In this case of an 

thanks are due to Professor John A. Wheeler for his continued 
guidance and encouragement. Appreciation is also expressed to the 
National Science Foundation for fellowship support. 

1 We use the terminology and notation of J. von Neumann, 
Matiiematicai Foundations of Quantum Mechanics, translated by 
R. T Beyer (Princeton University Press, Princeton, 1955). 

Originally published in Reviews of Modern Physics, 29, 454-62 (1957). 
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approximate measurement a proper theory must specify 
(1) the new state of the object system that corresponds 
to any particular reading of the apparatus and (2) the 
probability with which this reading will occur, von 
Neumann showed how to treat a special class of ap
proximate measurements by the method of projection 
operators.2 However, a general treatment of all ap
proximate measurements by the method of projection 
operators can be shown (Sec. 4) to be impossible. 

How is one to apply the conventional formulation of 
quantum mechanics to the space-time geometry itself? 
The issue becomes especially acute in the case of a closed 
universe.3 There is no place to stand outside the system 
to observe it. There is nothing outside it to produce 
transitions from one state to another. Even the familiar 
concept of a proper state of the energy is completely 
inapplicable. In the derivation of the law of conserva
tion of energy, one defines the total energy by way of an 
integral extended over a surface large enough to include 
all parts of the system and their interactions.4 But in a 
closed space, when a surface is made to include more 
and more of the volume, it ultimately disappears into 
nothingness. Attempts to define a total energy for a 
closed space collapse to the vacuous statement, zero 
equals zero. 

How are a quantum description of a closed universe, 

of approximate measurements, and of a system that 
contains an observer to be made? These three questions 
have one feature in common, that they all inquire about 
the quantum mechanics that is internal to an isolated 
system. 

No way is evident to apply the conventional formula
tion of quantum mechanics to a system that is not sub
ject to external observation. The whole interpretive 
scheme of that formalism rests upon the notion of 
external observation. The probabilities of the various 
possible outcomes of the observation are prescribed 
exclusively by Process 1. Without that part of the 
formalism there is no means whatever to ascribe a 
physical interpretation to the conventional machinery. 
But Process 1 is out of the question for systems not 
subject to external observation.5 

3. QUANTUM MECHANICS INTERNAL TO AN 
ISOLATED SYSTEM 

This paper proposes to regard pure wave mechanics 
(Process 2 only) as a complete theory. It postulates that 
a wave function that obeys a linear wave equation 

2 Reference 1, Chap. 4, Sec. 4. 
3See A. Einstein, The Meaning oj Relativity (Princeton Univ

ersity Press, Princeton, 1950), third edition, p. 107. 
4L. Landau and E. Lifshitz, The Classical Theory of Fields, 

translated bv M. Hamermesh (Addison-Wesley Press, Cambridge, 
1951), p. 343. 
' See in particular the discussion of this point by N. Bohr and 

L. Rosenfeld, Kgl. Danske Videnskab. Selskab, Mat -fys Medd. 
12, No. 8 (1933). 

everywhere and at all times supplies a complete mathe
matical model for every isolated physical system with
out exception. It further postulates that every system 
that is subject to external observation can be regarded 
as part of a larger isolated system. 

The wave function is taken as the basic physical 
entity with no a priori interpretation. Interpretation 
only comes after an investigation of the logical structure 
of the theory. Here as always the theory itself sets the 
framework for its interpretation.5 

For any interpretation it is necessary to put the 
mathematical model of the theory into correspondence 
with experience. For this purpose it is necessary to 
formulate abstract models for observers that can be 
treated within the theory itself as physical systems, to 
consider isolated systems containing such model ob
servers in interaction with other subsystems, to deduce 
the changes that occur in an observer as a consequence 
of interaction with the surrounding subsystems, and 
to interpret the changes in the familiar language of 
experience. 

Section 4 investigates representations of the state of 
a composite system in terms of states of constituent 
subsystems. The mathematics leads one to recognize 
the concept of the relativity oj states, in the following 
sense: a constituent subsystem cannot be said to be in 
any single well-defined state, independently of the re
mainder of the composite system. To any arbitrarily 
chosen state for one subsystem there will correspond a 
unique relative state for the remainder of the composite 
system. This relative state will usually depend upon the 
choice of state for the first subsystem. Thus the state 
of one subsystem does not have an independent exist
ence, but is fixed only by the state of the remaining sub
system. In other words, the states occupied by the sub
systems are not independent, but correlated. Such corre
lations between systems arise whenever systems in
teract. In the present formulation all measurements and 
observation processes are to be regarded simply as inter
actions between the physical systems involved—inter
actions which produce strong correlations. A simple 
model for a measurement, due to von Neumann, is 
analyzed from this viewpoint. 

Section S gives an abstract treatment of the problem 
of observation. This uses only the superposition prin
ciple, and general rules by which composite system 
states are formed of subsystem states, in order that the 
results shall have the greatest generality and be appli
cable to any form of quantum theory for which these 
principles hold. Deductions are drawn about the state 
of the observer relative to the state of the object system. 
It is found that experiences of the observer (magnetic 
tape memory, counter system, etc.) are in full accord 
with predictions of the conventional "external observer" 
formulation of quantum mechanics, based on Process 1. 

Section 6 recapitulates the "relative state" formula
tion of quantum mechanics. 
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4. CONCEPT OF RELATIVE STATE 

We now investigate some consequences of the wave 
mechanical formalism of composite systems. If a com-
posite system S, is composed of two subsystems Si and 

with associated Hilbert spaces . and then, 
according to the usual formalism of composite systems, 
the Hilbert space for 5 is taken to be the tensor product of 
771 and . (written . This has the con-
sequence tha t if the sets and are complete 
orthonormal sets of states for and , respectively, 
then the general s tate of 5 can be writ ten as a super-
position : 

(1) 

From (3.1) although 5 is in a definite state , the 
subsystems and do not possess anything like 
definite states independently of one another (except 
in the special case where all but one of the are zero). 

We can, however, for any choice of a state in one sub-
system, uniquely assign a corresponding relative s ta te 
in the other subsystem. For example, if we choose as 
the s ta te for while the composite system 5 is in the 
state given by (3.1), then the corresponding relative 
stale in will be : 

(2) 

where is a normalization constant . This relative 
state for is independent of the choice of basis 

for the orthogonal complement of and is 
hence determined uniquely by alone. To find the 
relative state in S 2 for an arbi t rary state of Si therefore, 
one simply carries out the above procedure using any 
pair of bases for Si and S 2 which contains the desired 
s ta te as one element of the basis for Si. To find states 
in S i relative to states in S2, interchange S i and S2 in the 
procedure. 

In the conventional or "external observation" 
formulation, the relative s ta te in . , for 
a state in gives the conditional probabili ty dis-
tr ibutions for the results of all measurements in 
given tha t Si has been measured and found to be in state 

, tha t is the eigenfunction of the measure-
ment in S i corresponding to the observed eigenvalue. 

For any choice of basis in , it is always possible 
to represent the s ta te of S, (1), as a single superposition 
of pairs of states, each consisting of a state f rom the 
basis in and its relative s ta te in Thus, f rom 
(2), (1) can be writ ten in the fo rm: 

(3) 

This is an important representation used frequently. 
Summarizing: There does not, in general, exist anything 

like a single stale for one subsystem of a composite system. 
Subsystems do not possess states that are independent of 
the states of the remainder of the system, so that the sub-

system slates are generally correlated with one another. 
One can arbitrarily choose a state for one subsystem, and 
be led to the relative state for the remainder. Thus we are 
faced with a fundamental relat ivity of states, which is 
implied by the formalism of composite systems. It is 
meaningless to ask the absolute state of a subsystem—one 
can only ask the state relative to a given state of the re-
mainder of the subsystem. 

At this point we consider a simple example, due to von 
Neumann, which serves as a model of a measurement 
process. Discussion of this example prepares the ground 
for the analysis of "observation." We star t with a system 
of only one coordinate, q (such as position of a particle), 
and an appara tus of one coordinate r (for example the 
position of a meter needle). Fur ther suppose tha t they 
are initially independent, so tha t the combined wave 
function is where is the initial 
system wave function, and ' '1 is the initial appara tus 

function. The Hamil tonian is such tha t the two systems 
do not interact except during the interval 1=0 to t— T, 
during which t ime the total Hamiltonian consists only 
of a simple interaction, 

(4) 
Then the s ta te 

(5) 

is a solution of the Schrodinger equation, 

(6) 

for the specified initial conditions a t t ime t = 0. 
From (5) a t t ime t=T (at which t ime interaction 

stops) there is no longer any definite independent 
appara tus state, nor any independent system state. 
The appara tus therefore does not indicate any definite 
object-system value, and nothing like process 1 has 
occurred. 

Nevertheless, we can look upon the total wave func-
tion (5) as a superposition of pairs of subsystem states, 
each element of which has a definite q value and a 
correspondingly displaced appara tus s tate . Thus af ter 
the interaction the s ta te (5) has the fo rm: 

(7) 

which is a superposition of states 
Each of these elements, of the superposition de-
scribes a s ta te in which the system has the definite 
value and in which the appara tus has a s ta te 
tha t is displaced f rom its original s ta te by the amount 

These elements are then superposed with 
coefficients " to form the total s tate (7). 

Conversely, if we transform to the representation 
where the apparatus coordinate is definite, we write (5) 
as 
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where 
£r'(q) = Nr,<t>(qh(r'-qT) (8) 

and 

(l/Nr>)2 = J<j>*(q)<l>(q)v*{r'-qT)v(r'-qT)dq. 

Then the £r' (q) are the relative system state functions6 

for the apparatus states &(r—r') of definite value r=r'. 
If T is sufficiently large, or η(τ) sufficiently sharp 

(near <5 (V)), then £r'(<?) is nearly S(q—r'/T) and the 
relative system states |r' (q) are nearly eigenstates for 
the values q=r'/ T. 

We have seen that (8) is a superposition of states 
φτ·, for each of which the apparatus has recorded a 
definite value r', and the system is left in approximately 
the eigenstate of the measurement corresponding to 
q=r'/T. The discontinuous "jump" into an eigenstate 
is thus only a relative proposition, dependent upon the 
mode of decomposition of the total wave function into 
the superposition, and relative to a particularly chosen 
apparatus-coordinate value. So far as the complete 
theory is concerned all elements of the superposition 
exist simultaneously, and the entire process is quite 
continuous. 

von Neumann's example is only a special case of a 
more general situation. Consider any measuring ap
paratus interacting with any object system. As a result 
of the interaction the state of the measuring apparatus 
is no longer capable of independent definition. It can 
be defined only relative to the state of the object system. 
In other words, there exists only a correlation between 
the states of the two systems. It seems as if nothing can 
ever be settled by such a measurement. 

This indefinite behavior seems to be quite at variance 
with our observations, since physical objects always 
appear to us to have definite positions. Can we reconcile 
this feature wave mechanical theory built purely on 
Process 2 with experience, or must the theory be 
abandoned as untenable? In order to answer this 
question we consider the problem of observation itself 
within the framework of the theory. 

5. OBSERVATION 

We have the task of making deductions about the 
appearance of phenomena to observers which are con
sidered as purely physical systems and are treated 
within the theory. To accomplish this it is necessary 
to identify some present properties of such an observer 
with features of the past experience of the observer. 

8 This example provides a model of an approximate measure
ment. However, the relative system states after the interaction 
¥'{q) cannot ordinarily be generated from the original system 
state φ by the application of any projection operatorr E. Proof·. 
Suppose on the contrary that %r"{q)=NEtt>{q} = N'tl>(q)Ti(/—qt), 
where N, N' are normalization constants. Then 

Ε(ΝΕφ(ς)) = N"<t>(q)ri1(r'—ql) 
and E?tt>(q)=z(N"/N)4>{q)T)2(r'—qt). But the condition E1=E 
which is necessary for £ to be a projection implies that N'/N" 
η (q) =Ty2 (q) which is generally false. 

Thus, in order to say that an observer 0 has observed 
the event a, it is necessary that the state of 0 has become 
changed from its former state to a new state which is 

dependent upon a. 
It will suffice for our purposes to consider the ob

servers to possess memories (i.e., parts of a relatively 
permanent nature whose states are in correspondence 
with past experience of the observers). In order to 
make deductions about the past experience of an ob
server it is sufficient to deduce the present contents of 
the memory as it appears within the mathematical 
model. 

As models for observers we can, if we wish, consider 
automatically functioning machines, possessing sensory 
apparatus and coupled to recording devices capable of 
registering past sensory data and machine configura
tions. We can further suppose that the machine is so 
constructed that its present actions shall be determined 
not only by its present sensory data, but by the con
tents of its memory as well. Such a machine will then 
be capable of performing a sequence of observations 
(measurements), and furthermore of deciding upon its 
future experiments on the basis of past results. If we 
consider that current sensory data, as well as machine 
configuration, is immediately recorded in the memory, 
then the actions of the machine at a given instant can 
be regarded as a function of the memory contents only, 
and all relavant experience of the machine is contained 
in the memory. 

For such machines we are justified in using such 
phrases as "the machine has perceived A" or "the 
machine is aware of A" if the occurrence of A is repre
sented in the memory, since the future behavior of 
the machine will be based upon the occurrence of A. In 
fact, all of the customary language of subjective experi
ence is quite applicable to such machines, and forms the 
most natural and useful mode of expression when 
dealing with their behavior, as is well known to in
dividuals who work with complex automata. 

When dealing with a system representing an ob
server quantum mechanically we ascribe a state func
tion, φα, to it. When the state ψ° describes an observer 
whose memory contains representations of the events 
A, B, ••·, C we denote this fact by appending the 
memory sequence in brackets as a subscript, writing: 

Ψ > Ι Α , Β ,  ...,cl. (9) 

The symbols A, Β, · · ·, C, which we assume to be ordered 
time-wise, therefore stand for memory configurations 
which are in correspondence with the past experience 
of the observer. These configurations can be regarded as 
punches in a paper tape, impressions on a magnetic reel, 
configurations of a relay switching circuit, or even con
figurations of brain cells. We require only that they be 
capable of the interpretation "The observer has ex
perienced the succession of events A, B, · · ·, C." (We 
sometimes write dots in a memory sequence, • • • A, 
Β, · · ·, C, to indicate the possible presence of previous 
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memories which are irrelevant to t he case being con-
sidered.) 

The mathematical model seeks to treat the interaction 
of such observer systems with other physical systems 
(observations), within the framework of Process 2 wave 
mechanics, and to deduce the resulting memory con-
figurations, which are then to be interpreted as records 
of the past experiences of the observers. 

We begin by defining what consti tutes a "good" 
observation. A good observation of a quant i ty A, with 
eigenfunctions , for a system S, by an observer whose 
initial s tate is consists of an interaction which, in a 
specified period of time, transforms each (total) s ta te 

(10) 
into a new sta te 

(ID 

where a , characterizes7 the state (The symbol, 
might stand for a recording of the eigenvalue, for ex-
ample.) T h a t is, we require tha t the system state, if it 
is an eigenslate, shall be unchanged, and (2) tha t the 
observer s ta te shall change so as to describe an ob-
server tha t is "aware" of which eigenfunction it is; tha t 
is, some property is recorded in the memory of the ob-
server which characterizes such as the eigenvalue. 
The requirement tha t the eigenstates for the system 
be unchanged is necessary if the observation is to be 
significant (repeatable), and the requirement tha t the 
observer state change in a manner which is different 
for each eigenfunction is necessary if we are to be able 
to call the interaction an observation a t all. How closely 
a general interaction satisfies the definition of a good 
observation depends upon (1) the way in which the in-
teraction depends upon the dynamical variables of the 
observer system—including memory variables—and 
upon the dynamical variables of the object system and 
(2) the initial s tate of the observer system. Given (1) 
and (2), one can for example solve the wave equation, 
deduce the state of the composite system af ter the end 
of the interaction, and check whether an object system 
tha t was originally in an eigenstate is left in an eigen-
state, as demanded by the repeatability postulate. This 
postulate is satisfied, for example, by the model of von 
Neumann tha t has already been discussed. 

From the definition of a good observation we first 
deduce the result of an observation upon a system which 
is not in an eigenstate of the observation. We know from 
our definition tha t the interaction transforms states 

into states Consequently these 
solutions of the wave equation can be superposed to 
give the final s tate for the case of an arbi trary initial 
system state. Thus if the initial system state is not an 
eigenstate, bu t a general s tate the final total 

7 I t should be understood tha t is a different s tate for 
each i. A more precise notation w o u l d w r i t e but no 
confusion can arise if we simply let the be indexed only by the 
index of the memory configuration symbol. 

s ta te will have the fo rm: 

(12) 

This superposition principle continues to apply in the 
presence of fur ther systems which do not interact during 
the measurement. Thus , if systems are 
present as well as 0, with original states 

and the only interaction during the time of 
measurement takes place between Si and 0, the measure-
ment will t ransform the initial total s t a t e : 

(13) 

into the final s ta te : 

(14) 
where are eigenfunctions of the 
observation. 

Thus we arrive a t the general rule for the trans-
formation of total s ta te funct ions which describe sys-
tems within which observation processes occur: 

Rule 1: The observation of a quant i ty A, with eigen-
functions in a system by the observer 0, 
t ransforms the total s tate according to : 

(15) 
where 

If we next consider a second observation to be made, 
where our total s tate is now a superposition, we can 
apply Rule 1 separately to each element of the super-
position, since each element separately obeys the wave 
equation and behaves independently of the remaining 
elements, and then superpose the results to obtain the 
final solution. We formulate this as : 

Ride 2 : Rule 1 may be applied separately to each 
element of a superposition of total system states, 
the results being superposed to obtain the final 
total s tate . Thus, a determination of B, with eigen-
functions on by the observer 0 transforms 
the total s ta te 

(16) 

into the s ta te 

(17) 

where which follows from the 
application of Rule 1 to each element 

and then superposing the results with 
the coefficients a,-. 

These two rules, which follow directly f rom the super-
position principle, give a convenient method for deter-
mining final total states for any number of observation 
processes in any combinations. We now seek the 
interpretation of such final total states. 
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Let us consider the simple case of a single observa-
tion of a quantity A, with eigenfunctions in the 
system 5 with initial state by an observer 0 whose 
initial state is The final result is, as we have 
seen, the superposition 

(18) 

There is no longer any independent system state or 
observer state, although the two have become corre-
lated in a one-one manner. However, in each element 
of the superposition, the object-system state 
is a particular eigenstate of the observation, and 
furthermore the observer-system state describes the ob-
server as definitely perceiving that particular system state. 
This correlation is what allows one to maintain the 
interpretation that a measurement has been performed. 

We now consider a situation where the observer 
system comes into interaction with the object system for 
a second time. According to Rule 2 we arrive at the 
total state after the second observation: 

(19) 

Again, each element describes a system 
eigenstate, but this time also describes the observer as 
having obtained the same result for each of the two ob-
servations. Thus for every separate state of the ob-
server in the final superposition the result of the ob-
servation was repeat able, even though different for 
different states. This repeatability is a consequence of 
the fact that after an observation the relative system 
state for a particular observer state is the corresponding 
eigenstate. 

Consider now a different situation. An observer-
system 0, with initial state measures the same 
quanti ty A in a number of separate, identical, systems 
which are initially in the same state, 

(where the are, as usual, eigen-
functions of ^4). The initial total state function is then 

(20) 

We assume that the measurements are performed on the 
systems in the order , Then the total state 
after the first measurement is by Rule 1, 

(21) 

(where a,1 refers to the first system, Si). 

After the second measurement it is, by Rule 2, 

(22) 

and in general, after r measurements have taken place 
, Rule 2 gives the result: 

(23) 

We can give this state, the following interpreta-
tion. I t consists of a superposition of states: 

(24) 

each of which describes the observer with a definite 
memory sequence Relative to him the 
(observed) system states are the corresponding eigen-
functions the remaining systems, 

, being unaltered. 
A typical element of the final superposition 

describes a state of affairs wherein the observer has 
perceived an apparently random sequence of definite 
results for the observations. Furthermore the object 
systems have been left in the corresponding eigenstates 
of the observation. At this stage suppose that a re-
determination of an earlier system observation (Si) 
takes place. Then it follows that every element of the 
resulting final superposition will describe the observer 
with a memory configuration of the form 

in which the earlier memory coincides 
with the later—i.e., the memory states are correlated. 
I t will thus appear to the observer, as described by a 
typical element of the superposition, that each initial 
observation on a system caused the system to " jump" 
into an eigenstate in a random fashion and thereafter 
remain there for subsequent measurements on the same 
system. Therefore—disregarding for the moment quanti-
tative questions of relative frequencies—the proba-
bilistic assertions of Process 1 appear to be valid to 
the observer described by a typical element of the final 
superposition. 

We thus arrive at the following picture: Throughout 
all of a sequence of observation processes there is only 
one physical system representing the observer, yet 
there is no single unique state of the observer (which 
follows from the representations of interacting systems). 
Nevertheless, there is a representation in terms of a 
superposition, each element of which contains a definite 
observer state and a corresponding system state. Thus 
with each succeeding observation (or interaction), the 
observer state "branches" into a number of different 
states. Each branch represents a different outcome of 
the measurement and the corresponding eigenstate for 
the object-system state. All branches exist simultane-
ously in the superposition after any given sequence of 
observations. 

Note added in poo}.—In reply to a preprint of this article some 
correspondents have raised the question of the "transit ion from 
possible to actual ," arguing that in "real i ty" there is—as our 
experience testifies—no such splitting of observer states, so tha t 
only one branch can ever actually exist. Since this point may occur 
to other readers the following is offered in explanation. 

T h e whole issue of the transition f rom "possible" t o "ac tua l" 
is taken care of in the theory in a very simple way—there is no 
such transition, nor is such a transition necessary for the theory 
to be in accord with our experience. From the viewpoint of the 
theory all elements of a superposition (all "branches") are "ac-
tua l , " none any more "real" than the rest. I t is unnecessary to 
suppose that all but one are somehow destroyed, since all the 
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The "trajectory" of the memory configuration of an 
observer performing a sequence of measurements is 
thus not a linear sequence of memory configurations, 
but a branching tree, with all possible outcomes exist
ing simultaneously in a final superposition with various 
coefficients in the mathematical model. In any familiar 
memory device the branching does not continue 
indefinitely, but must stop at a point limited by the 
capacity of the memory. 

In order to establish quantitative results, we must 
put some sort of measure (weighting) on the elements of 
a final superposition. This is necessary to be able to 
make assertions which hold for almost all of the ob
server states described by elements of a superposition. 
We wish to make quantitative statements about the 
relative frequencies of the different possible results of 
observation—which are recorded in the memory—for 
a typical observer state; but to accomplish this we 
must have a method for selecting a typical element 
from a superposition of orthogonal states. 

We therefore seek a general scheme to assign a meas
ure to the elements of a superposition of orthogonal 
states Σ,α,ψ,. We require a positive function m of the 
complex coefficients of the elements of the super
position, so that ηι(αΐ) shall be the measure assigned 
to the element φ,. In order that this general scheme be 
unambiguous we must first require that the states them
selves always be normalized, so that we can distinguish 
the coefficients from the states. However, we can still 
only determine the coefficients, in distinction to the 
states, up to an arbitrary phase factor. In order to 
avoid ambiguities the function m must therefore be a 
function of the amplitudes of the coefficients alone, 
m(at) = m(\a% |). 

We now impose an additivity requirement. We can 
η 

regard a subset of the superposition, say Σ α,φ%, as a 
i-l 

single element αφ': 

η 
αφ' = Σ α ιφ,. (25) 

*-ι 

We then demand that the measure assigned to φ' shall 
be the sum of the measures assigned to the φ, (i from 1 

separate elements of a superposition individually obey the wave 
equation with complete indifference to the presence or absence 
("actuality" or not) of any other elements. This total lack of 
effect of one branch on another also implies that no observer will 
ever be aware of any "splitting" process. 

Arguments that the world picture presented by this theory is 
contradicted by experience, because we are unaware of any 
branching process, are like the criticism of the Copernican theory 
that the mobility of the earth as a real physical fact is incom
patible with the common sense interpretation of nature because 
we feel no such motion. In both cases the argument fails when it is 
shown that the theory itself predicts that our experience will be 
what it in fact is. (In the Copernican case the addition of New
tonian physics was required to be able to show that the earth's 
inhabitants would be unaware of any motion of the earth.) 

to n): 
η 

m(a)= Σ (26) 
i=l 

Then we have already restricted the choice of m to the 
square amplitude alone; in other words, we have 
m(a,) = a,*a,·, apart from a multiplicative constant.' 

To see this, note that the normality of φ' requires 
that I or j = (Σ,α,*α^. From our remarks about the 
dependence of m upon the amplitude alone, we replace 
the at by their amplitudes U1= | a, (. Equation (26) then 
imposes the requirement, 

m(a) = m(Y la*a l) i=m(Y,u, i) i  

= Σ*»(«>) = Σ^(Μ,2)!· (27) 

Defining a new function g(x) 

g(x) = m(\/x) (28) 

we see that (27) requires that 

«(ΣΜ.·2)=Σ«(Μ,2)· (29) 

Thus g is restricted to be linear and necessarily has the 
form: 

g(x) = cx (c constant). (30) 

Therefore g(x-) = cx2=m(\/x2) = m(x) and we have de
duced that m is restricted to the form 

m(a,) = m(ui) = cu,2  = Cafal. (31) 

We have thus shown that the only choice of measure 
consistent with our additivity requirement is the square 
amplitude measure, apart from an arbitrary multi
plicative constant which may be fixed, if desired, by 
normalization requirements. (The requirement that 
the total measure be unity implies that this constant is 
1.) 

The situation here is fully analogous to that of 
classical statistical mechanics, where one puts a measure 
on trajectories of systems in the phase space by placing 
a measure on the phase space itself, and then making 
assertions (such as ergodicity, quasi-ergodicity, etc.) 
which hold for "almost all" trajectories. This notion 
of "almost all" depends here also upon the choice of 
measure, which is in this case taken to be the Lebesgue 
measure on the phase space. One could contradict the 
statements of classical statistical mechanics by choosing 
a measure for which only the exceptional trajectories 
had nonzero measure. Nevertheless the choice of 
Lebesgue measure on the phase space can be justified 
by the fact that it is the only choice for which the "con
servation of probability" holds, (Liouville's theorem) 
and hence the only choice which makes possible any 
reasonable statistical deductions at all. 

In our case, we wish to make ,statements about 
"trajectories" of observers. However, for us a trajectory 
is constantly branching (transforming from state to 
superposition) with each successive measurement. To 
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have a requirement analogous to the "conservation of 
probability" in the classical case, we demand that the 
measure assigned to a trajectory at one time shall equal 
the sum of the measures of its separate branches at a 
later time. This is precisely the additivity requirement 
which we imposed and which leads uniquely to the 
choice of square-amplitude measure. Our procedure is 
therefore quite as justified as that of classical statistical 
mechanics. 

Having deduced that there is a unique measure which 
will satisfy our requirements, the square-amplitude 
measure, we continue our deduction. This measure 
then assigns to the i, j, · • ·&th element of the super
position (24), 

φ^ΐφ^ι.. .φ^,ψΒ,+ι.. ·ψβψι ία.1α.^.. (32) 

the measure (weight) 

M i j...k= {a,a,· • ·α*)»(α,α,· • •ak) (33) 

so that the observer state with memory configuration 
[a,1 ,a/, · · · ,a Jcr] is assigned the measure a*ata*a, • • • 
ak*ak=Mij...k. We see immediately that this is a 
product measure, namely, 

• - M k  (34) 
where 

M ι= αι*αι 

so that the measure assigned to a particular memory 
sequence [α;1, α/, · • -, ak

r~\ is simply the product of the 
measures for the individual components of the memory 
sequence. 

There is a direct correspondence of our measure 
structure to the probability theory of random sequences. 
Ifwe regard the Mij... k as probabilities for the sequences 
then the sequences are equivalent to the random 
sequences which are generated by ascribing to each term 
the independent probabilities Μι=α*αι. Now proba
bility theory is equivalent to measure theory mathe
matically, so that we can make use of it, while keeping 
in mind that all results should be translated back to 
measure theoretic language. 

Thus, in particular, if we consider the sequences to 
become longer and longer (more and more observations 
performed) each memory sequence of the final super
position will satisfy any given criterion for a randomly 
generated sequence, generated by the independent 
probabilities a*at, except for a set of total measure 
which tends toward zero as the number of observations 
becomes unlimited. Hence all averages of functions over 
any memory sequence, including the special case of 
frequencies, can be computed from the probabilities 
a*ait except for a set of memory sequences of measure 
zero. We have therefore shown that the statistical asser
tions of Process 1 will appear to be valid to the observer, 
in almost all elements of the superposition (24), in the 
limit as the number of observations goes to infinity. 

While we have so far considered only sequences of 

observations of the same quantity upon identical sys
tems, the result is equally true for arbitrary sequences 
of observations, as may be verified by writing more 
general sequences of measurements, and applying 
Rules 1 and 2 in the same manner as presented here. 

We can therefore summarize the situation when the 
sequence of observations is arbitrary, when these ob
servations are made upon the same or different systems 
in any order, and when the number of observations of 
each quantity in each system is very large, with the 
following result: 

Except for a set of memory sequences of measure 
nearly zero, the averages of any functions over a 
memory sequence can be calculated approximately 
by the use of the independent probabilities given by 
Piocess 1 for each initial observation, on a system, 
and by the use of the usual transition probabilities 
for succeeding observations upon the same system. 
In the limit, as the number of all types of observa
tions goes to infinity the calculation is exact, and the 
exceptional set has measure zero. 

This prescription for the calculation of averages over 
memory sequences by probabilities assigned to in
dividual elements is precisely that of the conventional 
"external observation" theory (Process 1). Moreover, 
these predictions hold for almost all memory sequences. 
Therefore all predictions of the usual theory will appear 
to be valid to the observer in amost all observer states. 

In particular, the uncertainty principle is never 
violated since the latest measurement upon a system 
supplies all possible information about the relative 
system state, so that there is no direct correlation be
tween any earlier results of observation on the sys
tem, and the succeeding observation. Any observation 
of a quantity B, between two successive observations of 
quantity A (all on the same system) will destroy the 
one-one correspondence between the earlier and later 
memory states for the result of A. Thus for alternating 
observations of different quantities there are funda
mental limitations upon the correlations between 
memory states for the same observed quantity, these 
limitations expressing the content of the uncertainty 
principle. 

As a final step one may investigate the consequences 
of allowing several observer systems to interact with 
(observe) the same object system, as well as to interact 
with one another (communicate). The latter interaction 
can be treated simply as an interaction which correlates 
parts of the memory configuration of one observer with 
another. When these observer systems are investigated, 
in the same manner as we have already presented in this 
section using Rules 1 and 2, one finds that in all elements 
of the final superposition: 

1. When several observers have separately observed 
the same quantity in the object system and then com
municated the results to one another they find that they 
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are in agreement. This agreement persists even when 
an observer performs his observation after the result 
has been communicated to him by another observer 
who has performed the observation. 

2. Let one observer perform an observation of a 
quantity A in the object system, then let a second per
form an observation of a quantity b in this object sys
tem which does not commute with A, and finally Jet the 
first observer repeat his observation of A. Then the 
memory system of the first observer will not in general 
show the same result for both observations. The inter
vening observation by the other observer of the non-
commuting quantity B prevents the possibility of any 
one to one correlation between the two observations of 
A .  

3. Consider the case where the states of two object 
systems are correlated, but where the two systems do 
not interact. Let one observer perform a specified ob
servation on the first system, then let another observer 
perform an observation on the second system, and 
finally let the first observer repeat his observation. 
Then it is found that the first observer always gets the 
same result both times, and the observation by the 
second observer has no effect whatsoever on the outcome 
of the first's observations. Fictitious paradoxes like 
that of Einstein, Podolsky, and Rosen8 which are con
cerned with such correlated, noninteracting systems 
are easily investigated and clarified in the present 
scheme. 

Many further combinations of several observers and 
systems can be studied within the present framework. 
The results of the present "relative state" formalism 
agree with those of the conventional "external observa
tion" formalism in all those cases where that familiar 
machinery is applicable. 

In conclusion, the continuous evolution of the state 
function of a composite system with time gives a com
plete mathematical model for processes that involve an 
idealized observer. When interaction occurs, the result 
of the evolution in time is a superposition of states, 
each element of which assigns a different state to the 
memory of the observer. Judged by the state of the 
memory in almost all of the observer states, the proba
bilistic conclusion of the usual "external observation" 

8Einstein1 Podolsky, and Rosen, Phys. Rev. 47, 777 (1935). 
For a thorough discussion of the physics of observation, see the 
chapter by N. Bohr in Alberl Einstein, Philosopher-Scientist (The 
Library of Living Philosophers, Inc., Evanston, 1949). 

formulation of quantum theory are valid. In other 
words, pure Process 2 wave mechanics, without any 
initial probability assertions, leads to all the proba
bility concepts of the familiar formalism. 

6. DISCUSSION 

The theory based on pure wave mechanics is a con
ceptually simple, causal theory,'which gives predictions 
in accord with experience. It constitutes a framework 
in which one can investigate in detail, mathematically, 
and in a logically consistent manner a number of some
times puzzling subjects, such as the measuring process 
itself and the interrelationship of several observers. Ob
jections have been raised in the past to the conventional 
or "external observation" formulation of quantum 
theory on the grounds that its probabilistic features 
are postulated in advance instead of being derived from 
the theory itelf. We believe that the present "relative-
state" formulation meets this objection, while retaining 
all of the content of the standard formulation. 

While our theory ultimately justifies the use of the 
probabilistic interpretation as an aid to making practical 
predictions, it forms a broader frame in which to under
stand the consistency of that interpretation. In this 
respect it can be said to form a melatheory for the stand
ard theory. It transcends the usual "external observa
tion" formulation, however, in its ability to deal logically 
with questions of imperfect observation and approxi
mate measurement. 

The "relative state" formulation will apply to all 
forms of quantum mechanics which maintain the super
position principle. It may therefore prove a fruitful 
framework for the quantization of general relativity. 
The formalism invites one to construct the formal theory 
first, and to supply the statistical interpretation later. 
This method should be particularly useful for inter
preting quantized unified field theories where there is no 
question of ever isolating observers and object systems. 
They all are represented in a single structure, the field. 
Any interpretative rules can probably only be deduced 
in and through the theory itself. 

Aside from any possible practical advantages of the 
theory, it remains a matter of intellectual interest that 
the statistical assertions of the usual interpretation 
do not have the status of independent hypotheses, but 
are deducible (in the present sense) from the pure wave 
mechanics that starts completely free of statistical 
postulates. 



II.4 THE PROBLEM OF MEASUREMENT 

EUGENE P. WIGNER 

Introduction 

The last few years have seen a revival of interest in the conceptual 

foundations of quantum mechanics.1 This revival was stimulated by the 
attempts to alter the probabilistic interpretation of quantum mechanics. 

However, even when these attempts turned out to be less fruitful than 

its protagonists had hoped,2 the interest continued. Hence, after the 

subject had been dormant for more than two decades, we again hear 

discussions on the basic principles of quantum theory and the episte-

mologies that are compatible with it. As is often the case under similar 

Reprinted by permission from the American Journal of Physics, Vol. 31, No. 1 
(January, 1963). 

1 Some of the more recent papers on the subject are: Y. Aharonov and D. Bohm, 
Phys. Rev., 122, 1649 (1961), Nuovo Cimento, 17, 964 (1960); B. Bertotti, Nuovo 
Cimento Stippl., 17, 1 (I960); L. de Broglie, J. Phys. Radium, 20, 963 (1959); 
J. A. de Silva, Ann. Inst. Henri Poincare, 16, 289 (I960); A. Datzeff, Compt. Rend., 
251, 1462 (1960); }. Phys. Radium, 21, 201 (1960); 22, 101 (1961); J. M. Jauch, 
Helv. Phys. Acta, 33, 711 (I960); A. Lande, Z. Physik, 162, 410 (1961); 164, 558 
(1961); Am. }. Phys., 29, 503 (1961); H. Margenau and R. N. Hill, Progr. Theoret. 
Phys., 26, 727 (1961); A. Peres and P. Singer, Nuovo Cimento, 15, 907 (1960); H. 
Putnam, Phil. Sci., 28, 234 (1961); M. Renninger, Z. Physik, 158, 417 (1960); L. 
Rosenfeld, Nature, 190, 384 (1961); F. Schlogl, Z. Physik, 159, 411 (I960); 
[. Schwinger, Proc. Natl. Acad. Sci. U.S., 46, 570 (1960); J. Tharrats, Compt. Rend., 
250, 3786 (I960); H. Wakita, Progr. Theoret. Phys., 23, 32 (I960); 27, 139 (1962); 
W. Weidlich, Z. Naturforsch., 15a, 651 (1960); J. P. Wesley, Phys. Rev., 122, 1932 
(1961). See also the articles of E. Teller, M. Born, A. Lande, F. Bopp, and G. 
Ludwig in Werner Heisenherg und die Physik unserer Zeit (Braunschweig: 
Friedrich Vieweg und Sohn, 1961). 

2 See the comments of V. Fock in the Max Planck Festschrift (Berlin: Deutscher 
Verlag der Wissenschaften, 1958), p. 177, particularly Sec. II. 

Onginally published in American Journal of Physics, 31, 6-15 (1963). Reprinted in E. Wigner (1967), Sym
metries and Reflections, Indiana University Press, Bloomington, pp. 153-170, from which book this paper is 
reproduced here. 
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circumstances, some of the early thinking had been forgotten; in fact, 

a small fraction of it remains as yet unrediscovered in the modern litera

ture. Equally naturally, some of the language has changed but, above 

all, new ideas and new attempts have been introduced. Having spoken 

to many friends on the subject which will be discussed here, it became 

clear to me that it is useful to review the standard view of the late 

"Twenties," and this will be the first task of this article. The standard 

view is an outgrowth of Heisenberg's paper in which the uncertainty 

relation was first formulated.3 The far-reaching implications of the 

consequences of Heisenberg's ideas were first fully appreciated, I be

lieve, by von Neumann,4 but many others arrived independently at 

conclusions similar to his. There is a very nice little book, by London 

and Bauer,5 which summarizes quite completely what I shall call the 

orthodox view. 

The orthodox view is very specific in its epistemological implications. 

This makes it desirable to scrutinize the orthodox view very carefully 

and to look for loopholes which would make it possible to avoid the 

conclusions to which the orthodox view leads. A large group of physicists 

finds it difficult to accept these conclusions and, even though this does 

not apply to the present writer, he admits that the far-reaching nature of 

the epistemological conclusions makes one uneasy. The misgivings, 

which are surely shared by many others who adhere to the orthodox 

view, stem from a suspicion that one cannot arrive at valid epistemo

logical conclusions without a careful analysis of the process of the acqui

sition of knowledge. What will be analyzed, instead, is only the type of 

information which we can acquire and possess concerning the external 

inanimate world, according to quantum-mechanical theory. 

We are facing here the perennial question whether we physicists do 

not go beyond our competence when searching for philosophical truth. 

3W. Heisenberg, Z. Plujsik, 43, 172 (1927); also Iiis article in Niels Bohr and 
the Development of Phi/sies (London: Pergamon Press, 1955); N. Bohr, Nature, 
121, 580 (1928); Naturwissen., 17, 48.3 (1929) and particularly Atomic Physics and 
Human Knowledge (New York; John Wiley & Sons, Inc., 1958). 

4See J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Ber
lin: Vevlag Julius Springer, 1932), English translation (Princeton, N.J.: Princeton 
University Press, 1955). See also P. Jordan, Anschauliche Quantentheorie (Berlin: 
Julius Springer, 1936), Chapter V. 

·"' F. London and E. Bauer, La Theorie de ΐobservation en mecanique quantique 
(Paris: Hermann et Cie., 1939); or E. Sehrixlinger, Naturwissen., 23, 807 ff. (1935); 
Proe. Cambridge Phil. Soc., 31, 555 (1935). 
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I believe that we probably do.f; Nevertheless, the ultimate implications 

of quantum theory's formulation of the laws of physics appear interest
ing even if one admits that the conclusions to be arrived at may not 
be the ultimate truth. 

The Orthodox View 

The possible states of a system can be characterized, according to 

quantum-mechanical theory, by state vectors. These state vectors—and 

this is an almost verbatim quotation of von Neumann—change in two 

ways. As a result of the passage of time, they change continuously, ac
cording to Schrodinger's time-dependent equation—this equation will be 

called the equation of motion of quantum mechanics. The state vector 

also changes discontinuously, according to probability laws, if a meas

urement is carried out on the system. This second type of change is 
often called the reduction of the wavefunction. It is this reduction of 

the state vector which is unacceptable to many of our colleagues. 

The assumption of two types of changes of the state vector is a 
strange dualism. It is good to emphasize at this point that the dualism in 

question has little to do with the oft-discussed wave-versus-particle 

dualism. This latter dualism is only part of a more general pluralism 

or even "infinitesilism" which refers to the infinity of noncommuting 
measurable quantities. One can measure the position of the particles, 

or one can measure their velocity, or, in fact, an infinity of other ob-
servables. The dualism here discussed is a true dualism and refers to the 

tic ο ways in which the state vector changes. It is also worth noting, 

though only parenthetically, that the probabilistic aspect of the theory 

is almost diarrtetrically opposite to what ordinary experience would 

lead one to expect. The place where one expects probability laws to 

prevail is the change of the system with time. The interaction of the 

particles, their collisions, are the events which are ordinarily expected 

to be governed by statistical laws. This is not at all the case here: the 

uncertainty in the behavior of a system does not increase in time if the 

system is left alone, that is, if it is not subjected to measurements. In 

this case, the properties of the system, as described by its state vector, 

α This point is particularly well expressed by H. Margenau, in the first two sec
tions of the article in Phil. Sci., 25, 23 (1958). 
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change causally, no matter what the period of time is during which it 

is left alone. On the contrary, the phenomenon of chance enters when 

a measurement is carried out on the system, when we try to check 

whether its properties did change in the way our causal equations told 

us they would change. However, the extent to which the results of 

all possible measurements on the system can be predicted does not de

crease, according to quantum-mechanical theory, with the time during 

which the system was left alone; it is as great right after an observation 

as it is a long time thereafter. The uncertainty of the result, so to say, 
increases with time for some measurements just as much as it decreases 

for others. The Liouville theorem is the analog for this in classical 
mechanics. It tells us that, if the point which represents the system in 

phase space is known to be in a finite volume element at one given 

time, an equally large volume element can be specified for a given later 

time which will then contain the point representing the state of the sys
tem. Similarly, the uncertainty in the result of the measurement of Q, at 

time 0, is exactly equal to the uncertainty of the measurement of 
Qt = exp (— iHt/h)Q0 exp (iHt/h) at time t. The information which is 
available at a later time may be less valuable than the information which 

was available on an earlier state of the system (this is the cause of the 

increase of the entropy); in principle, the amount of information does not 
change in time. 

Consistency of the Orthodox View 

The simplest way that one may try to reduce the two kinds of changes 
of the state vector to a single kind is to describe the whole process of 

measurement as an event in time, governed by the quantum-mechanical 
equations of motion. One might think that, if such a description is pos

sible, there is no need to assume a second kind of change of the state 
vector; if it is impossible, one might conclude, the postulate of the meas

urement is incompatible with the rest of quantum mechanics. Un

fortunately, the situation will turn out not to be this simple. 

If one wants to describe the process of measurement by the equations 
of quantum mechanics, one will have to analyze the interaction between 

object and measuring apparatus. Let us consider a measurement from 
the point of view of which the "sharp" states are σ(1), σ(2), · · · .Forthese 

states of the object the measurement will surely yield the values A1. A2, 
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• · ·, respectively. Let us further denote the initial state of the apparatus 

by a; then, if the initial state of the system was σ(ν), the total system-

apparatus plus object—will be characterized, before they come into in

teraction, by a X Irivi. The interaction should not change the state of 

the object in this case and hence will lead to 

a X cr(v) —> α(ν> X cr(v>. (1) 

The state of the object has not changed, but the state of the apparatus 

has and will depend on the original state of the object. The different 

states a(v) may correspond to states of the apparatus in which the 

pointer has different positions, which indicate the state of the object. 

The state aM of the apparatus will therefore be called also "pointer 

position v." The state vectors a(1), a<2), · · · are orthogonal to each other 

—usually the corresponding states can be distinguished even macroscop-

ically. Since we have considered, so far, only "sharp" states, for each 

of which the measurement in question surely yields one definite value, 

no statistical element has yet entered into our considerations.7 

Let us now see what happens if the initial state of the object is not 

sharp, but an arbitrary linear combination a1(T(1) + α·>σνΐ) + • • ·. It then 

follows from the linear character of the quantum-mechanical equation 

of motion (as a result of the so-called superposition principle) that the 

state vector of object-plus-apparatus after the measurement becomes the 

right side of 

<!Χ[2α,σ(')]^2«.[«(,)Χ(τ(,)1· (2) 

Naturally, there is no statistical element in this result, as there cannot be. 

However, in the state (2), obtained by the measurement, there is a 

statistical correlation between the state of the object and that of the 

apparatus: the simultaneous measurement on the system—object-plus-

apparatus—of the two quantities, one of which is the originally measured 

quantity of the object and the second the position of the pointer of the 

apparatus, always leads to concordant results. As a result, one of these 

measurements is unnecessary: The state of the object can be ascertained 

by an observation on the apparatus. This is a consequence of the special 

form of the state vector (2), of not containing any a<v) X σ("' term with 
v¥= μ. 

7 The .self-adjoint (Hermitean) character of every observable can be derived 
from Eq. (1) and the unitary nature of the transformation indicated by the arrow. 
Cf. E. Wigner, Z. Plujsik, 133, 101 (1952), footnote 2 on p. 102. 
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It is well known that statistical correlations of the nature just 

described play a most important role in the structure of quantum me

chanics. One of the earliest observations in this direction is Mott's 
explanation of the straight track left by the spherical wave of outgoing 
a particles.8 In fact, the principal conceptual difference between quan
tum mechanics and the earlier Bohr-Kramers-Slater theory is that the 
former, by its use of configuration space rather than ordinary space 
for its waves, allows for such statistical correlations. 

Returning to the problem of measurement, we see that we have not 
arrived either at a conflict between the theory of measurement and the 
equations of motion, nor have we obtained an explanation of that theory 
in terms of the equations of motion. The equations of motion permit 
the description of the process whereby the state of the object is mirrored 
by the state of an apparatus. The problem of a measurement on the 
object is thereby transformed into the problem of an observation on the 
apparatus. Clearly, further transfers can be made by introducing a sec
ond apparatus to ascertain the state of the first, and so on. However, 
the fundamental point remains unchanged and a full description of an 
observation must remain impossible since the quantum-mechanical 
equations of motion are causal and contain no statistical element, where
as the measurement does. 

It should be admitted that when the quantum theorist discusses mea
surements, he makes many idealizations. He assumes, for instance, that 
the measuring apparatus will yield some result, no matter what the initial 
state of the object was. This is clearly unrealistic since the object may 
move away from the apparatus and never come into contact with it. 
More importantly, he has appropriated the word "measurement" and 
used it to characterize a special type of interaction by means of which 
information can be obtained on the state of a definite object. Thus, the 
measurement of a physical constant, such as cross section, does not fall 
into the category called "measurement" by the theorist. His measure
ments answer only questions relating to the ephemeral state of a physical 
system, such as, "What is the χ component of the momentum of this 

atom?" On the other hand, since he is unable to follow the path of the 
information until it enters his, or the observer's, mind, he considers 

the measurement completed as soon as a statistical relation has been 
established between the quantity to be measured and the state of some 

8 N. F. Mott j  Proc. Roy. Soc. (London), 126, 79 (1929). 
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idealized apparatus. He would do well to emphasize his rather special
ized use of the word "measurement." 

This will conclude the review of the orthodox theory of measurement. 
As was mentioned before, practically all the foregoing is contained, for 
instance, in the book of London and Bauer. 

Critiques of the Orthodox Theory 

There are attempts to modify the orthodox theory of measurement by 
a complete departure from the picture epitomized by Eqs. (1) and (2). 
The only attempts of this nature which will be discussed here presuppose 
that the result of the measurement is not a state vector, such as (2), but 
a so-called mixture, namely, one of the state vectors 

aw χ (3) 

and that this particular state will emerge from the interaction between 

object and apparatus with the probability ja„|2. If this were so, the 
state of the system would not be changed when one ascertains—in some 
unspecified way—which of the state vectors (3) corresponds to the actual 
state of the system; one would merely "ascertain which of various pos
sibilities has occurred." In other words, the final observation only in
creases our knowledge of the system; it does not change anything. This 
is not true if the state vector, after the interaction between object and 
apparatus, is given by (2) because the state represented by the vector 
(2) has properties tvhich neither of the states (3) has. It may be worth
while to illustrate this point, which is fundamental though often dis
regarded, by an example. 

The example is the Stern-Gerlach experiment,9 in which the projection 
of the spin of an incident beam of particles, into the direction which is 
perpendicular to the plane of the drawing, is measured. (See Fig. 1.) 
The index ν has two values in this case; they correspond to the two 
possible orientations of the spin. The "apparatus" is that positional co
ordinate of the particle which is also perpendicular to the plane of the 
drawing. If this coordinate becomes, in the experiment illustrated, 
positive, the spin is directed toward us; if it is negative, the spin is 
directed away from us. The experiment illustrates the statistical correla-

9 The same experiment was discussed recently from another point of view by 
H. Wakita, Progr. Theoret. Phys., 27, 139 (1962). 
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tion between the state of the "apparatus" (the position coordinate) and 

the state of the object (the spin) which we have discussed. The ordinary 

use of the experiment is to obtain the spin direction, by observing the 

position, i.e., the location of the beam. The measurement is, therefore, 

as far as the establishment of a statistical correlation is concerned, com

plete when the particle reaches the place where the horizontal spin 
arrows are located. 

PM=POlE OF MAGNET 
SV -- SPIN VECTOR 

BEAM OF 
EMERGING 

BEAMS 
PARTCLES 

ORTHODOX 
THEORY 

A 

V 

Fig.l 

What is important for us, however, is the right side of the drawing. This 

shows that the state of the system—object-plus-apparatus (spin and posi
tional coordinates of the particle, i.e., the whole state of the particle)— 

shows characteristics which neither of the separated beams alone would 

have. If the two beams are brought together by the magnetic field due 

to the current in the cable indicated, the two beams will interfere and 

the spin will be vertical again. This could be verified by letting the 
united beam pass through a second magnet which is, however, not 

shown on the figure. If the state of the system corresponded to the beam 

toward us, its passage through the second magnet would show that it has 

equal probabilities to assume its initial and the opposite directions. The 

same is true of the second beam which was deflected away from us. Even 

though the experiment indicated would be difficult to perform, there is 
little doubt that the behavior of particles and of their spins conforms 

to the equations of motion of quantum mechanics under the conditions 
considered. Hence, the properties of the system, object-plus-apparatus, 

are surely correctly represented by an expression of the form (2) which 

gives, in this case, properties which are different from those of either 
alternative (3). 

In the case of the Stern-Gerlach experiment, one can thus point to a 
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specific and probably experimentally realizable way to distinguish be

tween the state vector (2), furnished by the orthodox theory, and the 
more easily visualizable mixture of the states (3) which one would off

hand expect. There is little doubt that in this case the orthodox theory 

is correct. It remains remarkable how difficult it is, even in this very 
simple case, to distinguish between the two, and this raises two ques

tions. The first of these is whether there is, in more complicated cases, a 

principle which makes the distinction between the state vector (2), and 

the mixture of the states (3), impossible. As far as is known to the present 

writer, this question has not ever been posed seriously heretofore, and 

it will be considered in the present discussion also only obliquely. The 
second question is whether there is a continuous transition between (2) 

and the mixture of states (3) so that in simpler cases (2) is the result of 

the interaction between object and measuring apparatus, but in more 

complicated and more realistic cases the actual state of object-plus-

apparatus more nearly resembles a mixture of the states (3). Again, this 
question can be investigated within the framework of quantum me

chanics, or one can postulate deviations from the quantum-mechanical 

equations of motion, in particular from the superposition principle. 
"More complicated" and "more realistic" mean in the present context 

that the measuring apparatus, the state of which is to be correlated with 

the quantity to be measured, is of such a nature that it is easy to 
measure its states, i.e., correlate it with the state of another "apparatus." 

If this is done, the state of that second "apparatus" will be correlated 
also to the state of the object. The case of establishing correlations be

tween the state of the apparatus which came into direct contact with 

the object and another "apparatus" is usually greatest if the first one 
is of macroscopic nature, i.e., complicated from the quantum-mechanical 
point of view. The ease with which the secondary correlations can be 
established is a direct measure of how realistically one can say that 

the measurement has been completed. Clearly, if the state of the appa
ratus which carried out the primary measurement is just as difficult to 
ascertain as the state of the object, it is not very realistic to say that the 
establishment of a correlation between its and the object's state is a fully 

completed measurement. Nevertheless, it is so regarded by the orthodox 
theory. The question which we pose is, therefore, whether it is consistent 
with the principles of quantum mechanics to assume that at the end 
of a realistic measurement the state of object-plus-apparatus is not a 
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wavefunction, as given by (2), but a mixture of the states (3). We shall 

see that the answer is negative. Hence, the modification of the orthodox 

theory of measurement mentioned at the beginning of this section is 

not consistent with the principles of quantum mechanics. 

Let us now proceed with the calculation. Even though this point is 

not usually emphasized, it is clear that, in order to obtain a mixture of 

states as a result of the interaction, the initial state must have been a 

mixture already.10 This follows from the general theorem that the char

acteristic values of the density matrix are constants of motion. The as

sumption that the initial state of the system, object-plus-apparatus, is a 

mixture, is indeed a very natural one because the state vector of the 

apparatus, which is under the conditions now considered usually a 

macroscopic object, is hardly ever known. Let us assume, therefore, that 

the initial state of the apparatus is a mixture of the states A(1), A(2), 

• · ·, the probability of A(<>) being . The vectors A,p) can be assumed 

to be mutually orthogonal. The equations of motion will yield, for the 

state A(p) of the apparatus and the state σ(>,) of the object, a final state 

A W X i r l ' ^ A W X i r l ' l .  ( 4 )  

Every state A(ll,), A,1V), · · · will indicate the same state σ'"' of the 

object; the position of the pointer is ν for all of these. For different v,  

however, the position of the pointer is also different. It follows that the 

Aippj, for different v, are orthogonal, even if the ρ are also different. On 

the other hand, A^ and Aiff''', for /> /- </, are also orthogonal because' 

10 This point is disregarded by several authors who have rediscovered von Neu
mann's description of the measurement, as given by (1) and (2). These authors 
assume that it follows from the macroscopic nature of the measuring apparatus that 
if several values of the "pointer position" have finite probabilities [as is the case if the 
state vector is (2)], the state is necessarily a mixture (rather than a linear combina
tion) of the states (3)—that is, of states in each of which the pointer position is 
definite (sharp). The argument given is that classical mechanics applies to macro
scopic objects, and states such as (2) have no counterpart in classical theory. This 
argument is contrary to present quantum-mechanical theory. It is true that the mo
tion of a macroscopic body can be adequately described by the classical equations 
of motion if its state has a classical description. That this last premise is, according to 
present theory, not always fulfilled, is clearly, though in an extreme fashion, demon
strated by Schrodinger's cat-paradox (cf. reference 5). Further, the discussion of the 
Stern-Gerlach experiment, given in the text, illustrates the fact that there are, in 
principle, observable differences between the state vector given by the right side of 
(2), and the mixture of the states (3), each of which has a definite position. Pro
posals to modify the quantum-mechanical equations of motion so as to permit a 
mixture of the states (3) to be the iesult of the measurement even though the initial 
state was a state vector, will be touched upon later. 
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A and A are obtained by a unitary transformation 
from two orthogonal states, A and A and the scalar 
product of A with A is Hence, the 
A form an orthonormal (though probably not complete) system 

(5) 
It again follows from the linear character of the equation of motion 

that, if the initial state of the object is the linear combination 
the state of object-plus-apparatus will be, after the measurement, a mix-
ture of the states 

(6) 

with probabilities . This same mixture should then be, according to 
the postulate in question, equivalent to a mixture of orthogonal states 

(7) 
These are the most general states for which the originally measured 
quantity has a definite value, namely and in which this state is 
coupled with some state (one of the states with a pointer 
position Further, if the probability of the state is denoted by 

we must have 

(7a) 

The will naturally depend on the a. 
It turns out, however, that a mixture of the states cannot be, at 

the same time, a mixture of the states (unless only one of the is 
different from zero). A necessary condition for this would be that the 

are linear combinations of the so that one should be able to 
find coefficients u so that 

(8) 

From the linear independence of the it then follows that 

(8a) 

which cannot be fulfilled if more than one a is finite. It follows that it 
is not compatible with the equations of motion of quantum mechanics 
to assume that the state of object-plus-apparatus is, after a measure-
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ment, a mixture of states each with one definite position of the pointer. 

It must be concluded that measurements which leave the system ob-

ject-plus-apparatus in one of the states with a definite position of the 

pointer cannot he described by the linear laws of quantum mechanics. 

Hence, if there are such measurements, quantum mechanics has only 

limited validity. This conclusion must have been familiar to many even 

though the detailed argument just given was not put forward before. 

Ludwig, in Germany, and the present M^riter have independently sug
gested that the equations of motion of quantum mechanics must be 
modified so as to permit measurements of the aforementioned type.11 

These suggestions will not be discussed in detail because they are sug
gestions and do not have convincing power at present. Even though 
either may well be valid, one must conclude that the only known theory 
of measurement which has a solid foundation is the orthodox one and 
that this implies the dualistic theory concerning the changes of the 
state vector. It implies, in particular, the so-called reduction of the 
state vector. However, to answer the question posed earlier: yes, there 
is a continuous transition between the state vector (2), furnished by 
orthodox theory, and the requisite mixture of the states (3), postulated 
by a more visualizable theory of measurement.11 

What Is the State Vector? 

The state vector concept plays such an important part in the formula
tion of quantum-mechanical theory that it is desirable to discuss its 
role and the ways to determine it. Since, according to quantum me
chanics, all information is obtained in the form of the results of measure
ments, the standard way to obtain the state vector is also by carrying 
out measurements on the system.12 

In order to answer the question proposed, we shall first obtain a for-

11 See G. Ludwig's article "Solved and Unsolved Problems in the Quantum Me
chanics of Measurement" (reference 1) and the present author's article "Remarks 
on the Mind-Body Question" in The Scientist Speculates, edited by I. J. Good (Lon
don: William Heinemann, 1962), p. 284, reprinted in this volume. 

12 There are, nevertheless, other procedures to bring a system into a definite state. 
These are based on the fact that a small system, if it interacts with a large system in 
a definite and well-known state, may assume itself a definite state with almost abso
lute certainty. Thus, a hydrogen atom, in some state of excitation, if placed into a 
large container with no radiation in it, will almost surely transfer all its energy to the 
radiation field of the container and go over into its normal state. This method of 
preparing a state has been particularly stressed by H. Margenau. 
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mula for the probability that successive measurements carried out on a 
system will give certain specified results. This formula will be given 
both in the Schrodinger and in the Heisenberg picture. Let us assume 
that n successive measurements are carried out on the system, at times 

The operators of the quantities which are measured are, in 
the Schrodinger picture, The characteristic vectors of 
these will all be denoted by with suitable upper indices. Similarly, the 
characteristic values will be denoted by q so that 

(9) 
The Heisenberg operators which correspond to these quantities, if 
measured at the corresponding times, are 

(10) 

and the characteristic vectors of these will be denoted by where 

(10a) 

If the state vector is originally the probability for the sequence 
of measurement-results is the absolute square of 

(11) 
The same expression in terms of the characteristic vectors of the Heisen-
berg operators is simpler, 

(11a) 

It should be noted that the probability is not determined by the n 
Heisenberg operators and their characteristic vectors: the time order 
in which the measurements are carried out enters into the result essen-
tially. Von Neumann already derived these expressions as well as their 
generalizations for the case in which the characteristic values 

• • • have several characteristic vectors. In this case, it is more ap-
propriate to introduce projection operators for ever)' characteristic value 

of every Heisenberg operator . If the projection operator in ques-
tion is denoted by the probability for the sequence • • , 

of measurement-results is 

(12) 
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The expressions (11) or (Ila) can be obtained also by postulating that 

the state vector became ψκ'-" when the measurement of Q>r> gave the 

result qK
{,)· Indeed, the statement that the state vector is ψκ

ω is only a 

short expression for the fact that the last measurement on the system, of 

the quantity just carried out, gave the result qK'n• In the case of 

simple characteristic values the state vector depends only on the result 

of the last measurement and the future behavior of the system is inde

pendent of the more distant past history thereof. This is not the case 

if the characteristic value q{3) is multiple. 

The most simple expression for the Heisenberg state vector, when 

the /th measurement gave the value qK
U), is, in this case, 

P j K  '  '  Ρ 2 β Ρ ΐ α Φ ,  ( 1 2 a )  

properly normalized. If, after normalization, the expression (12a) is in
dependent of the original state vector Φ, the number of measurements 

has sufficed to determine the state of the system completely and a pure 

state has been produced. If the vector (12a) still depends on the original 

state vector Φ, and if this was not known to begin with, the state of the 

system is a mixture, a mixture of all the states (12a), with all possible Φ. 

Evidently, the measurement of a single quantity Q, the characteristic 

values of which are all nondegenerate, suffices to bring the system into 

a pure state though it is not in general foreseeable which pure state 

will result. 

We recognize, from the preceding discussion, that the state vector 

is only a shorthand expression of that part of our information concern

ing the past of the system which is relevant for predicting (as far as 
possible) the future behavior thereof. The density matrix, incidentally, 

plays a similar role except that it does not predict the future behavior 
as completely as does the state vector. We also recognize that the laws 

of quantum mechanics onh/ furnish probability connections betioeen 

results of subsequent observations carried out on a si/stem. It is true, 

of course, that the laws of classical mechanics can also be formulated 
in terms of such probability connections. However, they can be formu

lated also in terms of objective reality. The important point is that the 

laws of quantum mechanics can be expressed only in terms of probability 
connections. 
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Problems of the Orthodox View 

The incompatibility of a more visualizable interpretation of the laws 
of quantum mechanics with the equations of motion, in particular the 

superposition principle, may mean that the orthodox interpretation is 
here to stay; it may also mean that the superposition principle will have 

to be abandoned. This may be done in the sense indicated by Ludwig, 
in the sense proposed by me, or in some third, as yet unfathomed sense. 

The dilemma which we are facing in this regard makes it desirable 
to review any possible conceptual weaknesses of the orthodox interpre

tation and the present, last, section will be devoted to such a review. 

The principal conceptual weakness of the orthodox view is, in my 

opinion, that it merely abstractly postulates interactions which have 

the effect of the arrows in (1) or (4). For some observables, in fact for 
the majority of them (such as nobody seriously believes that a 

measuring apparatus exists. It can even be shown that no observable 
which does not commute with the additive conserved quantities (such 

as linear or angular momentum or electric charge) can be measured 
precisely, and in order to increase the accuracy of the measurement one 

has to use a very large measuring apparatus. The simplest form of the 

proof heretofore was given by Araki and Yanase.18 On the other hand, 
most quantities which we believe to be able to measure, and surely all 
the very important quantities such as position, momentum, fail to com

mute with all the conserved quantities, so that their measurement cannot 

be possible with a microscopic apparatus. This raises the suspicion that 

the macroscopic nature of the apparatus is necessary in principle and 

reminds us that our doubts concerning the validity of the superposition 
principle for the measurement process were connected with the macro

scopic nature of the apparatus. The oint state vector (2), resulting from 
a measurement with a very large apparatus, surely cannot be distin

guished as simph/ from a mixture as was the state vector obtained in the 
Stern-Gerlach experiment which we discussed.14 

A second, though probably less serious, difficulty arises if one tries to 

13H. Araki and M. Yanase, Phys. Rev., 120, 666 (1961}; cf. also E. P. Wigner, 
Z. Physik, 131, 101 (1952). 

14 This point was recognized already by D. Bohm. See Section 22.11 of his 
Quantum Theory (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1951). 
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calculate the probability that the interaction between object and ap

paratus be of such nature that there exist states σ-("> for which (1) is 

valid. We recall that an interaction leading to this equation was simply 

postulated as the type of interaction which leads to a measurement. 

When I talk about the probability of a certain interaction, I mean this 

in the sense specified by Rosenzweig or by Dyson, who have considered 

ensembles of possible interactions and defined probabilities for definite 

interactions.15 If one adopts their definition (or any similar definition) 

the probability becomes zero for the interaction to be such that there are 

states σ(ν) satisfying (1). The proof for this is very similar to that16 which 

shows that the probability is zero for finding reproducing systems—in 
fact, according to (1), each σ(ν) is a reproducing system. The resolution 

of this difficulty is presumably that if the system with the state vector 

a—that is, the apparatus—is very large, (1) can be satisfied with a very 

small error. Again, the large size of the apparatus appears to be essential 
for the possibility of a measurement. 

The simplest and least technical summary of the conclusions which 

we arrived at when discussing the orthodox interpretation of the quan

tum laws is that these laws merely provide probability connections be
tween the results of several consecutive observations on a system. This 

is not at all unreasonable and, in fact, this is what one would naturally 

strive for once it is established that there remains some inescapable 
element of chance in our measurements. However, there is a certain 

weakness in the word "consecutive," as this is not a relativistic concept. 
Most observations are not local and one will assume, similarly, that they 

have an irreducible extension in time, that is, duration. However, the 
"observables" of the present theory are instantaneous, and hence unrela-

tivistic, quantities. The only exceptions from this are the local field 

operators and we know, from the discussion of Bohr and Rosenfeld, how 
many extreme abstractions have to be made in order to describe their 

measurement.17 This is not a reassuring state of affairs. 

15 C. E. Porter and N. Rosenzweig, Suomalaisen Tiedeakatemian Toimotuksia, 
VI, No. 44 (1960); Phijs. Rev., 120, 1698 (1960); F. Dyson, J. Math. Phys., 3, 140, 
157, 166 (1962). See also E. P. Wigner, Proceedings of the Fourth Canadian Mathe
matics Congress (Toronto: University of Toronto Press, 1959), p. 174, reprinted 
in this volume. 

10 Cf. the writer's article in The Logic of Personal Knowledge (London: Rout-
ledge and Kegan Paul, 1961), p. 231, reprinted in this volume 

17 N. Rohr and L. Rosenfeld, Kgl. Danske Videnskah, Selskab, Mat.-fys. Medd., 
12, No. 8 (1933); Phys. Rev., 78, 194 (1950); E. Corinaldesi, Nuovo Cimento, 8, 
494 (1951); R. Ferretti, ibid., 12, 558 (1954). 
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The three problems just discussed—or at least two of them—are real. 
It may be useful, therefore, to re-emphasize that they are problems of 
the formal mathematical theory of measurement, and of the description 
of measurements by macroscopic apparatus. They do not affect the con
clusion that a "reduction of the wave packet" (however bad this termi
nology may be) takes place in some cases. Let us consider, for instance, 
the collision of a proton and a neutron and let us imagine that we view 
this phenomenon from the coordinate system in which the center of 
mass of the colliding pair is at rest. The state vector is then, if we dis
regard the unscattered beam, in very good approximation (since there 
is only S-scattering present), 

ψ(ΐ"ρ,τη) = J" - 1  e t k rw(r), (13) 

where r = ' rp  — r„ \ is the distance of the two particles and ic(r) some 
very slowly varying damping function which vanishes for r <r0— ]Ac 

and r > r(l + iAc, where r() is the mean distance of the two particles at the 
time in question and c the coherence length of the beam. If a measure
ment of the momentum of one of the particles is carried out—the possibil
ity of this is never questioned—and gives the result p, the state vector of 
the other particle suddenly becomes a (slightly damped) plane wave with 
the momentum — p. This statement is synonymous with the statement 
that a measurement of the momentum of the second particle would give 
the result — p, as follows from the conservation law for linear momen
tum. The same conclusion can be arrived at also by a formal calculation 
of the possible results of a joint measurement of the momenta of the 
two particles. 

One can go even further18: instead of measuring the linear momen
tum of one particle, one can measure its angular momentum about a 
fixed axis. If this measurement yields the value mh, the state vector of 
the other particle suddenly becomes a cylindrical wave for which the 
same component of the angular momentum is — mh. This statement is 
again synonymous with the statement that a measurement of the said 
component of the angular momentum of the second particle certainly 
would give the value — mh. This can be inferred again from the con
servation law of the angular momentum (which is zero for the two 

18 See, in this connection, the rather similar situation discussed by A. Einstein, 
B. Podolsky, and N. Rosen, Phys. Rev., 47, 777 (1935). 
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particles together) or by means of a formal analysis. Hence, a "contrac
tion of the wave packet" took place again. 

It is also clear that it would be wrong, in the preceding example, 
to say that even before any measurement, the state was a mixture of 
plane waves of the two particles, traveling in opposite directions. For no 
such pair of plane waves would one expect the angular momenta to 
show the correlation just described. This is natural since plane waves are 
not cylindrical waves, or since (13) is a state vector with properties dif
ferent from those of any mixture. The statistical correlations which are 
clearly postulated by quantum mechanics (and which can be shown also 
experimentally, for instance in the Bothe-Geiger experiment) demand 
in certain cases a "reduction of the state vector." The only possible ques
tion which can yet be asked is whether such a reduction must be postu
lated also when a measurement with a macroscopic apparatus is carried 
out. The considerations around Eq. (8) show that even this is true if the 
validity of quantum mechanics is admitted for all systems. 
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It is demonstrated that neither the arguments leading to inconsistencies in the description 
of quantum-mechanical measurement nor those "explaining" the process of measurement 
by means of thermodynamical statistics are valid. Instead, it is argued that the probability 
interpretation is compatible with an objective interpretation of the wave function. 

1. INTRODUCTION 

The problem of measurement in quantum theory and the related problem of how to 
describe classical phenomena in the framework of quantum theory have received 
increased attention during recent years. The various contributions express very 
different viewpoints, and may roughly be classified as follows: 

1. Those emphasizing contradictions obtained when the process of measurement 
is itself described in terms of quantum theory.'1' 

2. Those claiming that measurement may well be explained by quantum theory 
in the sense that "quantum-mechanical noncausality" can be derived from statistical 
uncertainties inherent in the necessarily macroscopic apparatus of measurement.(2) 

3. Those introducing new physical concepts like hidden variables.(3) 

Suggestions of the third group are usually based on the first viewpoint, and are 
meaningful only if they lead to experimental consequences. These have not been 
confirmed so far. 

Originally published in Foundations of Physics, 1, 69-76 (1970). 
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A measurement in quantum theory is axiomatically described by means of 
a Hermitian operator. If the eigenstates of this operator are φη, and the state of the 
measured system S is φ = £ cn<pn , then, according to the axiom, the result of the 
measurement will, with probability | cn |2, be the corresponding eigenvalue an 

represented physically by a "pointer position," i.e., by an appropriate state of the 
measuring device M. For the most frequent class of measurements, it is furthermore 
predicted that any following measurement can be described by assuming S to be 
in the state γη after the measurement. 

When describing the process of measurement as a whole in the framework of 
quantum theory, it is assumed that the apparatus M can be described by a wave 
function tj>a , the state of the total system M + S obeying the Schrodinger equation, 

Φ{O = Σ Cnfn = Σ CnU«isV) Φβψτη (1) 
η η,τη,β 

with 0) = Snm δαβ . As the state of a macroscopic apparatus can be determined 
only incompletely, there must be a large set of states {φ}0 compatible with the knowl
edge about M. If this set of states is assumed to be independent of the state of S 

before measurement, a condition on the coefficients U™(t) can be derived from the 
requirement that the axiom of measurement be fulfilled in the case cn = δη„ο, i.e., 
ψ = ψη<>. The interaction must be of the von Neumann type'4' 

U:M = KM) (2) 

for all but a negligible measure of states of the set {φ}0 , and for times t larger than 
the duration of the measurement. Furthermore, practically all states Σβ Φβ 

must be members of a set {φ}η corresponding to a "pointer position n" of M. 
In the case of a general state φ, the final total state now takes the form 

φ(0 = Σ cUuUt) ΦβΨη (3) 
η,8 

It represents a superposition of different pointer positions. This result is said to be 
in contradiction to the axiom of measurement, because the latter states that the result 
of the measurement is one of the states (ί) φβψη . It is of course very unsatis
factory to assume that the laws of nature change according to whether or not a physical 
process is a measurement. 

The difficulties arising when a macroscopic system is described by quantum 
theory can be seen more directly by applying the main axiom of quantum theory, i.e., 
the superposition principle. If there are two possible pointer positions {φ}ηι and 
{φ}η2, any superposition C1^1 + c2<£„2 must be a possible state. As such super
positions have never been observed (see Wignera') one should at leastfind dynamical 
causes for their nonoccurrence. Although recent work'5' has shown that dynamical 
stability conditions in the original sense of Schrodinger's(6) have a much wider field 
of applicability than previously expected, the process of measurement does not, 
because of the above arguments, belong to this class of phenomena. 
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2. CRITICISM OF STATISTICAL INTERPRETATIONS 

Results apparently in contradiction to those of the preceding section have been 
derived in a series of papers'2' which try to make use of the uncertainties in the 
microscopic properties of the apparatus of measurement. The mathematical concept 
used in these theories is the density matrix formalism. 

A simple example may illustrate such theories. If the density matrix describing M 
is the total system is described by 

(4) 

For a von Neumann interaction, one obtains 

(5) 

Provided the coefficients possess arbitrarily distributed phases guaranteeing that 

(6) 

(the diagonality in , is not needed), p{t) becomes 

(7) 

This density matrix describes exactly the situation postulated by the axiom of 
measurement.(4) 

It is tempting to interpret this result by saying that the statistical uncertainty 
inherent in the macroscopic apparatus is transferred by means of the interaction to 
the system S. This means that the outcome of a measurement, i.e., the pointer position, 
should be exactly predictable if we knew the microscopic state of M. Equation (3) 
demonstrates that this interpretation is wrong.1 

The contradiction between Eqs. (3) and (7) is—aside from the dubious nature 
of the statistical assumption—due to a circular argument. The density matrix formal-
ism is itself based upon the axiom of measurement. In order to seethis, consider the 
case of a set of states prepared with probabilities The probability 
of finding the eigenvalue a„ is then 

(8) 

1 The above example is not identical with any of the theories of Ref. 2. It does not, however, use any 
additional assumptions. As it leads to a contradiction, one of the assumptions used must be wrong. 
Some of these theories do not start with an ensemble for the initial state of the apparatus, but assume 
instead that the "pointer position" is represented by some time average. The latter is then trans-
formed into an ensemble average by means of the ergodic theorem. Interpreted rigorously, these 
theories would prove that the pointer position fluctuates in time. 
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if Pn  = ΨηΨη*> and ρ = ρΜφΗ )ψΗ )*. The states ψΜ  will in general not be linearly 
independent, although ρ may of course be expanded quadratically in terms of a 
complete orthogonal set. The reason for the usefulness of ρ is that, according to 
the axiom of measurement, all observable quantities can be expressed as linear-
antilinear functionals of the wave function. 

For example, the statistical ensemble consisting of equal probabilities of neutrons 
with spin up and spin down in the χ direction cannot be distinguished by measurement 
from the analogous ensemble having the spins parallel or antiparallel to the y direction. 
Both ensembles, however, can be easily prepared by appropriate versions of the 
Stern-Gerlach experiment. One is justified in describing both ensembles by the same 
density matrix as long as the axiom of measurement is accepted. However, the density 
matrix formalism cannot be a complete description of the ensemble, as the ensemble 
cannot be rederived from the density matrix. The discrepancy between Eqs. (3) and (7) 
arises since, on the one hand, Eq. (3) must hold for all but a negligible number of 
members of the ensemble, whereas Eq. (7) is interpreted as describing an ensemble 
of states ψη Xfl φβ , i.e., each state being essentially different from (3). Only if 
the measurement axiom is accepted can these ensembles not be distinguished by 
subsequent observations. 

The circularity is more obvious in some versions which avoid the density matrix 
formalism (e.g., Rosenfeld(2) who made repeated use of the probability interpretation 
although the latter is to be derived). In such cases, the circular argument is considered 
a "proof of consistency." This viewpoint cannot be accepted, as it would mean that 
the secondary observation of the pointer position (by a conscious observer or a second 
apparatus) is a measurement in the axiomatic sense. It corresponds to the interpreta
tion of measurement due to Heisenberg and von Neumann'4' (claiming the arbitariness 
of the position of the "Heisenbergscher Schnitt"), and does not require any contribu
tion from thermodynamics. Bohm's analysis of the process of measurement,(?) 

however, shows the importance of the amplification of the result of a measurement up 
to the macroscopic scale, thus leading to a natural position of the "Heisenbergscher 
Schnitt." (Relative phases between microscopically realized pointer positions could 
still be measured.) 

The secondary (macroscopic) observation is significantly different from the 
primary (microscopic) one, for the physical situation between these two observations 
is described by the reduced wave function. The macroscopic observation can thus be 
performed in a reversible way, in contrast to the microscopic one, which must result 
in the reduction. It is implicitly assumed in applying the density matrix formalism 
that the macroscopic measurement is accompanied by a reduction of the wave function. 

3. CONSEQUENCES OF A UNIVERSALLY VALID QUANTUM THEORY 

The arguments presented so far were based on the assumption that a macroscopic 
system (the apparatus of measurement) can be described by a wave function φ. It 
appears that this assumption is not valid, for dynamical reasons: 

If two systems are described in terms of basic states φ{,^ and φ\?*, the wave 
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function of the total system can be written as φ = Σ» k ck  k  The case where 
1 2  1 2  1  μ  

the subsystems are in definite states (φ = φη)φ (2)) is therefore an exception. Any 
sufficiently effective interaction will induce correlations. The effectiveness may be 
measured by the ratios of the interaction matrix elements and the separation of the 
corresponding unperturbed energy levels. Macroscopic systems possess extremely 
dense energy spectra. The level distances, for example, of a rotator with moment of 
inertia 1 gem2 are of the order 10~4ZeV, which value may be compared with the 
interaction between two electric dipoles of 1 e X cm at distance R, e2  χ cm2/R3  

10~7(cm/R)3 eV. It must be concluded that macroscopic systems are always strongly 
correlated in their microscopic states. They still do have uncorrelated macroscopic 
properties, however, if the summations over Ar1 and k2 are each essentially limited to 
macroscopically equivalent states.'8' Since the interactions between macroscopic 
systems are effective even at astronomical distances, the only "closed system" is the 
universe as a whole. The assumption of a closed system M + S is hence unrealistic 
on a microscopic scale. 

The arguments leading to Eq. (3) can be accepted only if the states are 
interpreted as those of the "remainder of the universe" including the apparatus of 
measurement, instead of those of the latter alone. It is of course very questionable 
to describe the universe by a wave function that obeys a Schrodinger equation. 
Otherwise, however, there is no inconsistency in measurement, as there is no theory. 
This assumption is referred to as that of "universal validity of quantum theory." 
It leads—as is demonstrated below—to some unusual consequences, but is able to 
avoid the discrepancies of quantum theory. 

The nonexistence of the microscopic states of macroscopic subsystems of the uni
verse leads to severe difficulties in the interpretation of observation or measurement in 
terms of information transfer between systems. In particular, since no microscopic state 
of an organism exists, the principle of "psychophysical parallelism"<4) does not apply. 

In order to understand Eq. (3), the meaning of superpositions of macroscopically 
different states has to be investigated. Consider, for the moment, a right-handed sugar 
molecule with wave function <pR . This is different from an eigenstate of its Hamiltonian 
Hs, ψκ ± <Pl · In contrast to the analogous situation for an ammonia molecule, the 
tunneling time from <pR to φ>£ is much larger than the age of the universe. The interac
tion matrix element <<pR \ Hs \ <pL) is extremely small, as Hs can at most change the 
state of two particles. Assume now that an eigenstate φκ ± had been prepared. 
The two components would then interact in different ways with their environment, 

ε*Ηιφ{ΦΙι ± <pL) Φ1*Κ*) <Pr ± Φ (1Κ*) <Pl = <A(S)(0 ± ΦαΚt) (9) 

(Destruction of the sugar molecule is neglected, and excitations may be taken into φ.) 
With respect to the parity quantum number, the sugar molecule behaves like a 
macroscopic object—the energy difference between the eigenstates is extremely small. 
The two world components φ{Κ) and i/<(i) will behave practically independently after 
they have been prepared, since (ψ(Κ) | H | ^(i)> becomes even smaller with increasing 
time. There are no transitions between them any more. The "handedness" of the 
sugar is dynamically stable, whereas one component of the oriented ammonia molecule 
would emit a photon. 
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Such a dynamical decoupling of components is even more extreme if <pR and <pL 

represent two states of a pointer corresponding to different positions. Each state will 
now produce macroseopically correlated states: different images on the retina, different 
events in the brain, and different reactions of the observer. The different components 
represent two completely decoupled worlds. This decoupling describes exactly the 
"reduction of the wave function." As the "other" component cannot be observed any 
more, it serves only to save the consistency of quantum theory. Omitting this compo
nent is justified pragmatically, but leads to the discrepancies discussed above. 

This interpretation, corresponding to a "localization of consciousness" not only 
in space and time, but also in certain Hilbert-space components, has been suggested 
by Everett'9' in connection with the quantization of general relativity, and called the 
"relative state interpretation" of quantum theory. It amounts to a reformulation of 
the "psychophysical parallelism" which has in any case become necessary as a con
sequence of the above discussion of dynamical correlations between states of macro
scopic systems.2 A theory of measurement must necessarily be empty if it does not have 
a substitute for psychophysical parallelism. Everett's relative state interpretation is 
ambiguous, however, since the dynamical stability conditions3 are not considered. This 
ambiguity is present in the orthodox interpretation of quantum theory as well, where it 
has always been left to intuition which property of a system is measured "automati
cally" (e.g., handedness for the sugar, but parity for the ammonia molecule). The 
dynamical stability appears also to be the cause why microscopic oscillators are 
observed in energy eigenstates, whereas macroscopic ones occur in "coherent states."'5' 

According to the twofold localization of consciousness, there are two kinds of 
subjectivity: The result of a measurement is subjective in that it depends on the world 
component of the observer; it is objective in the sense that all observers of this world 
component observe the same result. The question of whether the other components 
still "exist" after the measurement is as meaningless as asking about the existence of an 
object while it is not being observed. It is meaningful, however, to ask whether or not 
the assumption of this existence (i.e., of an objective world) leads to a contradiction. 

The probability postulate of quantum theory can be formulated in the following 
way: Suppose a sequence of equivalent measurements have been performed, each 
creating an equivalent "branching of the universe." The observer can explain the 
results by assuming that his final branch has been "chosen randomly" if the com
ponents are weighted by their norm. The irreversibility connected with this branching 
is different from that due to thermodynamical statistics, and thus cannot be explained 
in terms of the latter. Instead, the effect of branching, i.e., measurement, should be 
of importance for the foundation of thermodynamics. It seems to be partly taken 
into account by using the density matrix formalism.4 

* Atiother suggestion of Wigner's,1101 which postulates an active role of consciousness, would require 
corrections to the equations of motion. 

3 The importance of stability for organic systems has been emphazised by Elsasser.'11' 
4 This may indeed be the reason why the foundation of quantum-mechanical thermodynamics appears 

simpler than that of classical thermodynamics. Proofs of the master equation would, however, 
be circular again if the process of measurement and hence the density matrix formalism were 
themselves based on thermodynamics. 
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The famous paradox of Einstein, Rosen, and Podolski'12' is solved straightfor
wardly: A particle of vanishing spin is assumed to decay into two spin-J particles. 
As a consequence, and according to the axiom of measurement, each particle possesses 
spin projections of equal probability with respect to any direction in space. After 
measuring the spin of one particle, however, the spin of the other one is determined. 
According to Einstein et al., this cannot be true if quantum theory is complete, as 
there is no interaction with the second particle. The interpretation is that the measure
ment corresponds to the transformation 

eiHt<j>(<Pl+<P2~ — ψΐ~ψ2+) = ψΐ+ψΐ~φ{ + >(') — ψΐ~ψ2+φ (~Κί) 0°) 

where φΜ and φ{-) are dynamically decoupled after a short time. Hence, there is 

one world component in which the experimentalists observe 9¾+ and <p2~, another 
one in which they observe and φ2\ As these components cannot "communicate," 

the result is in accord with the axiom of measurement. 

This interpretation of measurement may also explain certain "superselection 

rules"'13' which state, for example, that superpositions of states with different charge 

cannot occur. It is very plausible that any measurement performed with such a system 

must necessarily also be a measurement of the charge. Superpositions of states with 

different charge therefore cannot be observed for similar reasons as those valid for 

superpositions of macroscopically different states: They cannot be dynamically stable 

because of the significantly different interaction of their components with their 

environment, in analogy to the different handedness components of a sugar molecule. 

If experimental evidence verifies a spontaneous symmetry-breaking of the vacuum 

as predicted by many field theories'14' this would not prove an asymmetry of the 

world. One may formally construct invariant wave functions Ψ = JdQ υΩφ from 

symmetry-violating wave functions φ (as done for microscopic systems'15'). The 

former cannot be distinguished from its components υΩφ if the relative state inter
pretation is accepted. 

It appears that the objective interpretation of quantum theory does not contradict 
the probability interpretation. It has to be admitted, however, that the "relative state 
wave function" describes only part of the universe. There is no information on other 
components except for those which have been created by branching in the past. 
No estimate can therefore be made on the probability of an inverse branching process, 
i.e., the spontaneous occurrence of components by accidental overlap. 
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III. 1 POLYELECTRONS 

JOHN ARCHIBALD WHEELER 

SUMMARY 

Theoretical evidence for the existence of entities composed entirely 
of electrons and positrons is presented in the following article, together 
with a discussion of their properties.1 The simplest of these entities 
consists of one electron and one positron, bound together in a structure 
similar to that of the hydrogen atom. The next higher entity is com
posed of two positrons and one electron or of two electrons and one 
positron. The bi-electron system is stable by 6.77 ev against dissocia
tion. Against annihilation, it has a life time of 1.24 X IO-10 sec., when 
the spins of the two particles are parallel, and a life several orders of 
magnitude greater, when the spins are antiparallel. The tri-electron 
system also has a radioactive mean life of the order of IO-10 sec., and is 
calculated to be stable by at least 0.19 ev against dissociation into a 
bi-electron and a free electron or positron. The production of a bi-
electron, by interaction of an energetic gamma ray with the field of force 
of an atomic nucleus, is calculated to occur with a probability about 
IO-6 times less than that for production of an electron-positron pair. 
The possibilities are discussed for observing atomic and molecular spec
tra in which the positron plays the role of an especially light hydrogen 
ion. An experiment is suggested which can be used to check the theory 
of the perpendicular polarization of the gamma rays given off in the 
annihilation process. The similarities and distinct differences between 
polyelectrons and cosmic ray mesons are discussed. 

POSSIBILITY OF TESTING SOME OF THE PRESENT 
PREDICTIONS OF PAIR THEORY 

Quite apart from the possibly questionable direct bearing of poly
electrons upon cosmic ray phenomena, it is natural to ask if there are 
any experimental implications which may be examined in the laboratory 
as new tests of the validity of pair theory itself. 

One of the most interesting possibilities for a test is suggested by the 
existence of excited energy levels in the polyelectron, P+ Radiative 
transition of the system between these energy levels generates an optical 

Originally published in Annals of the New York Academy of Sciences, 48, 219-38 (1946). 
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spectrum which differs from that of hydrogen, in its major features, only 
through the displacement of all lines to the red by a displacement factor 
of two. To observe any well-defined spectrum of such a character 
would, of course, appear to call, in the first place, for a gaseous emitter. 
In addition, the securing of slow polyelectrons requires that a slow posi
tron should be able easily to detach an electron from an atom of the gas. 
This condition requires that the first ionization potential of the substance 
of the gas should be close to 6.7 volts. Finally, the means of observation 
must be capable of picking up over the background spectral lines which 
have been considerably broadened by the Doppler effect, inevitable in 
sjrstem& which have only twice the electronic mass and which are in 
thermal equilibrium near room temperature. 

The difficulties about Doppler effect and choice of substance with 
suitable ionization potential are considerably alleviated by renouncing, 
in the beginning, the study of the particular entity, P+ and looking at 
the problem of the test of pair theory in a broader light. The essential 
point is to find an atomic or molecular system which contains a positron 
and which possesses several optically combining energy levels. In look
ing for such a system, it is only necessary to remember that the positron 
may be regarded as a superlight isotope of the highly reactive hydrogen 
ion. Consequently, one can look among such compounds as e+Cl~ for 
systems which may possess the desired type of energy levels and which 
will be free of objectionable Doppler effect, on account of their substan
tial mass. 

The actual experiment would consist in irradiation of a suitable gas 
with slow positrons, the radiative capture of some of these positrons 
into excited states of entities having somewhat the character of mole
cules, the transition of these entities to lower levels with the emission of 
characteristic spectral lines lying in, or near, the visible region, the 
observation of this spectrum, and the annihilation of each positron by 
an electron of the corresponding molecule-like entity. The gamma rays 
given off in this experiment would be of no direct concern to the problem 
at issue. The test of the pair theory would come in the comparison of 
the observed and calculated positions of the spectral lines. Obviously, 
the experiment, though interesting, is difficult. 

A second and somewhat simpler experiment would seem to offer a 
means to check on one of the details of the annihilation process itself. 
We have already remarked that by far the dominating type of annihila
tion is that in which the positron combines with an electron whose spin 
forms a singlet state with respect to the spin of the positron. Associated 
with this selection of pairs which have zero relative angular momentum, 
before the annihilation process, is an analogous polarization phenomenon 
in the two quanta which are left at the end of the process. According to 
the pair theory, if one of these photons is linearly polarized in one plane, 
then the photon which goes off in the opposite direction with equal 
momentum is linearly polarized in the perpendicular plane. 
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To test this prediction, the following experimental arrangement sug
gests itself: A radioactive source of slow positrons is covered with a foil 
thick enough to guarantee annihilation of all the positrons. A sphere 
of lead centered on this source prevents the escape of any of the annihila
tion quanta, except through a relatively narrow hole drilled through the 
sphere along one of its diameters. When a photon of energy rac2 comes 
out of one end of this channel, we expect a photon also of energy m& to 
emerge simultaneously from the other end. At each end, a carbon 
scatterer is placed. Photons scattered by one of these blocks through 
approximately ninety degrees and into the proper azimuth pass through 
a gamma ray Counter. The scattering process gives a preference to the 
recording of photons with a selected polarization. A similar arrange
ment applies at the other end of the channel. The relative azimuth of 
the two counters may be varied at will. Coincidences between the two 
counters are recorded, (a) when the azimuths of the two counters are 
identical, (b) when the azimuths differ by a right angle. The observed 
ratio of (b) to (a) is compared with the computed ratio, as a check on the 
theory of the annihilation process. The calculated ratio for the case of 
ideal geometry is 1.080, when the arrangement requires the photons to 
be scattered through 90°. The theoretically most favorable ratio of 
1.100 is obtained when the scattering angle is reduced to 74°30'. 

[To be corrected to 2.60 at 90° and maximum of 2.85 at 82°: Pryce and 
Ward (1947), Snyder, Pasternack, and Hornbostel (1948)—Eds.] 

Another possible means of studying this scattering is to use the knock-
on electrons, instead of the recoil photons. The polarization is, obvi
ously, as complete for the particles as for the radiation. In case this 
arrangement is employed, the detecting counters are set to catch elec
trons knocked on at an angle of about 30°, with respect to the annihila
tion radiation. The efficiency of counting is increased by this alteration 
in the plan of the experiment. 

Evidently, it is possible, by means of a reasonable experimental pro
cedure, to obtain information bearing most closely upon the problem of 
the intimate interaction of an electron and a positron. 
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DAVID BOHM 

15. The Paradox of Einstein, Rosen, and Podolsky. In an article in 
the Physical Review, f Einstein, Rosen, and Podolsky raise a serious criti
cism of the validity of the generally accepted interpretation of quantum 
theory. This objection is raised in the form of a paradox to which they 
are led on the basis of their analysis of a certain hypothetical experiment, 
which we shall discuss in detail later. Their criticism has, in fact, been 
shown to be unjustified, f and based on assumptions concerning the nature 
of matter which implicitly contradict the quantum theory at the outset. 
Nevertheless, these implicit assumptions seem, at first sight, so natural 
and inevitable that a careful study of the points which the authors 
raised affords deep and penetrating insight into the difference between 
classical and quantum concepts of the nature of matter. 

The authors first undertook to define criteria for a complete physical 

f Phys. Rev., 47, 777 (1935). 
ί Ν. Bohr, Phys, Rev. 48, 696 (1935); W. H. Furry, Phys. Rev. 49, 393, 476 (1936). 

Originally published as sections 15-19, Chapter 22 of Quantum Theory, David Bohm, pp. 611-23, 
Prentice-Hall, Englewood Cliffs (1951). 
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theory. It seemed to them that a necessary requirement for a complete 

physical theory was the following: 
(1) Every element of physical reality must have a counterpart in a 

complete physical theory. 
As to what actually constituted the correct elements in terms" of which 

physical theory should be expressed, they felt that this question can be 
decided finally only by recourse to experiments and observations. They 
nevertheless suggested the following criterion for recognizing an element 
of reality, which seemed to them a sufficient criterion: 

(2) If, without in any way disturbing the system, we can predict with 
certainty (i.e., with probability equal to unity) the value of a physical 
quantity, then there exists an element of reality corresponding to this 
physical quantity. 

The authors agreed that elements of physical reality might well be 
recognized in other ways also, but they intended to show that even if one 
restricted oneself to elements that could be recognized by means of this 

criterion alone, quantum theory as now interpreted led to contradictory 
results. 

The use of the above explicit criteria rests, however, on certain implicit 
assumptions, which are an integral part of the treatment given by the 
authors, but which are never explicitly stated. These assumptions are: 

(3) The world can correctly be analyzed in terms of distinct and 
separately existing "elements of reality," 

(4) Every one of these elements must be a counterpart of a precisely 

defined mathematical quantity appearing in a complete theory.* 
We shall temporarily accept the above criteria and assumptions, in 

order to permit the further development of the arguments given by the 
authors, but in Sec. 18 we shall show that these criteria should not be 
applied at the quantum level of accuracy. 

Now, let us recall that in the present quantum theory, one assumes 
that all relevant physical information about a system is contained in its 
wave function, so that when two systems have wave functions which 
differ by at most a constant phase factor, they are said to be in the same 
quantum state, f What the authors wished to do with their criteria for 
reality was to show that the above interpretation of the present quantum 
theory is untenable and that the wave function cannot possibly contain 
a complete description of all physically significant factors (or "elements 
of reality") existing within a system. If their contention could be 
proved, then one would be led to search for a more complete theory, 

* This criterion is essentially a strengthened form of (1). Einstein, Rosen, and 
Podolsky do not restrict themselves to the assumption (1), that every element of 
reality always has a counterpart in a complete theory, but they also assume implicitly 
that this counterpart must always be precisely definable. 

f See Chap. 9, Sec. 4.. 
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perhaps containing something like hidden variables,* in terms of which 
the present quantum theory would be a limiting case. 

Let us now consider an arbitrary observable A having a set of eigen-
functions, ψα, belonging to a series of eigenvalues which are denoted by a. 

When the wave function is ψα, then the system is said to be in a quantum 
state in which the observable A has the definite value a. In this situa
tion, ERP would say that there is in the system an element of reality 
corresponding to the observable, A. But now let us consider another 
observable B which does not commute with A, so that there exists no 
wave function for which A and B have simultaneously definite values. 
Now if we adopt the implicit assumption (4) that every element of real
ity must be a counterpart of a precisely defined mathematical quantity 
appearing in a complete theory, then the usual assumption that the wave 
function provides a complete description of reality leads to the conclusion 
that A and B cannot exist simultaneously.! This follows from the fact 
that the supposedly complete wave theory contains no precisely defined 
mathematical elements corresponding to the simultaneous existence of A 
and B. From this point of view, we must also assume, however, that 
when B is measured and obtains a definite value, the elements corre
sponding to A are destroyed (since we have assumed that they cannot 
exist together with those corresponding to B). It seems natural to sup
pose that this destruction is brought about by the quanta that are trans
ferred from the measuring apparatus to the system under observation. 
It is clear, however, that in such an interpretation of the noneommutativ-
ity of two observables, it is essential that in every measurement there 
shall actually be a disturbance arising from the apparatus that destroys 
all elements of reality corresponding to observables that do not commute 
with the measured variable. For if there were no such disturbance, 
then one could take a system initially having a definite value of A and 
then measure B without in any way altering the elements corresponding 
to A, thus obtaining a system in which the elements of reality corre
sponding to A and B exist together at the same time. Now, in the next 
section, we shall discuss a type of hypothetical experiment suggested by 
ERP that actually permits us to measure a given observable without in 
any way disturbing the associated system. With the aid of this type of 
hypothetical experiment, they are then able to obtain a contradiction 
between the assumption that the quantum theory provides a complete 
description of reality and the assumption that their criteria for reality 
must necessarily apply in any complete theory. If one accepts their 

* Chap. 2, Sec. 5; Chap. 5, Sec. 3. 
t In Sec. 18, we shall make the alternative assumption that elements of reality 

exist in a roughly defined form and do not necessarily have to be counterparts of 
precisely defined mathematical quantities appearing in a complete theory. Thus, 
we shall give up the implicit assumptions (3) and (4). 
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criteria, one is left with a single remaining alternative, viz., that quantum 
theory does not provide a complete description of reality. This is the 
conclusion that they originally set out to obtain. 

16. The Hypothetical Experiment of Einstein, Rosen, and Podolsky. 
We shall now describe the hypothetical experiment of Einstein, Rosen, 
and Podolsky. We have modified the experiment somewhat, but the 
form is conceptually equivalent to that suggested by them, and con
siderably easier to treat mathematically. 

Suppose that we have a molecule containing two atoms in a state 
in which the total spin is zero and that the spin of each atom is A/2. 
Roughly speaking, this means that the spin of each particle points in a 
direction exactly opposite to that of the other, insofar as the spin may 
be said to have any definite direction at all. Now suppose that the 
molecule is disintegrated by some process that does not change the total 
angular momentum. The two atoms will begin to separate and will 
soon cease to interact appreciably. Their combined spin angular 
momentum, however, remains equal to zero, because by hypothesis, no 
torques have acted on the system. 

Now, if the spin were a classical angular momentum variable, the 
interpretation of this process would be as follows: While the two atoms 
were together in the form of a molecule, each component of the angular 
momentum of each atom would have a definite value that was always 
opposite to that of the other, thus making the total angular momentum 
equal to zero. When the atoms separated, each atom would continue 
to have every component of its spin angular momentum opposite to that 
of the other. The two spin-angular-momentum vectors would therefore 
be correlated. These correlations were originally produced when the 
atoms interacted in such a way as to form a molecule of zero total spin, 
but after the atoms separate, the correlations are maintained by the 
deterministic equations of motion of each spin vector separately, which 
bring about conservation of each component of the separate spin-angular-
momentum vectors. 

Suppose now that one measures the spin angular momentum of any 
one of the particles, say No. 1. Because of the existence of correlations, 
one can immediately conclude that the angular-momentum vector of 
the other particle (No. 2) is equal and opposite to that of No. 1. In 
this way, one can measure the angular momentum of particle No. 2 
indirectly by measuring the corresponding vector of particle No. 1. 

Let us now consider how this experiment is to be described in the 
quantum theory. Here, the investigator can measure either the x,  y ,  or ζ  

component of the spin of particle No. 1, but not more than one of these 
components, in any one experiment. Nevertheless, it still turns out as 
we shall see that whichever component is measured, the results are 
correlated, so that if the same component of the spin of atom No. 2 ie 
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measured, it will always turn out to have the opposite value. This 
means that a measurement of any component of the spin of atom No. 1 
provides, as in classical theory, an indirect measurement of the same 
component of the spin of atom No. 2. Since, by hypothesis, the two 
particles no longer interact, we have obtained a way of measuring an 
arbitrary component of the spin of particle No. 2 without in any way 
disturbing that particle. If we accept the definition of an element of 
reality (2) suggested by ERP, it is clear that after we have measured az 

for particle 1, then σζ for particle 2 must be regarded as an element of 
reality; existing separately in particle No. 2 alone. If this is true, how
ever, this element of reality must have existed in particle No. 2 even 
before the measurement of σζ for particle No. 1 took place. For since 
there is no interaction with particle No. 2, the process of measurement 
cannot have affected this particle in any way. But now let us remember 
that, in each case, the observer is always free to reorient the apparatus 
in an arbitrary direction while the atoms are still in flight, and thus to 
obtain a definite (but unpredictable) value of the spin component in any 
direction that he chooses. Since this can be accomplished without in 
any way disturbing the second atom, we conclude that if criterion (2) of 
ERP is applicable, precisely defined elements of reality must exist in 
the second atom, corresponding to the simultaneous definition of all three 
components of its spin. Because the wave function can specify, at most, 
only one of these components at a time with complete precision, we are 
then led to the conclusion that the wave function does not provide a 
complete description of all elements of reality existing in the second atom. 

If this conclusion were valid, then we should have to look for a new 
theory in terms of which a more nearly complete description was possible. 
We shall see, however, in Sec. 18, that the analysis given by ERP involves 
in an integral way the implicit assumptions (3) and (4) that the world is 
actually made up of separately existing and precisely defined "elements 
of reality." Quantum theory, however, implies a quite different picture 
of the structure of the world at the microscopic level. This picture 
leads, as we shall see, to a perfectly rational interpretation of the hypo
thetical experiment of ERP within the present framework of the theory. 

17. Mathematical Analysis of Experiment According to Quantum 
Theory. Before discussing the physical interpretation that the present 
quantum theory gives to the hypothetical experiment of Einstein, Rosen 
and Podolsky, we shall first show how this experiment is to be described 
in mathematical terms. 

The system containing the spin of two atoms has four basic wave 
functions, from which an arbitrary wave function can be constructed .* 

* The complete wave function for the system is then obtained by multiplying the 
spin wave functions by appropriate space wave functions, which depend on the space 
co-ordinates of both Darticles. 
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These are 
Φα = w+(l)w+(2) = W+(1)M_(2) 

ypb = m_(1)M_(2) Ipd = M_(1)M+(2) 

where w+ and w_ are the one-particle spin wave functions representing, 
respectively, a spin h/2 and — ft/2, and the argument (1) or (2) refers, 
respectively, to the particle which has this spin. Now and φα represent 
the two possible situations in which each particle has a definite ζ com
ponent of the spin in a direction which is opposite to that of the other. 
The wave function for a system of total spin zero is the following linear 
combination of φα and ψα (see Chap. 17, Sec. 9): 

The particular sign with which φ0 and φά are combined is of crucial 
importance in determining the combined spin, for if they are combined 
with a + sign, one obtains an angular momentum of ft (but with a zero 
value of the ζ component of the angular momentum). We denote this 
result below: 

It is clear, then, that the total angular momentum is an interference 
property of <pc and φα- On the other hand, the only states in which each 
particle has a definite spin opposite to that of the other are represented 
either by φε or by φά separately. Thus, in any state in which the value 
of σζ for each particle is definite, the total angular momentum must be 
indefinite. Vice versa, whenever the total angular momentum is definite, 
then neither atom can correctly be regarded as having a definite value of 
its own spin, for if it did, there could be no interference between φ0 and 
φα, and it is just this interference which is required to produce a definite 
total angular momentum. 

Besides leading to a definite value of the combined spin, however, 
definite phase relations between  c and φά have additional physical mean
ing, for they also imply that if the same component of the spin of each 
atom is measured, the results will be correlated. Such correlations can 
be demonstrated, for example, in a process in which the ζ component of 
the spin of each atom is measured by allowing each atom to pass through 
a separate Stern-Gerlach apparatus (see Fig. 1). For the sake of simplic
ity, we can suppose that both spins are measured at the same time, 
although no results will depend significantly on this assumption. The 
Hamiltonian at the time of measurement is then [see eqs. (IOa) and (IOb)]: 

(26) 

Ψ ΐ  =  ̂  +  W  
(27) 

W = /t(3Co + z3CiVil8 + μ(30ο + Z;>3C0V2,» 
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where is the z co-ordinate of the first atom and z2 is the z co-ordinate 
of the second atom. (We assume that both pieces of apparatus are 
identical in construction.) 

We now expand the spin wave function during the course of the meas-
urement in terms of the four basic functions, and Since 
this measurement does not change it will remain true that only and 

are needed during the course of the measurement.* Thus, we write 

In our case, the initial value of is and the initial value of is 
By methods similar to those leading to equation (13b), one 

derives 

The solution for and with the proper boundary conditions yields 
for the wave function just after the particles leave the magnetic field 

where we have inserted time of interaction between atoms and 
the inhomogeneous magnetic field. 

This wave function implies that the two results represented, respec-
tively, by and by are equally probable. In the first possible result, 
atom No. 1 has a positive value of while atom number 2 has a negative 
value. The factor represents the fact that in the Stern-
Gerlach experiment, each atom obtains an opposite momentum corre-
sponding to its opposite spin. Similarly, in the second possible result, 
atom No. 2 has a negative value of whereas atom No. 1 has a positive 
value. As in Sees. 9 and 11, we can show that because the apparatus is 
classically describable, the apparatus wave functions (which depend on 

and multiply the spin wave function by uncontrollable phase 
factors, so that we finally obtain 

where and are separate and uncontrollable phase factors. 
This result shows that if the value of is measured for each atom, 

the result will come out a definite number for each, which is always 

* Note t h a t these are the only t e rms present initially. 
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opposite to that of the other. In this way, we prove that correlations 
resembling those of classical theory will also be obtained in the quantum 
theory. After the measurement is over, however, the system has been 
transformed from one that had a definite combined angular momentum 
and an indefinite value of σζ for each particle to one which has a definite 
value of σζ for each particle, but an indefinite combined angular momen
tum. Moreover, the precise value of σζ which will be obtained for each 
particle is not related deterministically to the state of the system before 
the measurement, but only statistically. 

Let us now describe the process of measurement of σχ. The results 
are very similar, because the wave function for a system of zero total 
spin is the same when expressed in terms of v+, v- (the eigenfunctions of 
σχ) as in terms of u+, u— Thus, we obtain 

ψ ο =  7 1  [ y + ( 1 ) y - ( 2 )  ~  

One can now describe the measurement of σχ for each particle in exactly 
the same way as was done with σ„, and after the interaction with the 
measuring apparatus, one obtains 

ψ = -^= [y+(l)y_(2) eiai + υ_(1)υ+(2) eia2] 
Λ/2 

where «ι and a2 are separate uncontrollable phase factors. 
We conclude that the value of σχ for each particle is also correlated 

to that of the other in such a way that the sum of the two is zero. More
over, it is readily verified that if one had taken the function 

Φι = φ= (Φα + lfa) 

then with the substitution, v +  =  — ( u +  + m_) and v -  — (it+ — «_), 

one would have the wave function 

lh = φ= K(l)t>+(2) + υ_(1)ν_(2)] 

This represents a situation in which measurement of ax will disclose 
that both particles have a positive value together, or that both particles 
have a negative value together. We see therefore that the type of corre
lation of σχ which can develop depends on the sign with which ψ0 and ψα 
are added, and therefore also on the combined angular momentum. 

One more significant point arises in connection with this experiment; 
namely, that the existence of correlations does not imply that the behavior 
of either atom is affected in any way at all by what happens to the other, 
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after the two have ceased to interact. To prove this statement, we first 
evaluate the mean value of any function (/(()2) of the spin variables of 
particle No. 2 alone. With the wave function before a measurement took 
place, we obtain 

= lit* - = + Φίβ(**)ΨΑ 

(By virtue of the orthogonality of ψ0 and g(<b^d·) After the spin of the 
first particle is measured, the average of 0(^2) becomes 

0/0»») = ~ Φ%τ*»)ς(ύ2)(^eie· - φ#?") 
= Μ.Ψ*9(^ί)Φβ + Ψ*9(ό ζ)Ψά] 

This is the same as what was obtained without a measurement of the 
spin variables of particle No. 1. The behavior of the two spins is, how
ever, correlated despite the fact that each behaves in a way that does not 
depend on what actually happens to the other after interaction has 
ceased. 

18. Physical Description of Origin of Correlations. We have deduced 
mathematically that in a system of two atoms having a total spin of zero, 
the spin components of each atom in an arbitrary direction will be corre
lated, despite the fact that according to our present interpretation of 
quantum theory these spin components cannot all exist simultaneously 
in precisely defined forms. We wish to show now that the paradoxical 
results obtained by ERP in the interpretation of this fact will not be 
obtained if one avoids making their implicit assumptions (3) and (4); 
viz., that the world can correctly be analyzed into elements of reality, 
each of which is a counterpart of a precisely defined mathematical 
quantity appearing in a complete theory. These assumptions, which are 
at the root of all classical theory, might perhaps be called the hypothesis 
that reality is built upon a mathematical plan, for it is required that 
every element appearing in the real world shall correspond precisely to 
some term appearing in a complete set of mathematical equations. 
Although such a hypothesis seems quite natural to us at this time, it is 
by no means inescapable, f In fact, in quantum theory, one makes a 
quite different, but equally plausible, hypothesis concerning the funda
mental nature of matter. Here, we assume that the one-to-one corre
spondence between mathematical theory and well-defined "elements of 
reality" exists only at the classical level of accuracy. For at the quantum 
level, the mathematical description provided by the wave function is 
certainly not in a one-to-one correspondence with the actual behavior of 

f Historically speaking, it is a comparatively new idea, having arisen in connection 
with the great success of mathematical analysis in mechanics and electrodynamics 
during the period between the sixteenth and early twentieth centuries (see Chap. 8, 
Sees. 2 to 10). 
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the system under description, but only in a statistical correspondence.* 
Yet, we assert that the wave function (in principle) can provide the most 
complete possible description of the system that is consistent with the 
actual structure of matter. How can we reconcile these two aspects of 
the wave function? We do so in terms of the assumption that the 
properties of a given system exist, in general, only in an imprecisely 
defined form, and that on a more accurate level, they are not really well-
defined properties at all, but instead only potentialities, t which are more 
definitely realized in interaction with an appropriate classical system, 
such as a measuring apparatus. For example, consider two noncommut-
ing observables, such as momentum and position of an electron. We say 
that, in general, neither exists in a given system in a precisely defined form, 
but that both exist together in a roughly defined form, such that the 
uncertainty principle is not violated. J Either variable is potentially 
capable of becoming better defined at the expense of the degree of defini
tion of the other, in interaction with a suitable measuring apparatus. 
We see then that the properties of position and momentum are not 
only incompletely defined and opposing potentialities, but also that 
in a very accurate description, they cannot be regarded as belonging 
to the electron alone; for the realization of these potentialities depends 
just as much on the systems with which it interacts as on the electron 
itself. § This means that there are actually no precisely defined "ele
ments of reality" belonging to the electron. Thus, we contradict the 
assumptions (3) and (4) of Einstein, Rosen, and Podolsky. 

Quantum-mechanical spin variables must be interpreted in a similar 
way. Whereas ERP would say that the only existing component of the 
spin is the one which may happen to be defined precisely by the wave 
function, we say that, in general, all three components exist simul
taneously in roughly defined forms, and that any one component has the 
potentiality for becoming better defined at the expense of the others if 
the associated atom interacts with a suitable measuring apparatus. 
The probability for the development of a definite value of any spin 
component in a suitable process of measurement is proportional to the 
square of the amplitude of the coefficient of the part of the wave function 
corresponding to this component. We must, however, recall that the 
complete spin wave function for a given atom can be expanded in terms 
of the eigenfunctions, u+ and u_, of the spin variables in any direction. 
Thus φ = a+u+ + CL-U- In such an expansion, the phase relations 
between u+ and U- help determine the distribution over spin components 
in other directions. || (Thus, if u+, w_ represent eigenfunctions of σζ, then 

* See Chap. 6, Sec. 4. 
t See Chap. 6, Sees. 9 and 13, Chap. 8, Sees. 14 and 15, Chap. 22, Sec. 13. 
t See discussion of complementarity in Chap. 8, Sec. 15. 
§ Chap. 6, Sec. 13, Chap. 8, Sec. 16. 
j See Chap. 17, Sees. 6 and 7. 
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an eigenfunction of σχ is obtained when ψ = —(u+ ± «_).) This 
V2 

means that as long as definite phase relations exist between u+ and w_, 
one cannot categorize (or classify) the system as having a spin which 
corresponds either entirely to u+ or entirely to tt_, with respective prob
abilities,* |a+|2 and |a_|2. Instead, we must say that the system cuts 
across this method of classification, and in some sense, covers both states 
at once in a poorly defined way.t Thus, we must give up the classical 
picture of a precisely defined spin variable associated with each atom, and 
replace it by our quantum concept of a potentiality, the probability of 
whose development is given by the wave function. It is only when the 
wave function is an eigenfunction of a given spin component that the 
system is certain (in interaction with a suitable apparatus) to develop a 
predictable value of that spin component. 

Now, when we come to our system of two atoms having a total spin of 
zero, we see from eq. (26) that because the wave function 

ψο = (ψο ~ Φά) 

has definite phase relations between ψ0 and ψα, the system must cover 
the states corresponding to and ψα simultaneously. Thus, for a given 
atom, no component of the spin of a given variable exists with a precisely 
defined value, until interaction with a suitable system, such as a measur 
ing apparatus, has taken place. But as soon as either atom (say, No. 1) 
interacts with an apparatus measuring a given component of the spin, 
definite phase relations between ψ0 and ψά are destroyed. This means 
that the system then acts as if it is either in the state ψβ or ψα. Thus, in 
every instance in which particle No. 1 develops a definite spin component 
in, for example, the ζ direction, the wave function of particle No. 2 will 
automatically take such a form that it guarantees the development of 
the opposite value of σζ if this particle also interacts with an apparatus 
which measures the same component of the spin. The wave function 
therefore describes the propagation of correlated potentialities. Because 
the expansion of the wave function ψ0 takes the same form when expanded 
in terms of the eigenfunctions of an arbitrary component of the spin, we 
conclude that similar correlations will be obtained if the same component 
of the spin of each atom in any direction is measured. Moreover, 
because the potentialities for development of a definite spin component 
are not realized irrevocably until interaction with the apparatus actually 
takes place, there is no inconsistency in the statement that while the 
atoms are still in flight, one can rotate the apparatus into an arbitrary 

* Chap. 6, Sec. 4, Chap. 22, Sec. 10. 
f Chap. 16, Sec. 25, and Chap. 8, Sec. 15. 
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direction, and thus choose to develop definite and correlated values for 
any desired spin component of each atom. 

Finally, it is perhaps interesting to consider in a new light the fact 
that the mathematical description provided by the wave function is not 
in a one-to-one correspondence with the actual behavior of matter. From 
this fact, we are led to conclude that, contrary to general opinion, quan
tum theory is less mathematical in its philosophical basis than is classical 
theory, for, as we have seen, it does not assume that the world is con
structed according to a precisely defined mathematical plan. Instead, 
we have come to the point of view that the wave function is an abstrac
tion, providing a mathematical reflection of certain aspects of reality, 
but not a one-to-one mapping. To obtain a description of all aspects 
of the world, one must, in fact, supplement the mathematical description 
with a physical interpretation in terms of incompletely defined potentiali
ties.* Moreover, the present form of quantum theory implies that the 
world cannot be put into a one-to-one correspondence with any conceiv
able kind of precisely defined mathematical quantities, and that a com
plete theory will always require concepts that are more general than 
that of analysis into precisely defined elements. We may probably 
expect that even the more general types of concepts provided by the 
present quantum theory will also ultimately be found to provide only a 
partial reflection of the infinitely complex and subtle structure of the 
world. As science develops, we may therefore look forward to the 
appearance of still newer concepts, which are only faintly foreshadowed 
at present, but there is no strong reason to suppose that these new 
concepts are likely to lead to a return to the comparatively simple idea 
of a one-to-one correspondence between the real world and precisely 
defined mathematical abstractions. 

19. Proof that Quantum Theory Is Inconsistent with Hidden Vari
ables. We can now use some of the results of the analysis of the paradox 
of Einstein, Rosen, and Podolsky to help prove that quantum theory is 
inconsistent with the assumption of hidden causal variables. (See 
Chap. 2, Sec. 5 and Chap. 5, Sec. 3.) We first note that the assump
tion that there are separately existing and precisely defined elements 
of reality would be at the base of any precise causal description in 
terms of hidden variables; for without such elements there would be 
nothing to which a precise causal description could apply. Similarly, 
as we saw in Chap. 8, Sec. 20, the existence of separate elements requires 
a precise causal theory of the relationships between these elements for 
its consistent application. Thus, the analysis of the world into pre-

* See Chap. 23 for a fuller discussion of how the wave function must be supple
mented with its interpretation in terms of potentialities for the production of various 
classically describable results. 
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cisely defined elements and the synthesis of these elements according 
to precise causal laws must stand or fall together. 

Now, from the reasoning of ERP we conclude that if the world can be 
explained in terms of such precisely defined elements, then the correct 
interpretation of two noncommuting variables, such as momentum and 
position, would be that they correspond to simultaneously existing ele
ments of reality. To interpret the uncertainty principle, we would then 
have to assume that we are simply unable to measure the values of the 
two simultaneously with complete precision. But we saw in Chap. 6, 
Sec. 11, that any such assumption would lead to a contradiction with the 
uncertainty principle, which is one of the most fundamental deductions 
of the quantum theory. We conclude then that no theory of mechan
ically determined hidden variables can lead to all of the results of the 
quantum theory. Such a mechanical theory might conceivably be so 
ingeniously framed that it would agree with quantum theory for a wide 
range of predicted experimental results.* But the hypothetical experi
ment suggested in Chap. 6, Sec. 11 would then be an example of a crucial 
test of the theory. If, in this experiment, we were able to violate the 
uncertainty principle, then the theory of mechanically determined under
lying variables would be strongly indicated, whereas if we were not able 
to violate the uncertainty principle, we should obtain a fairly convincing 
proof that no correct mechanical theory could ever be found. Unfortun
ately, such an experiment is still far beyond present techniques, but it is 
quite possible that it could some day be carried out. Until and unless 
some such disagreement between quantum theory and experiment is 
found, however, it seems wisest to assume that quantum theory is sub
stantially correct, because it is a self-consistent theory yielding agree
ment with such a wide range of experiments not correctly treated by any 
other known theory. 

* We do not wish to imply here that anyone has ever produced a concrete and 
successful example of such a theory, but only state that such a theory is, as far as we 
know, conceivable. 



III.3 A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY 
IN TERMS OF "HIDDEN" VARIABLES, I AND II 

DAVID BOHM 

The usual interpretation of the quantum theory is self-con
sistent, but it involves an assumption that cannot be tested 
experimentally, viz., that the most complete possible specification 
of an individual system is in terms of a wave function that deter
mines only probable results of actual measurement processes. 
The only way of investigating the truth of this assumption is by 
trying to find some other interpretation of the quantum theory in 
terms of at present "hidden" variables, which in principle deter
mine the precise behavior of an individual system, but which are 
in practice averaged over in measurements of the types that can 
now be carried out. In this paper and in a subsequent paper, an 
interpretation of the quantum theory in terms of just such 
"hidden" variables is suggested. It is shown that as long as the 
mathematical theory retains its present general form, this sug
gested interpretation leads to precisely the same results for all 

physical processes as does the usual interpretation. Nevertheless, 
the suggested interpretation provides a broader conceptual frame
work than the usual interpretation, because it makes possible a 
precise and continuous description of all processes, even at the 
quantum level. This broader conceptual framework allows more 
general mathematical formulations of the theory than those 
allowed by the usual interpretation. Now, the usual mathematical 
formulation seems to lead to insoluble difficulties when it is ex
trapolated into the domain of distances of the order of 10~13 cm 
or less. It is therefore entirely possible that the interpretation sug
gested here may be needed for the resolution of these difficulties. 
In any case, the mere possibility of such an interpretation proves 
that it is not necessary for us to give up a precise; rational, and 
objective description of individual systems at a quantum level of 
accuracy 

1. INTRODUCTION 

THE usual interpretation of the quantum theory is 
based on an assumption having very far-reaching 

implications, viz., that the physical state of an in
dividual system is completely specified by a wave 
function that determines only the probabilities of actual 
results that can be obtained in a statistical ensemble of 
similar experiments. This assumption has been the 
object of severe criticisms, notably on the part of 
Einstein, who has always believed that, even at the 
quantum level, there must exist precisely definable 
elements or dynamical variables determining (as in 
classical physics) the actual behavior of each individual 
system, and not merely its probable behavior. Since 
these elements or variables are not now included in the 
quantum theory and have not yet been detected experi
mentally, Einstein has always regarded the present 
form of the quantum theory as incomplete, although he 
admits its internal consistency.1-5 

Most physicists have felt that objections such as 
those raised by Einstein are not relevant, first, because 
the present form of the quantum theory with its usual 
probability interpretation is in excellent agreement 
with an extremely wide range of experiments, at least 
in the domain of distances6 larger than IO-13 cm, and, 
secondly, because no consistent alternative interpreta-

* Now at Universidade de Sao Paulo, Faculdade de Filosofia, 
Ciencias, e Letras, Sao Paulo, Brasil. 

1Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1933). 
2D. Bohm, Quantum Theory (Prentice-Hall, Inc., New York, 

1951), see p. 611. 
3 N. Bohr, Phys. Rev. 48, 696 (1935) 
4 W. Furry, Phys. Rev. 49, 393, 476 (1936). 
5Paul Arthur Schilp, editor, Albert Einstein, Philosopher-

Scientist (Library of Living Philosophers, Evanston, Illinois, 
1949). This book contains a thorough summary of the entire 
controversy. 

β At distances of the order of IO"13 cm or smaller and foi times 
of the order of this distance divided by the velocity of Jight or 
smaller, present theories become so inadequate that it is generally 
believed that they are probably not applicable, except perhaps 

tions have as yet been suggested. The purpose of this 
paper (and of a subsequent paper hereafter denoted by 
II) is, however, to suggest just such an alternative 
interpretation. In contrast to the usual interpretation, 
this alternative interpretation permits us to conceive 
of each individual system as being in a precisely de
finable state, whose changes with time are determined 
by definite laws, analogous to (but not identical with) 
the classical equations of motion. Quantum-mechanical 
probabilities are regarded (like their counterparts in 
classical statistical mechanics) as only a practical 
necessity and not as a manifestation of an inherent 
lack of complete determination in the properties of 
matter at the quantum level. As long as the present 
general form of Schroedinger's equation is retained, the 
physical results obtained with our suggested alternative 
interpretation are precisely the same as those obtained 
with the usual interpretation. We shall see, however, 
that our alternative interpretation permits modifica
tions of the mathematical formulation which could not 
even be described in terms of the usual interpretation. 
Moreover, the modifications can quite easily be for
mulated in such a way that their effects are insignificant 
in the atomic domain, where the present quantum 
theory is in such good agreement with experiment, but 
of crucial importance in the domain of dimensions of 
the order of 10~13 cm, where, as we have seen, the 
present theory is totally inadequate. It is thus entirely 
possible that some of the modifications describable in 
terms of our suggested alternative interpretation, but 

in a very crude sense. Thus, it is generally expected that in con
nection with phenomena associated with this so-called "funda
mental length," a totally new theory will probably be needed. 
It is hoped that this theory could not only deal precisely with such 
processes as meson production and scattering of elementary par
ticles, but that it would also systematically predict the masses, 
charges, spins, etc., of the large number of so-called "elementary" 
particles that have already been found, as well as those of new 
particles which might be found in the future. 

Originally published in Physical Review, 85, 166-93 (1952). 
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not in terms of the usual interpretation, may be needed 
for a more thorough understanding of phenomena 
associated with very small distances. We shall not, 
however, actually develop such modifications in any 
detail in these papers. 

After this article was completed, the author's atten
tion was called to similar proposals for an alternative 
interpretation of the quantum theory made by de 
Broglie7 in 1926, but later given up by him partly as 
a result of certain criticisms made by Pauli8 and partly 
because of additional objections raised by de Broglie7 

himself·! As we shall show in Appendix B of Paper II, 
however, all of the objections of de Broglie and Pauli 
could have been met if only de Broglie had carried his 
ideas to their logical conclusion. The essential new step 
in doing this is to apply our interpretation in the theory 
of the measurement process itself as well as in the 
description of the observed system. Such a development 
of the theory of measurements is given in Paper II,9 

where it will be shown in detail that our interpretation 
leads to precisely the same results for all experiments 
as are obtained with the usual interpretation. The 
foundation for doing this is laid in Paper I, where we 
develop the basis of our interpretation, contrast it 
with the usual interpretation, and apply it to a few 
simple examples, in order to illustrate the principles 
involved. 

2. THE USUAL PHYSICAL INTERPRETATION 
OF THE QUANTUM THEORY 

The usual physical interpretation of the quantum 
theory centers around the uncertainty principle. Now, 
the uncertainty principle can be derived in two different 
ways. First, we may start with the assumption already 
criticized by Einstein,1 namely, that a wave function 
that determines only probabilities of actual experi
mental results nevertheless provides the most complete 
possible specification of the so-called "quantum state" 
of an individual system. With the aid of this assump
tion and with the aid of the de Broglie relation, p=Ak, 
where k is the wave number associated with a par
ticular fourier component of the wave function, the 

7 L. de Broglie, An Introduction to the Study of Wave Mechanics 
(E. P. Dutton and Company, Inc., New York, 1930), see Chapters 
6, 9, and 10. See also Compt. rend. 183, 447 (1926); 184, 273 
(1927); 185, 380 (1927). 

8 Reports on the Solvay Congress (Gauthiers-Villars et Cie., 
Paris, 1928), see p. 280. 

t Note added, in proof.—Madelung has also proposed a similar 
interpretation of the quantum theory, but like de Broglie he did 
not carry this interpretation to a logical conclusion. See E. Made-
lung, Z. f. Physik 40, 332 (1926), also G. Temple, Introduction to 
Quantum Theory (London, 1931). 

9 In Paper II, Sec. 9, we also discuss von Neumann's proof 
Csee J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag, Julius Springer, Berlin, 1932)] that quantum 
theory cannot be understood in terms of a statistical distribution 
of "hidden" causal parameters. We shall show that his conclusions 
do not apply to our interpretation, because he implicitly assumes 
that the hidden parameters must be associated only with the 
observed system, whereas, as will become evident in these papers, 
our interpretation requires that the hidden parameters shall also 
be associated with the measuring apparatus. 

uncertainty principle is readily deduced.10 From this 
derivation, we are led to interpret the uncertainty 
principle as an inherent and irreducible limitation on 
the precision with which it is correct for us even to 
conceive of momentum and position as simultaneously 
defined quantities. For if, as is done in the usual inter
pretation of the quantum theory, the wave intensity 
is assumed to determine only the probability of a given 
position, and if the kth Fourier component of the wave 
function is assumed to determine only the probability 
of a corresponding momentum, ρ=Ak, then it becomes 
a contradiction in terms to ask for a state in which 
momentum and position are simultaneously and pre
cisely defined. 

A second possible derivation of the uncertainty 
principle is based on a theoretical analysis of the 
processes with the aid of which physically significant 
quantities such as momentum and position can be 
measured. In such an analysis, one finds that because 
the measuring apparatus interacts with the observed 
system by means of indivisible quanta, there will always 
be an irreducible disturbance of some observed prop
erty of the system. If the precise effects of this dis
turbance could be predicted or controlled, then one 
could correct for these effects, and thus one could still 
in principle obtain simultaneous measurements of 
momentum and position, having unlimited precision. 
But if one could do this, then the uncertainty principle 
would be violated. The uncertainty principle is, as we 
have seen, however, a necessary consequence of the 
assumption that the wave function and its probability 
interpretation provide the most complete possible 
specification of the state of an individual system. In 
order to avoid the possibility of a contradiction with 
this assumption, Bohr3·5·10·11 and others have suggested 
an additional assumption, namely, that the process of 
transfer of a single quantum from observed system to 
measuring apparatus is inherently unpredictable, un
controllable, and not subject to a detailed rational 
analysis or description. With the aid of this assumption, 
one can show10 that the same uncertainty principle 
that is deduced from the wave function and its proba
bility interpretation is also obtained as an inherent and 
unavoidable limitation on the precision of all possible 
measurements. Thus, one is able to obtain a set of 
assumptions, which permit a self-consistent formula
tion of the usual interpretation of the quantum theory. 

The above point of view has been given its most 
consistent and systematic expression by Bohr,3·5·10 in 
terms of the "principle of complementarity." In for
mulating this principle, Bohr suggests that at the 
atomic level we must renounce our hitherto successful 
practice of conceiving of an individual system as a 
unified and precisely definable whole, all of whose as
pects are, in a manner of speaking, simultaneously and 

10 See reference 2, Chapter 5. 
11N. Bohr, Atomic Theory and the Description of Nature (Cam

bridge University Press, London, 1934). 
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unambiguously accessible to our conceptual gaze. Such 
a system of concepts, which is sometimes called a 
"model," need not be restricted to pictures, but may 
also include, for example, mathematical concepts, as 
long as these are supposed to be in a precise (i.e., 
one-to-one) correspondence with the objects that are 
being described. The principle of complementarity 
requires us, however, to renounce even mathematical 
models. Thus, in Bohr's point of view, the wave func
tion is in no sense a conceptual model of an individual 
system, since it is not in a precise (one-to-one) corre
spondence with the behavior of this system, but only 
in a statistical correspondence. 

In place of a precisely defined conceptual model, the 
principle of complementarity states that we are re
stricted to complementarity pairs of inherently im
precisely defined concepts, such as position and mo
mentum, particle and wave, etc. The maximum degree 
of precision of definition of either member of such a 
pair is reciprocally related to that of the opposite 
member. This need for an inherent lack of complete 
precision can be understood in two ways. First, it can 
be regarded as a consequence of the fact that the ex
perimental apparatus needed for a precise measure
ment of one member of a complementary pair of vari
ables must always be such as to preclude the possibility 
of a simultaneous and precise measurement of the other 
member. Secondly, the assumption that an individual 
system is completely specified by the wave function and 
its probability interpretation implies a corresponding 
unavoidable lack of precision in the very conceptual 
structure, with the aid of which we can think about 
and describe the behavior of the system. 

It is only at the classical level that we can correctly 
neglect the inherent lack of precision in all of our con
ceptual models; for here, the incomplete determination 
of physical properties implied by the uncertainty prin
ciple produces effects that are too small to be of prac
tical significance. Our ability to describe classical 
systems in terms of precisely definable models is, how
ever, an integral part of the usual interpretation of the 
theory. For without such models, we would have no 
way to describe, or even to think of, the result of an 
observation, which is of course always finally carried 
out at a classical level of accuracy. If the relationships 
of a given set of classically describable phenomena 
depend significantly on the essentially quantum-me-
chanical properties of matter, however, then the prin
ciple of complementarity states that no single model is 
possible which could provide a precise and rational 
analysis of the connections between these phenomena. 
In such a case, we are not supposed, for example, to 
attempt to describe in detail how future phenomena 
arise out of past phenomena. Instead, -we should simply 
accept without further analysis the fact that future 
phenomena do in fact somehow manage to be produced, 
in a way that is, however, necessarily beyond the possi
bility of a detailed description. The only aim of a 

mathematical theory is then to predict the statistical 
relations, if any, connecting these phenomena. 

3. CRITICISM OF THE USUAL INTERPRETATION OF 
THE QUANTUM THEORY 

The usual interpretation of the quantum theory can 
be criticized on many grounds.6 In this paper, however, 
we shall stress only the fact that it requires us to give 
up the possibility of even conceiving precisely what 
might determine the behavior of an individual system 
at the quantum level, without providing adequate 
proof that such a renunciation is necessary.9 The usual 
interpretation is admittedly consistent; but the mere 
demonstration of such consistency does not exclude the 
possibility of other equally consistent interpretations, 
which would involve additional elements or parameters 
permitting a detailed causal and continuous description 
of all processes, and not requiring us to forego the 
possibility of conceiving the quantum level in precise 
terms. From the point of view of the usual interpreta
tion, these additional elements or parameters could be 
called "hidden" variables. As a matter of fact, when
ever we have previously had recourse to statistical 
theories, we have always ultimately found that the 
laws governing the individual members of a statistical 
ensemble could be expressed in terms of just such 
hidden variables. For example, from the point of view 
of macroscopic physics, the coordinates and momenta 
of individual atoms are hidden variables, which in a 
large scale system manifest themselves only as sta
tistical averages. Perhaps then, our present quantum-
mechanical averages are similarly a manifestation of 
hidden variables, which have not, however, yet been 
detected directly. 

Now it may be asked why these hidden variables 
should have so long remained undetected. To answer 
this question, it is helpful to consider as an analogy the 
early forms of the atomic theory, in which the existence 
of atoms was postulated in order to explain certain 
large-scale effects, such as the laws of chemical com
bination, the gas laws, etc. On the other hand, these 
same effects could also be described directly in terms 
of existing macrophysical concepts (such as pressure, 
volume, temperature, mass, etc.); and a correct de
scription in these terms did not require any reference to 
atoms. Ultimately, however, effects were found which 
contradicted the predictions obtained by extrapolating 
certain purely macrophysical theories to the domain of 
the very small, and which could be understood cor
rectly in terms of the assumption that matter is com
posed of atoms. Similarly, we suggest that if there are 
hidden variables underlying the present quantum 
theory, it is quite likely that in the atomic domain, they 
will lead to effects that can also be described adequately 
in the terms of the usual quantum-mechanical concepts; 
while in a domain associated with much smaller dimen
sions, such as the level associated with the "fundamental 
length" of the order of IO-13 cm, the hidden variables 
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may lead to completely new effects not consistent with 
the extrapolation of the present quantum theory down 
to this level. 

If, as is certainly entirely possible, these hidden vari
ables are actually needed for a correct description at 
small distances, we could easily be kept on the wrong 
track for a long time by restricting ourselves to the 
usual interpretation of the quantum theory, which ex
cludes such hidden variables as a matter of principle. 
It is therefore very important for us to investigate our 
reasons for supposing that the usual physical inter
pretation is likely to be the correct one. To this end, we 
shall begin by repeating the two mutually consistent 
assumptions on which the usual interpretation is based 
(see Sec. 2): 

(1) The wave function with its probability inter
pretation determines the most complete possible speci
fication of the state of an individual system. 

(2) The process of transfer of a single quantum from 
observed system to measuring apparatus is inherently 
unpredictable, uncontrollable, and unanalyzable. 

Let us now inquire into the question of whether there 
are any experiments that could conceivably provide a 
test for these assumptions. It is often stated in con
nection with this problem that the mathematical ap
paratus of the quantum theory and its physical in
terpretation form a consistent whole and that this 
combined system of mathematical apparatus and 
physical interpretation is tested adequately by the 
extremely wide range of experiments that are in agree
ment with predictions obtained by using this system. 
If assumptions (1) and (2) implied a unique mathe
matical formulation, then such a conclusion would be 
valid, because experimental predictions could then be 
found which, if contradicted, would clearly indicate 
that these assumptions were wrong. Although assump
tions (1) and (2) do limit the possible forms of the 
mathematical theory, they do not limit these forms 
sufficiently to make possible a unique set of predictions 
that could in principle permit such an experimental 
test. Thus, one can contemplate practically arbitrary 
changes in the Hamiltonian operator, including, for 
example, the postulation of an unlimited range of new 
kinds of meson fields each having almost any conceiv
able rest mass, charge, spin, magnetic moment, etc. 
And if such postulates should prove to be inadequate, 
it is conceivable that we may have to introduce non
local operators, nonlinear fields, 5-matrices, etc. This 
means that when the theory is found to be inadequate 
(as now happens, for example, at distances of the order 
of IO-13 cm), it is always possible, and, in fact, usually 
quite natural, to assume that the theory can be made 
to agree with experiment by some as yet unknown 
change in the mathematical formulation alone, not 
requiring any fundamental changes in the physical in
terpretation. This means that as long as we accept the 
usual physical interpretation of the quantum theory, 
we cannot be led by any conceivable experiment to 

give up this interpretation, even if it should happen to 
be wrong. The usual physical interpretation therefore 
presents us with a considerable danger of falling into 
a trap, consisting of a self-closing chain of circular 
hypotheses, which are in principle unverifiable if true. 
The only way of avoiding the possibility of such a trap 
is to study the consequences of postulates that con
tradict assumptions (1) and (2) at the outset. Thus, 
we could, for example, postulate that the precise out
come of each individual measurement process is in 
principle determined by some at present "hidden" 
elements or variables; and we could then try to find 
experiments that depended in a unique and reproducible 
way on the assumed state of these hidden elements or 
variables. If such predictions are verified, we should 
then obtain experimental evidence favoring the hy
pothesis that hidden variables exist. If they are not 
verified, however, the correctness of the usual in
terpretation of the quantum theory is not necessarily 
proved, since it may be necessary instead to alter the 
specific character of the theory that is supposed to 
describe the behavior of the assumed hidden variables. 

We conclude then that a choice of the present in
terpretation of the quantum theory involves a real 
physical limitation on the kinds of theories that we wish 
to take into consideration. From the arguments given 
here, however, it would seem that there are no secure 
experimental or theoretical grounds on which we can 
base such a choice because this choice follows from 
hypotheses that cannot conceivably be subjected to an 
experimental test and because we now have an al
ternative interpretation. 

4. NEW PHYSICAL INTERPRETATION OF 
SCHROEDINGER'S EQUATION 

We shall now give a general description of our sug
gested physical interpretation of the present mathe
matical formulation of the quantum theory. We shall 
carry out a more detailed description in subsequent 
sections of this paper. 

We begin with the one-particle Schroedinger equa
tion, and shall later generalize to an arbitrary number 
of particles. This wave equation is 

ihty/dt= - φ/2ηΐ)Φφ+ ν(χ)ψ. (1) 

Now φ is a complex function, which can be expressed as 

tl/=Rexp(iS/h), (2) 

where R and S are real. We readily verify that the equa
tions for R and 5 are 

dR 1 
—= [RV2S+2VR-VS~], (3) 
dt 2m 

as r(ysf K1 ViR-I 
- = -  + F (X) -. (4) 
dt L 2m 2m R J 
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It is convenient to write P(x) = R?(x), or R=P i  

where P(x) is the probability density. We then obtain 

dP / VS\ 
—H-V-(P—)=0, (5) 
dt \  m J 
dS (VS)2  ¥ TV2P 1 (VP)2I 
-+ +F(x) =0. (6) 
dt 2m AmL P 2 P2 J 

Now, in the classical limit (h—>0) the above equations 
are subject to a very simple interpretation. The func
tion 5(x) is a solution of the Hamilton-Jacobi equation. 
If we consider an ensemble of particle trajectories which 
are solutions of the equations of motion, then it is a 
well-known theorem of mechanics that if all of these 
trajectories are normal to any given surface of constant 
S, t hen  they  a re  normal  t o  a l l  su r faces  o f  cons tan t  S, 
and V5(x)/w will be equal to the velocity vector, v(x), 
for any particle passing the point x. Equation (5) can 
therefore be re-expressed as 

dP/dt+ V -(Pv) = O. (7) 

This equation indicates that it is consistent to regard 
P(x) as the probability density for particles in our 
ensemble. For in that case, we can regard Pv as the 
mean current of particles in this ensemble, and Eq. (7) 
then simply expresses the conservation of probability. 

Let us now see to what extent this interpretation can 
be given a meaning even when h^0. To do this, let us 
assume that each particle is acted on, not only by a 
"classical" potential, F(x) but also by a "quantum-
mechanical" potential, 

-^rV2P 1 (VP)2! -¾2 V2P 
U ( x )  = = · (8) 

4m L P 2 P2 J 2m R 

Then Eq. (6) can still be regarded as the Hamilton-
Jacob i  equa t ion  fo r  ou r  ensemble  o f  pa r t i c l e s ,  VS(x)/m 
can still be regarded as the particle velocity, and Eq. (S) 
can still be regarded as describing conservation of 
probability in our ensemble. Thus, it would seem that 
we have here the nucleus of an alternative interpreta
tion for Schroedinger's equation. 

The first step in developing this interpretation in a 
more explicit way is to associate with each electron a 
particle having precisely definable and continuously 
varying values of position and momentum. The solu
tion of the modified Hamilton-Jacobi equation (4) 
defines an ensemble of possible trajectories for this 
particle, which can be obtained from the Hamilton-
Jacobi function, S(x), by integrating the velocity, 
v(x) = VS(x)/m. The equation for S implies, however, 
that the particles moves under the action of a force 
which is not entirely derivable from the classical po
tential, F(x), but which also obtains a contribution from 
the  "quan tum-mechan ica l "  po ten t i a l ,  U(x) = {—h z/2m) 
XV2i?/P. The function, R(x), is not completely arbi
trary, but is partially determined in terms of S(x) by 

the differential Eq. (3). Thus R and S can be said to 
codetermine each other. The most convenient way of 
obtaining R and 5 is, in fact, usually to solve Eq. (1) 
for the Schroedinger wave function, ψ, and then to use 
the relations, 

φ= U+iW=Ricos(S/h)+i sin(S/A)], 

R*= IP-f- V 2; S=Ji tair^W/U). 

Since the force on a particle now depends on a func
tion of the absolute value, R(x), of the wave function, 
iZ'(x), evaluated at the actual location of the particle, 
we have effectively been led to regard the wave func
tion of an individual electron as a mathematical repre
sentation of an objectively real field. This field exerts 
a force on the particle in a way that is analogous to, 
but not identical with, the way in which an electro
magnetic field exerts a force on a charge, and a meson 
field exerts a force on a nucleon. In the last analysis, 
there is, of course, no reason why a particle should not 
be acted on by a ψ-field, as well as by an electromagnetic 
field, a gravitational field, a set of meson fields, and 
perhaps by still other fields that have not yet been 
discovered. 

The analogy with the electromagnetic (and other) 
field goes quite far. For just as the electromagnetic 
field obeys Maxwell's equations, the ^-field obeys 
Schroedinger's equation. In both cases, a complete 
specification of the fields at a given instant over every 
point in space determines the values of the fields for 
all times. In both cases, once we know the field func
tions, we can calculate force on a particle, so that, 
if we also know the initial position and momentum of 
the particle, we can calculate its entire trajectory. 

In this connection, it is worth while to recall that the 
use of the Hamilton-Jacobi equation in solving for the 
motion of a particle is only a matter of convenience 
and that, in principle, we can always solve directly by 
using Newton's laws of motion and the correct boundary 
conditions. The equation of motion of a particle acted 
on by the classical potential, F(x), and the "quantum-
mechanical" potential, Eq. (8), is 

puPx/dP= -V\V{x)-{V/2 m)V*R/R\. (8a) 

It is in connection with the boundary conditions 
appearing in the equations of motion that we find the 
only fundamental difference between the ^-field and 
other fields, such as the electromagnetic field. For in 
order to obtain results that are equivalent to those of 
the usual interpretation of the quantum theory, we are 
required to restrict the value of the initial particle 
momentum to p=VS(x). From the application of 
Hamilton-Jacobi theory to Eq. (6), it follows that this 
restriction is consistent, in the sense that if it holds 
initially, it will hold for all time. Our suggested new 
interpretation of the quantum theory implies, however, 
that this restriction is not inherent in the conceptual 
structure. We shall see in Sec. 9, for example, that it is 
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quite consistent in our interpretation to contemplate 
modifications in the theory, which permit an arbitrary 
relation between ρ and V.S"(x). The law of force on the 
particle can, however, be so chosen that in the atomic 
d o m a i n ,  ρ  t u r n s  o u t  t o  b e  v e r y  n e a r l y  e q u a l  t o  V S ( x ) / m ,  
while in processes involving very small distances, these 
two quantities may be very different. In this way, we 
can improve the analogy between the ψ-field and the 
electromagnetic field (as well as between quantum 
mechanics and classical mechanics). 

Another important difference between the ^-field 
and the electromagnetic field is that, whereas Schroed
inger's equation is homogeneous in ψ, Maxwell's equa
tions are inhomogeneous in the electric and magnetic 
fields. Since inhomogeneities are needed to give rise to 
radiation, this means that our present equations imply 
that the ^-field is not radiated or absorbed, but simply 
changes its form while its integrated intensity remains 
constant. This restriction to a homogeneous equation 
is, however, like the restriction to a homogeneous equa
tion is, however, like the restriction to p=VS(x), not 
inherent in the conceptual structure of our new in
terpretation. Thus, in Sec. 9, we shall show that one 
can consistently postulate inhomogeneities in the equa
tion governing ψ, which produce important effects only 
at very small distances, and negligible effects in the 
atomic domain. If such inhomogeneities are actually 
present, then the ψ-field will be subject to being emitted 
and absorbed, but only in connection with processes 
associated with very small distances. Once the ^-field 
has been emitted, however, it will in all atomic processes 
simply obey Schroedinger's equation as a very good 
approximation. Nevertheless, at very small distances, 
the value of the ψ-field would, as in the case of the elec
tromagnetic field, depend to some extent on the actual 
location of the particle. 

Let us now consider the meaning of the assumption 
of a statistical ensemble of particles with a probability 
density equal to P(x) = i?2(x) = |^(x)|2. From Eq. (5), 
it follows that this assumption is consistent, provided 
that φ satisfies Schroedinger's equation, and V=VS(X)/ 
m. This probability density is numerically equal to the 
probability density of particles obtained in the usual 
interpretation. In the usual interpretation, however, 
the need for a probability description is regarded as 
inherent in the very structure of matter (see Sec. 2), 
whereas in our interpretation, it arises, as we shall see 
in Paper II, because from one measurement to the 
next, we cannot in practice predict or control the pre
cise location of a particle, as a result of corresponding 
unpredictable and uncontrollable disturbances intro
duced by the measuring apparatus. Thus, in our in
terpretation, the use of a statistical ensemble is (as in 
the case of classical statistical mechanics) only a prac
tical necessity, and not a reflection of an inherent 
limitation on the precision with which it is correct for 
us to conceive of the variables defining the state of the 
system. Moreover, it is clear that if in connection with 

very small distances we are ultimately required to give 
up the special assumptions that ψ satisfies Schroed
inger's equation and that v=VS(x)/m, then |^|2 will 
cease to satisfy a conservation equation and will there
fore also cease to be able to represent the probability 
density of particles. Nevertheless, there would still be a 
true probability density of particles which is conserved. 
Thus, it would become possible in principle to find ex
periments in which \ψ\2 could be distinguished from 
the probability density, and therefore to prove that the 
usual interpretation, which gives |^|2 only a proba
bility interpretation must be inadequate. Moreover, 
we shall see in Paper II that with the aid of such 
modifications in the theory, we could in principle 
measure the particle positions and momenta precisely, 
and thus violate the uncertainty principle. As long as 
we restrict ourselves to conditions in which Schroed
inger ' s  equa t ion  i s  sa t i s f i ed ,  and  in  which  v=VS(x ) /m ,  
however, the uncertainty principle will remain an 
effective practical limitation on the possible precision 
of measurements. This means that at present, the 
particle positions and momenta should be regarded as 
"hidden" variables, since as we shall see in Paper II, 
we are not now able to obtain experiments that localize 
them to a region smaller than that in which the intensity 
of the ^-field is appreciable. Thus, we cannot yet find 
clear-cut experimental proof that the assumption of 
these variables is necessary, although it is entirely 
possible that, in the domain of very small distances, 
new modifications in the theory may have to be intro
duced, which would permit a proof of the existence of 
the definite particle position and momentum to be 
obtained. 

We conclude that our suggested interpretation of the 
quantum theory provides a much broader conceptual 
framework than that provided by the usual interpreta
tion, for all of the results of the usual interpretation are 
obtained from our interpretation if we make the follow
ing three special assumptions which are mutually 
consistent: 

(1) That the ψ-field satisfies Schroedinger's equation. 

(2) That the particle momentum is restricted to p=V5(x). 

(3) That we do not predict or control the precise location of the 
particle, but have, in practice, a statistical ensemble with proba
bility density .Pfx) = | ψ(χ) |2. The use of statistics is, however, 
not inherent in the conceptual structure, but merely a conse
quence of our ignorance of the precise initial conditions of the 
particle. 

As we shall see in Sec. 9, it is entirely possible that a 
better theory of phenomena involving distances of the 
order of IO-13 cm or less would require us to go beyond 
the limitations of these special assumptions. Our prin
cipal purpose in this paper (and in Paper II) is to show, 
however, that if one makes these special assumptions, 
our interpretation leads in all possible experiments to 
the same predictions as are obtained from the usual 
interpretation.9 

It is now easy to understand why the adoption of the 
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usual interpretation of the quantum theory would tend 
to lead us away from the direction of our suggested 
alternative interpretation. For in a theory involving 
hidden variables, one would normally expect that the 
behavior of an individual system should not depend 
on the statistical ensemble of which it is a member, 
because this ensemble refers to a series of similar but 
disconnected experiments carried out under equivalent 
initial conditions. In our interpretation, however, the 
"quantum-mechanical" potential, U(x), acting on an 
individual particle depends on a wave intensity, -P(x), 
that is also numerically equal to a probability density 
in our ensemble. In the terminology of the usual in
terpretation of the quantum theory, in which one 
tacitly assumes that the wave function has only one 
interpretation; namely, in terms of a probability, our 
suggested new interpretation would look like a mysteri
ous dependence of the individual on the statistical 
ensemble of which it is a member. In our interpretation, 
such a dependence is perfectly rational, because the 
wave function can consistently be interpreted both as 
a force and as a probability density.12 

It is instructive to carry our analogy between the 
Schroedinger field and other kinds of fields a bit further. 
To do this, we can derive the wave Eqs. (5) and (6) 
from a Hamiltonian functional. We begin by writing 
down the expression for the mean energy as it is ex
pressed in the usual quantum theory: 

H = ΓΨ*(  Ψ+ν(χΛψάχ  
J \ 2m / 

- f { -
J  I2m 

Writing ψ=P- exp( iS/ t i ) ,  we obtain 

/< H= P(x 
ι (vsy 

>1— 2m 

2 A2 (VP)2] 
F(x) - |  \dx .  

P2 
(9) 

SH 1  
P=—= V-(PVS) ,  

SS  m  

SH T(VS)2 

SP I  2m 

A2 /V2P 1(VP)2\1 
+>·«—l~ - j r )} 

4m\ P 

These are, however, the same as the correct wave 
Eqs. (5) and (6). 

We can now show that the mean particle energy 
averaged over our ensemble is equal to the usual quan
tum mechanical mean value of the Hamiltonian, H. To 
do this, we note that according to Eqs. (3) and (6), the 
energy of a particle is 

E(x)=-
dS(x)  

d l  
[ (VS) 2  ¥ V 2

j Ri  
+V(x)  .  (10)  

2m 2m R  J 

The mean particle energy is found by averaging E(x)  
with the weighting function, P(x). We obtain 

(-E)ensemble— I P (x)  E(x)  dx  
a v e r a g e  J  

=JM-ST 
-+V( X )  

¥ 

l· 
dx  I  RV 2 Rdx.  

2 m<> 

A little integration by parts yields 

(VS) 2  

{/-/ensemble 
average 

-+F(x) 

A2 (VP)2"! 
- \dx=H.  (11)  

8 m P2 J 

\νφ\ 2 +ν(χ)\φ\ 2 \άχ .  

We shall now reinterpret P(x) as a field coordinate, 
defined at each point, x, and we shall tentatively assume 
that S(x) is the momentum, canonically conjugate to 
P(x). That such an assumption is appropriate can be 
verified by finding the Hamiltonian equations of motion 
for P(x) and S(x), under the assumption that the Hamil
tonian functional is equal to H (See Eq. (9)). These 
equations of motion are 

"This consistency is guaranteed by the conservation Eq. (7). 
The questions of why an arbitrary statistical ensemble tends to 
decay into an ensemble with a probability density equal to ψ*φ 
will be discussed in Paper II, Sec. 7. 

5. THE STATIONARY STATE 

We shall now show how the problem of stationary 
states is to be treated in our interpretation of the 
quantum theory. 

The following seem to be reasonable requirements in 
our interpretation for a stationary state: 

(1) The particle energy should be a constant of the 
motion. 

(2) The quantum-mechanical potential should be 
independent of time. 

(3) The probability density in our statistical en
semble should be independent of time. 

It is easily verified that these requirements can be 
satisfied with the assumption that 

φ(χ,  t )=^„(x) txp( - iE i /h)  

= J?o(x)expp($(x)-£0/^]· (12) 

From the above, we obtain S= Φ (χ)—Et .  According to 
the generalized Hamilton-Jacobi Eq. (4), the particle 
energy is given by 

dS/dt= —E. 

Thus, we verify that the particle energy is a constant 
of the motion. Moreover, since P=R2= \ ψ [2, it follows 
that P (and R) are independent of time. This means 
that both the probability density in our ensemble and 
the quantum-mechanical potential are also time 
independent. 
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The reader will readily verify that no other form of 
solution of Schroedinger's equation will satisfy all three 
of our criteria for a stationary state. 

Since ψ is now being regarded as a mathematical 
representation of an objectively real force field, it 
follows that (like the electromagnetic field) it should 
be everywhere finite, continuous, and single valued. 
These requirements will guarantee in all cases that occur 
in practice that the allowed values of the energy in a 
stationary state, and the corresponding eigenfunctions 
are the same as are obtained from the usual interpreta
tion of the theory. 

In order to show in more detail what a stationary 
state means in our interpretation, we shall now consider 
three examples of stationary states. 

Case 1: "s" State 

The first case that we shall consider is an "s" state. 
In an "s" state, the wave function is 

Ψ=/0)εχρΒ(α-£()Α1 (13) 

where a is an arbitrary constant and r is the radius 
taken from the center of the atom. We conclude that 
the Hamilton-Jacobi function is 

S= a—Et. 

The particle velocity is 

v=VS=0. 

The particle is therefore simply standing still, wherever 
it may happen to be. How can it do this? The absence 
of motion is possible because the applied force, — VF(x), 
is balanced by the "quantum-mechanical" force, (¾2/ 
2m)V (V2RfR), produced by the Schroedinger ^-field 
acting on its own particle. There is, however, a sta
tistical ensemble of possible positions of the particle, 
with a probability density, f(x)= (f(r))2 ·  

Case 2: State with Nonzero Angular 
Momentum 

In a typical state of nonzero angular momentum, 
we have 

φ= fn}(r)Pim(cose)exp[i( f i—Et-\-hm<t>)/}r\, (14) 

where θ and φ are the colatitude and azimuthal polar 
angles, respectively, Pf1 is the associated Legendre 
polynomial, and β is a constant. The Hamilton-Jacobi 
function is 3=β~Εΐ-\-Ιιηΐφ. From this result it follows 
that the ζ component of the angular momentum is 
equal to hm. To prove this, we write 

L z=Xp y-yp j=xdS/dy—ydS/dx=dS/d<j>=hm. (15) 

Thus, we obtain a statistical ensemble of trajectories 
which can have different forms, but all have the same 
"quantized" value of the ζ component of the angular 
momentum. 

Case 3: A Scattering Problem 

Let us now consider a scattering problem. Because 
it is comparatively easy to analyze, we shall discuss a 
hypothetical experiment, in which an electron is in
cident in the ζ direction with an initial momentum, po, 
on a system consisting of two slits.13 After the electron 
passes through the slit system, its position is measured 
and recorded, for example, on a phonographic plate. 

Now, in the usual interpretation of the quantum 
theory, the electron is described by a wave function. 
The incident part of the wave function is ψ0~εχρ(ί^οζ/ 
h); but when the wave passes through the slit system, 
it is modified by interference and diffraction effects, 
so that it will develop a characteristic intensity pattern 
by the time it reaches the position measuring instru
ment. The probability that the electron will be detected 
between χ and x+dx is j^(x)|2dx. If the experiment is 
repeated many times under equivalent initial condi
tions, one eventually obtains a pattern of hits on the 
photographic plate that is very reminiscent of the 
interference patterns of optics. 

In the usual interpretation of the quantum theory, 
the origin of this interference pattern is very difficult 
to understand. For there may be certain points where 
the wave function is zero when both slits are open, but 
not zero when only one slit is open. How can the 
opening of a second slit prevent the electron from reach
ing certain points that it could reach if this slit were 
closed? If the electron acted completely like a classical 
particle, this phenomenon could not be explained at all. 
Clearly, then the wave aspects of the electron must 
have something to do with the production of the inter
ference pattern. Yet, the electron cannot be identical 
with its associated wave, because the latter spreads 
out over a wide region. On the other hand, when the 
electron's position is measured, it always appears at 
the detector as if it were a localized particle. 

The usual interpretation of the quantum theory not 
only makes no attempt to provide a single precisely 
defined conceptual model for the production of the 
phenomena described above, but it asserts that no 
such model is even conceivable. Instead of a single 
precisely defined conceptual model, it provides, as 
pointed out in Sec. 2, a pair of complementary models, 
viz., particle and wave, each of which can be made 
more precise only under conditions which necessitate 
a reciprocal decrease in the degree of precision of the 
other. Thus, while the electron goes through the slit 
system, its position is said to be inherently ambiguous, 
so that if we wish to obtain an interference pattern, it 
is meaningless to ask through which slit an individual 
electron actually passed. Within the domain of space 
within which the position of the electron has no mean
ing we can use the wave model and thus describe the 
subsequent production of interference. If, however, we 

13 This experiment is discussed in some detail in reference 2, 
Chapter 6, Sec. 2. 
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tried to define the position of the electron as it passed 
the slit system more accurately by means of a measure
ment, the resulting disturbance of its motion produced 
by the measuring apparatus would destroy the inter
ference pattern. Thus, conditions would be created in 
which the particle model becomes more precisely de
fined at the expense of a corresponding decrease in the 
degree of definition of the wave model. When the posi
tion of the electron is measured at the photographic 
plate, a similar sharpening of the degree of definition of 
the particle model occurs at the expense of that of the 
wave model. 

In our interpretation of the quantum theory, this 
experiment is described causally and continuously in 
terms of a single precisely definable conceptual model. 
As we have already shown, we must use the same wave 
function as is used in the usual interpretation; but 
instead we regard it as a mathematical representation 
of an objectively real field that determines part of the 
force acting on the particle. The initial momentum of 
the particle is obtained from the incident wave func
tion, exp(ipoz/h), as p=ds/dz=p0. We do not in prac
tice, however, control the initial location of the par
ticle, so that although it goes through a definite slit, 
we cannot predict which slit this will be. The particle 
is at all times acted on by the "quantum-mechanical" 
potential, U= (—fe2/2w)V2i?/i?. While the particle is 
incident, this potential vanishes because R is then a 
constant; but after it passes through the slit system, 
the particle encounters a quantum-mechanical po
tential that changes rapidly with position. The subse
quent motion of the particle may therefore become 
quite complicated. Nevertheless, the probability that 
a particle shall enter a given region, dx, is as in the usual 
interpretation, equal to |ψ(χ) \ 2dx. We therefore deduce 
that the particle can never reach a point where the 
wave function vanishes. The reason is that the "quan-
tum-mechanical" potential, U, becomes infinite when 
R becomes zero. If the approach to infinity happens to 
be through positive values of U, there will be an in
finite force repelling the particle away from the origin. 
If the approach is through negative values of U, the 
particle will go through this point with infinite speed, 
and thus spend no time there. In either case, we obtain 
a simple and precisely definable conceptual model ex
plaining why particles can never be found at points 
where the wave function vanishes. 

If one of the slits is closed, the "quantum-mechanical" 
potential is correspondingly altered, because the φ-field 
is changed, and the particle may then be able to reach 
certain points which it was unable to reach when both 
slits were open. The slit is therefore able to affect the 
motion of the particle only indirectly, through its 
effect on the Schroedinger ψ-field. Moreover, as we shall 
see in Paper II, if the position of the electron is meas
ured while it is passing through the slit system, the 
measuring apparatus will, as in the usual interpretation, 
create a disturbance that destroys the interference 

pattern. In our interpretation, however, the necessity 
for this destruction is not inherent in the conceptual 
structure; and as we shall see, the destruction of the 
interference pattern could in principle be avoided by 
means of other ways of making measurements, ways 
which are conceivable but not now actually possible. 

6. THE MANY-BODY PROBLEM 

We shall now extend our interpretation of the quan
tum theory to the problem of many bodies. We begin 
with the Schroedinger equation for two particles. (For 
simplicity, we assume that they have equal masses, 
but the extension of our treatment to arbitrary masses 
will be obvious.) 

9ψ K2 

ih—= (V1V+V2
2^)+ F(X l ,  χ 2)φ. 

dt 2m 

Writing ψ=ϋ(χι, x2)exp[i5(xi, x2)A] and R 2=P, we 
obtain 

dP 1 
—+-[V1-PV1S+V2-PV2S]=0, (16) 
dt m 

as (V1S)^(V2S)2  

1 hF(x!, x2) 
dt 2m 

¥ 
[V1

2P+V2
2R]=0. (17) 

2 mR 

The above equations are simply a six-dimensional 
generalization of the similar three-dimensional Eqs. (5) 
and (6) associated with the one-body problem. In the 
two-body problem, the system is described therefore 
by a six-dimensional Schroedinger wave and by a six-
dimensional trajectory, specifying the actual location 
of each of the two particles. The velocity of this tra
jectory has components, V1S/m and V2SIm, respec
tively, in each of the three-dimensional surfaces associ
ated with a given particle. P(xi, x2) then has a dual 
interpretation. First, it defines a "quantum-mechanical" 
potential, acting on each particle 

U(xh  x2)= - (W/2mR)[y?R+ V2
2J?]. 

This potential introduces an additional effective inter
action between particles over and above that due to the 
classically inferrable potential F(x). Secondly, the func
tion P(X1) x2) can consistently be regarded as the 
probability density of representative points (xls x2) in 
our six-dimensional ensemble. 

The extension to an arbitrary number of particles 
is straightforward, and we shall quote only the results 
here. We introduce the wave function, ψ= P(Xl, x2, 
• • •x„)exp[iS(x1, χ2···χ„)/&] and define a 3«-dimen-
sional trajectory, where η is the number of particles, 
which describes the behavior of every particle in the 
system. The velocity of the ith particle is v,= V,S(xi, 
X2- • · Xn)/m. The function P(xi, X2- · •xn) = R2 has two 
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interpretations. First, it defines a "quantum-mechani-
cal" potential 

A2 -
U(x h  X2- · ·χ„)= Σ Vs

2i?(xi, X2- · ·χη). (18) 
2mR s-i 

Secondly, P(xi, X2- · · x„) is equal to the density of 
representative points (χι, X2-·-x„) in our 3»-dimen-
sional ensemble. 

We see here that the "effective potential," U(xi, X2 ,  
• · - x„), acting on a particle is equivalent to that pro
duced by a "many-body" force, since the force between 
any two particles may depend significantly on the 
location of every other particle in the system. An ex
ample of the effects of such a force is given by the ex
clusion principle. Thus, if the wave function is anti
symmetric, we deduce that the "quantum-mechanical" 
forces will be such as to prevent two particles from ever 
reaching the same point in space, for in this case, we 
must have P= 0. 

7. TRANSITIONS BETWEEN STATIONARY STATES— 
THE FRANCK-HERTZ EXPERIMENT 

Our interpretation of the quantum theory describes 
all processes as basically causal and continuous. How 
then can it lead to a correct description of processes 
such as the Franck-Hertz experiment, the photoelectric 
effect, and the Compton effect, which seem to call 
most strikingly for an interpretation in terms of dis
continuous and incompletely determined transfers of 
energy and momentum? In this section, we shall answer 
this question by applying our suggested interpretation 
of the quantum theory in the analysis of the Franck-
Hertz experiment. Here, we shall see that the ap
parently discontinuous nature of the process of transfer 
of energy from the bombarding particle to the atomic 
electron is brought about by the "quantum-mechanical" 
potential, U= (—&2/2w)V2i?/i?, which does not neces
sarily become small when the wave intensity becomes 
small. Thus, even if the force of interaction between 
two particles is very weak, so that a correspondingly 
small disturbance of the Schroedinger wave function is 
produced by the interaction of these particles, this 
disturbance is capable of bringing about very large 
transfers of energy and momentum between the par
ticles in a very short time. This means that if we view 
only the end results, this process presents the aspect 
of being discontinuous. Moveover, we shall see that 
the precise value of the energy transfer is in principle 
determined by the initial position of each particle and 
by the initial form of the wave function. Since we cannot 
in practice predict or control the initial particle posi
tions with complete precision, we are also unable to 
predict or control the final outcome of such an experi
ment, and can, in practice, predict only the probability 
of a given outcome. Because the probability that the 
particles will enter a region with coordinates, xx, x2, is 
proportional to R2(xi, X2), we conclude that although 

a Schroedinger wave of low intensity can bring about 
large transfers of energy, such a process is (as in the 
usual interpretation) highly improbable. 

In Appendix A of Paper II, we shall see that similar 
possibilities arise in connection with the interaction of 
the electromagnetic field with charged matter, so that 
electromagnetic waves can very rapidly transfer a full 
quantum of energy (and momentum) to an electron, 
even after they have spread out and fallen to a very 
low intensity. In this way, we shall explain the photo
electric effect and the Compton effect. Thus, we are 
able in our interpretation to understand by means of a 
causal and continuous model just those properties of 
matter and light which seem most convincingly to re
quire the assumption of discontinuity and incomplete 
determinism. 

Before we discuss the process of interaction between 
two particles, we shall find it convenient to analyze the 
problem of an isolated single particle that happens to 
be in a nonstationary state. Because the field function 
ψ is a solution of Schroedinger's equation, we can line
arly suppose stationary-state solutions of this equation 
and in this way obtain new solutions. As an illustration, 
let us consider a superposition of two solutions 

Ψ=C^i(x)exp(-iEit/h)+C 2^ 2(x)exp(—iE 2t/h), 

where Ch  C2, ψι, and ψ·ι are real. Thus we write ψ ι  = Κ 1,  
ψ2=R2, and 

ψ=exp[— i(Ei-+-E2)l/2h~] (Ci-Rι exp[—i(Ei—E 2)t/2A] 
+C2J?2 exppCEi—E2)t/2ti]} • 

Writing ψ=R txp(iS/h), we obtain 

j?2=Ci2£x2(x)+C2W(x) 
+2CiC2R1(x)R2{x)cosl(E1-E1)t/2h~], (19) 

tan I 
{S+(E1-E i)t/2\ 

h 

C2R2(X)-CiR1(X) ι  (Ei-E 2Jt 
tan{ 

C 2R 2(x)-\~CiRI(X) ( 2 h 
(20) 

We see immediately that the particle experiences a 
"quantum-mechanical" potential, f/(x) = (—k/2m)V 2R/ 
R, which fluctuates with angular frequency, w= (E t  

—E2)/h, and that the energy of this particle, E= -dS/ 
dl, and its momentum P= V5, fluctuate with the same 
angular frequency. If the particle happens to enter a 
region of space where R is small, these fluctuations can 
become quite violent. We see then that, in general, the 
orbit of a particle in a nonstationary state is very ir
regular and complicated, resembling Brownian motion 
more closely than it resembles the smooth track of a 
planet around the sun. 

If the system is isolated, these fluctuations will con
tinue forever. The result is quite reasonable, since as is 
well known, a system can make a transition from one 
stationary state to another only if it can exchange en-
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ergy with some other system. In order to treat the 
problem of transition between stationary states, we 
must therefore introduce another system capable of 
exchanging energy with the system of interest. In this 
section, we shall discuss the Franck-Hertz experiment, 
in which this other system consists of a bombarding 
particle. For the sake of illustration, let us suppose that 
we have hydrogen atoms of energy E0 and wave func
tion, ψο(χ), which are bombarded by particles that 
can be scattered inelastically, leaving the atom with 
energy E n  and wave function, ψ„(χ).  

We begin by writing down the initial wave function, 
1Jr

1(X) y, t). The incident particle, whose coordinates are 
represented by y must be associated with a wave 
packet, which can be written as 

/o(y,0 :  = J eik'y/(k- k0)exp(—ihk 2 t /2m)dk. (21) 

The center of this packet occurs where the phase has 
an extremum as a function of k,  or where y=hk< ) t /m. 

Now, as in the usual interpretation, we begin by 
writing the incident wave function for the combined 
system as a product 

Ψ,=^ο(χ)βχρ(—iEdl/h)f(,(y,  t).  (22) 

Let us now see how this wave function is to be under
stood in our interpretation of the theory. As pointed out 
in Sec. 6, the wave function is to be regarded as a mathe
matical representation of a six-dimensional but ob
jectively real field, capable of producing forces that act 
on the particles. We also assume a six-dimensional 
representative point, described by the coordinates of 
the two particles, χ and y. We shall now see that when 
the combined wave function takes the form (22) in
volving a product of a function of χ and a function of y, 
the six-dimensional system can correctly be regarded 
as being made up of two independent three-dimentional 
subsystems. To prove this, we write 

^o(x)=jRo(x)exp[i5o(x)/^] and 

M y ,  t)  = Mo(y, i)exp[iiVo(y, OA]· 

We then obtain for the particle velocities 

dx/dt=(i/m)VSa(x)· ,  dy/dt= (Ifm)VN0(y,  t) ,  (23) 

and for the "quantum-mechanical" potential 

U= 
W.'+V/)^*, y)} 

2mR(x, y) 

2m 

V tR 0(X) ΨΜ 0 (y,t)  

R 0 (x) M 0 (y, t)  
• (24) 

Thus, the particle velocities are independent and the 
"quantum-mechanical" potential reduces to a sum of 
terms, one involving only χ and the other involving 
only y. This means that the particles move independ

ently. Moreover, the probability density, P=Rn1(X) 
XMo2(y, t), is a product of a function of χ and a func
tion of y, indicating that the distribution in χ is sta
tistically independent of that in y. We conclude, then, 
that whenever the wave function can be expressed as a 
product of two factors, each involving only the coordi
nates of a single system, then the two systems are com
pletely independent of each other. 

As soon as the wave packet in y space reaches the 
neighborhood of the atom, the two systems begin to 
interact. If we solve Schroedinger's equation for the 
combined system, we obtain a wave function that can 
be expressed in terms of the following series: 

i+T . r&n(x)exp(-iEn l /K)fn(y,  t) ,  (25) 

where the /„(y, t)  are the expansion coefficients of the 
complete set of functions, ψη(χ)· The asymptotic form 
of the wave function is14 

Φ=Ψ,·(χ, y)+L«^n(x)exp^——^ JV(k-ko) 

expp&„· r— (hk„2 /2n)tj  
x_il ^ -g„(0,«, k)rfk, (26) 

r 
where 

h2kn*/2m= (h2ko2 /2m)-\-Eo—En  

(conservation of energy). (27) 

The additional terms in the above equation represent 
outgoing wave packets, in which the particle speed, 
hkn/m, is  correlated with the wave function, ψ η (χ),  
representing the state in which the hydrogen atom is 
left. The center of the nth packet occurs at 

r n =(kk n /m)t.  (28) 

It is clear that because the speed depends on the hy
drogen atom quantum number, n, every one of these 
packets will eventually be separated by distances 
which are so large that this separation is classically 
describable. 

When the wave function takes the form (25), the 
two particles system must be described as a single six-
dimensional system and not as a sum of two independent 
three-dimensional subsystems, for at this time, if we 
try to express the wave function as φ(χ, y) = R(x, y) 
Xexp[i.S(x, y)/K], we find that the resulting expres
sions for R and S depend on χ and y in a very compli
cated way. The particle momenta, pi=V2S(x, y) and 
p2= V„5(x, y), therefore become inextricably interde
pendent. The "quantum-mechanical" potential, 

U= • 
2mR(x, y) 

(V/R+V/R) 

ceases to be expressible as the sum of a term involving 
χ and a term involving y. The probability density, 

14 N. F. Mott and H. S. W. Massey, The Theory of Atomic Colli
sions (Clarendon Press, Oxford, 1933). 
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i?2(x, y) can no longer be written as a product of a 
function of χ and a function of y, from which we con
clude that the probability distributions of the two par
ticles are no longer statistically independent. Moreover, 
the motion of the particle is exceedingly complicated, 
because the expressions for R and S are somewhat 
analogous to those obtained in the simpler problem of 
a nonstationary state of a single particle [see Eqs. 
(19) and (20)]. In the region where the scattered waves 
φη(χ)/η(y, ή have an amplitude comparable with that 
of the incident wave, ^o(x)/o(y, 0> the functions R and 
S, and therefore the "quantum-mechanical" potential 
and the particle momenta, undergo rapid and violent 
fluctuations, both as functions of position and of time. 
Because the quantum-mechanical potential has R(x,  y, I)  

in the denominator, these fluctuations may become 
very large in this region where R is small. If the particles 
happen to enter such a region, they may exchange very 
large quantities of energy and momentum in a very 
short time, even if the classical potential, F(x, y) is 
very small. A small value of F(x, y) implies, however, 
a correspondingly small value of the scattered wave 
amplitudes, /„(y, t). Since the fluctuations become large 
only in the region where the scattered wave amplitude 
is comparable with the incident wave amplitude and 
since the probability that the particles shall enter a 
given region of x, y space is proportional to i?2(x, y), 
it is clear that a large transfer of energy is improbable 
(although still always possible) when F(x, y) is small. 

While interaction between the two particles takes 
place then, their orbits are subject to wild fluctuations. 
Eventually, however, the behavior of the system quiets 
down and becomes simple again. For after the wave 
function takes its asymptotic form (26), and the packets 
corresponding to different values of n have obtained 
classically describable separations, we can deduce that 
because the probability density is |ι/Ί2, the outgoing 
particle must enter one of these packets and stay with 
that packet thereafter (since it does not enter the space 
between packets in which the probability density is 
negligibly different from zero). In the calculation of the 
particle velocities, Y1=VzSfm, Vi=VySfm., and of the 
quantum-mechanical potential, U=(—h 2 /2mR)(y x

2 R 

-\-Vy
2R), we can therefore ignore all parts of the wave 

function other than the one actually containing the 
outgoing particle. It follows that the system acts as if 
it had the wave function 

/ iE n t \  c  
Φ„=ψ„(χ)6χρ^—-J J  /(k-k0) 

exp{i[kn· r— (hkj t /2m)t]}  

X - g»(0, Φ, k)rfk, (29) 

an atomic electron in its Mth quantum state, and to an 
outgoing particle with a correlated energy, En=Wkl?/ 
2m. Because the wave function is a product of a func
tion of χ and a function of y, each system once again 
acts independently of the other. The wave function can 
now be renormalized because the multiplication of Sfr

n 

by a constant changes no physically significant quan
tity, such as the particle velocity or the "quantum-
mechanical" potential. As shown in Sec. 5, when the 
electronic wave function is i^„(x)exp(—iEnt/h), its 
energy must be En. Thus, we have obtained a descrip
tion of how it comes about that the energy is always 
transferred in quanta of size E n -E 0 .  

It should be noted that while the wave packets are 
still separating, the electron energy is not quantized, 
but has a continuous range of values, which fluctuate 
rapidly. It is only the final value of the energy, appear
ing after the interaction is over that must be quantized. 
A similar result is obtained in the usual interpretation 
if one notes that because of the uncertainty principle, 
the energy of either system can become definite only 
after enough time has elapsed to complete the scatter
ing process.15 

In principle, the actual packet entered by the out
going particle could be predicted if we knew the initial 
position of both particles and, of course, the initial form 
of the wave function of the combined system.16 In prac
tice, however, the particle orbits are very complicated 
and very sensitively dependent on the precise values of 
these initial positions. Since we do not at present know 
how to measure these initial positions precisely, we 
cannot actually predict the outcome of such an inter
action process. The best that we can do is to predict 
the probability that an outgoing particle enters the »th 
packet within a given range of solid angle, dQ, leaving 
the hydrogen atom in its wth quantum state. In doing 
this, we use the fact that the probability density in 
x, y space is |ψ(χ, y)|s and that as long as we are re
stricted to the nth packet, we can replace the complete 
wave function (26) by the wave function (29), corre
sponding to the packet that actually contains the par
ticle. Now, by definition, we have S|^i>(x)[2<ix= 1. 
The remaining integration of 

I/ /(k—k0> 
exp {i[_k nr— {hk n

2 /2m)t] \  
:„(0, φ, k)dk 

where n denotes the packet actually containing the 
outgoing particle. This means that for all practical 
purposes the complete wave function (26) of the sys
tem may be replaced by Eq. (29), which corresponds to 

over the region of space corresponding to the rath out
going packet leads, however, to precisely the same 
probability of scattering as would have been obtained 
by applying the usual interpretation. We conclude, 
then, that if ψ satisfies Schroedinger's equation, that 
if v=VS/m, and that if the probability density of par
ticles is P(x, y) = i?2(x, y), we obtain in every respect 

16 See reference 2,  Chapter 18, Sec. 19. 
16 Note that in the usual interpretation one assumes that 

nothing determines the precise outcome of an individual scattering 
process. Instead, one assumes that all descriptions are inherently 
and unavoidably statistical (see Sec. 2). 
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exactly the same physical predictions for this problem 
as are obtained when we use the usual interpretation. 

There remains only one more problem; namely, to 
show that if the outgoing packets are subsequently 
brought together by some arrangement of matter that 
does not act on the atomic electron, the atomic electron 
and the scattered particle will continue to act inde
pendently.17 To show that these two particles will con
tinue to act independently, we note that in all practical 
applications, the outgoing particle soon interacts with 
some classically describable system. Such a system 
might consist, for example, of the host of atoms of the 
gas with which it collides or of the walls of a container. 
In any case, if the scattering process is ever to be ob
served, the outgoing particle must interact with a 
classically describable measuring apparatus. Now all 
classically describable systems have the property that 
they contain an enormous number of internal "thermo
dynamic" degrees of freedom that are inevitably excited 
when the outgoing particle interacts with the system. 
The wave function of the outgoing particle is then 
coupled to that of these internal thermodynamic de
grees of freedom, which we represent as yiy 3¾ • · • y»· 
To denote this coupling, we write the wave function for 
the entire system as 

^=E^(x)exp(-iEJ/A)/„(y,  yh  y2-  • -y s) .  (30) 

Now, when the wave function takes this form, the 
overlapping of different packets in y space is not enough 
to produce interference between the different ψη(χ)· 
To obtain such interference, it is necessary that the 
packets fn(y, yi, yi, · · · y>) overlap in every one of the 
5+3 dimensions, y, yh y%- • ·ys. The reader will readily 
convince himself, by considering a typical case such as 
a collision of the outgoing particle with a metal wall, 
that it is overwhelmingly improbable that two of the 
packets /»(yi, yi, yr • -ys) will overlap with regard to 
every one of the internal thermodynamic coordinates, 
yu 3¾ ···ys, even if they are successfully made to 
overlap in y space. This is because each packet corre
sponds to a different particle velocity and to a different 
time of collision with the metal wall. Because the 
myriads of internal thermodynamic degrees of freedom 
are so chaotically complicated, it is very likely that as 
each of the η packets interacts with them, it will en
counter different conditions, which will make the com
bined wave packet /„(y, Vu '"V*) enter very different 
regions of yuyi---y, space. Thus, for all practical 
purposes, we can ignore the possibility that if two of the 
packets are made to cross in y space, the motion either 
of the atomic electron or of the outgoing particle will 
be affected.18 

"See reference 2, Chapter 22, Sec. 11, for a treatment of a 
similar problem. 

18 It should be noted that exactly the same problem arises in 
the usual interpretation of the quantum theory for (reference 16), 
for whenever two packets overlap, then even in the usual inter
pretation, the system must be regarded as, in some sense, covering 
the states corresponding to both packets simultaneously. See 
reference 2, Chapter 6 and Chapter 16, Sec. 25. Once two packets 

8. PENETRATION OF A BARRIER 

According to classical physics, a particle can never 
penetrate a potential barrier having a height greater 
than the particle kinetic energy. In the usual interpreta
tion of the quantum theory, it is said to be able, with 
a small probability, to "leak" through the barrier. In 
our interpretation of the quantum theory, however, the 
potential provided by the Schroedinger ^-field enables 
it to "ride" over the barrier, but only a few particles are 
likely to have trajectories that carry them all the way 
across without being turned around. 

We shall merely sketch in general terms how the 
above results can be obtained. Since the motion of the 
particle is strongly affected by its ψ-field, we must first 
solve for this field with the aid of "Schroedinger's 
equation." Initially, we have a wave packet incident 
on the potential barrier; and because the probability 
density is equal to |^(x)|2, the particle is certain to be 
somewhere within this wave packet. When the wave 
packet strikes the repulsive barrier, the ^-field under
goes rapid changes which can be calculated19 if desired, 
but whose precise form does not interest us here. At this 
t ime,  the "quantum-mechanical" potential ,  U =(-¾2 /  
2m)VlR/R, undergoes rapid and violent fluctuations, 
analogous to those described in Sec. 7 in connection 
with Eqs. (19), (20), and (25). The particle orbit then 
becomes very complicated and, because the potential 
is time dependent, very sensitive to the precise initial 
relationship between the particle position and the center 
of the wave packet. Ultimately, however, the incident 
wave packet disappears and is replaced by two packets, 
one of them a reflected packet and the other a trans
mitted packet having a much smaller intensity. Because 
the probability density is |ψ|2, the particle must end 
up in one of these packets. The other packet can, as 
shown in Sec. 7, subsequently be ignored. Since the 
reflected packet is usually so much stronger than the 
transmitted packet, we conclude that during the time 
when the packet is inside the barrier, most of the 
particle orbits must be turned around, as a result of the 
violent fluctuations in the "quantum-mechanical" 
potential. 

9. POSSIBLE MODIFICATIONS IN MATHEMATICAL 
FORMULATION LEADING TO EXPERIMENTAL 

PROOF THAT NEW INTERPRETATION 
IS NEEDED 

We have already seen in a number of cases and in 
Paper II we shall prove in general, that as long as we 

have obtained classically describable separations, then, both in 
the usual interpretation and in our interpretation the probability 
that there will be significant interference between them is so over
whelmingly small that it may be compared to the probability 
that a tea kettle placed on a fire will happen to freeze instead of 
boil. Thus, we may for all practical purposes neglect the possi
bility of interference between packets corresponding to the dif
ferent possible energy states in which the hydrogen atom may be 
left. 

19 See, for example, reference 2, Chapter 11, Sec. 17, and Chapter 
12, Sec. 18. 
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assume that ψ satisfies Schroedinger's equation, that 
v=VS(x)/m, and that we have a statistical ensemble 
with a probability density equal to |ψ(χ)|2, our in
terpretation of the quantum theory leads to physical 
results that are identical with those obtained from the 
usual interpretation. Evidence indicating the need for 
adopting our interpretation instead of the usual one 
could therefore come only from experiments, such as 
those involving phenomena associated with distances of 
the order of IO-13 cm or less, which are not now ade
quately understood in terms of the existing theory. In 
this paper we shall not, however, actually suggest any 
specific experimental methods of distinguishing between 
our interpretation and the usual one, but shall confine 
ourselves to demonstrating that such experiments are 
conceivable. 

Now, there are an infinite number of ways of modify
ing the mathematical form of the theory that are con
sistent with our interpretation and not with the usual 
interpretation. We shall confine ourselves here, however, 
to suggesting two such modifications, which have al
ready been indicated in Sec. 4, namely, to give up the 
assumption that ν is necessarily equal to VS(x)/tw, and 
to give up the assumption that φ must necessarily 
satisfy a homogeneous linear equation of the general 
type suggested by Schroedinger. As we shall see, giving 
up either of those first two assumptions will in general 
also require us to give up the assumption of a statistical 
ensemble of particles, with a probability density equal 

to |\Kx)|2· 
We begin by noting that it is consistent with our 

interpretation to modify the equations of motion of a 
particle (8a) by adding any conceivable force term to 
the right-hand side. Let us, for the sake of illustration, 
consider a force that tends to make the difference, 
p-VS(x), decay rapidly with time, with a mean decay 
time of the order of τ= IO-1Yc seconds, where c is the 
velocity of light. To achieve this result, we write 

d2x 
m—= — V 

dt2 
F(x) — 

Zz2 V2R 

2m R 
+f(p—VS(x)), (31) 

where f(p—VS(x)) is assumed to be a function which 
vanishes when p=VS(x) and more generally takes 
such a form that it implies a force tending to make 
p-VS(x) decrease rapidly with the passage of time. 
It is clear, moreover, that / can be so chosen that it is 
large only in processes involving very short distances 
(where VS(x) should be large). 

If the correct equations of motion resembled Eq. (31), 
then the usual interpretation would be applicable only 
over times much longer than r, for only after such times 
have elapsed will the relation p=VS(x) be a good ap
proximation. Moreover, it is clear that such modifica

tions of the theory cannot even be described in the 
usual interpretation, because they involve the precisely 
definable particle variables which are not postulated 
in the usual interpretation. 

Let us now consider a modification that makes the 
equation governing ψ inhomogeneous. Such a modifica
tion is 

ihi/dt=m+fa-VS{xt)). (32) 

Here, H is the usual Hamiltonian operator, x,·, represents 
the actual location of the particle, and ξ is a function 
that vanishes when p=VS(x,). Now, if the particle 
equations are chosen, as in Eq. (31), to make p— V£(x.) 
decay rapidly with time, it follows that in atomic 
processes, the inhomogeneous term in Eq. (32) will 
become negligibly small, so that Schroedinger's equation 
is a good approximation. Nevertheless, in processes 
involving very short distances and very short times, the 
inhomogeneities would be important, and the ^-field 
would, as in the case of the electromagnetic field, de
pend to some extent on the actual location of the 
particle. 

It is clear that Eq. (32) is inconsistent with the usual 
interpretation of the theory. Moreover, we can con
template further generalizations of Eq. (32), in the 
direction of introducing nonlinear terms that are large 
only for processes involving small distances. Since the 
usual interpretation is based on the hypothesis of 
linear superposition of "state vectors" in a Hilbert 
space, it follows that the usual interpretation could not 
be made consistent with such a nonlinear equation for a 
one-particle theory. In a many-particle theory, opera
tors can be introduced, satisfying a nonlinear generaliza
tion of Schroedinger's equation; but these must ulti
mately operate on wave functions that satisfy a linear 
homogeneous Schroedinger equation. 

Finally, we repeat a point already made in Sec. 4, 
namely, that if the theory is generalized in any of the 
ways indicated here, the probability density of particles 
will cease to equal |^(x)|2. Thus, experiments would 
become conceivable that distinguish between ]ψ(χ)|2 

and this probability; and in this way we could obtain 

an experimental proof that the usual interpretation, 
which gives l^(x)[2 only a probability interpretation, 

must be inadequate. Moreover, we shall show in 
Paper II that modifications like those suggested here 

would permit the particle position and momentum to 

be measured simultaneously, so that the uncertainty 

principle could be violated. 
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II 

In this paper, we shall show how the theory of measurements is 
to be understood from the point of view of a physical interpreta
tion of the quantum theory in terms of "hidden" variables, 
developed in a previous paper. We find that in principle, these 
"hidden" variables determine the precise results of each individual 
measurement process. In practice, however, in measurements 
that we now know how to carry out, the observing apparatus 
disturbs the observed system in an unpredictable and uncon
trollable way, so that the uncertainty principle is obtained as a 
practical limitation on the possible precision of measurements. 
This limitation is not, however, inherent in the conceptual struc
ture of our interpretation. We shall see, for example, that simul
taneous measurements of position and momentum having un
limited precision would in principle be possible if, as suggested in 
the previous paper, the mathematical formulation of the quantum 
theory needs to be modified at very short distances in certain 

ways that are consistent with our interpretation but not with the 
usual interpretation. 

We give a simple explanation of the origin of quantum-mechan-
ical correlations of distant objects in the hypothetical experiment 
of Einstein, Podolsky, and Rosen, which was suggested by these 
authors as a criticism of the usual interpretation. 

Finally, we show that von Neumann's propf that quantum 
theory is not consistent with hidden variables does not apply to 
our interpretation, because the hidden variables contemplated 
here depend both on the state of the measuring apparatus and 
the observed system and therefore go beyond certain of von 
Neumann's assumptions. 

In two appendixes, we treat the problem of the electromagnetic 
field in our interpretation and answer certain additional objections 
which have arisen in the attempt to give a precise description for 
an individual system at the quantum level. 

1. INTRODUCTION 

IN a previous paper,1 to which we shall hereafter refer 
as I, we have suggested an interpretation of the 

quantum theory in terms of "hidden" variables. We 
have shown that although this interpretation provides 
a conceptual framework that is broader than that of 
the usual interpretation, it permits of a set of three 
mutually consistent special assumptions, which lead to 
the same physical results as are obtained from the 
usual interpretation of the quantum theory. These 
three special assumptions are: (1) The ^-field satisfies 
Schroedinger's equation. (2) If we write \p=Rexp(is/h), 

then the particle momentum is restricted to p=V5(x). 
(3) We have a statistical ensemble of particle positions, 
with a probability density, P=|^(x)|2. If the above 
three special assumptions are not made, then one 
obtains a more general theory that cannot be made 
consistent with the usual interpretation. It was sug
gested in Paper I that such generalizations may actually 
be needed for an understanding of phenomena associ
ated with distances of the order of ICH3 cm or less, but 
may produce changes of negligible importance in the 
atomic domain. 

In this paper, we shall apply the interpretation of 
the quantum theory suggested in Paper I to the de
velopment of a theory of measurements in order to show 
that as long as one makes the special assumptions 
indicated above, one is led to the same predictions for 
all measurements as are obtained from the usual inter
pretation. In our interpretation, however, the uncer
tainty principle is regarded, not as an inherent limita
tion on the precision with which we can correctly 
conceive of the simultaneous definition of momentum 
and position, but rather as a practical limitation on the 

* Now at Universidade de Sao Paulo, Faculdade de Filosofia, 
Ciencias e Letras, Sao Paulo, Brasil. 

1D. Bohm, Phys. Rev. 84, 166 (1951). 

precision with which these quantities can simultane
ously be measured, arising from unpredictable and 
uncontrollable disturbances of the observed system by 
the measuring apparatus. If the theory needs to be 
generalized in the ways suggested in Paper I, Sees. 4 
and 9, however, then these disturbances could in 
principle either be eliminated, or else be made subject 
to prediction and control, so that their effects could be 
corrected for. Our interpretation therefore demonstrates 
that measurements violating the uncertainty principle 
are at least conceivable. 

2. QUANTUM THEORY OF MEASUREMENTS 

We shall now show how the quantum theory of 
measurements is to be expressed in terms of our 
suggested interpretation of the quantum theory.2 

In general, a measurement of any variable must 
always be carried out by means of an interaction of the 
system of interest with a suitable piece of measuring 
apparatus. The apparatus must be so constructed that 
any given state of the system of interest will lead to a 
certain range of states of the apparatus. Thus, the 
interaction introduces correlations between the state 
of the observed system and the state of the apparatus. 
The range of indefiniteness in this correlation may be 
called the uncertainty, or the error, in the measurement. 

Let us now consider an observation designed to 
measure an arbitrary (hermitian) "observable" Q, 

associated with an electron. Let χ represent the position 
of the electron, y that of the significant apparatus 
coordinate (or coordinates if there are more than one). 
Now, one can show2 that it is enough to consider an 
impulsive measurement, i.e., a measurement utilizing a 
very strong interaction between apparatus and system 

1 For a treatment of how the theory of measurements can be 
carried out with the usual interpretation, see D. Bohm, Quantum 
Theory (Prentice-Hall, Inc., New York, 1951), Chapter 22. 
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under observation, which lasts for so short a time that 
the changes of the apparatus and the system under 
observation that would have taken place in the absence 
of interaction can be neglected. Thus, at least while the 
interaction is taking place, we can neglect the parts of 
the Hamiltonian associated with the apparatus alone 
and with the observed system alone, and we need retain 
only the part of the Hamiltonian, Hi, representing the 
interaction. Moreover, if the Hamiltonian operator is 
chosen to be a function only of quantities that commute 
with Q, then the interaction process will produce no 
uncontrollable changes in the observable, Q, but only in 
observables that do not commute with Q. In order that 
the apparatus and the system under observation shall 
be coupled, however, it is necessary that Hi shall also 
depend on operators involving y. 

For the sake of illustration of the principles involved, 
we shall consider the following interaction Hamiltonian: 

H 1=-CtQp y,  (1) 

where β is a suitable constant and p y  is the momentum 
conjugate to y. 

Now, in our interpretation, the system is to be de
scribed by a four-dimensional but objectively real wave 
field that is a function of χ and y and by a corresponding 
four-dimensional representative point, specified by the 
coordinates, x, of the electron and the coordinate, y, of 
the apparatus. Since the motion of the representative 
point is in part determined by forces produced by the 
i/<-field acting on both electron and apparatus variables, 
our first step in solving this problem is to calculate the 
ψ-field. This is done by solving Schroedinger's equation, 
with the appropriate boundary conditions on ψ. 

Now, during interaction, Schroedinger's equation is 
approximated by 

ihdty/dl= —aQpy^Sr = (ia/h)Qd^/dy. (2) 

It is now convenient to expand Φ in terms of the 
complete set ψ,(χ) of eigenfunctions of the operator, 
Q, where q denotes an eigenvalue of Q. For the sake of 
simplicity, we assume that the spectrum of Q is discrete, 
although the results are easily generalized to a continu
ous spectrum. Denoting the expansion coefficients by 
fqiy, I), we obtain 

0=EiWx)/i(y, t).  (3) 

Noting that Qtp q(x) = q\pq(x), we readily verify that 
Eq. (2) can now be reduced to the following series of 
equations iotfq(y, t): 

ihdfq{y, I)/dl= (ia/h)qfq(y, t). (4) 

If the initial value of/,(y, t) was fg°(y), we obtain as 
a solution 

fi(y, () =/«°(y- aqt/W), (S) 
and 

*(Χ; y, 0=ΣΪ Ψι(^)Ι,°(ν-αςίβ 2)·  (6) 

Now, initially the apparatus and the electron were 
independent. As shown in Paper I, Sec. 7, in our 

interpretation (as in the usual interpretation), inde
pendent systems must have wave fields Φ(χ, y, t) that 
are equal to a product of a function of χ and a function 
of y. Initially, we therefore have 

Φο(χ, y) = M^)go(y)=go(y)T.Q (?) 

where the c q  are the (unknown) expansion coefficients 
of fq(x), and go(;y) is the initial wave function of the 
apparatus coordinate, y. The function go(y) will take 
the form of a packet. For the sake of convenience, we 
assume that this packet is centered at y=0 and that 
its width is Ay. Normally, because the apparatus is 
classically describable, the definition of this packet is 
far less precise than that allowed by the limits of 
precision set by the uncertainty principle. 

From Eqs. (7) and (3), we shall readily deduce that 
/d°(y)= c?£o(y)· When this value of Jq{y) is inserted into 
Eq. (6), we obtain 

*(x, y, l) = Y,iCq<l/q{x)gss{y-aqt/¥}. (8) 

Equation (8) indicates already that the interaction 
has introduced a correlation between q and the appa
ratus coordinate, y. In order to show what this corre
lation means in our interpretation of the quantum 
theory, we shall use some arguments that have been 
developed in more detail in Paper I, Sec. 7, in connection 
with a similar problem involving the interaction of two 
particles in a scattering process. First we note that 
while the electron and the apparatus are interacting, 
the wave function (8) becomes very complicated, so 
that if it is expressed as 

y, 0 = -R(x. y, O expftS(x, y, 

then R and S undergo rapid oscillations both as a 
function of position and of time. From this we deduce 
that the "quantum-mechanical" potential, 

U= (-hy2mR)(Vx*R+d2R/dy2),  

undergoes violent fluctuations, especially where R is 
small,  and that the particle momenta, p=V^S(x, y, t) 
and py=dS(x,y,t)/dy, also undergo corresponding 
violent and extremely complicated fluctuations. Even
tually, however, if the interaction continues long 
enough, the behavior of the system will become simpler 
because the packets go(y—aqt/h2), corresponding to 
different values of q, will cease to overlap in y space. 
To prove this, we note that the center of the <?th 
packet in y space is at 

y=aqt/h2; or q=Wy/at. (9) 

If we denote the separation of adjacent values of q 
by Sq, we then obtain for the separation of the centers 
of adjacent packets in y space 

hy=al&q/W·. (10) 

It is clear that if the product of the strength of 
interaction a, and the duration of interaction, t, is large 
enough, then Sy can be made much larger than the 
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width Ay of the packet. Then packets corresponding 
to different values of q will cease to overlap in y space 
and will, in fact, obtain separations large enough to be 
classically describable. 

Because the probability density is equal to j 2, we 
deduce that the apparatus variable, y, must finally 
enter one of the packets and remain with that packet 
thereafter (since it does not enter the intermediate 
space between packets in which the probability density 
is practically zero). Now, the packet entered by the 
apparatus variable y determines the actual result of the 
measurement, which the observer will obtain when he 
looks at the apparatus. The other packets can (as 
shown in Paper I, Sec. 7) be ignored, because they 
affect neither the quantum-mechanical potential acting 
on the particle coordinates χ and y, nor the particle 
momenta, P1=VpS and py—dS/dy. Moreover, the 
wave function can also be renormalized without affect
ing any of the above quantities. Thus, for all practical 
purposes, we can replace the complete wave function, 
Eq. (8), by a new renormalized wave function 

•*{x,y)  = t t{x)gv{y-aqt /W·) ,  (11)  

where q now corresponds to the packet actually con
taining the apparatus variable, y. From this wave 
function, we can deduce, as shown in Paper I, Sec. 7, 
that the apparatus and the electron will subsequently 
behave independently. Moreover, by observing the 
approximate value of the apparatus coordinate within 
an error Ay<KSy, we can deduce with the aid of Eq. (9) 
that since the electron wave function can for all 
practical purposes be regarded as ^g(x), the observable, 
Q, must have the definite value, q. However, if the 
product, "athq/fi2," appearing in Eqs. (8), (9), (10), 
and (11), had been less than Ay, then no clear measure
ment of Q would have been possible, because packets 
corresponding to different q would have overlapped, 
and the measurement would not have had the requisite 
accuracy.3 

Finally, we note that even if the apparatus packets 
are subsequently caused to overlap, none of those 
conclusions will be altered. For the apparatus variable 
y will inevitably be coupled to a whole host of internal 
thermodynamic degrees of freedom, y\, y<i, · · -ye, as a 
result of effects such as friction and brownian motion. 
As shown in Paper I, Sec. 7, interference between 
packets corresponding to different values of q would be 
possible only if the packets overlapped in the space of 
yi, y%, · • as well as in y space. Such an overlap, 
however, is so improbable that for all practical purposes, 
we can ignore the possibility that it will ever occur. 

3. THE ROLE OF PROBABILITY IN MEASUREMENTS— 
THE UNCERTAINTY PRINCIPLE 

In principle, the final result of a measurement is 
determined by the initial "form of the wave function of 

a A similar requirement is obtained in the usual interpretation. 
See reference 2, Chapter 22, Sec. 8. 

the combined system, Φ°(χ, y),  and by the initial posi
tion of the electron particle, X0, and the apparatus 
variable, y0· In practice, however, as we have seen, the 
orbit fluctuates violently while interaction takes place, 
and is very sensitive to the precise initial values of χ 
and y, which we can neither predict nor control. All 
that we can predict in practice is that in an ensemble of 
similar experiments performed under equivalent initial 
conditions, the probability density is |Ψ(χ, y) |2. From 
this information, however, we are able to calculate only 
the probability that in an individual experiment, the 
result of a measurement of Q will be a specific number 
q. To obtain the probability of a given value of q, we 
need only integrate the above probability density over 
all χ and over all values of y in the neighborhood of the 
jth packet. Because the packets do not overlap, the 
Ψ-field in this region is equal to Cq^^gaiy—aqt/h2) 
[see Eq. (8)]. Since, by definition, ^,(x) and g0(;y) are 
normalized, the total probability that a particle is in 
the gth packet is 

P5= ki2· (12) 

The above is, however, just what is obtained from 
the usual interpretation. We conclude then that our 
interpretation is capable of leading in all possible 
experiments to identical predictions with those obtained 
from the usual interpretation (provided, or course, that 
we make the special assumptions indicated in the 
introduction). 

Let us now see what a measurement of the observable, 
Q, implies with regard to the state of the electron 
particle and its Φ-field. First, we note that the process 
of interaction with an apparatus designed to measure 
the observable, Q, effectively transforms the electron 
i/>-field from whatever it was before the measurement 
took place into an eigenfunction ψ5(χ) of the operator 
Q. The precise value of q that comes out of this process 
is as we have seen, not, in general, completely pre
dictable or controllable. If, however, the same measure
ment is repeated after the ψ-field has been transformed 
into φ,(χ), we can then predict that (as in the usual 
interpretation), the same value of q, and therefore the 
same wave function, ψί(χ), will be obtained again. If, 
however, we measure an observable "P" that does not 
commute with Q, then the results of this measurement 
are not, in practice, predictable or controllable. For as 
shown in Eq. (8), the Ψ-field after interaction with the 
measuring apparatus is now transformed into 

Ψ(χ, ζ, ή = Σρ a-P,  s<i>j.(x)go(z-apt/f t?),  (13) 

where ψ„(χ) is an eigenfunction of the operator, P, 
belonging to an eigenvalue, p, and where ap,q is an 
expansion coefficient defined by 

^¢(^) = Σ P ^P. S^pOO* (14) 

Since the packets corresponding to different p ulti
mately become completely separate in ζ space, we 
deduce, as in the case of the measurement of Q, that 



386 BOHM 

for all practical purposes, this wave function may be 
replaced by 

V=a p e 4> p (x)go(z-ap t/h 2 ) ,  

where p  now represents the packet actually entered by 
the apparatus coordinate, y. As in the case of measure
ment  of  Q,  we read i ly  show tha t  the  prec i se  va lue  of  p 
that comes out of this experiment cannot be predicted 
or controlled and that the probability of a given value 
of p is equal to |αρβ|2. This is, however, just what is 
obtained in the usual interpretation of this process. 

It is clear that if two "observables," P and Q,  do not 
commute, one cannot carry out a measurement of both 
simultaneously on the same system. The reason is that 
each measurement disturbs the system in a way that is 
incompatible with carrying out the process necessary 
for the measurement of the other. Thus, a measurement 
of P requires that wave field, ψ, shall become an 
eigenfunction of P, while a measurement of Q requires 
that  i t  sha l l  become an  e igenfunct ion  of  Q.  I f  P and Q 
do not commute, then by definition, no ^-function can 
be simultaneously an eigenfunction of both. In this 
way, we understand in our interpretation why measure
ments, of complementary quantities, must (as in the 
usual interpretation) necessarily be limited in their 
precision by the uncertainty principle. 

4. PARTICLE POSITIONS AND MOMENTA AS 
"HIDDEN VARIABLES" 

We have seen that in measurements that can now be 
carried out, we cannot make precise inferences about 
the particle position, but can say only that the particle 
must be somewhere in the region in which \·ψ\ is 
appreciable. Similarly, the momentum of a particle that 
happens to be at the point, x, is given by p= VS(x), so 
that since χ is not known, the precise value of ρ is also 
not, in general, inferrable. Hence, as long as we are 
restricted to making observations of this kind, the 
precise values of the particle position and momentum 
must, in general, be regarded as "hidden," since we 
cannot at present measure them. They are, however, 
connected with real and already observable properties 
of matter because (along with the ψ-field) they deter
mine in principle the actual result of each individual 
measurement. By way of contrast, we recall here that 
in the usual interpretation of the theory, it is stated 
that although each measurement admittedly leads to a 
definite number, nothing determines the actual value 
of this number. The result of each measurement is 
assumed to arise somehow in an inherently indescrib
able way that is not subject to a detailed analysis. 
Only the statistical results are said to be predictable. 
In our interpretation, however, we assert that the at 
present "hidden" precisely definable particle positions 
and momenta determine the results of each individual 
measurement process, but in a way whose precise 
details are so complicated and uncontrollable, and so 
little known, that one must for all practical purposes 

restrict oneself to a statistical description of the connec
tion between the values of these variables and the 
directly observable results of measurements. Thus, we 
are unable at present to obtain direct experimental 
evidence for the existence of precisely definable particle 
positions and momenta. 

S. "OBSERVABLES" OF USUAL INTERPRETATION ARE 
NOT A COMPLETE DESCRIPTION OF SYSTEM 

IN OUR INTERPRETATION 

We have seen in Sec. 3 that in the measurement of 
an "observable," Q, we cannot obtain enough informa
tion to provide a complete specification of the state of 
an electron, because we cannot infer the precisely 
defined values of the particle momentum and position, 
which are, for example, needed if we wish to make 
precise predictions about the future behavior of the 
electron. Moreover, the process of measuring an ob
servable does not provide any unambiguous information 
about the state that existed before the measurement 
took place; for in such a measurement, the ψ-field is 
transformed into an in practice unpredictable and 
uncontrollable eigenfunction, φα(χ), of the measured 
"observable" Q. This means that the measurement of 
an "observable" is not really a measurement of any 
physical property belonging to the observed system 
alone. Instead, the value of an "observable" measures 
only an incompletely predictable and controllable 
potentiality belonging just as much to the measuring 
apparatus as to the observed system itself.4 At best, 
such a measurement provides unambiguous information 
only at a classical level of accuracy, where the distur
bance of the ψ-field by the measuring apparatus can be 
neglected. The usual "observables" are therefore not 
what we ought to tiy to measure at a quantum level of 
accuracy. In Sec. 6, we shall see that it is conceivable 
that we may be able to carry out new kinds of measure
ments, providing information not about "observables" 
having a very ambiguous significance, but rather about 
physically significant properties of a system, such as the 
actual values of the particle position and momentum. 

As an example of the rather indirect and ambiguous 
significance of the "observable," we may consider the 
problem of measuring the momentum of an electron. 
Now, in the usual interpretation, it is stated that one 
can always measure the momentum "observable" 
without changing the value of the momentum. The 
result is said, for example, to be obtainable with the 
aid of an impulsive interaction involving only operators 
which  commute  wi th  the  momentum opera tor ,  p x .  To  
represent such a measurement, we could choose 
Hi= —apxpy in Eq. (1). In our interpretation, however, 
we cannot in general conclude that such an interaction 
will enable us to measure the actual particle momentum 
without changing its value. In fact, in our interpreta-

4 Even in the usual interpretation, an observation must be 
regarded as yielding a measure of such a potentiality. See reference 
2, Chapter 6, Sec. 9. 
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tion, a measurement of particle momentum that does 
not change the value of this momentum is possible 
only if the ψ-field initially takes the special form, 
exp(ip-x/&). If, however, ψ initially takes its most 
general possible form, 

Ψ=Σρ «ιΡ exp(ip-x//i), (15) 

then as we have seen in Sees. 2 and 3, the process of 
measuring the "observable" px will effectively trans
form the ψ-field of the electron into 

exp (ipx/h) (16) 

with a probability | a p  |2 that a given value of p x  will 
be obtained. When the ψ-field is altered in this way, 
large quantities of momentum can be transferred to the 
particle by the changing ψ-field, even though the 
interaction Hamiltonian, Hi, commutes with the mo
mentum operator, p. 

As an example, we may consider a stationary state 
of an atom, of zero angular momentum. As shown in 
Paper I, Sec. 5, the ψ-field for such a state is real, so 
that we obtain 

P=VS=O. 

Thus, the particle is at rest. Nevertheless, we see from 
Eqs. (14) and (15) that if the momentum "observable" 
is measured, a large value of this "observable" may be 
obtained if the ψ-field happens to have a large fourier 
coefficient, op, for a high value of p. The reason is that 
in the process of interaction with the measuring appa
ratus, the ψ-field is altered in such a way that it can 
give the electron particle a correspondingly large 
momentum, thus transforming some of the potential 
energy of interaction of the particle with its ψ-field into 
kinetic energy. 

A more striking illustration of the points discussed 
above is afforded by the problem of a "free" particle 
contained between two impenetrable and perfectly 
reflecting walls, separated by a distance L. For this 
case, the spatial part of the ψ-field is 

^ = sin(2ir«x/Z,), 

where η is an integer and the energy of the electron is 

£=(1/2m) (nh/  Vf .  

Because the i/<-field is real, we deduce that the particle 
is at rest. 

Now, at first sight, it may seem puzzling that a 
particle having a high energy should be at rest in the 
empty space between two walls. Let us recall, however, 
that the space is not really empty, but contains an 
objectively real ψ-field that can act on the particle. 
Such an action is analogous to (but of course not 
identical with) the action of an electromagnetic field, 
which could create non-uniform motion of the particle 
in this apparently "empty" enclosure. We observe that 
in our problem, the ψ-field is able to bring the particle 
to rest and to transform the entire kinetic energy into 

potential energy of interaction with the ψ-field. To 
prove this, we evaluate the "quantum-mechanical 
potential" for this ψ-field 

-H 2 V 2 R -¥Ψψ 1 /nh\ 2  

2m R 2m ψ 2m\ L / 

and note that it is precisely equal to the total energy, E. 
Now, as we have seen, any measurement of the 

momentum "observable" must change the ψ-field in 
such a way that in general some (and in our case, all) 
of this potential energy is transformed into kinetic 
energy. We may use as an illustration of this general 
result a very simple specific method of measuring the 
momentum "observable," namely, to remove the con
fining walls suddenly and then to measure the distance 
moved by the particle after a fairly long time. We can 
compute the momentum by dividing this distance by 
the time of transit. If (as in the usual interpretation of 
the quantum theory) we assume that the electron is 
"free," then we conclude that the process of removing 
the walls should not appreciably change the momentum 
if we do it fast enough, for the probability that the 
particle is near a wall when this happens can then in 
principle be made arbitrarily small. In our interpreta
tion, however, the removal of the walls alters the 
particle momentum indirectly, because of its effect on 
the ψ-field, which acts on the particle. Thus, after the 
walls are removed, two wave packets moving in opposite 
directions begin to form, and ultimately they become 
completely separate in space. Because the probability 
density is |ψ|2, we deduce that the particle must end 
up in one packet or the other. Moreover, the reader 
will readily convince himself that the particle momen
tum will be very close to zkrih/L, the sign depending 
on which packet the particle actually enters. As in 
Sec. (2), the packet not containing the particle can 
subsequently be ignored. In principle, the final particle 
momentum is determined by the initial form of the 
ψ-field and by the initial particle position. Since we do 
not in practice know the latter, we can at best predict 
a probability of J that the particle ends up in either 
packet. We conclude then that this measurement of 
the momentum "observable" leads to the same result 
as is predicted in the usual interpretation. However, 
the actual particle momentum existing before the 
measurement took place is quite different from the 
numerical value obtained for the momentum "ob
servable," which, in the usual interpretation, is called 
the "momentum." 

6. ON THE POSSIBILITY OF MEASUREMENTS 
OF UNLIMITED PRECISION 

We have seen that the so-called "observables" do 
not measure any very readily interpretable properties 
of a system. For example, the momentum "observable" 
has in general no simple relation to the actual particle 
momentum. It may therefore be fruitful to consider 
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how we might try to measure properties which, accord
ing to our interpretation, are (along with the ^-field) the 
physically significant properties of an electron, namely, 
the actual particle position and momentum. In con
nection with this problem, we shall show that if, as 
suggested in Paper I, Sees. 4 and 9, we give up the 
three mutually consistent special assumptions leading 
to the same results as those of the usual interpretation 
of the quantum theory, then in our interpretation, the 
particle position and momentum can in principle be 
measured simultaneously with unlimited precision. 

Now, for our purposes, it will be adequate to show 
that precise predictions of the future behavior of a 
system are in principle possible. In our interpretation, 
a sufficient condition for precise predictions is as we 
have seen that we shall be able to prepare a system in 
a state in which the ψ-field and the initial particle 
position and momentum are precisely known. We have 
shown that it is possible, by measuring the "observ
able," Q, with the aid of methods that are now available, 
to prepare a state in which the ^-field is effectively 
transformed into a known form, 4>g(x); but we cannot 
in general predict or control the precise position and 
momentum of the particle. If we could now measure 
the position and momentum of the particle without 
altering the ^-field, then precise predictions would be 
possible. However, the results of Sees. 2, 3, and 4 prove 
that as long as the three special assumptions indicated 
above are valid, we cannot measure the particle position 
more accurately without effectively transforming the 
ψ-function into an incompletely predictable and con
trollable packet that is much more localized than 
ψ,(χ). Thus, efforts to obtain more precise definition of 
the state of the system will be defeated. But it is clear 
that the difficulty originates in the circumstance that 
the potential energy of interaction between electron 
and apparatus, F(x, y), plays two roles. For it not only 
introduces a direct interaction between the two parti
cles, proportional in strength to V(x, y) itself, but it 
introduces an indirect interaction between these parti
cles, because this potential also appears in the equation 
governing the ^-field. This indirect interaction may 
involve rapid and violent fluctuations, even when 
V(x, y) is small. Thus, we are led to lose control of the 
effects of this interaction, because no matter how small 
V(x, y) is, very large and chaotically complicated 
disturbances in the particle motion may occur. 

If, however, we give up the three special assumptions 
mentioned previously, then it is not inherent in our 
conceptual structure that every interaction between 
particles must inevitably also produce large and uncon
trollable changes in the l/'-field. Thus, in Paper I, Eq. 
(31), we give an example in which we postulate a 
force acting on a particle that is not necessarily accom
panied by a corresponding change in the ^-field. 
Equation (31), Paper I, is concerned only with a one-
particle system, but similar assumptions can be made 
for systems of two or more particles. In the absence of 

any specific theory, our interpretation permits an 
infinite number of kinds of such modifications, which 
can be chosen to be important at small distances but 
negligible in the atomic domain. For the sake of illus
tration, suppose that it should turn out that in certain 
processes connected with very small distances, the 
force acting on the apparatus variable is 

Fv= ax, 

where α is a constant. Now if "a" is made large enough 
so that the interaction is impulsive, we can neglect all 
changes in y that are brought about by the forces that 
would have been present in the absence of this interac
tion. Moreover, for the sake of illustration of the 
principles involved, we are permitted to make the 
assumption, consistent with our interpretation, that 
the force on the electron is zero. The equation of 
motion of y is then 

y=ax/m. 

The solution is 
y~y ο= {axP/2m)+yot, 

where yo is the initial velocity of the apparatus variable 
and yo its initial position. Now, if the product, at2, is 
large enough, then y—y0 can be made much larger 
than the uncertainty in y arising from the uncertainty 
of y0, and the uncertainty of y0. Thus, y—yo will be 
determined primarily by the particle position, x. In 
this way, it is conceivable that we could obtain a 
measurement of χ that does not significantly change 
x, x, or the ι^-function. The particle momentum can 
then be obtained from the relation, p=VS(x), where 
S/h is the phase of the ^-function. Thus, precise 
predictions would in principle be possible. 

7. THE ORIGIN OF THE STATISTICAL ENSEMBLE IN 
THE QUANTUM THEORY 

We shall now see that even if, because of a failure of 
the three special assumptions mentioned in Sees. 1 and 
6, we are able to determine the particle positions and 
momenta precisely, we shall nevertheless ultimately 
obtain a statistical ensemble again at the atomic level, 
with a probability density equal to |ψ\2. The need for 
such an ensemble arises from the chaotically compli
cated character of the coupling between the electron 
and classical systems, such as volumes of gas, walls of 
containers, pieces of measuring apparatus, etc., with 
which this particle must inevitably in practice interact. 
For as we have seen in Sec. 2, and in Paper I, Sec. 7, 
during the course of such an interaction, the "quantum-
mechanical" potential undergoes violent and rapid 
fluctuations, which tend to make the particle orbit 
wander over the whole region in which the ψ-field is 
appreciable. Moreover, these fluctuations are further 
complicated by the effects of molecular chaos in the 
very large number of internal thermodynamic degrees 
of freedom of these classically describable systems, 
which are inevitably excited in any interaction process. 
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Thus, even if the initial particle variables were well 
defined, we should soon in practice lose all possibility 
of following the particle motion and would be forced to 
have recourse to some kind of statistical theory. The 
only question that remains is to show why the proba
bility density that ultimately comes about should be 
equal to | ̂  |2 and not to some other quantity. 

To answer this question, we first note that a statistical 
ensemble with a probability density | ψ(χ) |2 has the 
property that under the action of forces which prevail 
at the atomic level, where our three special assumptions 
are satisfied, it will be preserved by the equations of 
motion of the particles, once it comes into existence. 
There remains only the problem of showing that an 
arbitrary deviation from this ensemble tends, under the 
action of the chaotically complicated forces described 
in the previous paragraph, to decay into an ensemble 
with a probability density of | φ(χ) |2. This problem is 
very similar to that of proving Boltzmann's H theorem, 
which shows in connection with a different but analo
gous problem that an arbitrary ensemble tends as a 
result of molecular chaos to decay into an equilibrium 
Gibbs ensemble. We shall not carry out a detailed 
proof here, but we merely suggest that it seems plausible 
that one could along similar lines prove that in our 
problem, an arbitrary ensemble tends to decay into an 
ensemble with a density of |^(x)|2. These arguments 
indicate that in our interpretation, quantum fluctua
tions and classical fluctuations (such as the Brownian 
motion) have basically the same origin; viz., the cha
otically complicated character of motion at the micro
scopic level. 

8. THE HYPOTHETICAL EXPERIMENT OF EINSTEIN, 
PODOLSKY, AND ROSEN 

The hypothetical experiment of Einstein, Podolsky, 
and Rosen5 is based on the fact that if we have two 
particles, the sum of their momenta, p = pi~\~p2, com
mutes  wi th  the  d i f fe rence  of  the i r  pos i t ions ,  ξ=Χ\— X 2 -
We can therefore define a wave function in which p is 
zero, while ξ has a given value, a. Such a wave function 
is 

φ=δ(χι~χΐ—a).  (17) 

In "the usual interpretation of the quantum theory, 
p\—p2 and xi-\~x2 are completely undetermined in a 
system having the above wave function. 

The whole experiment centers on the fact that an 
observer has a choice of measuring either the momentum 
or the position of any one of the two particles. Which
ever of these quantities he measures, he will be able to 
infer a definite value of the corresponding variable in 
the other particle, because of the fact that the above 
wave function implies correlations between variables 
belonging to each particle. Thus, if he obtains a position 
X1 for the first particle, he can infer a position of 

5 Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1935). 

X 2 = a— Xi  for the second particle; but he loses all 
possibility of making any inferences about the momenta 
of either particle. On the other hand, if he measures 
the momentum of the first particle and obtains a value 
of pi, he can infer a value of p2=—p\ for the momentum 
of the second particle; but he loses all possibility of 
making any inferences about the position of either 
particle. Now, Einstein, Podolsky, and Rosen believe 
that this result is itself probably correct, but they do 
not believe that quantum theory as usually interpreted 
can give a complete description of how these correlations 
are propagated. Thus, if these were classical particles, 
we could easily understand the propagation of correla
tions because each particle would then simply move 
with a velocity opposite to that of the other. But in 
the usual interpretation of quantum theory, there is no 
similar conceptual model showing in detail how the 
second particle, which is not in any way supposed to 
interact with the first particle, is nevertheless able to 
obtain either an uncontrollable disturbance of its posi
tion or an uncontrollable disturbance of its momentum 
depending on what kind of measurement the observer 
decided to carry out on the first particle. Bohr's point 
of view is, however, that no such model should be 
sought and that we should merely accept the fact that 
these correlations somehow manage to appear. We must 
note, of course, that the quantum-mechanical descrip
tion of these processes will always be consistent, even 
though it gives us no precisely definable means of 
describing and analyzing the relationships between the 
classically describable phenomena appearing in various 
pieces of measuring apparatus. 

In our suggested new interpretation of the quantum 
theory, however, we can describe this experiment in 
terms of a single precisely definable conceptual model, 
for we now describe the system in terms of a combi
nation of a six-dimensional wave field and a precisely 
definable trajectory in a six-dimensional space (see 
Paper I, Sec. 6). If the wave function is initially equal 
to Eq. (17), then since the phase vanishes, the particles 
are both at rest. Their possible positions are, however, 
described by an ensemble, in which Xi-X2= a. Now, 
if we measure the position of the first particle, we 
introduce uncontrollable fluctuations in the wave 
function for the entire system, which, through the 
"quantum-mechanical" forces, bring about correspond
ing uncontrollable fluctuations in the momentum of 
each particle. Similarly, if we measure the momentum 
of the first particle, uncontrollable fluctuations in the 
wave function for the system bring about, through the 
"quantum-mechanical" forces, corresponding uncon
trollable changes in the position of each particle. Thus, 
the "quantum-mechanical" forces may be said to 
transmit uncontrollable disturbances instantaneously 
from one particle to another through the medium of 
the i^-field. 

What does this transmission of forces at an infinite 
rate mean? In nonrelativistic theory, it certainly causes 
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no difficulties. In a relativistic theory, however, the 
problem is more complicated. We first note that as long 
as the three special assumptions mentioned in Sec. 2 
are valid, our interpretation can give rise to no incon
sistencies with relativity, because it leads to precisely 
the same predictions for all physical processes as are 
obtained from the usual interpretation (which is known 
to be consistent with relativity). The reason why no 
contradictions with relativity arise in our interpretation 
despite the instantaneous transmission of momentum 
between particles is that no signal can be carried in 
this way. For such a transmission of momentum could 
constitute a signal only if there were some practical 
means of determining precisely what the second particle 
would have done if the first particle had not been 
observed; and as we have seen, this information cannot 
be obtained as long as the present form of the quantum 
theory is valid. To obtain such information, we require 
conditions (such as might perhaps exist in connection 
with distances of the order of IO-13 cm) under which the 
usual form of the quantum theory breaks down (see 
Sec. 6), so that the positions and momenta of the 
particles can be determined simultaneously and pre
cisely. If such conditions should exist, then there are 
two ways in which contradictions might be avoided. 
First, the more general physical laws appropriate to 
the new domains may be such that they do not permit 
the transmission of controllable aspects of interparticle 
forces faster than light. In this way, Lorentz covariance 
could be preserved. Secondly, it is possible that the 
application of the usual criteria of Lorentz covariance 
may not be appropriate when the usual interpretation 
of quantum theory breaks down. Even in connection 
with gravitational theory, general relativity indicates 
that the limitation of speeds to the velocity of light 
does not necessarily hold universally. If we adopt the 
spirit of general relativity, which is to seek to make the 
properties of space dependent on the properties of the 
matter that moves in this space, then it is quite con
ceivable that the metric, and therefore the limiting 
velocity, may depend on the ^-field as well as on the 
gravitational tensor g"·'. In the classical limit, the 
dependence on the ψ-field could be neglected, and we 
would get the usual form of covariance. In any case, 
it can hardly be said that we have a solid experimental 

basis for requiring the same form of covariance at very 
short distances that we require at ordinary distances. 

To sum up, we may assert that wherever the present 
form of the quantum theory is correct, our interpreta
tion cannot lead to inconsistencies with relativity. In 
the domains where the present theory breaks down, 
there are several possible ways in which our interpre
tation could continue to treat the problem of covariance 
consistently. The attempt to maintain a consistent 
treatment of covariance in this problem might perhaps 
serve as an important heuristic principle in the search 
for new physical laws. 

9. ON VON NEUMANN'S DEMONSTRATION THAT 
QUANTUM THEORY IS INCONSISTENT WITH 

HIDDEN VARIABLES 

Von Neumann6 has studied the following question: 
"If the present mathematical formulation of the quan
tum theory and its usual probability intepretation are 
assumed to lead to absolutely correct results for every 
experiment that can ever be done, can quantum-
mechanical probabilities be understood in terms of any 
conceivable distribution over hidden parameters?" 
Von Neumann answers this question in the negative. 
His conclusions are subject, however, to the criticism 
that in his proof he has implicitly restricted himself to 
an excessively narrow class of hidden parameters and 
in this way has excluded from consideration precisely 
those types of hidden parameters which have been 
proposed in this paper. 

To demonstrate the above statements, we summarize 
Von Neumann's proof briefly. This proof (which begins 
on p. 167 of his book), shows that the usual quantum-
mechanical rules of calculating probabilities imply that 
there can be no "dispersionless states," i.e., states in 
which the values of all possible observables are simul
taneously determined by physical parameters associated 
with the observed system. For example, if we consider 
two noncommuting observables, p and q, then Von 
Neumann shows that it would be inconsistent with the 
usual rules of calculating quantum-mechanical proba
bilities to assume that there were in the observed 
system a set of hidden parameters which simultaneously 
determined the results of measurements of position and 
momentum "observables." With this conclusion, we 
are in agreement. However, in our suggested new 
interpretation of the theory, the so-called "observ
ables" are, as we have seen in Sec. S, not properties 
belonging to the observed system alone, but instead 
potentialities whose precise development depends just 
as much on the observing apparatus as on the observed 
system. In fact, when we measure the momentum 
"observable," the final result is determined by hidden 
parameters in the momentum-measuring device as well 
as by hidden parameters in the observed electron. 
Similarly, when we measure the position "observable," 
the final result is determined in part by hidden param
eters in the position-measuring device. Thus, the sta
tistical distribution of "hidden" parameters to be used 
in calculating averages in a momentum measurement 
is different from the distribution to be used in calcu
lating averages in a position measurement. Von Neu
mann's proof (see p. 171 in his book) that no single 
distribution of hidden parameters could be consistent 
with the results of the quantum theory is therefore 
irrelevant here, since in our interpretation of measure
ments of the type that can now be carried out, the 
distribution of hidden parameters varies in accordance 
with the different mutually exclusive experimental 

6 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Verlag. Julius Springer, Berlin, 1932). 
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arrangements of matter that must be used in making 
different kinds of measurements. In this point, we are 
in agreement with Bohr, who repeatedly stresses the 
fundamental role of the measuring apparatus as an 
inseparable part of the observed system. We differ 
from Bohr, however, in that we have proposed a method 
by which the role of the apparatus can be analyzed 
and described in principle in a precise way, whereas 
Bohr asserts that a precise conception of the details of 
the measurement process is as a matter of principle 
unattainable. 

Finally, we wish to stress that the conclusions drawn 
thus far refer only to the measurement of the so-called 
"observables" carried out by the methods that are now 
available. If the quantum theory needs to be modified 
at small distances, then, as suggested in Sec. 6, precise 
measurements can in principle be made of the actual 
position and momentum of a particle. Here, it should 
be noted that Von Neumann's theorem is likewise 
irrelevant, this time because we are going beyond the 
assumption of the unlimited validity of the present 
general form of quantum theory, which plays an 
integral part in his proof. 

10. SUMMARY AND CONCLUSIONS 

The usual interpretation of the quantum theory 
implies that we must renounce the possibility of de
scribing an individual system in terms of a single 
precisely defined conceptual model. We have, however, 
proposed an alternative interpretation which does not 
imply such a renunciation, but which instead leads us 
to regard a quantum-mechanical system as a synthesis 
of a precisely definable particle and a precisely definable 
^-field which exerts a force on this particle. An experi
mental choice between these two interpretations cannot 
be made in a domain in which the present mathematical 
formulation of the quantum theory is a good approxi
mation; but such a choice is conceivable in domains, 
such as those associated with dimensions of the order 
of IO-13 cm, where the extrapolation of the present 
theory seems to break down and where our suggested 
new interpretation can lead to completely different 
kinds of predictions. 

At present, our suggested new interpretation provides 
a consistent alternative to the usual assumption that no 
objective and precisely definable description of reality 
is possible at the quantum level of accuracy. For, in 
our description, the problem of objective reality at the 
quantum level is at least in principle not fundamentally 
different from that at the classical level, although new 
problems of measurement of the properties of an indi
vidual system appear, which can be solved only with 
the aid of an improvement in the theory, such as the 
possible modifications in the nuclear domain suggested 
in Sec. 6. In this connection, we wish to point out that 
what we can measure depends not only on the type of 
apparatus that is available, but also on the existing 
theory, which determines the kind of inference that can 

be used to connect the directly observable state of the 
apparatus with the state of the system of interest. In 
other words, our epistemology is determined to a large 
extent by the existing theory. It is therefore not wise 
to specify the possible forms of future theories in terms 
of purely epistomological limitations deduced from 
existing theories. 

The development of the usual interpretation of the 
quantum theory seems to have been guided to a 
considerable extent by the principle of not postulating 
the possible existence of entities which cannot now be 
observed. This principle, which stems from a general 
philosophical point of view known during the nineteenth 
century as "positivism" or "empiricism" represents an 
extraphysical limitation on the possible kinds of theories 
that we shall choose to take into consideration.7 The 
word "extraphysical" is used here advisedly, since we 
can in no way deduce, either from the experimental 
data of physics, or from its mathematical formulation, 
that it will necessarily remain forever impossible for us 
to observe entities whose existence cannot now be 
observed. Now, there is no reason why an extraphysical 
general principle is necessarily to be avoided, since such 
principles could conceivably serve as useful working 
hypotheses. The particular extraphysical principle de
scribed above cannot, however, be said to be a good 
working hypothesis. For the history of scientific research 
is full of examples in which it was very fruitful indeed 
to assume that certain objects or elements might be 
real, long before any procedures were known which 
would permit them to be observed directly. The atomic 
theory is just such an example. For the possibility of 
the actual existence of individual atoms was first postu
lated in order to explain various macrophysical results 
which could, however, also be understood directly in 
terms of macrophysical concepts without the need for 
assuming the existence of atoms. Certain nineteenth-
century positivists (notably Mach) therefore insisted 
on purely philosophical grounds that it was incorrect to 
suppose that individual atoms actually existed, because 
they had never been observed as such. The atomic 
theory, they thought, should be regarded only as an 
interesting way of calculating various observable large-
scale properties of matter. Nevertheless, evidence for 
the existence of individual atoms was ultimately dis
covered by people who took the atomic hypothesis 
seriously enough to suppose that individual atoms 
might actually exist, even though no one had yet 
observed them. We may have here, perhaps, a close 
analogy to the usual interpretation of the quantum 
theory, which avoids considering the possibility that 
the wave function of an individual system may repre
sent objective reality, because we cannot observe it 
with the aid of existing experiments and theories. 

7 A leading nineteenth-century exponent of the positivist point 
of view was Mach. Modern positivists appear to have retreated 
from this extreme position, but its reflection still remains in the 
philosophical point of view implicitly adopted by a large number 
of modern theoretical physicists. 
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Finally, as an alternative to the positivist hypothesis 
of assigning reality only to t ha t which we can now 
observe, we wish to prevent here another hypothesis, 
which we believe corresponds more closely to conclu-
sions tha t can be drawn from general experience in 
actual scientific research. This hypothesis is based on 
the simple assumption tha t the world as a whole is 
objectively real and that , as far as we now know, it can 
correctly be regarded as having a precisely describable 
and analyzable s t ructure of unlimited complexity. The 
pa t te rn of this structure seems to be reflected com-
pletely bu t indirectly a t every level, so t ha t f rom 
experiments done a t the level of size of human beings, 
it is very probably possible ult imately to draw inferences 
concerning the properties of the whole s tructure a t all 
levels. We should never expect to obtain a complete 
theory of this structure, because there are almost 
certainly more elements in existence than we possibly 
can be aware of a t any part icular stage of scientific 
development. Any specified element, however, can in 
principle ult imately be discovered, bu t never all of 
them. Of course, we mus t avoid postulating a new 
element for each new phenomenon. Bu t an equally 
serious mistake is to admi t into the theory only those 
elements which can now be observed. For the purpose 
of a theory is no t only to correlate the results of obser-
vations t ha t we already know how to make, bu t also to 
suggest the need for new kinds of observations and to 
predict their results. In fact , the bet ter a theory is able 
to suggest the need for new kinds of observations and 
to predict their results correctly, the more confidence 
we have t ha t this theory is likely to be good represen-
tat ion of the actual properties of mat te r and no t simply 
an empirical system especially chosen in such a way as 
to correlate a group of already known facts. 

APPENDIX A. PHOTOELECTRIC AND 
COMPTON EFFECTS 

In this appendix, we shall show how the electro-
magnetic field is to be described in our new interpre-
tation, with the purpose of making possible a t rea tment 
of the photoelectric and Compton effects. For our 
purposes, it is adequate to restrict ourselves to a gauge 
in which d i v A = 0 , and to consider only the transverse 
pa r t of the electromagnetic field, for in this gauge, the 
longitudinal p a r t of the field can be expressed through 
Poisson's equation entirely in terms of the charge 
density. The Fourier analysis of the vector potential is 
then 

(Al) 
with 

T h e are coordinates of the electromagnetic field, 
associated with oscillations of wave number, k, and 
polarization direction, where is a uni t vector 
normal to k and runs over two indices, corresponding 
to a pair of orthogonal directions of polarization. V is 

the volume of the box, which is assumed to be very 
large. 

We also introduce the momenta 
canonically conjugate8 to the We have for the 
transverse p a r t of the electric field 

(A2) 

and for the magnetic field 

(A3) 

T h e Hamiltonian of the radiation field corresponds to 
a collection of independent harmonic oscillators, each 
with angular frequency, This Hamil tonian is 

(A4) 

Now, in our interpretat ion of the quan tum theory, 
the quant i ty is assumed to refer to the actual value 
of the k, Fourier component of the vector potent ial . 
As in the case of the electron, however, there is present 
an objectively real superfield t ha t is a function of all 
the electromagnetic field coordinates . Thus , we have 

(A5) 

Writ ing , we obtain (in analogy with 
Paper I, Sec. 4) 

(A6) 

The function has two interpretations. 
First, it defines an additional quantum-mechanical 
term appearing in Maxwell 's equations. To see the 
origin of this term, let us write the generalized Hamil-
ton-Jacobi equation of the electromagnetic field, analo-
gous to Paper I, (4), 

(A7) 

The equation of motion of derived f rom the 
Hamil tonian implied by Eq . (A7) becomes 

(A8) 

Since Maxwell 's equations for empty space follow 
when the right-hand side is zero, we see t ha t the 
"quantum-mechanical" terms can profoundly modify 
the behavior of the electromagnetic field. In fact , it is 
this modification which will contribute to the explana-

8 See G. Wentzel, Quantum Theory of Fields (Interscience 
Publishers, Inc. , New York, 1948). 
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tion of the ability of an oscillator, to transfer large 
quanti t ies of energy and momentum rapidly even when 

is very small, for when is small, the right-hand 
side of Eq . (A8) may become very large. 

T h e second interpretat ion of R is t ha t as in Paper I , 
Eq . (5), it defines a conserved probabili ty density t ha t 
each of the has a certain specified value. From 
this fact , we see tha t although large transfers of energy 
and momentum to a radiation oscillator can occur in a 
short t ime when R is small, the probabili ty of such a 
process is (as was also shown in Paper I, Sec. 7) very 
small. 

In the lowest s tate (when no quanta are present) 
every oscillator is in the ground state. T h e super 
wave fields is then 

(A9) 

If the oscillator is excited to the rath quan tum 
state, the super wave field is 

(A10) 

where is the rath hermite polynomial. As shown in 
Paper I , Sec. 5, the stat ionary states of such a system 
correspond to a quantized energy equal to the same 
value, , obtained from the usual interpre-
tat ion. I n nonstat ionary states, however, Eqs . (A7) 
and (A8) imply tha t the energy of each oscillator may 
fluctuate violently, as was also true of nonstat ionary 
states of the hydrogen a tom (see Paper I , Sec. 7). 

A nonstat ionary s ta te of particular interest in the 
photoelectric and Compton effects is a s ta te corre-
sponding to the presence of an electromagnetic wave 
packet containing a single quan tum. T h e super wave 
field for such a state is 

( A l l ) 

where is a function t ha t is large only near 
and the first hermite polynomial is represented 

by ci t ° which it is proportional. 
T o prove t ha t Eq . ( A l l ) represents an electro-

magnetic wave packet, we can evaluate the difference 

(A14) 

Obtaining f rom Eq . (A2), f rom Eq . (A3), 
f rom Eq . (A10), f rom Eq . (A9), we readily 

show tha t 

(A15) 

This means tha t the wave packet implies an excess 
over zero-point energy tha t is localized within a region 
in which the packet function, g(x) is appreciable, where 

(A 16) 

We are now ready to t reat the photoelectric and 
Compton effects. T h e entire t rea tment is so similar to 
tha t of the Franck-Hertz experiment (Paper I, Sec. 7) 
tha t we need merely sketch it h e r e . W e begin by 
adding to the radiation Hamiltonian, the particle 
Hamiltonian, 

(A17) 

(A12) 

where is the actual mean energy density 
present (averaged over the ensemble), and is 
the mean energy t ha t would be present even in the 
ground state, because of zero-point fluctuations. W e 
have 

(We restrict ourselves here to nonrelativistic t reat-
ment.) T h e photoelectric effect corresponds to the 
transition of a radiation oscillator f rom an excited 
state to the ground state, while the atomic electron is 
ejected, with an energy E=hv—I, where I is the 
ionization potential of the a tom. The initial super wave 
field, corresponding to an incident packet containing 
only one quan tum, plus an a tom in the ground s ta te is 
(see Eq. ( A l l ) ) 

(A18) 

By solving Schroedinger's equation for the combined 
system, we obtain an asymptotic wave field analogous 
to Paper I , Eq . (26), containing terms corresponding 
to the photoelectric effect. These terms, which mus t 
be added to to yield the complete superfield, are 
(asymptotically) 

(A19) 

where the energy of the outgoing electron is. 
. The funct ion "i is the ampli tude 

associated with the of the outgoing electron. 
This quant i ty can be calculated f rom the matrix ele-
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ment of the interaction term, — (e/c)p-A(x), by meth
ods that are easily deducible from the usual perturbation 
theory.6 

The outgoing electron packet has its center at 
r= (hk'/m)t. Eventually, this packet will become com
pletely separated from the initial electron wave func
tion, ψο(χ). If the electron happens to enter the outgoing 
packet, the initial wave function can subsequently be 
ignored. The system then acts for all practical purposes 
as if its wave field were given by Eq. (A9), from which 
we conclude that the radiation field is in the ground 
state, while the electron has been liberated. It is 
readily shown that, as in the usual interpretation, the 
probability that the electron appears in the direction 
θ, φ can be calculated from | ζμ{θ, φ, k') |2 (see Paper I, 
Sec. 7). 

To describe the Compton effect, we need only add 
to the super wave field the term corresponding to the 
appearance of an outgoing electromagnetic wave, as 
well as an outgoing electron. This part is asymptotically 

δΦί,= Φο(Β)(· · ·ς*,μ· · ·) E/c(k-k0) 
It',/*' 

gifc"r 

XCk', μ-gk', μ'1ΐ'μ(0, Φ) 
r 

-ik'ct ), (A20) 
2m / 

where 
(m"2/2m)+hk'c= hkc+E0. 

The quantity, is proportioned to the matrix 
element for a transition in which the k, μ-radiation 
oscillator falls from the first excited state, to the ground 
state, while the k', μ'-oscillator rises from the ground 
state to the first excited state. This matrix element is 
determined mainly by the term (e2/8mc2)yl2(x) in the 
hamiltonian. 

It is easily seen that the outgoing electron packet 
eventually becomes completely separated both from 
the initial wave field, Ψ,(χ, · · ·?^μ· · ·)> and from the 
packet for the photoelectric effect, S1Jr

0 [defined in Eq. 
(A19)3- If the electron should happen to enter this 
packet, then the others can be ignored, and the system 
acts for all practical purposes like an outgoing electron, 
plus an independent outgoing light quantum. The 
reader will readily verify that the probability that the 
light quantum k', μ' appears along with an electron 
with angles θ, φ is precisely the same as in the usual 
interpretation. 

APPENDIX B. A DISCUSSION OF INTERPRETATIONS 
OF THE QUANTUM THEORY PROPOSED 

BY DE BROGUE AND ROSEN 

After this article had been prepared, the author's 
attention was called to two papers in which an inter
pretation of the quantum theory similar to that sug

gested here was proposed, first by L. de Broglie,9 and 
later by N. Rosen.10 In both of these papers, it was 
suggested that if one writes \f/=Rexp(is/h), then one 
can regard R2 as a probability density of particles 
having a velocity, v=Vs/m. De Broglie regarded the 
Afield as an agent "guiding" the particle, and therefore 
referred to φ as a "pilot wave." Both of these authors 
came to the conclusion that this interpretation could 
not consistently be carried through in those cases in 
which the field contained a linear combination of sta
tionary state wave functions. As we shall see in this 
appendix, however, the difficulties encountered by the 
above authors could have been overcome by them, if 
only they had carried their ideas to a logical conclusion. 

De Broglie's suggestions met strong objections on the 
part of Pauli,11 in connection with the problem of 
inelastic scattering of a particle by a rigid rotator. 
Since this problem is conceptually equivalent to that of 
inelastic scattering of a particle by a hydrogen atom, 
which we have already treated in Paper I, Sec. 7, we 
shall discuss the objections raised by Pauli in terms of 
the latter example. 

Now, according to Pauli's argument, the initial 
wave function in the scattering problem should be 
Ψ = exp(ipo - y/ϋ)ψί,(χ)· This corresponds to a stationary 
state for the combined system, in which the particle 
momentum is p0, while the hydrogen atom is in its 
ground state, with a wave function, ψ0(χ)· After inter
action between the incident particle and the hydrogen 
atom, the combined wave function can be represented as 

Φ=Σ» fn{y)in{x), (Bi) 

where (x) is the wave function for the nth excited 
state of the hydrogen atom, and /„(y) is the associated 
expansion coefficient It is easily shown12 that asym
ptotically, /„(y) takes the form of an outgoing wave, 
/n(y)~&n(0) <t>)elknr/r, where {Winf/lm= [(M0)2/2?»] 
+£„—Eo- Now, if we \vrite ψ=R exp(iS/h), we find 
that the particle momenta, px=VxS(x, y) and p„ 
= VyS(x, y), fluctuate violently in a way that depends 
strongly on the position of each particle. Thus, neither 
atom nor the outgoing particle ever seem to approach 
a stationary energy. On the other hand, we know from 
experiment that both the atom and the outgoing particle 
do eventually obtain definite (but presumably unpre
dictable) energy values. Pauli therefore concluded that 
the interpretation proposed by de Broglie was un
tenable. De Broglie seems to have agreed with the 
conclusion, since he subsequently gave up his suggested 
interpretation.9 

9 L. de Broglie, An Introduction to the Study of Wave Mechanics 
(E. P. Dutton and Company, Inc., New York, 1930), see Chapters 
6, 9, and 10. 

10 N. Rosen, J. Elisha Mitchel Sci. Soc. 61, Nos. 1 and 2 (August, 
1945). 

11 Reports on the 1927 Solvay Congress (Gauthiers-Villars et Cie., 
Paris, 1928), see p. 280. 

12N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Clarendon Press, Oxford, 1933). 
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Our answer to Pauli's objection is already contained 
in Paper I, Sec. 7, as well as in Sec. 2 of this paper. 
For as is well known, the use of an incident plane 
wave of infinite extent is an excessive abstraction, not 
realizable in practice. Actually, both the incident and 
outgoing parts of the ψ-field will always take the form 
of bounded packets. Moreover, as shown in Paper I, 
Sec. 7, all packets corresponding to different values of 
η will ultimately obtain classically describable separa
tions. The outgoing particle must enter one of these 
packets, and it will remain with that particular packet 
thereafter, leaving the hydrogen atom in a definite but 
correlated stationary state. Thus, Pauli's objection is 
seen to be based on the use of the excessively abstract 
model of an infinite plane wave 

Although the above constitutes a complete answer to 
Pauli's specific objections to our suggested interpreta
tion, we wish here to amplify our discussion somewhat, 
in order to anticipate certain additional objections 
that might be made along similar lines. For at this 
point, one might argue that even though the wave 
packet is bounded, it can nevertheless in principle be 
made arbitrarily large in extent by means of a suitable 
adjustment of initial conditions. Our interpretation 
predicts that in the region in which incident and 
outgoing ψ-waves overlap, the momentum of each 
particle will fluctuate violently, as a result of corre
sponding fluctuations in the "quantum-mechanical" 
potential produced by the ψ-field. The question arises, 
however, as to whether such fluctuations can really be 
in accord with experimental fact, especially since in 
principle they could occur when the particles were 
separated by distances much greater than that over 
which the "classical" interaction potential, F(x, y), 
was appreciable. 

To show that these fluctuations are not in disagree
ment with any experimental facts now available, we 
first point out that even in the usual interpretation the 
energy of each particle cannot correctly be regarded as 
definite under the conditions which are assumed here, 
namely, that the incident and outgoing wave packets 
overlap. For as long as interference between two sta
tionary state wave function is possible, the system acts 
as if it, in some sense, covered both states simultane
ously.13 In such a situation, the usual interpretation 
implies that a precisely defined value for the energy of 
either particle is meaningless. From such a wave func
tion, one can predict only the probability that if the 
energy is measured, a definite value will be obtained. 
On the other hand, the very experimental conditions 
needed for measuring the energy play a key role in 
making a definite value of the energy possible because 
the effect of the measuring apparatus is to destroy 
interference between parts of the wave function corre
sponding to different values of the energy.14 

13 Reference 2, Chapter 16, Sec. 25. 
" Reference 2, Chapter 6, Sees. 3 to 8; Chapter 22, Sees. 8 to 10. 

In our interpretation, the overlap of incident and 
outgoing wave packets signifies not that the precise 
value of the energy of either particle can be given no 
meaning, but rather that this value fluctuates violently 
in an, in practice, unpredictable and uncontrollable way. 
When the energy of either particle is measured, how
ever, then our interpretation predicts, in agreement 
with the usual interpretation, that the energy of each 
particle will become definite and constant, as a result 
of the effects of the energy-measuring apparatus on the 
observed system. To show how this happens, let us 
suppose that the energy of the hydrogen atom is 
measured by means of an interaction in which the 
"classical" potential, V, is a function only of the vari
ables associated with the electron in the hydrogen atom 
and with the apparatus, but is not a function of vari
ables associated with the outgoing particle. Let ζ be 
the coordinate of the measuring apparatus. Then as 
shown in Sec. 2, interaction with an apparatus that 
measures the energy of the hydrogen atom will trans
form the Φ-function (Bi), into 

^=T.nfn{y)^n{^)ga{z-aEnt/¥). (B2) 

Now, we have seen that if the product at is large enough 
to make a distinct measurement possible, packets 
corresponding to different values of η will ultimately 
obtain classically describable separations in ζ space. 
The apparatus variable, z, must enter one of these 
packets; and, thereafter, all other packets can for 
practical purposes be ignored. The hydrogen atom is 
then left in a state having a definite and constant 
energy, while the outgoing particle has a correspond
ingly definite but correlated constant value for its 
energy. Thus, we find that as with the usual interpre
tation, our interpretation predicts that whenever we 
measure the energy of either particle by methods that 
are now available, a definite and constant value will 
always be obtained. Nevertheless, under conditions in 
which incident and outgoing wave packets overlap, and 
in which neither particle interacts with an energy-
measuring device, our interpretation states unambigu
ously that real fluctuations in the energy of each particle 
will occur. These fluctuations are moreover, at least in 
principle, observable (for example, by methods dis
cussed in Sec. 6). Meanwhile, under conditions in 
which we are limited by present methods of observation, 
our interpretation leads to predictions that are precisely 
the same as those obtained from the usual interpreta
tion, so that no experiments supporting the usual 
interpretation can possibly contradict our interpreta

tion. 
In his book,8 de Broglie raises objections to his own 

suggested interpretation of the quantum theory, which 
are very similar to those raised by Pauli. It is therefore 
not necessary to answer de Broglie's objections in 
detail here, since the answer is essentially the same as 
that which has been given to Pauli. We wish, however, 
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to add one point. De Broglie assumes that not only-
electrons, but also light quanta, are associated with 
particles. A consistent application of the interpretation 
suggested here requires, however, as shown in Appendix 
A, that light quanta be described as electromagnetic 
wave packets. The only precisely definable quantities 
in such a packet are the Fourier components, μ, of the 
vector potential and the corresponding canonically 
conjugate momenta, IJkit,. Such packets have many 
particle-like properties, including the ability to transfer 
rapidly a full quantum of energy at great distances. 
Nevertheless, it would not be consistent to assume the 
existence of a "photon" particle, associated with each 
light quantum. 

We shall now discuss Rosen's paper briefly.10 Rosen 
gave up his suggested interpretation of the quantum 
theory, because of difficulties arising in connection with 
the interpretation of standing waves. In the case of the 
stationary states of a free particle in a box, which we 
have already discussed in Sec. 8, our interpretation 
leads to the conclusion that the particle is standing 
still. Rosen did not wish to accept this conclusion, 

because it seemed to disagree with the statement of the 
usual interpretation that in such a state the electron is 
moving with equal probability that the motion is in 
either direction. To answer Rosen's objections, we need 
merely point out again that the usual interpretation 
can give no meaning to the motion of particles in a 
stationary state; at best, it can only predict the prob
ability that a given result will be obtained, if the 
velocity is measured. As we saw in Sec. 8, however, our 
interpretation leads to precisely the same predictions 
as are obtained from the usual interpretation, for any 
process which could actually provide us with a meas
urement of the velocity of the electron. One must 
remember, however, that the value of the momentum 
"observable" as it is now "measured" is not necessarily 
equal to the particle momentum existing before inter
action with the measuring apparatus took place. 

We conclude that the objections raised by Pauli, 
de Broglie, and Rosen, to interpretations of the quan
tum theory similar to that suggested here, can all be 
answered by carrying every aspect of our suggested 
interpretation to its logical conclusion. 



III.4 ON THE PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS* 

JOHN S. BELLI 

The demonstrations of von Neumann and others, that quantum mechanics does not permit a hidden variable inter
pretation, are reconsidered. It is shown that their essential axioms are unreasonable. It is urged that in further examination 
of this problem an interesting axiom would be that mutually distant systems are independent of one another. 

I. INTRODUCTION 

To know the quantum mechanical state of a system 
implies, in general, only statistical restrictions on the 
results of measurements. It seems interesting to ask 
if this statistical element be thought of as arising, as 
in classical statistical mechanics, because the states in 
question are averages over better defined states for 
which individually the results would be quite deter
mined. These hypothetical "dispersion free" states 
would be specified not only by the quantum mechanical 
state vector but also by additional "hidden variables"— 
"hidden" because if states with prescribed values of 
these variables could actually be prepared, quantum 
mechanics would be observably inadequate. 

Whether this question is indeed interesting has been 
the subject of debate.1,2 The present paper does not 
contribute to that debate. It is addressed to those who 
do find the question interesting, and more particularly 
to those among them who believe that3 "the question 
concerning the existence of such hidden variables re
ceived an early and rather decisive answer in the form 
of von Neumann's proof on the mathematical impos
sibility of such variables in quantum theory." An at
tempt will be made to clarify what von Neumann and 
his successors actually demonstrated. This will cover, as 
well as von Neumann's treatment, the recent version 
of the argument by Jauch and Piron,3 and the stronger 

* Work supported by U.S. Atomic Energy Commission. 
f Permanent address: CERN, Geneva. 
1 The following works contain discussions of and references 

on the hidden variable problem: L. de Broglie, Physicien et 
Penseur (Albin Michel, Paris, 1953); W. Heisenberg, in Niels 
Bohr and the Development of Physics, W. Pauli, Ed. (McGraw-Hill 
Book Co., Inc., New York, and Pergamon Press, Ltd., London, 
1955); Observation and Interpretation, S. Korner, Ed. (Academic 
Press Inc., New York, and Butterworths Scientific Publ., Ltd., 
London, 1957); N. R. Hansen, The Concept of the Positron (Cam
bridge University Press, Cambridge, England, 1963). See also 
the various works by D. Bohm cited later, and Bell and Nauen-
berg.8 For the view that the possibility of hidden variables has 
little interest, see especially the contributions of Rosenfeld to the 
first and third of these references, of Pauli to the first, the article 
of Heisenberg, and many passages in Hansen. 

2 A. Einstein, Philosopher Scientist, P. A. Schilp, Ed. (Library 
of Living Philosophers, Evanston, 111., 1949). Einstein's "Auto
biographical Notes" and "Reply to Critics'' suggest that the 
hidden variable problem has some interest. 

3J. M. Jauch and C. Piron, Helv Phys. Acta 36, 827 (1963). 

result consequent on the work of Gleason.4 It will be 
urged that these analyses leave the real question un
touched. In fact it will be seen that these demonstra
tions require from the hypothetical dispersion free 
states, not only that appropriate ensembles thereof 
should have all measurable properties of quantum 
mechanical states, but certain other properties as well. 
These additional demands appear reasonable when re
sults of measurement are loosely identified with prop
erties of isolated systems. They are seen to be quite 
unreasonable when one remembers with Bohr5 "the 
impossibility of any sharp distinction between the 
behavior of atomic objects and the interaction with 
the measuring instruments which serve to define the 
conditions under which the phenomena appear." 

The realization that von Neumann's proof is of 
limited relevance has been gaining ground since the 
1952 work of Bohm.6 However, it is far from universal. 
Moreover, the writer has not found in the literature 
any adequate analysis of what went wrong.7 Like all 
authors of noncommissioned reviews, he thinks that 
he can restate the position with such clarity and sim
plicity that all previous discussions will be eclipsed. 

II. ASSUMPTIONS, AND A SIMPLE EXAMPLE 

The authors of the demonstrations to be reviewed 
were concerned to assume as little as possible about 
quantum mechanics. This is valuable for some purposes, 
but not for ours. We are interested only in the possi
bility of hidden variables in ordinary quantum me-

1A. M. Gleason, J. Math. & Mech. 6, 885 (1957). I am much 
indebted to Professor Jauch for drawing my attention to this 
work. 

s N. Bohr, in Ref. 2. 
6 D. Bohm1 Phys. Rev. 85, 166, 180 (1952). 
1 In particular the analysis of Bohm6 seems to lack clarity, 

or else accuracy. He fully emphasizes the role of the experimental 
arrangement. However, it seems to be implied (Ref. 6, p. 187) 
that the circumvention of the theorem requires the association 
of hidden variables with the apparatus as well as with the system 
observed. The scheme of Sec. II is a counter example to this. 
Moreover, it will be seen in Sec. Ill that if the essential additivity 
assumption of von Neumann were granted, hidden variables 
wherever located would not avail. Bohin's further remarks in 
Ref. 16 (p. 95) and Ref. 17 (p. 358) are also unconvincing 
Other critiques of the theorem are cited, and some of them 
rebutted, bv Albertson [J. Albertson, Am. J. Phys. 29, 478 
(1961)]. 

Originally published in Reviews of Modern Physics, 38, 447-52 (1966). 
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chanics and will use freely all the usual notions. Thereby 
the demonstrations will be substantially shortened. 

A quantum mechanical "system" is supposed to 
have "observables" represented by Hermitian opera
tors in a complex linear vector space. Every "measure
ment" of an observable yields one of the eigenvalues 
of the corresponding operator. Observables with com
muting operators can be measured simultaneously.8 A 
quantum mechanical "state" is represented by a vector 
in the linear state space. For a state vector φ the statis
tical expectation value of an observable with operator 
O is the normalized inner product (φ, Οφ)/(φ, φ). 

The question at issue is whether the quantum me
chanical states can be regarded as ensembles of states 
further specified by additional variables, such that 
given values of these variables together with the state 
vector determine precisely the results of individual 
measurements. These hypothetical well-specified states 
are said to be "dispersion free." 

In the following discussion it will be useful to keep 
in mind as a simple example a system with a two-
dimensional state space. Consider for definiteness a 
spin -¾ particle without translational motion. A 
quantum mechanical state is represented by a two-
component state vector, or spinor, φ. The observables 
are represented by 2 X 2 Hermitian matrices 

«+(5-d, (1) 

where a is a real number, 3 a real vector, and d has for 
components the Pauli matrices; a is understood to mul
tiply the unit matrix. Measurement of such an observ
able yields one of the eigenvalues. 

a±| 5 I, (2) 

with relative probabilities that can be inferred from 
the expectation value 

(a+(3-d) = (ψ, [α+ί?·(ί]ι/'). 

For this system a hidden variable scheme can be sup
plied as follows: The dispersion free states are specified 
by a real number X, in the interval — |<X<|, as well 
as the spinor ψ. To describe how λ determines which 
eigenvalue the measurement gives, we note that by a 
rotation of coordinates φ can be brought to the form 

' -Q-

8 Recent papers on the measurement process in quantum 
mechanics, with further references, are: E. P. Wigner, Am. J. 
Phys. 31,6 (1963); A. Shimonyj ibid. 31, 755 (1963); J. M. Jauch, 
Helv. Phys. Acta 37, 293 (1964); B. d'Espagnat, Conceptions 
de la physique conlemporaine (Hermann & Cie., Paris, 1965); 
J. S. Bell and M. Nauenberg, in Preludes in Theoretical Physics, 
In Honor of V. Weisskopf (North-Holland Publishing Company, 
Amsterdam, 1966). 

Let β„ ft,, 02, be the components of (5 in the new co
ordinate system. Then measurement of α+(5·ό on the 
state specified by φ and X results with certainty in the 

eigenvalue 

α+| β I sign (λ I 3 I-H ! ft I) sign x, (3) 

where 

Χ=β, if ft^O 

= βχ if /Si=0, ft^O 

= ft, if βz=0, and βχ=0 

and 

sign X=+1 if X>0 

= -1 ifX<0. 

The quantum mechanical state specified by φ is ob
tained by uniform averaging over λ. This gives the 
expectation value 

(a+(5· d) 

= J <fX|a+1 β I sign (λ | (5 | + i | βζ |) sign Χ] = a+ft 

as required. 
It should be stressed that no physical significance is 

attributed here to the parameter X and that no pretence 
is made of giving a complete reinterpretation of quan
tum mechanics. The sole aim is to show that at the level 
considered by von Neumann such a reinterpretation 
is not excluded. A complete theory would require for 
example an account of the behavior of the hidden vari
ables during the measurement process itself. With or 
without hidden variables the analysis of the measure
ment process presents peculiar difficulties,8 and we 
enter upon it no more than is strictly necessary for our 
very limited purpose. 

III. VON NEUMANN 

Consider now the proof of von Neumann9 that dis
persion free states, and so hidden variables, are im
possible. His essential assumption10 is: Any real linear 
combination oj any two Hermitian operators represents 
an observable, and the same linear combination oj expecta-

9 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Julius Springer-Verlag, Berlin, 1932) [English transl.: 
Princeton University Press, Princeton, N.J., 1955]. All page 
numbers quoted are those of the English edition. The problem 
is posed in the preface, and on p. 209. The formal proof occupies 
essentially pp. 305-324 and is followed by several pages of com
mentary. A self-contained exposition of the proof has been pre
sented by J. Albertson (see Ref. 7). 

10This is contained in von Neumann's B' (p. 311), 1 (p. 313), 
and 11 (p. 314). 
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Hon values is the expectation value oj the combination. 
This is true for quantum mechanical states; it is re
quired by von Neumann of the hypothetical dispersion 
free states also. In the two-dimensional example of 
Sec. II, the expectation value must then be a linear 
function of a and (5. But for a dispersion free state 
(which has no statistical character) the expectation 
value of an observable must equal one of its eigenvalues. 
The eigenvalues (2) are certainly not linear in (3· There
fore, dispersion free states are impossible. If the state 
space has more dimensions, we can always consider a 
two-dimensional subspace; therefore, the demonstration 
is quite general. 

The essential assumption can be criticized as follows. 
At first sight the required additivity of expectation 
values seems very reasonable, and it is rather the non-
additivity of allowed values (eigenvalues) which re
quires explanation. Of course the explanation is well 
known: A measurement of a sum of noncommuting 
observables cannot be made by combining trivially the 
results of separate observations on the two terms—it 
requires a quite distinct experiment. For example the 
measurement of σχ for a magnetic particle might be 
made with a suitably oriented Stern Gerlach magnet. 
The measurement of σν would require a different orien
tation, and of (tfj+ffj,) a third and different orientation. 
But this explanation of the nonadditivity of allowed 
values also establishes the nontriviality of the additivity 
of expectation values. The latter is a quite peculiar 
property of quantum mechanical states, not to be ex
pected a priori. There is no reason to demand it in
dividually of the hypothetical dispersion free states, 
whose function it is to reproduce the measurable peculi
arities of quantum mechanics when averaged over. 

In the trivial example of Sec. II the dispersion free 
states (specified λ) have additive expectation values 
only for commuting operators. Nevertheless, they give 
logically consistent and precise predictions for the re
sults of all possible measurements, which when averaged 
over λ are fully equivalent to the quantum mechanical 
predictions. In fact, for this trivial example, the hidden 
variable question as posed informally by von Neumann11 

in his book is answered in the affirmative. 
Thus the formal proof of von Neumann does not 

justify his informal conclusion12: "It is therefore not, 
as is often assumed, a question of reinterpretation of 
quantum mechanics—the present system of quantum 
mechanics would have to be objectively false in order 
that another description of the elementary process than 
the statistical one be possible." It was not the objective 
measurable predictions of quantum mechanics which 
ruled out hidden variables. It was the arbitrary as
sumption of a particular (and impossible) relation 
between the results of incompatible measurements 

11 Reference 9, p. 209. 
12 Reference 9, p. 325. 

either of which might be made on a given occasion but 
only one of which can in fact be made. 

IV. JAUCH AND PIRON 

A new version of the argument has been given by 
Jauch and Piron.3 Like von Neumann they are in
terested in generalized forms of quantum mechanics 
and do not assume the usual connection of quantum 
mechanical expectation values with state vectors and 
operators. We assume the latter and shorten the argu
ment, for we are concerned here only with possible 
interpretations of ordinary quantum mechanics. 

Consider only observables represented by projection 
operators. The eigenvalues of projection operators are 
O and 1. Their expectation values are equal to the prob
abilities that 1 rather than O is the result of measure
ment. For any two projection operators, a and b, a third 
(οίΐδ) is defined as the projection on to the intersection 
of the corresponding subspaces. The essential axioms 
of Jauch and Piron are the following: 

(A) Expectation values of commuting projection 
operators are additive. 

(B) If, for some state and two projections a and b, 

(a)=(b)= 1, 

then for that state 
(.afib)= 1. 

Jauch and Piron are led to this last axiom (4° in 
their numbering) by an analogy with the calculus of 
propositions in ordinary logic. The projections are to 
some extent analogous to logical propositions, with the 
allowed value 1 corresponding to "truth" and O to 
"falsehood," and the construction (afli) to (a "and" b) 
In logic we have, of course, if a is true and b is true then 
(a and b) is true. The axiom has this same structure. 

Now we can quickly rule out dispersion free states 
by considering a 2-dimensional subspace. In that the 
projection operators are the zero, the unit operator, 
and those of the form 

l+Jfi-d, 

where & is a unit vector. In a dispersion free state the 
expectation value of an operator must be one of its 
eigenvalues, O or 1 for projections. Since from A 

(2+2 <*" <*)+ (½ = 1, 

we have that for a dispersion free state either 

(J+|fi-d)=l 01- (£-£ά·ί)=1. 

Let α and (3 be any noncollinear unit vectors and 

5, 

with the signs chosen so that (¢)=(5)=1. Then B 
requires 

(αίΐδ)= 1. 
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But with and noncollinear, one readily sees tha t 

so tha t 

So there can be no dispersion free states. 
The objection to this is the same as before. We are not 

dealing in B with logical propositions, bu t with measure-
ments involving, for example, differently oriented mag-
nets. The axiom holds for quan tum mechanical states.1 ' 
Bu t it is a quite peculiar proper ty of them, in no way 
a necessity of thought. Only the quan tum mechanical 
averages over the dispersion free states need reproduce 
this property, as in the example of Sec. I I . 

V. GLEASON 

T h e remarkable mathematical work of Gleason4 was 
not explicitly addressed to the hidden variable problem. 
I t was directed to reducing the axiomatic basis of 
quan tum mechanics. However, as it apparent ly enables 
von Neumann ' s result to be obtained without objection-
able assumptions about noncommuting operators, we 
mus t clearly consider it. T h e relevant corollary of 
Gleason's work is that , if the dimensionality of the 
s ta te space is greater than two, the addit ivi ty require-
ment for expectation values of commuting operators 
cannot be met by dispersion free states. This will now 
be proved, and then its significance discussed. I t should 
be stressed tha t Gleason obtained more than this, by 
a lengthier argument , bu t this is all tha t is essential 
here. 

I t suffices to consider projection operators. Let 
be the projector on to the Hilbert space vector i.e., 
acting on any vector 

If a set are complete and orthogonal, 

Since the commute, by hypothesis then 
(4) 

Since the expectation value of a projector is nonnega-
tive (each measurement yields one of the allowed values 
0 or 1), and since any two orthogonal vectors can be 
regarded as members of a complete set, we have: 

(A) If with some vector for a given 
state, then for tha t s ta te for any orthog-
onal on 

13 In the two-dimensional case (for some quantum 
mechanical state) is possible only if the two projectois are identical 

. Then and 

If and are another orthogonal basis for the 
subspace spanned by some vectors and then 
from (4) 

or 

Since may be any combination of and we have: 

(B) If for a given s ta te 

for some pair of orthogonal vectors, then 

for all and 

(A) and (B) will now be used repeatedly to establish 
the following. Let and be some vectors such tha t 
for a given state 

(5) (6) 

Then and cannot be arbitrarily close; in fact 

(7) 

To see this let us normalize \p and write in the form 

where is orthogonal to ' and normalized and e is a 
real number. Let , be a normalized vector orthogonal 
to both and (it is here tha t we need three dimen-
sions a t least) and so to By (A) and (S), 
Then by (B) and (6) , 
where is any real number, and also by (B) , 

The vector arguments in the last two formulas are 
orthogonal; so we may add them, again using ( B ) : 

= 0. 

Now if is less than J , there are real y such tha t 

Therefore, 

The vectors are orthogonal; adding them and 
again using (B) , 
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This contradicts the assumption (5). Therefore, 

<>i 

as announced in (7). 
Consider now the possibility of dispersion free states. 

For such states each projector has expectation value 
either 0 or 1. It is clear from (4) that both values must 
occur, and since there are no other values possible, 
there must be arbitrarily close pairs ψ, Φ with different 
expectation values 0 and 1, respectively. But we saw-
above such pairs could not be arbitrarily close. There
fore, there are no dispersion free states. 

That so much follows from such apparently innocent 
assumptions leads us to question their innocence. Are 
the requirements imposed, which are satisfied by 
quantum mechanical states, reasonable requirements 
on the dispersion free states? Indeed they are not. 
Consider the statement (B). The operator Ρ(αΦι+/3Φ2) 
commutes with Ρ(Φι) and P(Φ2) only if either a or /3 
is zero. Thus in general measurement of Ρ(αΦι+/3Φ2) 
requires a quite distinct experimental arrangement. 
We can therefore reject (B) on the grounds already 
used: it relates in a nontrivial way the results of ex
periments which cannot be performed simultaneously; 
the dispersion free states need not have this property, 
it will suffice if the quantum mechanical averages over 
them do. How did it come about that (B) was a con
sequence of assumptions in which only commuting 
operators were explicitly mentioned? The danger in 
fact was not in the explicit but in the implicit assump
tions. It was tacitly assumed that measurement of an 
observable must yield the same value independently 
of what other measurements may be made simultane
ously. Thus as well as Ρ(Φ3) say, one might measure 
either P( Φ2) or P(^2), where Φ2 and ψ2 are orthogonal 
to Φ3 but not to one another. These different possibilities 
require different experimental arrangements; there is 
no a priori reason to believe that the results for P( Φ3) 
should be the same. The result of an observation may 
reasonably depend not only on the state of the system 
(including hidden variables) but also on the complete 
disposition of the apparatus; see again the quotation 
from Bohr at the end of Sec. I. 

To illustrate these remarks, we construct a very 
artificial but simple hidden variable decomposition. 
If we regard all observables as functions of commuting 
projectors, it will suffice to consider measurements 
of the latter. Let P1, P2, • · · be the set of projectors 
measured by a given apparatus, and for a given quan
tum mechanical state let their expectation values be 
λι, λ2—Χι, X3-X2, ···. As hidden variable we take a 
real number 0<X<1; we specify that measurement 
on a state with given X yields the value 1 for Pn if 
X„_i<X<Xn, and zero otherwise. The quantum me
chanical state is obtained by uniform averaging over 
X. There is no contradiction with Gleason's corollary, 
because the result for a given Pn depends also on the 

choice of the others. Of course it would be silly to let 
the result be affected by a mere permutation of the 
other P's, so we specify that the same order is taken 
(however defined) when the P's are in fact the same 
set. Reflection will deepen the initial impression of 
artificiality here. However, the example suffices to 
show that the implicit assumption of the impossibility 
proof was essential to its conclusion. A more serious 
hidden variable decomposition will be taken up in 
Sec. VI.14 

VI. LOCALITY AND SEPARABILITY 

Up till now we have been resisting arbitrary demands 
upon the hypothetical dispersion free states. However, 
as well as reproducing quantum mechanics on averag
ing, there are features which can reasonably be desired 
in a hidden variable scheme. The hidden variables 
should surely have some spacial significance and should 
evolve in time according to prescribed laws. These are 
prejudices, but it is just this possibility of interpolating 
some (preferably causal) space-time picture, between 
preparation of and measurements on states, that makes 
the quest for hidden variables interesting to the un
sophisticated.2 The ideas of space, time, and causality 
are not prominent in the kind of discussion we have 
been considering above. To the writer's knowledge the 
most successful attempt in that direction is the 1952 
scheme of Bohm for elementary wave mechanics. By 
way of conclusion, this will be sketched briefly, and 
a curious feature of it stressed. 

Consider for example a system of two spin — | par
ticles. The quantum mechanical state is represented by 
a wave function, 

1) rV), 

where i andj are spin indices which will be suppressed. 
This is governed by the Schrodinger equation, 

θφ/dt= -i(- Wdr1
2)- ( d 2 / d i f ) + V( T 1 - I i )  

-f-adrH(ri)-f ΖΚ}2·Η(Γ2))ι/<, (8) 

where V is the interparticle potential. For simplicity 
we have taken neutral particles with magnetic mo
ments, and an external magnetic field H has been al
lowed to represent spin analyzing magnets. The hidden 
variables are then two vectors Xi and X2, which give 
directly the results of position measurements. Other 
measurements are reduced ultimately to position meas
urements.15 For example, measurement of a spin com
ponent means observing whether the particle emerges 
with an upward or downward deflection from a Stern-

14 The simplest example for illustrating the discussion of Sec. V 
would then be a particle of spin 1, postulating a sufficient variety 
of spin-external-field interactions to permit arbitrary complete 
sets of spin states to be spacially separated. 

15There are clearly enough measurements to be interesting 
that can be made in this way. VVe will not consider whether there 
are others. 
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Gerlach magnet. The variables and are supposed 
to be distributed in configuration space with the prob-
ability density, 

appropriate to the quantum mechanical state. Con-
sistently, with this Xi and are supposed to vary with 
time according to 

(9) 

The curious feature is that the trajectory equations 
(9) for the hidden variables have in general a grossly 
nonlocal character. If the wave function is factorable 
before the analyzing fields become effective (the par-
ticles being far apart) , 

this factorability will be pieserved. Equations (8) then 
reduce to 

The Schrodinger equation (8) also separates, and the 
trajectories of Xi and are determined separately by 
equations involving and H(Xj), respectively. 
However, in general, the wave function is not factorable. 
The trajectory of 1 then depends in a complicated way 
on the trajectory and wave function of 2, and so on the 

analyzing fields acting on 2—however remote these 
may be from particle 1. So in this theory an explicit 
causal mechanism exists whereby the disposition of 
one piece of apparatus affects the results obtained 
with a distant piece. In fact the Einstein-Podolskv-
Rosen paradox is resolved in the way which Einstein 
would have liked least (Ref. 2, p. 85). 

More generally, the hidden variable account of a 
given system becomes entirely different when we re-
member that it has undoubtedly interacted with nu-
merous other systems in the past and that the total 
wave function will certainly not be factorable. The 
same effect complicates the hidden variable account 
of the theory of measurement, when it is desired to 
include part of the "apparatus" in the system. 

Bohm of course was well aware6'16^18 of these features 
of his scheme, and has given them much attention. 
However, it must be stressed that, to the present 
writer's knowledge, there is no proof that any hidden 
variable account of quantum mechanics must have this 
extraordinary character.19 I t would therefore be in-
teresting, perhaps,1 to pursue some further "impossi-
bility proofs," replacing the arbitrary axioms objected 
to above by some condition of locality, or of separability 
of distant systems. 
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III. 5 ON THE EINSTEIN PODOLSKY ROSEN PARADOX* 

JOHN S. BELLI 

I. Introduction 

THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics 

could not be a complete theory but should be supplemented by additional variables. These additional vari

ables were to restore to the theory causality and locality [2]. In this note that idea will be formulated 

mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is 

the requirement of locality, or more precisely that the result of a measurement on one system be unaffected 

by operations on a distant system with which it has interacted in the past, that creates the essential dif

ficulty. There have been attempts 13] to show that even without such a separability or locality require

ment no "hidden variable" interpretation of quantum mechanics is possible. These attempts have been 

examined elsewhere [4] and found wanting. Moreover, a hidden variable interpretation of elementary quan

tum theory [5] has been explicitly constructed. That particular interpretation has indeed a grossly non

local structure. This is characteristic, according to the result to be proved here, of any such theory which 

reproduces exactly the quantum mechanical predictions. 

I I .  Formulation 

With the example advocated by Bohm and Aharonov [6]. the EPR argument is the following. Consider 

a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite 

directions. Measurements can be made, say by Stern-Gerlach magnets, on selected components of the 

spins CT1 and CT2 . If measurement of the component O1 • 2, where a is some unit vector, yields the value 

+ 1 then, according to quantum mechanics, measurement of σ2  · 3 must yield the value -1 and vice versa. 

Now we make the hypothesis [2], and it seems one at least worth considering, that if the two measure

ments are made at places remote from one another the orientation of one magnet does not influence the 

result obtained with the other. Since we can predict in advance the result of measuring any chosen compo

nent of CT2 , by previously measuring the same component of CT1 , it follows that the result of any such 

measurement must actually be predetermined. Since the initial quantum mechanical wave function does not 

determine the result of an individual measurement, this predetermination implies the possibility of a more 

complete specification of the state. 

Let this more complete specification be effected by means of parameters λ. It is a matter of indiffer

ence in the following whether λ denotes a single variable or a set, or even a set of functions, and whether 

the variables are discrete or continuous. However, we write as if λ were a single continuous parameter. 

The result A of measuring CT1-S is then determined by 3 and λ, and the result B of measuring CT2-S in the 

same instance is determined by 2 and λ, and 

•Work supported in part by the U.S. Atomic Energy Commission 
*On leave of absence from SLAC and CERN 

Originally published in Physics, 1, 195-200 (1964). 
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Λ (a, λ) = +1, B(t, λ) = ±1. (1) 

The vital assumption [2] is that the result B for particle 2 does not depend on the setting a, of the magnet 
for particle 1, nor A on 2. 

If ρ  ( X )  is the probability distribution of λ then the expectation value of the product of the two com
ponents CT1. a and σ2·2 is 

P ( a ,  S) = J d X p ( X ) A C a ,  λ)5(¾,λ) (2) 

This should equal the quantum mechanical expectation value, which for the singlet state is 

< σ1 • a (T2' S > = — a · S . (3) 

But it will be shown that this is not possible. 
Some might prefer a formulation in which the hidden variables fall into two sets, with A dependent on 

one and B on the other; this possibility is contained in the above, since λ stands for any number of vari
ables and the dependences thereon of A and B are unrestricted. In a complete physical theory of the 
type envisaged by Einstein, the hidden variables would have dynamical significance and laws of motion; 
our λ can then be thought of as initial values of these variables at some suitable instant. 

III. Illustration 

The proof of the main result is quite simple. Before giving it, however, a number of illustrations may 
serve to put it in perspective. 

Firstly, there is no difficulty in giving a hidden variable account of spin measurements on a single 
particle. Suppose we have a spin half particle in a pure spin state with polarization denoted by a unit 
vector p. Let the hidden variable be (for example) a unit vector λ with uniform probability distribution 
over the hemisphere X · ρ > 0. Specify that the result of measurement of a component σ • a is 

sign X •  a '  ,  (4) 

where a' is a unit vector depending on a and ρ in a way to be specified, and the sign function is + 1 or 
-1 according to the sign of its argument. Actually this leaves the result undetermined when λ · a = 
but as the probability of this is zero we will not make special prescriptions for it. Averaging over λ the 
expectation value is 

<  σ  ·  a  >  =  1 -  2 θ ' / π  , (5) 

where Θ '  is the angle between a' and ρ . Suppose then that a' is obtained from a by rotation towards ρ 
until 

1 _ 1®! = cos θ  (6) 
π  

where θ  is the angle between a  and p. Then we have the desired result 

< σ · a > = cos θ  (7) 

So in this simple case there is no difficulty in the view that the result of every measurement is determined 
by the value of an extra variable, and that the statistical features of quantum mechanics arise because the 

. value of this variable is unknown in individual instances. 
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Secondly, there is no difficulty in reproducing, in the form (2), the only features of (3) commonly used 

in verbal discussions of this problem: 

P(a, a) = - P(a, -a) =  - 1  

P(a, £) = 0 if a · S = 0 

For example, let λ now be unit vector λ, with uniform probability distribution over all directions, and take 

A(a, λ) = sign a · λ 

B (a, 6) = - sign £ · X 

This gives 

P(a, £ )  =  - 1  +  - 0 ,  ( 1 0 )  
π 

where θ is the angle between a and b, and (10) has the properties (8). For comparison, consider the re
sult of a modified theory [6] in which the pure singlet state is replaced in the course of time by an iso
tropic mixture of product states; this gives the correlation function 

- - a · £ (11) 
3 

It is probably less easy, experimentally, to distinguish (10) from (3), than (11) from (3). 
Unlike (3), the function (10) is not stationary at the minimum value - l(at θ = 0). It will be seen 

that this is characteristic of functions of type (2). 

Thirdly, and finallyi^there is no difficulty in reproducing the quantum mechanical correlation (3) if the 

results A and B in (2) are allowed to depend on £ and a respectively as well as on a and £. For ex
ample, replace a in (9) by a', obtained from a by rotation towards £ until 

1 - — θ' = cos θ , 
π 

where θ' is the angle between a' and £. However, for given values of the hidden variables, the results 
of measurements with one magnet now depend on the setting of the distant magnet, which is just what we 
would wish to avoid. 

IV. Contradiction 

The main result will now be proved. Because ρ is a normalized probability distribution, 

JdXp(X) = 1, (12) 

and because of the properties (1), P in (2) cannot be less than -1. It can reach -1 at a = £ only if 

A (a, λ) = -B (a, X) (13) 

except at a set of points λ of zero probability. Assuming this, (2) can be rewritten 

P(a, £) = -JdXp(X) A(t, X) A(t, X). 
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It follows that is another unit vector 

using (1), whence 
The second term on the right i s , whence (15) 
Unless P i s constant, the right hand side i s in general of order for small . Thus 
cannot be stationary at the minimum value and cannot equal the quantum mechanical 
value (3). 

Nor can the quantum mechanical correlation (3) be arbitrarily closely approximated by the form (2). 
The formal proof of this may be set out as follows. We would not worry about failure of the approximation 
at isolated points, so let us consider instead of (2) and (3) the functions 

where the bar denotesindependent averaging of and over vectors and within spec-
ified small angles of and Suppose that for all a and the difference is bounded by e : 

(16) 

Then it will be shown that t cannot be made arbitrarily small. 
Suppose that for all a and b 

Then from (16) 

From (2) 

where 

From (18) and (19), with 

From (19) 

(17) 

(18) 

(19) 

(20) 

(21) 
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Using (20) then 

I P(a, ?) -P(2, c) I < < 'A-(X) [1 + .4(3, λ) B(Z, λ)] 

+ Άρ(Α) [1 + A{1, λ) Bit, λ)] 

Then using (19) and 21) 

Ip(2, t )  - ρ(2, 3)| < ι + P ( l  3) + f - δ 

Finally, using (18), 

[ a - c - a ' 3 | - 2 ( f  +  S ) < l - S - c  +  2 ( i  +  5 )  

or 

4(t + δ) > I a  · c - a  ·  S  I +  %  ·  c  -  1 

Take for example a • c = 0, a · S = ? · c = 1/γ/2 Then 

4(t + δ) > sjl - 1 

(22) 

Therefore, for small finite δ, f cannot be arbitrarily small. 

Thus, the quantum mechanical expectation value cannot be represented, either accurately or arbitrar
ily closely, in the form (2). 

The example considered above has the advantage that it requires little imagination to envisage the 
measurements involved actually being made. In a more formal way, assuming [7] that any Hermitian oper
ator with a complete set of eigenstates is an "observable", the result is easily extended to other systems. 
If the two systems have state spaces of dimensionality greater than 2 we can always consider two dimen
sional subspaces and define, in their direct product, operators O1 and σ2 formally analogous to those 
used above and which are zero for states outside the product subspace. Then for at least one quantum 

mechanical state, the "singlet" state in the combined subspaces, the statistical predictions of quantum 

mechanics are incompatible with separable predetermination. 

In a theory in which parameters are added to quantum mechanics to determine the results of individual 

measurements, without changing the statistical predictions, there must be a mechanism whereby the set
ting of one measuring device can influence the reading of another instrument, however remote. Moreover, 
the signal involved must propagate instantaneously, so that such a theory could not be Lorentz invariant. 

Of course, the situation is different if the quantum mechanical predictions are of limited validity. 
Conceivably they might apply only to experiments in which the settings of the instruments are made suffi
ciently in advance to allow them to reach some mutual rapport by exchange of signals with velocity less 
than or equal to that of light. In that connection, experiments of the type proposed by Bohm and Aharonov 
[6], in which the settings are changed during the flight of the particles, are crucial. 

I am indebted to Drs. M. Bander and J. K. Perring for very useful discussions of this problem. The 
first draft of the paper was written during a stay at Brandeis University; f am indebted to colleagues there 
and at the University of Wisconsin for their interest and hospitality. 

V. Generalization 

VI. Conclusion 
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III.6 PROPOSED EXPERIMENT TO TEST 
LOCAL HIDDEN-VARIABLE THEORIES 

JOHN F. CLAUSER, MICHAEL A. HORNE, ABNER SHIMONY, AND RICHARD A. HOLT 

A theorem of Bell, proving that certain predictions of quantum mechanics are incon
sistent with the entire family of local hidden-variable theories, is generalized so as to 
apply to realizable experiments. A proposed extension of the experiment of Kocher and 
Commins, on the polarization correlation of a pair of optical photons, will provide a de
cisive test between quantum mechanics and local hidden-variable theories. 

Einstein, Podolsky, and Rosen (EPR) in a classic paper1 presented a paradox which led them to in
fer that quantum mechanics is not a complete theory. They concluded that the quantum mechanical 
description of a physical system should be supplemented by postulating the existence of "hidden vari
ables, " the specification of which would predetermine the result of measuring any observable of the 
system. They believed the predictions of quantum mechanics to be correct, but only as consequences 
of statistical distributions of the hidden variables. Bohr2 argued in reply that no paradox can be de
rived from the assumption of completeness if one recognizes that quantum mechanics concerns only 
the interaction of microsystems with experimental apparatus and not their intrinsic character. 

There is an extensive literature purporting to prove the inconsistency of hidden-variable theories 
with the statistical predictions of quantum mechanics. These proofs, though mathematically valid, 
rest upon physically unrealistic postulates.3 Bell4 succeeded in replacing these postulates by a physi
cally reasonable condition of locality. He showed that in a Gedankenexperiment of Bohm5 (a variant of 
that of EPR) no local hidden-variable theory can reproduce all of the statistical predictions of quantum 
mechanics. This result is somewhat ironical in view of Einstein's convictions6 that quantum mechani
cal predictions concerning spatially separated systems are incompatible with his conditions for local
ity unless hidden variables exist. 

Bell's theorem has profound implications in that it points to a decisive experimental test of the en
tire family of local hidden-variable theories. The aim of this paper is to propose explicitly such an 

Originally published in Physical Review Letters, 23, 880-84 (1969). 
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experiment. For this purpose, we first present a generalization of Bell's theorem which applies to 
realizable experiments. Second, we indicate that neither of the experimental realizations7 of Bohm's 
Gedankenexperiment has produced evidence against local hidden-variable theories, even though the re
sults of both are compatible with quantum mechanical predictions. Third, we show that a simple ex
tension of one of these experiments can provide a decisive test. 

Generalization of Bell's theorem. —Consider an ensemble of correlated pairs of particles moving so 
that one enters apparatus Ia and the other apparatus ΙΙΛ, where a and b are adjustable apparatus pa
rameters. In each apparatus a particle must select one of two channels labeled +1 and -1. Let the re
sults of these selections be represented by A(a) and B(b), each of which equals ±1 according as the 
first or second channel is selected. 

Suppose now that a statistical correlation of A(a)  and B(b)  is due to information carried by and local
ized within each particle, and that at some time in the past the particles constituting one pair were in 
contact and communication regarding this information. The information, which emphatically is not 
quantum mechanical, is part of the content of a set of hidden variables, denoted collectively by λ. The 
results of the two selections are then to be deterministic functions A(a, x) and B(b, λ). Locality reason
ab ly  r equ i res  A(a ,  λ )  t o  b e  i n d e p e n d e n t  o f  t h e  p a r a m e t e r  b  a n d  B ( b ,  x )  t o  b e  l i k e w i s e  i n d e p e n d e n t  o f  a ,  
since the two selections may occur at an arbitrarily great distance from each other. Finally, since 
the pair of particles is generally emitted by a source in a manner physically independent of the adjust
able parameters a and b, we assume that the normalized probability distribution ρ(λ) characterizing 
t h e  e n s e m b l e  i s  i n d e p e n d e n t  o f  a  a n d  b .  

Defining the correlation function P ( a ,  b )  =  J r A ( a ,  X ) B ( b ,  x ) p ( x ) d x ,  where Γ is the total λ space, we 
have 

I P ( a ,  b ) - P ( a , c )  | « /Γ|Α(Ω,λ)Β(δ,λ)-Α(α,λ)Β(<:,λ)|ρ(λ)<ίλ = j r \ A ( a ,  x ) B ( b ,  x )  | [l-B(6, x ) B ( c ,  λ)]ρ(λ)<ίλ 

=  /r[l- B ( b ,  x ) B ( c ,  x ) ] p ( x ) d x  = 1-/rB ( b ,  x ) B ( c ,  x ) p ( x ) d x .  

Suppose that for some b '  and 6 we have P ( b ' ,  b )  = l-δ, where 0 δ ^ 1. Experimentally interesting 
cases will have δ close to but not equal to zero. Here we avoid Bell's experimentally unrealistic re
striction that for some pair of parameters b' and b there is perfect correlation (i.e., 5 = 0). Dividing 
Γ into two regions Γ+ and Γ_ such that Γ± = {λ|Α(δ',χ) =±B(b,x)}, we have Jr_p(x)dx = |δ. Hence, 

f r B ( b ,  X ) B ( c ,  x ) p ( x ) d x  =  j T A ( b ' ,  x ) B ( c ,  x ) p ( x ) d x - 2  J r _ A ( b ' ,  x ) B ( c ,  x ) p ( x ) d x  

» P { b ' ,  c ) - 2 J r_\ A { b ' ,  x ) B ( c , x ) \ p ( x ) d X = P { b > ,  c ) ~  5 ,  

and therefore 

I P{a ,  b ) -P(a ,  c )  I ^  2-P(b ' ,  b ) -P(b ' ,  c ) .  (la) 

In the experiment proposed below P{a ,  b )  depends only on the parameter difference b-a .  Defining α 
= b-a, fi = c~b, andys6-6', we have 

\ Ρ ( α ) - Ρ ( α + β )  \  «2-Ρ { γ ) - Ρ { β  +  γ ) .  (lb) 

In principle entire measuring devices, each consisting of a filter followed by a detector, could be 
used for I3 and II4, and the values ±1 of A(a) and B(b) would denote detection or nondetection of the 
particles. Inequalities (1) would then apply directly to experimental counting rates. Unfortunately, if 
the particles are optical photons (as in the experiment proposed below) no practical tests of (1) can 
presently be performed in this way, because available photoelectric efficiencies are rather small. We 
shall therefore henceforth interpret A(a) = ± 1 and B(b) = ± 1 to mean emergence or nonemergence of the 
photons from the respective filters. Also the filters will be taken to be linear polarization filters, and 
a and b will represent their orientations. It will be convenient to introduce an exceptional value <*> of 
the parameter a (and likewise of b) to represent the removal of a polarizer; clearly, A(°°) and B(°°) 
necessarily equal +1. Since P(a,b) is an emergence correlation function, in order to derive an exper
imental prediction from (1) an additional assumption8 must be made: that if a pair of photons emerges 
from Ia, II4 the probability of their joint detection is independent of a and b. Then if the flux into Ia, 

is a constant independent of a and b, the rate of coincidence detection Rfa, b) will be proportional 
to w[A(a) + ,B(b) + ], where w[A fa)±, B(b)t ] is the probability that.A(a) = ±l andB(6) = ±l. Letting R0 = R(<*>, 
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, making use of the evident formulas 

and 

and of similar formulas for and we obtain 

We can now express (1) in terms of experimental quantities, namely coincidence rates with both polar-
izers in, and with one and then the other removed. If and are found experimentally to be 
constants and . the result is 

(2a) 

In the special case in which (2a) becomes 

(2b) 

Existing experimental results. -Bohm's Gedankenexperiment, involving correlated sp in- | particles, 
has not been performed, nor does it appear to be easily realizable. Two related experiments have 
been performed on polarization correlation of photons. Wu and Shaknov (WS)7 examined polarization 
correlation of 0.5-MeV rays emitted during positronium annihilation.9 Although the polarization 
state of the pair is suitable for our purposes, their high energy requires the use of Compton polarim-
eters. Thus, instead of directly examining the polarization correlation, WS examined the polariza-
tion-dependent joint distribution for Compton scattering of the pair. Inequality (2) cannot be immedi-
ately applied to such a scattering experiment because neither photon is forced to make a binary deci-
sion. However, a suitable binary result may be imposed by partitioning the scattering sphere into two 
arbitrary regions, denoted, respectively, by and by letting the adjustable parameter a (or b) des-
ignate the particular mode of partitioning. But as one can see10 by examining the joint scattering dis-
tribution," no such partitioning can yield a correlation in violation of (2). The essential difficulty is 
that the direction of Compton scattering of a photon is a statistically weak index of its linear polariza-
tion. 

The other experiment, that of Kocher and Commins (KC),7 involved polarization correlation of pho-
ton pairs emitted in the cascade of calcium. Since the two photons are in the visible, 
filters of the Polaroid type could be used. The photons impinged normally upon a pair of these polar-
izers whose planes were parallel, and the polarization correlation was measured with standard coinci-
dence techniques. With this arrangement inequality (2b) is applicable upon assumption of a local hid-
den-variable theory. However, the data obtained by KC do not suffice to test (2b), becausetheir po-
larizers were not highly efficient and were placed only in the relative orientations and 

Proposed experiment. - A decisive test can be obtained by modifying the KC experiment to include 
observations at two appropriate relative orientations of the polarizers, and also with one and then the 
other removed. For realizable apparatus, quantum mechanics predicts violation of inequality (2b). 

D e f i n e a s the efficiency of the polarizer for light polarized parallel to the polarizer 
axis and as that for light perpendicularly polarized. Consider a point source and filter-detector 
assemblies, each of which gathers the photons emitted into a cone of half-angle Then for a J - 0 

electric-dipole cascade (0-1-0) the quantum mechanical predictions for the counting rates 

(3) 

Here is the angle between the polarizer axes, 
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and 

G1(S) = -J-Costi +sin26-| cos36), G2(0) = -|-5(sin2y + 2) cosS, G3(W) = f-costt-j cos3tf. 

The predictions for a 0-1-1 electric-dipole cas
cade (and for a 1-1-0, provided the initial sta
tistical state of the atom is isotropic) are ob
t a i n e d  f r o m  ( 3 )  u p o n  r e p l a c i n g  F 1 ( O )  w i t h  - E 2 ( O )  

where 

F 2 ( B )  =  2 0 ^ 2 0 , ( 0 ) 0 , ( 6 ) + ^ ^ ) ] - 1 .  

For sufficiently efficient polarizers one easily 
sees that there exist sets of relative orientations 
for which the quantum mechanical counting rates 
violate Inequality (2b). The greatest violation 
always occurs at a = 22.5°, β= 45°, and ^=157.5° 
for the 0-1-0 cascade and at a = 67.5°, β = 135°, 
and y= 112.5° for the 0-1-1 cascade. Note that 
i n  e a c h  c a s e  t h e  f o u r  a n g l e s  α ,  α +  β ,  γ ,  a n d  β  

+γ which occur in Inequality (2b) characterize 
only two distinct relative orientations of the po
larizers, namely 22.5° and 67.5°. 

In an actual experiment F j ( B )  is less than 1, 
because of finite half-angle 0, and is never 
unity. Assuming the use of calcite polarizers 
(for which em~ IO"5), taking eM

] =fM™ = eM for 
simplicity, and using the above choices for α, β, 
and γ, we find that for either type of cascade, 
the condition for violation of Inequality (2b) is 

l 2 F J ( e ) + l > 2 / € M .  (4) 

This is the essential requirement on the design 
of a decisive experiment. For given Fj(O), (4) 
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FIG. 1. Upper limits on detector half-angle θ as a 
function of polarizer efficiency e M. To test for hidden-
variable theories, the experiment must be performed 
in the region below the appropriate curve —the upper 
curve for a 0-1-0 cascade, the lower for a 0-1-1. 

implies a lower limit on ew, and vice versa. 
Since both F1(B) and F2(O) are monotonically de
creasing functions, a lower limit on Fj(O) im
plies an upper limit on Θ. Condition (4) and num
erical evaluation of F1(S) and F2(Q) lead to the 
curves shown in Fig. 1, from which one can di
rectly read combinations of θ and eM suitable for 
a decisive experiment. The experiment can be 
performed with uncoated calcite polarizers (eM 

-0.92); however, if the polarizers have antire-
flection coatings (ew = 0.95), a larger 0 and hence 
a larger counting rate can be achieved. 

The authors gratefully acknowledge helpful dis
cussions with Y. Aharonov, M. Jammer, L. Kas-
day, D. Nartonis, C. Papaliolios, F. Pipkin, 
D. Pritchard, J. L. Snider, H. Stein, and C. R. 
Willis. 
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III.7 EXPERIMENTAL TEST OF LOCAL HIDDEN-VARIABLE THEORIES 

STUART J. FREEDMAN AND JOHN F. CLAUSER 

We have measured the linear polarization correlation of the photons emitted in an atom
ic cascade of calcium. It has been shown by a generalization of Bell's inequality that the 
existence of local hidden variables imposes restrictions on this correlation in conflict 
with the predictions of quantum mechanics. Our data, in agreement with quantum me
chanics, violate these restrictions to high statistical accuracy, thus providing strong evi
dence against local hidden-variable theories. 

Since quantum mechanics was first developed, 
there have been repeated suggestions that its sta
tistical features possibly might be described by 
an underlying deterministic substructure. Such 

features, then, arise because a quantum state 
represents a statistical ensemble of "hidden-
variable states." Proofs by von Neumann and 
others, demonstrating the impossibility of a hid 

Originally published in Physical Review Letters, 28, 938-41 (1972). 
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den-variable substructure consistent with quantum 
mechanics, rely on various assumptions concern
ing the character of the hidden variables.1 Bell 
has argued that these assumptions are unduly re
strictive. However, by considering an idealized 
case of two spatially separated but quantum-me-
chanically correlated systems, he was able to 
show that any hidden-variable theory satisfying 
only the natural assumption of "locality" also 
leads to predictions ("Bell's inequality") in con
flict with quantum mechanics.2 

Bell's proof was extended to realizable systems 
by Clauser, Home, Shimony, and Holt,3 who also 
pointed out that their generalization of Bell's in
equality can be tested experimentally, thus test
ing all local hidden-variable theories, but that 
existing experimental results were insufficient 
for this purpose. This Letter reports the results 
of an experiment which are sufficiently precise 
to rule out local hidden-variable theories with 
high statistical accuracy 

In the present work we measured the correla
tion in linear polarization of two photons γί and 
γ2 emitted in a J=O-J = I-J = O atomic cascade. 
The decaying atoms were viewed by two symmet
rically placed optical systems, each consisting 
of two lenses, a wavelength filter, a rotatable 
and removable polarizer, and a single-photon de
tector (see Fig. 1). The following quantities were 
measured: R(<p), the coincidence rate for two-
photon detection, as a function of the angle φ be
tween the planes of linear polarization defined by 
the orientation of the inserted polarizers; R1, the 
coincidence rate with polarizer 2 removed; R2, 

the coincidence rate with polarizer 1 removed4; 
R01 the coincidence rate with both polarizers re

f—lEME 
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E L A Y j  Γ  C O I N C  j  

FIG. 1. Schematic diagram of apparatus and associat
ed electronics. Scalers (not shown) monitored the out
puts of the discriminators and coincidence circuits dur
ing each 100-sec count period. The contents of the 
scalers and the experimental configuration were record
ed on paper tape and analyzed on an IBM 1620-Π com
puter. 

moved. Quantum mechanics predicts that R{<p) 

and R0 are related as follows3,5: 

R(<P)/R0  = He i l
1  + €„')(€/  + em

2)  +  ̂ e i ,1  -  Cm
1)  

XU«2- em2)^i(e) cos2<p, (la) 

while 

= ( lb> 

and 

V*.=HtJ + O- (Ic) 

Here (em') is the transmittance of the ith po
larizer for light polarized parallel (perpendicu
lar) to the polarizer axis, and F1(O) is a function 
of the half-angle θ subtended by the primary lens
es. It represents a depolarization due to noncol-
linearity of the two photons, and approaches unity 
for infinitesimal detector solid angles. [For this 
experiment, 6 = 30°, and F1(SO0) = O.99.] 

We make the following assumptions for any lo
cal hidden-variable theory: (1) The two photons 
propagate as separated localized particles. (2) A 
binary selection process occurs for each photon 
at each polarizer (transmission or no-transmis
sion). This selection does not depend upon the 
orientation of the distant polarizer. 

In addition, we make the following assumption 
to allow a comparison of the generalization of 
Bell's inequality with out experiment: (3) All 
photons incident on a detector have a probability 
of detection that is independent of whether or not 
the photon has passed through a polarizer.6 

The above assumptions constrain the coinci
dence rates by the following inequalities7: 

-1«Δ(φ)«0, (2) 

where 

«ο «0 «ο 

For sufficiently small detector solid angles and 
highly efficient polarizers, these inequalities (2) 
are not satisfied by the quantum-mechanical pre
diction (1) for a range of values of φ. Maximum 
violations occur at φ = 22^° [Δ(<?)>0] and φ=βΊ^° 

[Δ(<Ρ) < - 1 ]. At these angles of maximum viola
tion, inequalities (2) can be combined into the 
simpler and more convenient expression 

. = I R(22j°)/R0 - i?(67|·0)/R01 - * « 0, (3) 

which does not involve R1 or R2. 

The experimental arrangement was similar to 
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3d4p 1FJ 

4p4s'P| 

OQ 

FIG. 2. Level scheme of calcium. Dashed lines show 
t h e  r o u t e  f o r  e x c i t a t i o n  t o  t h e  i n i t i a l  s t a t e  4 p 2 1 S 0 .  

that of Kocher and Commins.8 A calcium atomic 
beam effused from a tantalum oven, as shown in 
Fig. 1. The continuum output of a deuterium arc 
lamp (ORIEL C-42-72-12) was passed through an 
interference filter [250 A full width at half-maxi
mum (FWHM), 20% transmission at 2275 A] and 
focused on the beam. Resonance absorption of a 
2275-A photon excited calcium atoms to the 3d4p 
1P1 state. Of the atoms that did not decay direct
ly to the ground state, about 7% decayed to the 
4p21S0 state, from which they cascaded through 
the 4s4p 1P1 intermediate state to the ground 
state with the emission of two photons at 5513 A 
(V1) and 4227 A (y2) (see Fig. 2). At the interac
tion region (roughly, a cylinder 5 mm high and 3 
mm in diameter) the density of the calcium was 
about lxiO10 atoms/cm3. To avoid spherical 
aberrations which would have reduced counter ef
ficiencies, aspheric primary lenses (8.0 cm 
diam, / = 0.8) were used. Photons were select
ed by a filter with 10 A FWHM and 50% transmis
sion, and γ2 by a filter with 6 A FWHM and 20% 
transmission. The requirement for large effi
cient linear polarizers led us to employ "pile-of-
plates" polarizers. Each polarizer consisted of 
ten 0.3-mm-thick glass sheets inclined nearly at 
Brewster's angle. The sheets were attached to 
hinged frames, and could be folded completely 
out of the optical path. A Geneva mechanism ro
tated each polarizer through increments of 22¼°. 
The measured transmittances of the polarizers 
were ej- =0.97±0.01, em

l =0.038±0.004, e/ 
= 0.96±0.01, and em

2 =0.037±0.004. Thephoto-
multiplier detectors (RCA C31000E, quantum ef
ficiency ~ 0.13 at 5513 A; and RCA 8850, quantum 
efficiency K 0.28 at 4227 A) were cooled, reducing 
dark rates to 75 and 200 counts/sec, respective
ly. The measured counter efficiencies with po

larizers removed were Tj1-I^x IO"3 and η2 
a  1.5 

XlO"3.9 

A diagram of the electronics is included in Fig. 
1. The overall system time resolution was about 
1.5 nsec. The short intermediate state lifetime 
(~5 nsec) permitted a narrow coincidence window 
(8.1 nsec). A second coincidence channel dis
placed in time by 50 nsec monitored the number 
of accidental coincidences, the true coincidence 
rate being determined by subtraction.10 A time-
to-amplitude converter and pulse-height analyzer 
measured the time-delay spectrum of the two 
photons. The resulting exponential gave the in
termediate state lifetime.11 

The coincidence rates depended upon the beam 
and lamp intensities, the latter gradually decreas
ing during a run. The typical coincidence rate 
with polarizers removed ranged from 0.3 to 0.1 
countx/sec, and the accidental rate ranged from 
0.01 to 0.002 counts/sec. Long runs required by 
the low coincidence rate necessitated automatic 
data collections. 

The system was cycled with 100-sec counting 
periods. Periods with one or both polarizers in
serted alternated with periods in which both po
larizers were removed. Both polarizers rotated 
according to a prescribed sequence. For a given 
run, R(<p)/R0 was calculated by summing counts 
for all configurations corresponding to angle φ 
and dividing by half the sum of the counts in the 
adjacent periods of the sequence in which both 
polarizers were moved. Data for R1ZR0 and R2/ 
R0 were analyzed in a similar fashion. The val
ues given here are averages over the orientation 
of the inserted polarizer. This cycling and aver
aging procedure minimized the effects of drift 
and apparatus asymmetry. 

The results of the measurements of the corre
lation R(<p)/R0, corresponding to a total integra
tion time of ~200 h, are shown in Fig. 3. All er
ror limits are conservative estimates of 1 stan
dard deviation. Using the values at 22|·° and 
67^°, we obtain δ =0.050±0.008 in clear violation 
of inequality (3).12 Furthermore, we observe no 
evidence for a deviation from the predictions of 
quantum mechanics, calculated from the mea
sured polarizer efficiences and solid angles, and 
shown as the solid curve in Fig. 3. We consider 
these results to be strong evidence against local 
hidden-variable theories. 

The authors wish to express their sincerest ap
preciation for guidance and help from Professor 
Eugene Commins, to Professor Charles Townes 
for his encouragement of this work, and to M. Sim-

>2 1S0 
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FIG. 3. Coincidence rate with angle φ between the 
polarizers, divided by the rate with both polarizers re
moved, plotted versus the angle φ. The solid line is 
the prediction by quantum mechanics, calculated using 
the measured efficiencies of the polarizers and solid 
angles of the experiment. 

mons for helpful suggestions. 

*Work supported by U. S. Atomic Energy Commission. 
1The best-known proof is by J. von Neumann, Mathe-

matische Grundlagen der Quantemechanik (Springer, 
Berlin, 1932) [Mathematical Foundations of Quantum 
Mechanics (Princeton Univ. Press. Princeton, N. J., 
1955)]. For a critical review of this and other proofs 
see J. S. Bell, Rev. Mod. Phys. 38, 447 (1966). 

2J. S. Bell, Physics (Long Is. City, N.Y.) 1., 195 
(1964). 

3J. Clauser, M. Home, A. Shimony, and R. Holt, 
Phys. Rev. Lett. 23, 880 (1969). 

4A hidden-variable theory need not require that R1 and 
R2 be independent of the orientation of the inserted po
larizer, and we do not assume this independence in our 
data analysis. However, the results are consistent with 
Ri and R2 being independent of angle, and for simplicity 
they are so denoted. 

5M. Home, Ph. D. thesis, Boston University, 1970 
(unpublished). See also A. Shimony, in "Foundations of 
Quantum Mechanics, Proceedings of the International 
School of Physics 'Enrico Fermi,' Course IL" (Academ
ic, New York, to be published). 

6This assumption is much weaker than the assumption 
made by L. R. Kasday, J. Ullman, and C. S. Wu, Bull. 
Amer. Phys. Soc. 15, 586 (1970), in their discussion of 
the two-γ decay of positronium; see L. R. Kasday, in 
"Foundations of Quantum Mechanics, Proceedings of 
the International School of Physics 'Enrico Fermi,' 
Course IL" (Academic, New York, to be published). 

7The inequality Δ (φ) « 0 is derived in Refs. 3 and 5. 
The other forms of the hidden-variable restriction are 
obtained by similar arguments; see S. Freedman, Ph. D. 
thesis, University of California, Berkeley, Lawrence 
Berkeley Laboratory Report No. LBL-391, 1972 (un
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18, 575 (1967); C. A. Kocher, Ph. D. thesis, University 
of California, Berkeley, Lawrence Berkeley Labora
tory Report No. UCRL-17587, 1967 (unpublished). 

8The counter efficiencies are given by n, = (Si1Air)Tj 

XttL11 where Ω, is the solid angle, Ti is the transmis
sion of the filter, e{ is the quantum efficiency, and Li 

accounts for other losses. The measurement of Jj2 was 
made, employing the properties of the calcium cascade, 
by comparing the coincidence rate and the yt singles 
rate after suitable background correction; IJ1 was then 
inferred from the known quantum efficiencies and filter 
transmissions assuming that Qj and Li were the same 
for both detector systems. 

10An estimate of the accidental rate was also obtained 
from the singles rates. The two estimates gave consis
tent results. In fact, our conclusions are not changed 
if accidentals are neglected entirely; the signal-to-ac
cidental ratio with polarizer removed is about 40 to 1 
for the data presented. 

11Resonance trapping, encountered at high beam densi
ties, resulted in a lengthening of the observed lifetime 
and a slight decrease in the polarization correlation am
plitude, see J. P. Barrat1 J. Phys. Radium 20, 541, 633 
(1959). At low beam densities the measured lifetime 
is consistent with previously measured values. See 
W. L. Weise, M. W. Smith, and Β. M. Miles, Atomic 
Transition Probabilities, U. S. National Bureau of Stan
dards Reference Data Series—22 (U.S. GPO, Washing
ton, D.C., 1969), Vol. 2. 

12The results that are of interest in comparison with 
the hidden-variable inequalities are Λι/ϋο = 0.497 ±0.009, 
R2/R0 = 0.499 ± 0.009, R (22·£°)/ϋβ = 0.400 ±0.007, and 
R (67·|·°)/ϋβ=0.100 ±0.003. Wethus obtain Δ(22-|·°) 
= 0.104±0.026 and A(67-|·^ =-1.097±0.018, in violation 
of inequalities (2). 



III.8 EXPERIMENTAL TEST OF LOCAL HIDDEN-VARIABLE THEORIES* 

EDWARD S. FRY AND RANDALL C. THOMPSON 

We have measured the linear polarization correlation between the two photons irom the 
73S( — 6sPj—-G1Slj cascade of Hg200 The results were used to evaluate Freedman s version 
of the Bell inequality, δ«ϋ. Our result is Oexp- + 0.046±0.014, in clear violation of the 
inequality and in excellent agreement with the quantum mechanical prediction, 6qM = + 0.044 

±0.007. An important feature of the experiment was the explicit measurement of the ini
tial density matrix for the cascading atoms. 

We have measured the linear polarization cor
relation of photon pairs from the V3S1-B3P1-B1S0 

cascade of Hg200. Under appropriate experimen
tal conditions, quantum mechanics (QM) predicts 
there should be a very strong correlation. The 
essence of Bell's theorem1 is that any local hid
den variable (LHV) theory restricts the strength 
of this correlation. This LHV restriction can be 
put in a form derived by Freedman,2 

6=\R(6^°)/R 0 -R(22i°) /R 0 \ - i^O.  (1)  

Here the two photons are respectively detected on 
the ±Z axes, R(φ) is the coincidence rate with an 
angle φ between the transmission axes of the po
larizers, and R0 is the coincidence rate with po
larizers removed. A decisive experimental test 
of LHV theories can then be obtained by choosing 
experimental conditions such that inequality (1) 
is violated by the quantum mechanical predic
tions.3 Previously, results have been obtained 
from three such experiments. The first by Freed-
man and Clauser4 used the calcium cascade 61S0-
41P1-41S0. Their results violated the inequality 
and were in agreement with the QM predictions. 
The second by Holt5 used the mercury (Hg198) cas
cade Q1P1-I3S1-G3P0. The results satisfied the in
equality and were in apparent disagreement with 
QM. The third, also by Clauser,6 was recently 
completed using the same cascade in mercury 
(Hg202) and the same excitation technique as Holt. 
The results violated the inequality and were in 
agreement with QM. 

The present experiment used a different cas
cade, T3S1-B3P1-B1S0 in mercury (Hg200) (see Fig. 
1). The 73S1 state was populated in a two-step 
process, i.e., electron bombardment excitation 
to the 63P2 state followed by absorption of reso
nant 5461-Α radiation from a laser. An atomic 
beam was used and the two excitation steps oc
curred at physically different locations. Conse
quently,  in the interaction region (where the I 3S 1  

state is populated) there are essentially no rapid
ly decaying states other than the cascade states. 
Therefore there is a one-to-one correspondence 
between all 4358-A and 2537-A photons. As a re
sult comparatively high data accumulation rates 
were obtained. 

The experimental arrangement is shown in Fig. 
2. The mercury atomic beam passes through a 
solenoid electron gun where atoms are excited to 
the 63P2 state. Laser beams tuned to the reso
nant frequency of the 5461-A transition in Hg200 

intersect the atomic beam at two locations. The 
4358-A fluorescence from the first location pro
vides a reference to lock the laser cavity onto the 
Hg resonance. The second location is the interac
tion region. Its dimensions, defined by the inter
section of the two beams, are 0.3 χ 0.8x 0.8 mm3. 
The first location is slightly off the atomic beam 
axis so that atoms which can "see" laser radia
tion in the first location cannot enter the interac
tion volume. 

The laser radiation incident on the interaction 
region is polarized parallel to the Z axis. At the 
interaction region the emitted 4358-A (2537-A) 
photons are collected over a half-angle θ = 19.9° 
± 0.3°, pass through a pile-of-plates polarizer 
and a filter, and are detected on the + (-) Z axis. 

8-

6-

1 
«4-
CE UJ Z Ui 

2-

FIG. 1. Relevant energy levels and transitions in 
mercury 

4358A 
4047A 

2537A 

I. 

Originally published in Physical  Review Let ters ,  37 , 465-68 (1976). 
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in' 

FIG. 2. Schematic of the apparatus. Polarizer plate 
arrangement is also indicated Actual polarizers have 
14 plates (a) Hg oven; (b) solenoid electron gun; 
(c) RCA 8575; (d) 4358-A filter; (e) 5461-A laser beam; 
(f) Amperex 56 DUVP/03; (g) 2537-A filter; (h) focus
ing lens; (i) pile-of-plates polarizer; ()) laser beam 
trap; (k) atomic beam defining slit; (1) light collecting 
lens; (m) crystal polarizer; (n) RCA 8850. 

The collection optics are lens pairs whose radii 
have been adjusted to minimize the Seidel spheri
cal aberration coefficient. Each polarizer con
sists of two sets of seven plates symmetrically 
arranged so as to cancel out transverse ray dis
placements. The magnetic field in the interaction 
region is zeroed to less than 5 mG in all direc
tions. 

A valid test can only be made with zero-spin 
isotopes. Our beam uses mercury of natural iso-
topic abundance; but we selectively excite only 
atoms of the zero-spin isotope, Hg200, to the ini
tial state of the cascade by using 5461-A radia
tion from a narrow-linewidth (15 MHz) tunable 
dye laser. By sweeping the laser frequency and 
observing the 4358-A fluorescence we can ob-

-2 -ι O I 2 GHz 

LASER FREQUENCY DETUNING 

FIG. 3. Fluorescence intensity of 4358- A  radiation 
versus laser frequency for three intensities of the inci
dent 5461-A radiation The lines for the various Hg 
isotopes are labeled with their mass numbers The 
vertical scale is the same for all three scans; the ze
roes have been offset for clarity. /o~2.5 mW/cm2. 

serve the structure of the 5461-A absorption line.7 

Figure 3 shows the results for the central portion 
of the line for three incident laser intensities. 
The transition is power broadened, but at our op
erating intensity, Z0~2.5 mW/cm2, the isotope 
separation is very clean. 

The initial state of our cascade has <7=1. Its 
density matrix is 3x 3 and has elements pu where 
i and j are magnetic quantum numbers. With de
tectors on the ±Z axes, the QM prediction for the 
coincidence rate S(cp) shows no dependence on p10 

or p0. j. (The coordinate system is indicated in 
Fig. 2.) When P^1 is zero, the normalized coin
cidence rate is 

R  ( c p ) / R 0  =  T(e/ + Cm
1Ke/ + a  J )  -  U e i l

1  - Cm
1Kej,2 " Oi^) c 0 s 2 c P - (2) 

(3) 

Here ( e j )  is the transmission efficiency of the ith polarizer for light polarized parallel (perpendic
ular) to the transmission axis, and F(O) is given by 

F ( O )  =p 'J2(0)[(l +p')G2(0) -(1- 2ρ ' ) ΰ ( β ) Η ( θ )  -  (2- ρ ' ) Η 2 ( θ ) ]  

The functions8 G ( O ) ,  H  (β), and J(6) depend on the j 
half-angle θ  subtended by the light collection op
tics, and p' is given by 

P'=Poo/(Pu+P-i-i)· (4) 

It is essential to measure p'; to check that px.x is 
zero; and to verify that the QM prediction, Eq. 

(2), violates inequality (1). 
The density matrix for atoms in the 73S1 state 

is determined experimentally by measuring the 
polarization of the 4358-A fluorescence at appro
priate angles. It is found that at the high inten
sities at which the transition is saturated, the off-
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FIG. 6. Normalized polarization coincidence data 
from 0° to 360°. The datum point at 0° is duplicated at 
360°. The smooth curve is a least-squares fit to R(<p)/ 
R0 = A+B cos2<p + C sin2<p. The fitted parameters are 

FIG. 4. Linear polarization dependences of the inten- A = 0.242± 0.003; £ = -0.212*0.004; C =-0.003± 0.004. 
sities of the cascade photons. 4> is the angle of the po-
larizer transmission axis with respect to the X axis. ized coincidence r a t e i s 
The data are least-squares fitted by a function of the 
form C sin2$ and the fitted parameters 
are given with each curve, (a) 4358-A intensity on t h e , c \ 

(b) 4358-A intensity on the axis, (c) 2537 * ' 
on the - Z axis. a n d w e a l s 0 f i n d 

(6) 
diagonal e lements a r e nonzero and al l e l ements 
a r e intensity dependent. With the intensity r e - All e r r o r s a r e ± 1 s tandard deviation, 
duced to our data (Fig. 4) show Coincidence data w e r e obtained using a t i m e - t o -
that the density ma t r ix has the des i red f o r m . ampli tude conver te r and a pulse-height ana lyzer . 
F igure 4(a) shows the r e s u l t s f o r the 4358-A f lu - F igure 5 shows the total coincidence spec t rum 
o re scence on the +Z axis . The absence of a l ine- with 67|° between the po la r i ze r axes . The total 
a r polar izat ion dependence he re impl ies accumulat ion t ime fo r th is spec t rum was 80 min. 
F igure 4(b) shows the polar iza t ion m e a s u r e m e n t s To obtain the t r u e coincidences , one must sub-
of 4358-A radiat ion detected on the - Y ax i s ; t r a c t out the accidenta l coincidence background, 
f r o m the f i t ted p a r a m e t e r s we find Re(p 1 0 - p ^ ) Consequently, the e r r o r depends on the width of 
= 0, and p ' = 0 . 6 3 3 ± 0.005. Fo r comple teness , the coincidence window. For our data , minimum 
Fig. 4(c) shows the polar izat ion m e a s u r e m e n t s of e r r o r i s obtained f o r a window width of 12 to 14 
2537-A f luo rescence on the -Z axis . channels (1.3r). The quality f a c to r , defined by 

The po la r i ze r efficiency p a r a m e t e r s a r e F r e e d m a n , 2 was Q = 1.03 with the p o l a r i z e r s r e -
moved. 

Hence the QM predict ion, Eq. (2), fo r the n o r m a l - F igure 6 shows the polar izat ion data fo r the ful l 
360° together with a l e a s t - s q u a r e s f i t . The f i t ted 
p a r a m e t e r s a r e in good ag reemen t with the QM 
predic t ion, Eq. (5). 

F r o m the fl0, R{22|°), and fl(67|°) da ta , we find 
(7) 

in excellent ag reement with the QM predict ion, 
Eq. (6), and in c l ea r violation of the LHV r e s t r i c -
t ion, inequality (1). 

The authors wish to thank the many people who 
have contributed to this work, especially Jim 

FIG. 5. Polarization coincidence spectrum. The to- McGuire, Jim Ell is , Norman Alexander, and 
tal accumulation time is 80 min. our instrument shop personnel. 
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III.9 QUANTUM MECHANICS AND HIDDEN VARIABLES: 
A TEST OF BELL'S INEQUALITY BY THE MEASUREMENT OF 

THE SPIN CORRELATION IN LOW-ENERGY PROTON-PROTON SCATTERING 

M. LAMEHI-RACHTI AND W. MITTIG 

The inequality of Bell has been tested by the measurement of the spin correlation m proton-proton scattering. 

Measurements were made at Ep — 13 2 and 13 7 MeV using carbon analyzers of 18.6 and 29 mg/cm2, 

respectively, accumulating a total of IO4 coincidences The experimental analyzing power, geometric 

correlation coefficients and energy spectra are compared to the result of a Monte Carlo simulation of the 

apparatus The results are in good agreement with quantum mechanics and in disagreement with the 

inequality of Bell if the same additional assumptions are made. The conditions for comparing the results of 

the experiments to the inequality of Bell are discussed 

I INTRODUCTION 

Since the beginning of quantum mechanics (QM) 
a number of physicists who contributed the most 
to the development of this theory had serious 
doubts about its logical foundations. Most of the 
problems were illustrated by a number of para
doxes, such as those of Einstein, Podolsky1 and 
Rosen' and Schrodinger (namely, the cat paradox).2 

These discussions never died down and even today 
there is no theory of measurement which satisfies 
everybody. 

One attempt to overcome these difficulties was to 
suppose that there are some supplementary vari
ables outside the scope of QM ("hidden variables") 
which determine the result of the individual mea
surement. A theorem derived by J. von Neumann 
was taken for a long time as proof that such in
terpretations are impossible. But Bohm3 in 1952 
developed a model of the hidden-variables theory 
which was in complete agreement with the predic
tions of QM, and Bell4 showed in 1965 why the 
theorem of von Neumann was not valid as applied 
to physical systems. Bell showed, too, that all 
hidden-variables models which give complete 
agreement with QM must have an undesirable fea
ture. They do not obey the principle of locality as 
stated by Einstein5: "If S1 and S2 are two systems 
that have interacted in the past but are now ar
bitrarily distant, the real, factual situation of 
system S1 does not depend on what is done with 
system S2, which is spatially separated from the 
former." 

Developments6"8 of the argumentation of Bell led 
for the first time in a more than 30-year-old dis
cussion to the possibility of a critical experimental 
test which could distinguish among the different in
terpretations. The consequences of such experi
mental verifications have more profound implica
tions than just eliminating special models which 

Originally published in Physical Review, D14, 2543-55 (1976). 

interpret the measuring process. They will test 
the validity of a general conception of the founda
tions of microphysics: the principle of locality or, 
as written more precisely in Ref. 7, the validity 
of objective local theories. 

II BELL'S INEQUALITY 

The first derivation of the inequality, which later 
led to an experimental test, was given by Bell.4 

It has been generalized by Clauser et al.6·7 In the 
meantime various ways of demonstration have been 
derived and can be found in Ref. 9 together with a 
description of the actual state of hidden-variables 
theories. We will follow here a demonstration 
given by Bell.8 

To be definite we take the example of two spin-
ί particles which have been coupled in the past in 

a singlet state and which are now widely separated. 
The principle of locality as formulated by Einstein 

means that each of these particles has some prop
erties, which we will denote by λ(λ can be a 
whole set of variables) which do not depend on 
what is happening to the other particle. The re
sult of the measurement is determined by these 
properties λ. We denote by A, B the result of the 
measurement in the direction a and 6 of the sign 
of the spin of the two particles respectively. For 
a realistic apparatus and/or if the dependence on 

λ is not strictly deterministic, but only stochastic, 

one will have 

IA(λ, a)I % 1 and |β(λ, 5)| « 1. 

The correlation function P ( a, b) is defined to be 
the mean value of the product A B and thus 

P ( X b ) =  J Α ( λ ,  a)i?(A, 6)ρ(λ)(ίλ, 

where ρ(λ) denotes the frequency of the properties 

λ with the normalization condition Jp(A)i/A = 1. 

Thus, 
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For coplanar vectors only the angle 
between these vectors is important, and one can 
write 

QM predicts for this correlation function 4 , 1 8 

Putting in special values for the angles 8, y, tp and 
using the invariance of P by reflection and rotation 
one gets the upper limits for the absolute value of 
P{6) as compared to predictions of QM in Table I. 
As can be seen, there is a definite contradiction 
between the values predicted by QM and the upper 
limit as implied by the inequality of Bell. 

III. DESCRIPTION OF A "PERFECT" EXPERIMENTAL 

SETUP AND DISCUSSION OF REALIZED EXPERIMENTS 

The inequality of Bell can be tested by special 
experimental devices. We will first describe an 
example of an ideal experiment and then discuss 
how the actually performed experiments differ 
from such an ideal arrangement. 

We will take as an example Bohm's' 0 version of 
the Einstein-Podolsky-Rosen paradox. Consider 
(Fig. 1) a source which prepares two particles of 
spin in an intermediate state J = 0. This state 
disintegrates by emitting the two particles with a 
velocity v in opposite directions. The two possible 
states, + and - , of the direction of spin are split 
up for example by Stern-Gerlach magnets and the 
particles are detected by the detectors d. The 
vectors a and b denote the orientations of the mag-
nets. Then we define N0 as the number of pairs 
of particles which enter the analyzers in coinci-
dence (preparation of a beam of coincident parti-
cles) which would be measured in the case of 
charged particles of sufficiently high energy for 
example by the use of thin A £ counters as en-
trance collimators of the analyzers without de-
polarization of the particles. As in Ref. 7 we de-
fine as the probability of having a count 

in the counter d\, and in the same way for the 
other counters. For sufficiently large number 
we have 

and clearly 
• 1. For objective local theories one gets 

where jV++ are coincidences between the counters 
and 

Defining the measured correlation function as 

and using the above relation for JV++ and an 
analogous relation for NT_ and so on we get 

Setting 

and 

we see that this is equivalent to the function 
defined earlier and thus must obey the same in-
equality, if objective local theories are valid. 
Quantum mechanics predicts for this correlation 

TAB LE I. Comparison of predictions of QM for (P W))| with 
the upper limit given by the inequality of Bell. 
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FIG.  1-  Schematic experimental setup for the test of the inequality of Bell. 

function 

Pmeas (a. b)  = P J P 2 T J T 2  COS (a, b), 

where P J  , and T 1 2  are the analyzing power and 
transmission of the analyzers. Therefore in order 

to get a contradiction with the inequality an ideal 
apparatus should have the property 

(a) Ii5
1P2T1T2^lZVT, which is a very stringent 

condition, and supposes yet that one has measured 
the number of particles which enter the analyzer 

in coincidence. Apart from this, the ideal ap
paratus should have the following properties: 

(b) The lifetime τ of the intermediate state should 
be short and the source should be pulsed (or by 
some other information—coincidence—one should 
know when the particles enter the analyzers) with 
a resolution t r  and the restrictions 

T V « D  and l T v« D ,  

where Υ  is the velocity of the particles and D  is 
the dimension of the apparatus. This ensures 

that one knows at each moment with a good pre
cision where to find the particles in the apparatus. 

(c) The time t v  between the moment when the 
particles enter the analyzer and the detection 
should satisfy the relation 

t v c<d,  

where c is the speed of light and d is the distance 
between the analyzers. Thus the theory of rela
tivity excludes the coupling of the particles after 
or during the measurement process. 

(d) The orientation a, b of the two analyzers 
should be changed in an arbitrary way during the 
time of flight of the particles, satisfying the re
lation 

( t c h - t d t t )c<d,  

where ich denotes the time of the change of orienta
tion and idet denotes the time of detection of the 
particles. Thus one analyzer cannot "know," with 
a speed of exchange of information = c, what the 
other one is doing. 

If al l  these conditions are satisfied the above-
defined correlation can directly be compared to the 
inequality of Bell without extra assumptions. To 

see what can happen if there are deviations from 
the above-described ideal setup let us consider as 
an example the case where the detection proba
bility is low, PDEL «100%. It is possible to imagine 
that for a perfect apparatus with ΡΆΑ = 100%, one 

would measure a correlation function which agrees 

with the inequality of Bell. When the detection 
probability becomes low the properties of the par
ticles, which determine the result of the spin 
measurement, determine at the same time the 
probability of joint detection, doing so in such a 
way that agreement of the counting rates with QM 
is reestablished. This means that the properties 
of  the  par t ic les  which  de termine  the  resul t  of  the  
spin  measurement  would  de termine  in  a  corre la ted  
way other properties (in this example to be de
tected or not). One can imagine that for one 
special experiment there is such a correlation of 
properties. But it seems difficult to imagine that 
in very different experimental setups different 
properties will always be correlated in just such a 
way to reestablish agreement with QM. This 
shows that it is necessary to test the inequality of 
Bell in very different experimental conditions. If 
the spacelike separation of the particles and of the 
different parts of the measuring device is not 
realized, one can imagine some hypothetical cou
pling or exchange of information. This would mean 
that the result of the measurement on one particle 
could depend on what is done with the other parti
cle and agreement with QM could be obtained. 

The first experiment done specifically to verify 
the inequality of Bell was the measurement of the 
correlation of polarization of positronium an
nihilation γ rays by Kasday." Agreement with 
QM was obtained. Somewhat later the correlation 
of polarization of photons of an atomic cascade 
was studied by Freedman and Clauser,12 and again 

agreement with QM was obtained. The experi
ment with atomic photons has the advantage that 
in atomic physics one can build polarization an
alyzers of nearly 100% transmission and analyzing 
power, which is not the case for the experiment 
with annihilation γ rays. Some of this advantage 
is lost by the low probability of response of photo-

multipliers used to detect the photons ( ~ 10%) and 
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the fact that the second photon is not emitted in a 

well-defined direction with respect to the first 

one, but into the whole space. The photon ex
periment is related to a three-body phenomenon, 
involving the two photons and the atom which emits 
the photons. Thus, as in the other experiment, 
only a very small number of the photons detected 
in one analyzer is in coincidence with the photons 
detected in the other analyzer. In the atomic pho
ton experiment the additional assumption necessary 
concerns the response probability of the photo-
multiplier ("no enhancement assumption"7), where
as in the annihilation γ experiment it concerns the 

scattering process in the first scatterer. 

Both types of experiments used photons. Photons 
cannot be localized by a Lorentz transformation. 

One can attribute to photons a length, the co
herence length 1 = CT, where c is the speed of light 
and τ is the mean lifetime of the state which pro
duced the photon. For experiments with annihila
tion y rays this length is~ 17 cm and -300 cm for 
the atomic cascade case. These dimensions are 
comparable to or bigger than the dimension of the 
apparatus used and therefore it is not clear that 
the condition of localization is respected. This is 
why it had been suggested13 that we use particles 
with a mass at rest different from zero. 

We developed an experimental device to measure 
the spin correlation of protons after scattering in a 
singlet state, and this will be described in some 
detail below. Since the beginning of the develop
ment of this device the experimental situation for 
the photons became more confused. The experi
ment with annihilation γ rays was repeated by 

Faraci et al. i4  and results in contradiction with 
QM and in agreement with Bell's inequality were 

obtained. For another atomic cascade Holt and 
Pipkin15 found a result which is also in contradic
tion with QM and in agreement with Bell's in
equality. These experiments will be repeated in 
other laboratories, and so we can hope that in the 
not-too-distant future the experimental situation 
for the photon experiments will be clarified.28 

IV MEASUREMENT OF THE SPIN CORRELATION 

IN LOW-ENERGY PROTON-PROTON SCATTERING 

A The experimental setup 

In Fig. 2 the schematic experimental device is 
shown. A beam of protons, delivered by the Saclay 
tandem accelerator, hits a target containing hy
drogen. After scattering, the two protons enter in 
kinematical coincidence into the analyzers at 
0lab = 45° (0cm =90°). In the analyzers the protons 

are scattered by a carbon foil and the coincidences 
between the detectors of one analyzer with the de
tectors of the other are counted. The detectors of 
one analyzer are in the reaction plane, and the 

ρ beam / JH target 

Detector 

FIG. 2. Schematic experimental setup for the mea
surement of the spin correlation in proton-proton scat

tering. 

detectors of the other are rotated by an angle θ 
around the axis defined by the protons entering in 

the analyzer. 
We define the measured correlation function 

ρ ( a h )  =  Nll + Nrr ~ NrL ~ Nls 

'  '  NLL + NRR + NRL +NLR ' 

where JVl l  are the coincidences between left coun

ters L1 and L2, and so on. 
It is not possible to compare this correlation 

function directly with the inequality of Bell. Some 
extra assumptions are necessary because our ap
paratus does not fulfill the conditions for a per
fect apparatus. The following assumptions are 
necessary: 

Hl- It is possible to construct a perfect appara
tus. As in the annihilation γ case, there is no 
experimental method known which could give 
nearly 100% analyzing power and transmission, 

even extrapolating present techniques. A Stern-
Gerlach apparatus is not suited for charged par
ticles as can be shown by uncertainty relations.16 

Nonetheless, there does not seem to exist a priori 
an obstacle to constructing such a perfect ap
paratus. 

H2- Our device does not fulfill the conditions of 
spacelike separation discussed in the preceding 
section. We assume that this does not affect the 
result of the measurement. In the experiment the 
coherence length can be estimated from the life
time of the intermediate state formed in p-p 
scattering. Because there are no sharp resonances 
this lifetime is of the order of τ^ 10"22 sec, re
sulting in a coherence length of λ- 4χIO"13 cm. 
This is very small compared to the dimension of 
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the apparatus (5 cm), in distinction with the pho-
ton experiments where the coherence length and 
the dimension of the apparatus are of the same or-
der of magnitude. We tried to minimize the dis-
tance between the detectors and the carbon foil, 
in order to prevent a hypothetical coupling between 
the particles after the second scattering. In our 
device the time of flight nsec, whereas 

nsec. This means that we were quite 
near the condition (c) in Sec. HI, but we did not 
yet fulfill it. 

The analyzing power of our measuring device is 
~0.7 which is very similar to the one obtained in 
the annihilation y experiments and, as in the case 
of annihilation y's the transmission of the analyz-
ers is very low. Therefore the product 
does not fulfill the conditions of a perfect device. 
Examples for which it is not possible to compare 
with the inequality without additional assumptions 
have been g iven . 7 , 8 l 1 1 Consider a pair of par-
ticles which enter the analyzers in coincidence. 
Suppose that a perfect device would give the re-
sults etc. for the probability of 
having a count in the detectors etc. It 
makes sense to consider such a device because of 
assumption HI. We now make the following as-
sumption: 

H3 The analyzing power and the transmission of 
the measuring apparatus can be considered as in-
trinsic constants of the apparatus. This means 
that the parameters A which determine the result 
of the spin measurement do not determine in a 
correlated way the value of the analyzing power 
and/or transmission of the analyzers. A similar 
assumption is necessary in the atomic photon ex-
periment concerning the response probability of 
the photomultipliers. 

Then one can write 

where is the probability of having a count 
in the left counter of the analyzer 1 and so on, and 

and are the mean analyzing power and trans-
mission. Analogous equations hold for the ap-
paratus 2. 

Then for particles which enter the analyzers 
in coincidence, one has 

Using these relations one has 

The transmission coefficients for left-right 
scattering of the analyzers depend slightly on the 
angle of the first scattering. Replacing N0 by 

and introducing the dependence of the trans-
mission coefficient on one finds after some 
arithmetic and integration between md 
a correction to the preceding formula; and the 
final result is, to first order in the correction 
term, 

Measuring and C f , the experimental 
counting rates can be used to extract 

Now we must remind the reader that in order to 
derive the inequality of Bell it is necessary to 
vary a as well as b (see Sec. II). Because in the 
laboratory system the two proton directions form 
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90 and not, as in the center-of-mass system, 
180 , when rotating a and b around the propagation 
direction of the protons to a', b', the vectors a, 
E, a', and S' are not coplanar. The prediction of 
QM is 

PQM (a, b) = Cnn cos(a, b)+C^sm^sin^., 

= C„„ coscff, cos<p2 +Ckp  Sinip1Sinip2, 

where φ,, φ 2  are the angles by which the analyzers 
are turned out of the reaction plane. Using this 
correlation function directly one sees that it does 
not violate the inequality of Bell. This comes 
from the fact that our analyzers are sensitive only 
to the transversal component of the polarization. 
Nonetheless, it is possible to obtain a contradic
tion using the fact that most of the scattering 
passes through a. J=O intermediate state and the 
correlation function of J = 0 must be invariant with re
spect to rotation. We can decompose the correla
tion function into a part t (a, b) = ί(φ) that is rota-
tionally invariant, and another part £(a, b) that is 
not, with 

P{a, S)= /^)+^(5,5) , 

and therefore 

P(a, b) -£(a,b) = P(a', b')-^(a',b') 

if (a, b) = (a', B'). We define β such that l.yfa, b)^ ft  
for all a, b. The singlet scattering cannot contri
bute to the part of P(a, b) that is not rotationally 
invariant. Therefore an upper limit for β is the 
probability of triplet scattering. From the mea
surements of Catillon et ul.K one obtains 
β 4. 0.02 ±0.01. We make the following assumption: 

Hl An upper limit for the contribution of triplet 
scattering can be obtained from the scattering of 
polarized protons on polarized protons. This as
sumption could be eliminated by the use of a 90' 
(electrostatic) deflector before one of the polar-
imeters. This would give a 180 correlation and 
thus the vectors a, b, a', and b' would be coplanar. 
Introducing the above expressions in the equality 
gives 

\Ρ(φ) + Ρ(φ')\ + \Ρ(φ+γ)-Ρ{φ'+γ)\ '  2 +4(3 · 2.08 , 

where φ, φ' and φ+ γ, φ' + γ are the angles that 
one polarimeter is turned out of the reaction 
plane, whereas the other remains fixed in the re
action plane. 

Quantum mechanics predicts that 

Pmp(B) = -C„„ cos0, 

when one analyzer is in the reaction plane and the 
other is rotated by an angle θ out of it (Fig. 2). 
Experimental values obtained by Catillon et al. 1 9  

can be interpolated to the energies used for this 

experiment (13.2 and 13.7 MeV) and give Cnn =-0.95 
±0.015. The deviation of Cm from - 1 reflects the 
2% contribution of triplet scattering. In order to 
get a contradiction between predictions of quantum 
mechanics and the inequality of Bell, we need 
some additional assumptions (HI - H4). 

Because the analyzing power and the transmission 
are similar to the experiment with annihilation y's, 
equivalent assumptions are needed. The main dif
ference for protons is the fact their coherence 
length is-IO"13 cm, which is extremely small 
compared to the dimension of the apparatus 
(~5 cm), whereas for the photons the coherence 
length is larger than or comparable to the size of 
the measuring apparatus. Therefore for photons 
the locality condition seems not as clear as in the 
present experiment. 

Even if in the atomic cascade experiments it is 
possible to construct polarizers of nearly 100% 
analyzing power and transmission, the assump
tion made concerning the response probability of 
the photomultipliers is qualitatively the same as 
needed here, only it concerns a more simple ef
fect (photoelectric effect) than the scattering pro
cess here, and is better isolated from other ef
fects such as analyzing power. 

B. Design of the experimental device 

The design of the experimental device is mainly 
conditioned by the low transmission of polarization 
analyzers available in nuclear physics. For the 
analyzers used here it was of the order of 10"'; 
because of the coincidence between the analyzers 
only roughly one of 10'° pairs of protons which 
enter in the analyzers is detected in coincidence. 
To have, in spite of this, high enough counting 
rates, it is necessary to have a high beam inten
sity, thick targets, and large solid angles. 

As hydrogen targets, polyethylene (CH2) foils of 
9 mg/cm2 were used. The beam used of 1.5 μΑ 
with a spot size of 1.5-mm diameter instantly 
burned a hole in the target. Therefore it was 
necessary to construct a target rotating in an ec
centric way with respect to the beam with the 
speed of 1 rev /sec. Thus, mechanically, the 
targets well withstood the beam, but still a chemi
cal burning resulted in a blackening of the target 
and, after some hours, the hydrogen content on 
the beam trace diminished by a factor of 2. Thus 
every two hours the eccentricity was changed to
gether with the orientations of the analyzers and 
every six hours the target was changed. Because 
the detectors were cooled to -20 C, ice buildup 
by the humidity contained in air had to be avoided 
and thus the opening was done under argon atmo
sphere. 
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The main problem for the analyzer was the re
duction of the background, γ rays, mainly from 
the target, produce a background which rises ex
ponentially for low energies and which completely 
covers the events of interest if one does not take 
great care. This background was reduced to es
sentially zero in the region of interest by a lead 
protection and by using silicon detectors 300 to 
400 μ thick. The use of thinner detectors would 
have reduced the background even more but they 
would not have stopped the most energetic protons 
(~6 MeV) and thus the energy spectrum would have 
been deformed, not allowing a detailed inter
pretation. A careful design of slits is necessary 
to reduce the background produced by protons. The 
protons which are scattered by an angle < 10° leave 
the analyzer by a tube which serves at the same 
time as a rotation axis. The mean angle of scat
tering of the protons detected in the analyzer was 
fixed to 50°. 

The final design of the analyzers is shown in Fig. 
3. In an early stage of the experiment, one of the 
analyzers contained only two detectors. This was 
changed to have simultaneously a measurement of 
the geometric correlation (see Sec. IV F). All 

pieces, including beam-defining slits, were mounted 
on the cover of the scattering chamber and 
aligned to better than ^ mm. The most important 
dimensions are given in Table II. 

C. Monte Carlo simulation 

Apart from suitable experimental tests, it 
seemed highly desirable to make exact calcula
tions simulating the experimental device in order 
to have a supplementary control that the apparatus 
not show any undesirable and uncontrolled feature. 
At the same time this provides help for the choice 
of geometry and for the optimization of the ap
paratus. A numerical integration is excluded be
cause of the dimension of the integrals involved. 
Thus a Monte Carlo evaluation of the integrals 
was programmed for the CII 10020 computer. 

The geometry was treated exactly taking into 
account the three dimensions of the device. The 
energy loss in the targets was calculated using 
the tables of Northcliff and Schilling.20 Angular 
straggling was taken into account. The carbon 
cross section and polarization were obtained using 
the results of phase-shift analyses.21"24 The 
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FIG. 3. Design ef the polarization analyzers: Part (a) shows the general design, and part (b) shows the details of 
the analyzer. 
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TABLE II. Most important dimensions used in the experimental device. 

beam-defining slit 1 

beam-defining slit 2 

beam-defining slit 3 

beam-defining slit 4 

entrance slit of the analyzers 

slit before detectors 

Diameter Distance (mm) 

(mm) from target Number 

2 180 1 

2 150 1 

1.5 50 1 

2 20 1 

4.5 51.5 1 
7 12.5 2 

phase shifts were parametrized and resonances 
at 4808 and 5373 keV (see Ref. 22) were included. 
Good agreement with published21"24 cross sections 
and analyzing powers was obtained. For Ta scat-
terers pure Rutherford scattering was assumed, 
which is justified because the energy of the pro
tons is much lower than the Coulomb barrier. 

In the following the experimental results will be 
compared to the results of the Monte Carlo cal
culation. 

D. Measurement of the analyzing power 

The analyzing power was measured in a double-
scattering arrangement. A beam of protons of 
8.07 MeV is scattered by a 2-mg/cm2 carbon tar
get. The scattered protons enter at Bbb = 70° in the 
analyzer and are scattered with a mean angle of 
50° a second time by the carbon foil of the analyz
er, and one measures the asymmetry of the 
counting rates of the left-right detectors. Poly
ethylene foils are put between the first and second 
target to slow down the protons to the desired en
ergy. The protons after the first scattering are 
polarized to 100% with an error of less than 2%.21·22 

Thus the analyzing power is directly obtained by 
the measured asymmetry. Before the measure
ment of the analyzing power the carbon target of 
the analyzer was replaced by a gold target 
(35 mg/cm2) to be sure that no misalignment af
fected the results. 

The main problems connected with these mea
surements, once the background problem was 
solved, were target problems. First we used, for 
the analyzer, carbon targets prepared with Aqua-
dag (Acheson Company). For proton energies 
above 6 MeV the experimental analyzing power 
was much lower than the calculated one, as stated 
in Ref. 25. Exposing the targets to the beam 
showed no significant target contamination. Heat
ing them for several days to 200°C gave no im
provement. But when these targets were heated 
in a vacuum to 1500 0C they lost 20% of their 
weight, demonstrating that they contained still 

a large amount of the liquid solvent. After heating 
to 1500 0C the targets were so frail that they could 
no longer be used. Thus the targets finally used 
were mechanically worked out of solid carbon 
(Carbone Lorraine). 

In Fig. 4 a typical energy spectrum is shown. 
The results of the asymmetry measurements for 
the two targets used, 18.6 and 29 mg/cm2, are 
shown in Figs. 5 and 6. A background correction 
of about 2% was applied with an estimated error 
of 1%. The transmission of the analyzer, defined 
as the number of protons detected by the two de
tectors in the reaction plane divided by the num
ber of protons which enter the analyzer, was 
4.4xl0"5 and 6.5 χ IO"5 for the 18.6-mg/cm2 and 
the 29-mg/cm2 targets respectively. 

E. Electronics associated with coincidence measurements 

Ablockdiagram of the coincidence measurements 
which will be described below is shown in Fig. 7. 

Monfe Carlo 

ρ (MeV) 

FIG. 4. Typical energy spectrum obtained in the mea
surement of the analyzing power of the polarimeters by 
double scattering of the protons, with Ep =8.07 MeV, a 
first target of carbon of 2 mg/cm2 and a second carbon 
target of 18.6 mg/cm2. The protons entering in the 
analyzer were slowed down by a 17-mg/cm2 CH2 foil to 
Eb =5.95 MeV. 
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4* Exp (186 mg/cm2) 

Monfe Carlo 

_75-

65 Ep(MeV) 

FIG. 5. Analyzing power of the analyzer with a 
18.6-mg/cm2 carbon target, as a function of the energy 
of the incoming protons. The width of the Monte Carlo 
calculation shows the uncertainty which was used to 
calculate the errors of the final results. 

All the electronic devices up the analog-to-digital 
converters (ADC) used were standard electronics 
developed at the SPNBE at Saclay,26 and they pro
vide great versatility and facility toward a fast 
logic control of coincidence, anticoincidence, 
dead time, selection of energy domain, and con-
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FIG. 6. Same as Fig. 5 for a 29-mg/cm2 carbon tar
get. 

trol of counting rates at each level before the 
numerical analysis. 

The four detectors of each analyzer are con
nected to a device which delivers a rapid pulse if 
one, and only one of the detector pulses delivered 
by a rapid proportional amplifier, is above a 
discriminator level. If there is a coincidence in 
the time-to-pulse converter, linear gates are 
opened which let the slower energy pulse of the 
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FIG. 7. Block diagram of the electronic setup used for coincidence measurements. 
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FIG. 8. Tsnpical time spectra before and after rise-
time correction by the 620 I Varian computer. 

two, and only of these, detectors in coincidence 
pass, and an order is given to the ADC to analyze 
the energy and time signals. The results of this 
analysis together with an identification of the de
tectors in coincidence are sent to a Varian 620 I 
computer. This computer had mainly two roles: 
It coded the spectra following the 16 possibilities 
of coincidence and made a correction for the finite 
rise time (~50 nsec) of the rapid pulses. The 
rise-time correction was done by the formula 

,t +—£ 
0  E 1 + D i  E z + D 2  

where t „  and I c  are the uncorrected and the cor
rected times, Eli 2 is the pulse height (energy) of 
the signals, and C, D were adjusted to give the 
best time resolution. A typical uncorrected and 
corrected time spectrum is shown in Fig. 8. A 
pulse generator was used continuously to control 
the electronic setup. 

A good protection against electric parasites had 
to be included to prevent these parasites from 
simulating coincidences. A first protection is the 
anticoincidence between detectors which should 
not be in coincidence. A supplementary protection 
is given by an amplifying chain mounted in the 
same conditions as for the detectors. A discrim
inator is set just above the noise, and if it delivers 
a pulse, the coincidence circuits at the rapid level 
are blocked and the analysis of the pulses by the 
ADC is inhibited for 200 μ sec. With these safe
guards it was verified that over a period of sev
eral days no parasites were analyzed. 

TheVarian 620 I computer delivers for each 
event sequences containing the two energies, the 
corrected time, and the coded coincidence pos
sibility, together with the number of the run. This 
information is written on magnetic tape. After an 
appropriate energy selection the 16 time spectra 
are accumulated in a 4096-channel memory. Be
cause the information was written event-by-event 
on magnetic tape, various controls could be made 
out of beam time. For example, it was verified, 
by repeating the data reduction with different en
ergy windows, that the results were insensitive 
to the setting of the energy windows within rea
sonable limits. 

F. The geometric correlation 

The geometric correlation which arises from 
the kinematic correlation between the protons af
ter the first scattering and the anisotropy of the 
carbon (ρ, p) cross section gives rise to an en
hancement of the coincidences between left-left 
and right-right detectors with respect to the 

TABLE ΙΠ. Results of the measurements of the geometric correlation and comparison with 
Monte Carlo predictions (see text). 

E p  (MeV) 
Target 

(analyzer 1) 
Target 

(analyzer 2) (Monte Carlo) (experiment) 

13.7 

13.2 

Ta (70 mg/cm2) 
Ta (70 mg/cm2) 
C (27 mg/cm2) 

Ta (70 mg/cm2) 
Ta (70 mg/cm2) 
C (18.6 mg/cm2) 

Ta (70 mg/cm2) 
C (27 mg/cm2) 
C (27 mg/cm2) 

Ta (70 mg/cm2) 
C (18.6/mg/cm2) 
C (18.6/mg/cm2) 

0.26 

0.17 
0.11 

0.26 

0.15 
0.09 

0.22 ±0.01 
0 . 1 2  ± 0 . 0 2  
0.07 ±0.02 

0.225±0.01 
0.10 ±0.03 
0.05 ±0.02 
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FIG. 9. Typical energy spectrum obtained in coin-
cidence between the two analyzers with a 2D-mg/cm2 

carbon target. Accidental coincidences have been 
subtracted. 

right-left coincidences. Two methods were used to 
determine the coefficient of geometric correlation. 

One method consists of first measuring the geo-
metric correlation with both carbon foils in the an-
alyzers replaced by tantalum foils 
The analyzing power of tantalum is zero; thus the 
measured correlation function is, for one pair of 
detectors in the reaction plane and the other ro-
tated out of it by an angle , 
where is the geometric correlation 
coefficient for this arrangement. At the same 

TABLE IV. Final results for the measured corre la -
tion function as a function of the angle 0 for 
18 .6-mg/cm 2 and 29-mg/rarr targets. Errors are statis-
tical one-standard-deviation e r rors 

0 l S . 6 m g / c m ' 29 mg / cm 2 

0- - 0 -10-to.or> - 0 . 3 8 ± 0 . 0 2 5 
30° - 0 . 3 8 ± 0 . 0 4 —0.27 ± 0.025 
45° —0.29 ± 0 . 0 4 —0.26 ± 0 . 0 2 3 
GO' — 0.24 ± 0.04 - 0 . 1 7 ± 0 . 0 2 5 
SO- - 0 . 0 1 ± 0 . 0 3 - 0 . 0 3 ± 0 . 0 4 

time this setup permits an easy control of the 
electronic setup and of the whole apparatus; the 
coincidence rates (about 1000 counts/hour and co-
incidence possibility) are about a factor of 100 
larger than with the carbon foils. Then one re -
places one tantalum foilby a carbon foil and one 
gets the coefficient The coefficient for 
two carbon foils is connected to these coefficients 
by the relation 

The second method is provided by the measure-
ment with two carbon foils, one pair of detectors 
turned out of the reaction plane by 90% and the 
other by an angle 6. Then (see Sec. Ill) 
and Because the analyzers con-
tained two detector pairs with 90" between them, 
simultaneously with the final results the value for 
the geometric correlations was obtained. Both 
methods gave within error bars identical results. 
The results are given in Table III. 

As can be seen, the Monte Carlo simulation pre-
dicts a somewhat higher geometric correlation. 

TABLE V Final results for as compared to QM and to the limit of Bell. The r e -
sults are given separately for the 18.6-mg/cm 2 and the 29 -mg/cm 2 targets together with their 
weighted mean. and are the values ol the product of the analyzing power and of the 
geometric correlation coefficient, respectively, which were used to extract the values of 

from the values of . given in Table IV. 

29 mg / cm 2 18.6 mg / cm 2 Bell 's limit 
(P{P2) =0.44±0.025 <P,P,) =0.52±0.025 for the 

e CE = +0 .07±0 .02 C g = 0.05 ±0.02 Mean absolute value QM 

0° —0.99±0.09 —0.85 ± 0.11 —0.93 ± 0.07 s i - 0 . 9 0 
30° —0.74 ± 0.08 —0.81 ± 0.10 — 0.77 ±0 06 SO.69 -0 .78 
45° —0.69 ± 0.08 - 0 . 6 3 ±0.09 —0.66± 0.06 SO.32 -0 .64 
60° - 0 .48 ±0.07 —0.50 ± 0.10 - 0 48 ±0.06 SO.38 - 0 . 4 5 
90° + 0.07 ±0.10 - 0 . 0 1 ± 0 07 + 0.02± 0.05 SO.02 0 
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FIG. 10. Experimental results (see Table V) for 
Pexp (Θ) as compared to the limit of Bell and predictions 
of QM. 

tion function did not depend on the lower limits set 
on the energies of the detected protons. A typical 
energy spectrum is shown in Fig. 9. Accidental 
coincidences, which represent about 5% of the to
tal, have been subtracted. For each angle about 
30 individual measurements were made with dif
ferent combinations of orientations of the analyz
ers. A total of IO4 true coincidences were ac
cumulated. The final results for Pmeas(A) are given 
in Table IV. In Table V the results for Pe*p(0) to
gether with the values of the product of the analyz
ing power and of the geometric correlation used 
to extract the value of Pcvp(A) are given. 

In Table V the weighted mean of these results 
for Pcxp(A) is also given and compared to predic
tions of QM and to the limit of Bell. The quoted 
experimental errors are one-standard-deviation 
errors containing statistical errors and uncer
tainties in the analyzing power and in the geometri
cal-correlations coefficient. In Fig. 10, the 
values of Table V are shown. As can be seen, the 
agreement with QM is good, whereas the results 
are in contradiction with the limit of Bell with a 
statistical significance of foOT · Using the pre
diction of QM for Pn^1, (P2) = CmCOStP1COS(I)2 one 
obtains 

Cm = -0.97± 0.05 

The angular straggling mainly in the first target 
has some influence on the geometric correlation. 
To be sure that the values from Ref. 27 used in 
the Monte Carlo code were not the cause of this 
disagreement, we measured m a special device the 
angular straggling for the different targets; a good 
agreement was found. 

The Monte Carlo calculation given in Table III 
was done for a perfect alignment of the apparatus. 
All misalignment contributes coherently to reduce 
the geometric correlation. Allowing for misalign
ment within the experimental uncertainties, 
n, mm for the center of gravity of the beam spot 
and ^ mm for other geometric misalignments, the 
Monte Carlo code well reproduces the experi
mental results. These calculations showed, too, 
as one would expect, that the product of the an
alyzing powers, (P1P2), is independent of such small 
misalignments. 

G Final results 

After all these preliminary measurements the 
final measurements of the coincidences of the two 
analyzers with carbon scatters could be made. It 
was verified that the final results for the correla-

m good agreement with the value of Ayy=Cm= - 0.95 
± 0.015 of Catillon el al.19 

V. CONCLUSION 

The measurement of the spin correlation of pro
tons gave good agreement with QM. To compare 
with the limit of Bell, as in previous experiments 
with photons, some extra assumptions are neces
sary. With these assumptions which seem natural 
but cannot be tested in our device, a contradiction 
is obtained with the limit of Bell providing an 
argument against the validity of this limit, and thus 
being in favor of nonlocal properties of micro-
physics. 

All experiments performed up to now do not re
spect all the conditions necessary to permit a di
rect comparison with the limit of Bell. The con
ditions for transmission and/or analyzing power 
and the spacelike separation of the particles and 
the different parts of the measuring device29 are 
not respected and seem very difficult to realize 
even extrapolating up today's techniques in spin or 
polarization correlation measurements. Thus it 
would be interesting to find some other type of ex
periments where it would be more easy to fulfill 
these conditions. 
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III. 10 PROPOSED EXPERIMENT TO TEST THE NONSEPARABILITY 
OF QUANTUM MECHANICS 

ALAIN ASPECT 

As a criterion between quantum mechanics and local hidden-variable theories, the so-called Einstein-Podolsky-

Rosen paradox is mamly tested in the form of the statistical correlation between polarizations of photons 

issuing from a cascade transition. It has been stated more than once that an improved form of the test would 

make use of polarizers, the orientation of which would change randomly in a time comparable with the time 

of flight of the two photons; the Bell locality assumption could then be replaced by a weaker assumption also 

considered by Bell. The Einstein principle of separability. However, to our knowledge, no workable 

experimental scheme has yet been proposed, and we believe the one descnbed in this paper to be a workable 

one. After explaining the difference between the Bell locality assumption and the Einstein principle of 

separability, we briefly discuss the theoretical implications of the modified experiment. The overall scheme of 

the apparatus we are proposing is described, and the generalized Bell inequalities, modified for our case, are 

derived. As in previous experiments, supplementary assumptions are made in order to derive experimentally 

testable inequalities. Finally, we describe the device we intend to use to carry out the proposed scheme. 

I. TEST OF THE PRINCIPLE OF SEPARABILITY 

The so-called nonlocality paradox of Einstein, 
Podolsky, and Rosen1 has been much discussed. 
Bell2 has shown the possibility of bringing the ques
tion into the experimental domain. Then, several 
experiments have been proposed and performed.3"8 

All these experiments are able to discriminate be
tween quantum mechanics and "local" hidden-vari
able theories that fulfill Bell's condition of locality: 
The setting of a measuring device does not influ
ence the result obtained with another remote mea
suring device (nor does it influence the way in 
which particles are emitted by a distant source). 
Most of the experiments contradict these local 
hidden-variable theories,4·5·7 although conflicting 
results exist.6·8 

Although such a condition of locality looks highly 
reasonable, it is not prescribed by any fundamental 
physical law. Following a suggestion made by 
Bell,2 we are proposing an experiment able to dis
criminate between quantum mechanics and "sep
arable" hidden-variable theories fulfilling Ein
stein's principle of separability9·10 that we can 
formulate in the following way for the experiments 
under consideration: The setting of a measuring 
device at a certain time (event A) does not influ
ence the result obtained with another measuring 
device (event B) if the event B is not in the forward 
light cone of event A (nor does it influence the way 
in which particles are emitted by a source if the 
emission event is not in the forward light cone of 
event A). 

Any theory fulfilling Bell's condition of locality 
also obeys Einstein's principle of separability. 
But one can conceive separable theories that do 
not fulfill Bell's condition of locality; such theories 

Originally published in Physical Review, D14, 1944-51 (1976). 

take into account the possibility of interactions be
tween remote measuring devices (i.e., these theo
ries do not fulfill Bell's condition of locality), but 
these interactions do not propagate with velocity 
greater than that of light (i.e., these theories obey 
Einstein's principle of separability). These theo
ries were not within the reach of previous experi
ments, but they could be tested with a modification 
of these experiments. 

To discuss this point, let us recall the optical 
transposition of Bohm's "Gedankenexperiment"11 

as performed by Freedman and Clauser4 (Fig. 1). 
Letting N(a{, b,) be the joint detection rate when 
the polarizers are in orientations a{ and b, (the 
value 00 represents the removal of the correspond
ing polarizer), one considers the quantiy 

S = [1/Μ·°,®)ΙΜ»ι, δ,) - Ma1, b2) +Nia2, S1) 

+ N(a2, Ii2)- N(a2,°°)~ M°°, S1)], 

(1) 

where a,, a2, b l t  b2 denote specific orientations of 
the polarizers in successive measurements. Local 
hidden-variable theories fulfilling Bell's condition 
of locality predict (modulo a supplementary as
sumption on the detector's efficiency) that S is 
constrained by the generalized Bell inequali
ties3·12"15 

- 1 « S « 0 .  ( 2 )  

For certain values of the orientation parameters 
O1, a2, bn b2 the quantum-mechanical predictions 
violate the inequalities (2). Hence an experimental 
test between the conflicting theories is possible. 

It has been emphasized that a crucial point in 
the derivation of the Bell inequalities is the local
ity assumption.16 These inequalities could not be 
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I(o) 11(b) 

RM. P.M. 

coincidence 

FIG. 1. Optical transposition of Bohm's "Gedankenex-
periment." The correlated photons vA and vB, issuing 

from the cascade source S, impinge upon the linear polar
izers I and II in orientations a and b. The rate of joint 
detections by the photomultipliers is monitored for var
i o u s  c o u p l e s  o f  o r i e n t a t i o n s  ( 2 , 6 ) .  

proved if the response of one polarizer was de
pending on the orientation of the other one (or if 
the emission of the pairs of photons was depending 
on the orientations of the polarizers). In the pre
vious experiments, such interactions are not pre
cluded by the principle of separability because 
"the settings of the instruments are made suffi
ciently in advance to allow them to reach some 
mutual rapport by exchange of signals with velocity 
less than or equal to that of light".2 Therefore the 
separable theories that do not fulfill Bell's condi
tion of locality cannot be tested by the previous 
experiments. 

To test these theories, it has been pro
posed2· 13 ·15 ·17 to change rapidly, repeatedly, and 
independently the orientations of the polarizers. 
Then one finds as a consequence of the principle 
of separability that the response of one polarizer, 
when analyzing a photon, cannot be influenced by 
the orientation of the other polarizer at the same 
time (when analyzing the coupled photon); likewise, 
the way in which a pair of photons is emitted can
not be influenced by the orientations of the polar
izers when later analyzing this pair. Therefore, 
for such improved experiments, inequalities (2) 
can be derived from the principle of separability, 
with no further locality assumption made. Since in
equalities (2) still conflict with the quantum-mech
anical predictions, such modified experiments 
would be able to discriminate between quantum 
mechanics and separable hidden-variable theories. 

A result consonant with the quantum-theory pre
dictions would imply the rejection of separable 
hidden-variable theories. But as a matter of fact, 
it would imply more.18 According to a recent anal
ysis19 it would constitute an experimental confir
mation of the reality of the nonseparability intro
duced formally in the quantum theory. More gen
erally, d'Espagnat20 pointed out that such a result 
would entail consequences practically amounting 
to a disproof of the principle of separability, and 
he showed that these consequences (violation of 

some general assumptions) could be derived with
out reference to any specific theory (in particular 
without incorporating in the general assumptions 
just mentioned any a priori hypothesis about the 
existence of hidden variables21)'. Then, some re-
interpretations of the quantum theory would be 
untenable, while others would be upheld.22 

II PROPOSED EXPERIMENTAL SCHEME AND 

CORRESPONDING GENERALIZED BELL INEQUALITIES 

Several authors2·13·15·17 have already proposed 
to change rapidly and repeatedly the orientations 
of the polarizers, but few experimental practical 
suggestions have been given. One could think of 
using Kerr or Pockels cells, allowing changes in 
the polarization orientations in less than one 
nanosecond. Unfortunately, there are several 
drawbacks: Only very narrow beams could be 
transmitted, yielding very low coincidence rates; 
as these cells heat up, and then become inopera
tive, long runs would be prohibited. Last, a very 
sophisticated system would be needed for monitor
ing the change in time of the orientations; the 
calibration of the system would thus be exceedingly 
difficult. 

We believe that these difficulties could be over
come by using optical commutators (Fig. 2). Dur
ing a short time interval, the commutator CA di
rects the photons i/A towards the polarizer I1; then 
its state changes and, during the following period, 
it directs vA towards the polarizer I2. The com
mutator CB works similarly with the photons vB, 
independently of CA. The time intervals between 
two commutations are taken to be stochastic, so 
that two states of the commutator, separated by a 
time longer than the autocorrelation time, are 
statistically independent. The autocorrelation time 

coincidence 

FIG. 2. Proposed experimental scheme. The commu
tator Ca directs the photon vA either towards polarizer 
I1 (in orientation at) or towards polarizer I2 (in orienta
tion a 2). SimilarlyCg directs vB towards II1 or II2 (in 
orientations b j and b 2). The two commutators work inde
pendently in a stochastic way. The four joint detection 
rates are monitored, and the orientations O1, a:. J1, and 
b 2 are not changed for the whole experiment. 
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of each commutator is taken as short as L/c\ L 
denotes the distance between the commutators and 
c denotes the speed of light. 

One guesses that the separability assumption 
then leads to inequalities analogous to Bell's, with 
the arguments the same as in Sec. 

Let us proceed to the actual derivation of the 
modified inequalities. We use the formalism of 
hidden-variable theories, but, as emphasized in 
Sec. I, the validity of the result will be more gen-
eral. 

Each emitted pair of photons is assumed to be 
characterized by a hidden variable might stand 
for any number of parameters). We denote by t l 

the time of emission 2 5 of a pair of photons in the 
laboratory frame, and by the probability 
distribution of X. At the time the 
photons and impinge upon the commutators. 
We define "commutation functions" 
(t = 1 or 2 and j = 1 or 2), the values of which are 1 
or 0 according as, respectively, the photons are 
sent along the corresponding channel or not; i and 
j3j(t) are of course A. independent. We denote by 
the time at which the photons are anlayzed by the po-
lar izers , and by the correspond-

ing response functions, the values of which are 1 or 0 
according as the corresponding photon doe s or does 
notpass the polarizer. Thus 

assumes the value 1 if both pho-
tons vA and vB emerge from the polarizers I f and 
IIj and 0 otherwise. Finally, the probability that 
a pair of photons a n d e m e r g e in coincidence 
from I, and IIj is 

(3) 
where the considered is the initial value at the 
time t 1 of emission. 

Following Bell, we can g eralize this to the 
case where the polarizers memselves contain hid-
den variables contributing to the result. We de-
note by and the instrumental parameters of 
each polarizer; then the response of each polarizer 
is This formalism 
is also appropriate for a stochastic theory, 1 6 since 

and can be taken as random variables with-
out any specific interpretation. Then the probabil-
ity assumes the form 

(4) 

where is the probability distribution of X at 
time 11 and of the instrumental parameters at 
time t3. 

Correlations may exist between the instrumental 
parameters and . However, in accordance 
with the principle of separability, correlations at 
time t 3 can be produced only by common causes at 
t imes . Introducing these common causes in 
formula (4), one remarks that these common 
causes are always coupled with then for sim-
plicity these common causes are included as a 
part of the fully general 

In accordance with the principle of separability, 
the given \ at times describe in a complete 
manner all the correlations between the instru-
mental responses at time t3; therefore the condi-
tional probability distribution of the instrumental 
parameters, given a particular value of is fac-
torized. 2 6 Hence, with ex-
pressed as a function of the probability distribu-
tion at time t l and of the conditional 
probability distributions of each instrumental pa-
rameter, (formula 4) assumes the form 

(5) 
where and are the average val-
ues—over the respective instrumental parame-
ters—of the instrumental response functions at 
time 1 3 . 

When integrating over time, we must consider 
the possibility of interactions between the com-
mutators and the other devices. The principle of 
separability precludes instantaneous interactions 
but not retarded ones. Hence the response of po-
larizer I f (for instance) at time t3 might depend 
upon the state of commutator at times 
and also upon the state of commutator at times 

. Similarly, the emission at time t 1 

might depend upon the states of both commutators 
at times Taking into account these 
possible interactions, it can be shown (see Ap-
pendix)—by using the assumed properties of the 
commutators (stochastic independent workings, 
autocorrelation times shorter than L/c)— that the 
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probability of coincident emergence factorizes as 
(6) 

where and denote the averages over time of 
the commutation functions is 
a function with the properties of a probability dis-
tribution, and. are functions related 
to the responses of polarizers I, and II,, con-
strained by the inequalities 

With the same notations, the probabilities that 
one photon emerges from are (respec-
tively) 

(7) 

(8) 

Thus, using the principle of separability, we 
have derived a factorized form similar to the de-
finition of objective local theories. 1 5 Nevertheless, 
there is a large difference: The response of one 
polarizer, which (given a) depends upon its orienta-
tion, might also depend upon the orientations of 
the other polarizers (since we do not make the 
Bell locality assumption). Similarly, the way in 
which the pairs of photons are emitted [and there-
fore might depend upon the polarizers ' 
orientations. But, in our experiment, all the 
orientations remain unchanged during the whole 
course of the experiment; hence, in formula (6), 

does not depend upon the indices i or j; like-
wise, does not depend upon the index j [nor 
does depend upon »']. 

Therefore, the derivation of Clauser and Home 1 5 

holds. Inequalities (7) entail 
(9) 

with is dropped for simplicity) 

After multiplication by p(x) and integration, one 
obtains 

with 
(10) 

( ID 

Inequalities (10) are isomorphic to the general-
ized Bell inequalities. 1 5 On the other hand, the 
quantum-mechanical predictions, which a re 

and (13) 

For these specific orientations, we indeed have 

All the quantities involved in formula (11) are 
probabilities of coincident—or single—emergence 
and could, in principle, be measured. We thus 
have a test for separable hidden-variable theories. 
This test will be operational if we find means for 
measuring these probabilities and designing com-
mutators obeying the assumptions we have made. 

III. TESTABLE INEQUALITIES 

Although theoretically measurable, the probabil-
ities in formula (11) cannot be measured directly 
for two reasons . 3 - 1 5 Firs t , optical photomulti-
pliers have a low quantum efficiency; hence the 
rate of joint detection will be lower than the true 
rate of coincident emergence from the corre-
sponding polarizers. Second, in atomic cascades 
only a fraction of pairs fly in opposite directions 
(since we have a three-body decay); hence a photon 

(for instance) may impinge upon commutator 
CA and be analyzed while the corresponding vB is 
lost; therefore the rate of single detection is not 
a faithful measurement of the probability that a 
single photon is transmitted by the corresponding 
polarizer. 

Denoting by JV the average rate of emission of 
processed pairs (i.e., with both photons impinging 
upon the commutators) and by a numerical fac-
tor accounting for the quantum efficiency of the 
corresponding photomultipliers, the rate of joint 
detection may be expressed as 

(14) 
As in previous w o r k , 3 , 4 ' 8 , 1 2 we assume that 

does not depend on whether or not the photons have 

(12) and 

lead to a violation of the inequalities (10), the maxi-
mum of which occurs respectively for 
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passed through a polar izer . 2 ' We also assume that 
the average rate of pair emissions N is not changed 
when a polarizer is removed [although, as stated 
in Sec. U, we accept that might be changed]. 
Therefore the rate of joint detection in channels 
I,, and 11̂  when the corresponding polarizers are 
removed will be 

(15) 
where is the probability of a coincident 
emergence from the commutators and along 
the corresponding channels. 

We thus obtain 

(16) 

and then the four f irst terms in formula (11) are 
put as functions of measurable quantities. 

One more assumption is needed to render the 
two last terms of S measurable: that the probabil-
ity that a photon emerges out of a polarizer does 
not depend upon whether or not another polarizer 
has been removed 2 8 (although, as stated above, we 
accept that the elementary response might be 
changed). 

Therefore, if the polarizer II, is removed, the 
probability of joint emergence of vA from polarizer 
I, and of vB along channel n^ is (see Ap-
pendix), and the rate of joint detections, with po-
larizer removed, is 

(17) 
We finally obtain 

and the two last terms in formula (11) can be mea-
sured. 

On the whole, S in formula (11) is expressed as 

• (19) 
The four quantities are measured dur-

ing one single run of the experiment, and this is a 
very significant difference between our proposal 
and the previous schemes. The other quantities 
are measured in auxiliary calibrations. 

Concluding this section, we have been able to 
define a practical scheme for measuring the prob-
abilities, modulo some reasonable assumptions 
which, however, restr ict somewhat the generality 
of the derivation of Sec. II. 

(18) 

IV. OVERALL EXPERIMENTAL SETUP 

Clauser et al.3 have already discussed the case 
of nonideal polarizers and extended beams. These 
features of a realistic experiment decrease some-
what the quantum-mechanical violation of the in-
equalities (10). Significant experiments have 
nevertheless been carried out to test the locality 
condition. Our experiment could be built with the 
same sort of source, polarizers, and detecting 
devices. 

The specificity of our experiment is the presence 
of two optical commutators. These can consist of 
acoustic standing waves working as adjustable 
gratings (Fig. 3). The deviation of a light beam 
by strong interactions with an acoustic wave has 
been studied 2 9 both theoretically and experimental-
ly. We are planning to use commutators with a 
surface of 4 cm 2 and an angular aperture of 

By appropriately adjusting the various 
parameters, we should be able to obtain one single 
beam diffracted, i.e., two channels. 

The transmitted and diffracted beams will be 
modulated in opposition at twice the frequency of 
the sound wave. We expect the modulation rate of 
the transmitted beam to be over 90%, and polar-
ization independent. 

We finally must discuss to what extent our com-
mutators obey the assumptions stated in Sec. II. 
Since the modulation rate is not exactly 100% and 
the commutation is not instantaneous, the values 
of the commutation functions and are 
not restricted to 0 and 1. Nevertheless, the rea-
soning in Sec. II still holds if, with and 
denoting the probability that a photon is directed 
towards channel I, or these commutation func-

FIG. 3. Optical commutator. The generator supplies 
two identical transducers T, producing an acoustic 
standing wave in a crystal. The diffracted beam (chan-
nel 2) is modulated at twice the frequency of the standing 
wave. The transmitted beam (channel 1) can be modu-
lated at a rate greater than 90%; hence the commuta-
tion is nearly complete. 
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tions do not depend on the hidden variable λ. This 
makes one more assumption. If it is unsatisfied, 
a fraction of the photons could be directed one way 
or the other, depending on the value of λ, and a 
"conspiracy" of the commutators and polarizers 
could decrease the difference between the quantum-
mechanics predictions and the separable hidden-
variable theories predictions. However, if the 
quantum-mechanics predictions were vindicated 
for various modulation rates, the occurrence of 
such a conspiracy might appear as a priori unlike
ly. Nevertheless, such a "conspiracy" could be 
avoided by inhibiting the detectors when the com
mutation functions assume values significantly dif
ferent from 0 or 1 (during the rise time). 

Another difficulty is that the commutators are 
operated periodically and not in a truly stochastic 
way. However, the significant requirement is that 
we have two independent commutation functions, 
e a c h  w i t h  a u t o c o r r e l a t i o n  t i m e  s h o r t e r  t h a n  L / c —  
say, shorter than 20 nsec if L is 6 m. It seems 
that these conditions will be fulfilled if the com
mutators are separately driven by macroscopic 
generators whose frequencies deviate independent
ly. We can drive a pseudorandom deviation of the 
frequency of each commutator, and a direct action 
of the source upon the driving mechanisms (and 
possibly upon the operator's descision; see foot
note 13 of Ref. 15) seems very unlikely. For in
stance, the standing-wave frequency can vary be
tween 100 and 125 MHz, and the commutation fre
quency will vary between 200 and 250 MHz. Then 
the autocorrelation time, which is of the order of 
the' inverse of the line width, is about 20 nsec. If 
a sweeping of the frequency over a broad line 
turned out to be too difficult, a supplementary as
sumption should be exhibited: The polarizers 
have no "memory," i.e., they can be influenced by 
signals received at a certain time from the com
mutators (with a certain delay) but they cannot 
store all this information for a long time and ex
trapolate in the future even if there is some regu
larity in the working of the commutators. With 
this very natural supplementary assumption, the 
experiment would be significant even with periodic 
commutations. 

V. BRIEF CONCLUSION AND ACKNOWLEDGMENTS 
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ments are worth making, even if they are not ideal. 

The author gratefully acknowledges Professor 
C. Imbert and Dr. O. Costa de Beauregard for 
having suggested this study and for many fruitful 
discussions. He especially thanks Dr. J. S. Bell 
for his encouragement, and Professor B. d'Espa-
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APPENDK 

The probability P i i  in Eq. (11) is the time average 
of the quantity [see Eq. (5)] 

P i i U ,  O  =  J d \ p U ,  0 5 ( ( ^ ) ^ ( ^ )  

X Α,(λ, ί3), 

where t 2  =  t  x  + L / 2 c  and t 3  -  t 2  is the time of flight 
of photons between a commutator and a polarizer. 

Since the commutators work in a stationary 
stochastic way, we may replace the time average 
b y  e n s e m b l e  a v e r a g e s .  D e n o t i n g  b y  X ( t )  a n d  Y ( t )  
random variables specifying the states at the time 
t of commutators CA and Cfl, respectively, we 
replace the time functions " by functions of these 
random variables. Taking care of the various pos
sible interactions (as explained in Sec. Π) we ob
tain 

a i ( t 2 ) ~ a i [ X ( t 2 ) ] ,  

β  , ( I 2 ) - β  , [ Y i t 2 ) ] ,  

p U ,  Ο-ρ[λ,Χ(ί0), Y i t 0 ) ] ,  

A1U, t 3 ) ~ A , [ \ , X ( t 0 ) ,  X i t 2 ) ,  X i t i ) ,  YU0)], 

B i U ,  t 3 ) -5,[λ, Y ( t 0 ) ,  Y ( t 2 ) ,  7(ί4), XU0)],  

and in general 

P l i U l  t , ) - F j X , X ( i 0 ) ·  · ·  F ( Z 4 ) ] ,  

where 

I ^ t i - L f t c  

and 

I 1 -  L / 2 c  < i 4  < t 2  .  

As the two commutators are working independent
ly, X(t) and Yit) are independent random vari
ables. As the autocorrelation time of each com
mutator is shorter than L/c, X(ta) and X(t2) are 
i n d e p e n d e n t  r a n d o m  v a r i a b l e s ,  a n d  s o  a r e  Y ( t 0 )  
a n d  Y ( t 2 ) .  

We average Fij, i.e., we integrate after multi
plying by the probability distribution 

g [ X ( t B ) , X ( t 2 ) , X ( t ^ [ Y i t 0 ) ,  Y i t 2 ) ,  Y d i ) ]  

in a factorized form since X ( t )  and Y i t ) are inde
pendent. Integrating over X(t2) and X(t4), we then 
define 
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where 
is the probability distribution of and is the average o f R e m e m b e r i n g t h a t a s s u m e s 
values 0 or 1 and that all the factors are positive, we obtain 

hence, remarking t h a t f a c t o r i z e s , b e c a u s e a r e independent 
random variables, we obtain 

By a completely similar fashion, with replacing we obtain 

The average of is then 

For simplicity we can include into the parameter A, thus obtaining formulas (6) and (7). 
Similarly, the single probability that a photon emerges from polarizer I, is the time average of 

and, through the same procedure as above, we obtain formula (8). 
Finally, the joint probability of photon emerging from polarizer I, and photon v B emerging from com-

mutator CB into the channel II, is the time average of 

Remembering that. and are independent, we obtain as the expression of this probability; 
this expression is used in Sec. Ill [Eq. (17)]. 
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III. 11 COMPLEMENTARITY IN THE DOUBLE-SLIT EXPERIMENT: 
QUANTUM NONSEPARABILITY AND A QUANTITATIVE 

STATEMENT OF BOHR'S PRINCIPLE 

WILLIAM K. WOOTTERS AND WOJCIECH H. ZUREK 

A detailed analysis of Einstein's version of the double-slit experiment, m which one tries to observe both 

wave and particle properties of light, is performed. Quantum nonseparabihty appears in the derivation of the 

interference pattern, which proves to be surprisingly sharp even when the trajectories of the photons have 

been determined with fairly high accuracy. An information-theoretic approach to this problem leads to a 

quantitative formulation of Bohr's complementarity principle for the case of the double-slit experiment. A 

practically realizable version of this experiment, to which the above analysis applies, is proposed. 

I. INTRODUCTION 

In Einstein's version of the double-slit exper
iment,1'2 one can retain a surprisingly strong 
interference pattern by not insisting on a 100% 
reliable determination of the slit through which 
each photon passes. The analysis leading us to 
this conclusion involves the following considera
tions. The plate which receives the kick from 
each photon can either be stopped and its position 
measured, or released and its momentum mea
sured. These two options give us two ways of 
subdividing the original ensemble of photons: 
(1) according to the measured position of the 
plate, and (2) according to the measured mo
mentum of the plate. In case (1) each subensemble 
produces a perfect but differently shifted inter
ference pattern. In case (2) each subensemble 
produces a smeared out pattern, but also gives 
us some information about the photons' paths. 
We will thus be led to study the following ques
tions. Does our choice of what to measure affect 
the total interference pattern? Do we not violate 
the complementarity principle by measuring both 
the fringes and the kick? Can this kind of ex
periment be performed in practice? 

A monochromatic wave passing through the 
familiar apparatus shown in Fig. 1 will produce 
a perfect interference pattern on plate 3. This 
kind of experiment was used by Young to demon
strate the wave nature of light, and by Davisson 
and Germer to demonstrate the wave nature of 
electrons. How does one reconcile this result 
with the fact that these same photons or elec
trons also have distinctly particlelike features, 
such as being individually detectable? For if 
they are indeed particles, then each one should go 
through a definite slit, and we should see a sum 
of single-slit diffraction patterns, rather than the 
observed interference pattern. This apparent 

contradiction has served as an archetypal example 
of the wave-particle duality encountered in the 
rnicroworld. As stated by Feynman, the double-
slit experiment is a phenomenon "which has in it 
the heart ol quantum mechanics; in reality it 
contains the only mystery" of the theory.3 

The traditional resolution of this problem, con
sistent with the rest of quantum mechanics, states 
that unless we actually measure the path of each 
photon (for definiteness let us restrict our atten
tion to photons; similar arguments apply to any 
other particle), we have no right to maintain that 
any given photon actually follows a definite path. 
Indeed, according to this view, if we were to 
succeed in measuring the path of each photon, then 
the interference pattern would be destroyed. 
Thus, we can observe either the wave properties 
or the particle properties of light, but not both 
simultaneously. 

At the Fifth Solvay Congress at Brussels, 
Einstein devised a modification of the double-slit 
experiment by which he hoped to show the in
consistency of quantum mechanics.1'2 He con
sidered an experiment in which the first screen 
(Fig. 1) is free to move up or down. Photons de
flected toward a given slit always impart a char
acteristic momentum to screen 1. Thus, Einstein 
hoped that by measuring the momentum imparted 
one could determine the path of each photon with
out disturbing the interference pattern. If that 
were the case, then the complementarity principle 
would be proven false. 

Bohr, in his defense of the consistency of quan
tum mechanics, pointed out that in order to deduce 
the slit through which the photon will pass from a 
knowledge of the final momentum of screen 1, one 
would also have to know the initial momentum of 
screen 1 to within an uncertainty Δ/> =(s/L)p 
= {Ιι/λ)χ (s/L)(X is the wavelength of the light), 
since this is the difference between the momenta 

Originally published in Physical Review, D19, 473-84 (1979). 
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SCREEN # I SCREEN #2 

the information one can obtain about the slit 
through which the photon passed. The comple
mentarity principle is stated in terms of an in
equality, which sets the limit on the amount of 
retrievable information about the photons' paths 
(photon-particle) for an assumed sharpness of the 
interference pattern (photon-wave). A practically 
realizable version of Einstein's double-slit ex
periment is discussed in Appendix A. Appendix B 
gives details of the proof of the inequality derived 
in Sec. V. 

FIG. 1. Path determination in the double-slit experi
ment, as proposed by Einstein (Ref. 2). 

transferred by photons following the two possible 
paths to the final screen. But then the Heisenberg 
uncertainty principle requires that the initial 
position of screen 1 be uncertain by at least 
Ax~h/Ap = \s/L. This is exactly what is needed 
to wash out the interference pattern, since this 
Ax is the spacing between fringes. In this way 
Bohr succeeded in defending the consistency of 
quantum mechanics.1 

The purpose of this paper is to examine Bohr's 
idea in detail; that is, we will find out exactly 
what interference pattern is produced when we 
attempt to determine the slit through which each 
photon passes. To do this, we shall represent the 
plate as a quantum-mechanical harmonic oscil
lator. The photon and the plate, having once inter
acted, become nonseparable parts of a single 
quantum-mechanical system. This forces us to 
consider the effect of our measurement of the 
plate on the photon wave function, and, conse
quently, on the interference pattern produced by 
these photons. 

In the next section we shall derive the inter
ference pattern attenuated as a result of our 
measurements on the position of the plate. There 
we shall also obtain the distribution of momentum 
of plate 1 associated with the relevant photons, 
that is, those which contribute to the image on the 
photographic plate. 

In Sec. Ill we shall find what partial interference 
patterns correspond to ensembles of photons cor
related to definite final momenta of the first plate. 
We shall also show that although these partial 
interference patterns depend on the measure
ments performed on the first plate, the total 
interference pattern (the sum of the partial inter
ference patterns) is always the same. 

In Sec. IV we shall find an analogy between this 
situation and the celebrated Einstein-Rosen-
Podolsky paradox. 

Section V discusses in terms of Shannon's theory 

II. APPROXIMATE PATH-DETERMINATION 

Let us now analyze in more detail the experi
ment described in Sec. I. Assuming that the 
Heisenberg uncertainty principle holds, let us 
ask exactly to what extent the interference pattern 
is smeared out if we insist on determining the 
path of each photon with a given accuracy. In 
the spirit of Bohr's rebuttal, we will represent 
screen 1 by a quantum-mechanical wave function. 

The harmonic-oscillator wave function is a 
natural choice, since it satisfies (in its lowest-
energy state) the equality 

AxAp=K/ 2, 

thus minimizing the cost (disturbance of photon's 
phase due to Ax) of obtaining information about 
the photon's momentum with an error Ap.11 Both 
in the position (x) and wave-vector (k) represen
tation it is given by a Gaussian: 

ψ(χ) = τι" ι/4α" ι/2εχρ(-χ2/2α2), Ax 2  =a z / 2, ^ 

<p{k) =Ti- l l i U l h  exp(-aW/2),  Ak z  = 1/(2α2), 

where k =p/K is the χ component of the wave vec
tor of plate 1. [One sees that (Ax)(Ak) = J, the 
minimal irreducible demand of the uncertainty 
principle.] 

The object of this section is to calculate the 
interference pattern one obtains when plate 1 has 
this wave function. But first we need to state the 
assumptions we will be making regarding the 
photon wave function in a single slit experiment. 
Let us consider for example the wave function 
at plate 3 of photons which have passed through 
slit A, slit B being closed for the time being. 
This wave function is 

=/(1) exp{i(2irA)[L2 +  ( ξ - s  /2)2]172} , 

where / is a slowly varying envelope function 
whose presence is due to the fact that the slit 
is not infinitesimally narrow. For an ordinary 
slit, / would be the usual diffraction pattern. 
Moreover, one could also consider a slit con
taining one or another type of lens, and this would 
lead to a different envelope function. For ex-
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ample, the process of apodization can be used to 

smooth out the diffraction pattern.12 In any case, 

all we ask is that there be a region | | | < ξ0 in 

which /(ξ) is essentially constant. We will then 

restrict our attention to a section of plate 3 where 

|ξ|<ξ0 and kl There the wave function can be 
approximated by 

μΑ(ξ)=/(0)β""( ί> e i6o{, 

where α ( ξ )  =  ( 2 TI/L ) [ L 2  + (s2/8) + ( ξ 2 / 2 ) ]  and k 0  

= (ϊjs)/(L\). Similarly, the wave function for 

photons coming only from slit B is 

When we superimpose these two wave functions, 

the common factor does not contribute to 

the interference pattern. We will therefore omit 

this factor throughout the rest of this paper. 

Finally, coming back to the double-slit experi
ment, since we have abandoned the usual normal
ization in considering only a part of plate 3, our 
convention will be to let the average of the inter
ference pattern over one period be 1. 

Just after each photon passes, we can measure 
exactly either the position or momentum of plate 
1. Let us assume for now that we measure the 
position, and let us calculate the resulting inter
ference pattern. In this case we know exactly 
where each photon starts its journey to plate 3. 
All photons starting at the same place χ form a 

subensemble whose contribution /,(ξ) to the total 
interference pattern is perfect, but shifted by an 
a m o u n t  Δ  ξ  = - χ  · .  

1 χ ( ξ )  =  1 + cos2£0(£ +  χ ) ,  

where k 0  =  n s / ( L \ ) ,  and s and L  are defined in 

Fig. 1. The number of photons in the subensemble 

characterized by the position χ is proportional 
to |ψ(χ)|2. Therefore, the total interference pat
tern ίΓ(ξ) is just the sum of all the contributions 

from the various subensembles, weighted by 
\Ψ(Χ)\ 2:  

Τ ( ξ ) α ;  j  ά χ \ φ ( χ ) [ 2 Ι χ ( ξ )  =  I  +  e ' k a " 2  c o s 2 k 0 ( , . (2) 

This is our smeared-out interference pattern. 
Now how much can we determine about the paths 

of the photons using the same experimental ar
rangement, if we choose to measure the mo
mentum of screen 1 rather than its position? 
Clearly the only photons which concern us are 
those which succeed in arriving at the final screen. 
Therefore, we will record only the momenta im
parted by these photons. From the geometry of 
the apparatus we see that for these photons there 
are only two possible values of the wave vector 
i m p a r t e d  t o  s c r e e n  1 ,  n a m e l y ,  ±  i t s / ( L ^ )  =  ± k 0 .  

(We have assumed here that a « s  <<L, and that 
all photons arrive at screen 1 with no initial mo
mentum in the χ direction.) The measured mo
mentum of screen 1, however, will not be con
fined to these two values, even if our measure
ments are exact. As before, the uncertainty 
comes from the fact that the initial momentum of 
the plate is not definite, but rather has a distribu
tion given by |<p(ft)|2. If the plate has initial wave 
vector k, then its final wave vector κ (after the 

plate has collided with one of the photons under 

consideration) can have either of the two values 
K=k±k0. The total recorded distribution D(k) of 
wave numbers of the plate will be the sum of all 
the partial distributions Di(K), weighted by 

ΙΦ(*)Ι2: 

ΰ „ ( κ )  =  k [ ^ ( K  ~  k  + k 0 )  +  δ ( κ  -  k  -  k 0 ) } ,  

ΐ > ( κ ) =  j  d k \ < p ( k ) \ 2 D k ( K )  ^  

= [a/(2π ι/2)] {exp[-a2(K + fe0)2] 

+ exp[ ~ a 2 ( K - k 0 ) 2 } }  .  

It is convenient to define a dimensionless 
"smudging parameter" u =ak0. From Eq. (2) it is 

clear that this is the parameter characterizing 

the suppression of the interference pattern. It is 
also a measure of the uncertainty of our deter
mination of the path of each photon. To clarify 
these points, let us choose a particular value of 
u ,  n a m e l y ,  u  = 0 . 4 7 6 9 .  I f  w e  u s e  t h i s  v a l u e  o f  u  
to calculate the interference pattern according 
to Eq. (2), and the distribution of measured mo
menta according to Eq. (3), then the results are 
those shown in Fig. 2. 

If the measured momentum is positive, then 
we will guess that the photon passed through slit 
A; if it is negative, then we will guess that the 
photon passed through slit B. Clearly some of 
our guesses will be wrong—there are photons 
that have positive values of measured momentum 
even though their actual momentum was negative 
and they went through slit B. The fraction of 
photons which misbehave in this way equals the 
fraction F(u) of our guesses which are wrong. 
This fraction is just the ratio of the area under 
the "tails" of the Gaussians (that is, the parts 
lying on the wrong side of κ =0) to the total area 
u n d e r  ϊ > ( κ ) :  

F ( u )  =  ( α / π ι / 2 )  J  exp[ ~ α 2 ( κ  - k 0 ) 2 ] d K  

=  ( 1 / 7 7 1 ' 2 )  J  e - " 2 d r ,  
U 

= f[l - erf(a)]. 
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K  {α) 

£ ( b )  

FIG. 2. Results of the approximate momentum mea
surement in the double-slit experiment, for the smudg
ing parameter « = 0.4796. (a) Distributions of measured 
momenta, (b) The corresponding total interference pat
terns. 

Our particular value of i t  was chosen so that 
F(u) = 0.25. That is, out of four guesses, one is 
usually wrong. Thus, we have done a fairly 
good (but not perfect) job of determining the path 
of each photon, and therefore we might expect 
an almost completely obliterated interference 
pattern. But in fact this is not true. Figure 2(b) 
shows that we still get an almost perfect inter
ference pattern; the crest-to-valley ratio R(u) 

of intensities is R(u) =[1 +exp(-u2)]/[l - exp(-w2)] 
= 8.8 for our value of u. Have we not then suc
ceeded in observing both particlelike and wave
like properties of the same photons ? 

One will no doubt object: The interference pat
tern Sr(I) was calculated for an experiment in 
which the position of sc reen 1 was measured. The 
path determination depended on the wave vector 
k of the photon inferred from the measured mo
mentum of the screen 1. But these two measure
ments cannot both be performed for the same 
photons, and so Figs. 2(a) and 2(b) do not refer 
to the same experiment. Hence, in accord with 
the Copenhagen interpretation of quantum mechan
ics, there is no paradox. The complementarity 
principle does not prevent photons from behaving 
once as waves and once as particles. It only 
states that the same photon should not reveal this 
"split personality" in the same experiment. 

The above objection is certainly valid. How
ever, we shall see in the next section that even 
when we perform the momentum measurements 
on screen 1, obtaining information about the slit 
each photon chooses, the same total interference 
PatternT(I) forms on the photosensitive screen 3. 
That is, Figs. 2(a) and 2(b) describe the outcome 
of the same hypothetical experiment. 

III. CORRELATION BETWEEN THE MEASURED 
MOMENTUM AND THE CORRESPONDING 

INTERFERENCE PATTERN 

In this section we will analyze the experiment 
in which the momentum of screen 1 is measured 
rather than the position. From each momentum 
measurement we will infer the relative probabili
ties of the photon's passing through one slit or the 
other. In practice, we cannot actually perform 
this momentum measurement with the necessary 
accuracy. However, as is shown in Appendix A, 
one can perform an experiment which will give 
the desired probabilities. The analysis in this 
section is sufficiently general to be applicable to 
the experiment considered in Appendix A. 

In our experiment (Fig. 1), photons entering 
the apparatus change the momentum of screen 1. 
Then some of them pass through the slits in plate 
2, as announced by a flash of light emitted by a 
scintillator on plate 3. We wait for these scintil
lations, and immediately record the momentum 
of plate 1 and the position of the scintillation. 
That is, our record contains for each photon two 
numbers: the measured position on plate 3 and 
the measured momentum. Of course, we can 
obtain from this record both the interference pat
tern Sr(I) and the distribution S>(k) of measured 
photon momenta. Indeed, these two distributions 
could have been obtained directly, without keeping 
a photon-by-photon record. The fact that each 
scintillation is actually associated with a definite 
kick to plate 1 can have no effect on the shapes of 
J(I) and JD(I). Given that we do have a photon-
by-photon record, we find Sr(I) simply by counting 
a l l  t h e  p h o t o n s  t h a t  l a n d e d  i n  t h e  i n t e r v a l  I -  l + d | .  
S>(k) is clearly constructed in an analogous man
ner. 

But a new question which we have not considered 
so far comes to our attention. We can look for 
the distribution of scintillations arising only from 
those photons which have been associated with a 
definite measured momentum κ of the plate 1. 
What kind of interference pattern will these 

photons produce? The first thing to notice is that 
these partial interference patterns iK(|) cannot 

be independent of κ; that is, they cannot all have 
the shape of the total interference pattern. For 
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if we consider only the photons with a high-enough 
k, we could improve indefinitely our chances of a 
correct determination of their paths; that is, by 
increasing k we would be able to tell with as small 
a margin of error as we wish through which of the 
two slits the photon has passed. In this way we 
would be able to get around Bohr's resolution of 
the double-slit paradox. 

Therefore, a correlation between k—the mea-
sured value of the plate's momentum—and 

- t he partial interference pattern—seems 
inescapable. To find out the shape of «'«(£), let 
us consider the fraction of error /(«) defined as 
the ratio of the probability of the photon's passing 
through slit A to the probability of passing through 
slit B, 

(4) 
Here pA and pB are defined by this formula to-
gether with the relation , This ratio 
f(a) clearly represents the uncertainty in our 
knowledge about the two possibilities from which 
the photon can choose. 

The same situation and identical er ror ratio 
appear when we consider a double-slit experi-
ment in which the two slits have different areas. 
The uncertainty ratio / w i l l in this case be ex-
pressed by the ratio of the two areas. In this si t-
uation the interference pattern can be immediately 
written: 

(5) 
It is natural to expect that if our correlation mea-
surement is characterized by the same value of 
/ a s this unequal-double-slit experiment, then it 
should yield the same interference pattern. 
Therefore, 

(6) 

These formulas (5) and (6) are certainly compat-
ible with quantum mechanics and with the uncer-
tainty and complementarity principles. What do 
they predict for a definite value of / ? For in-
stance, let us take that is, out of 100 pho-
tons we expect 99 of them to pass through the 
more likely slit. An accuracy of 99% is certainly 
high, and one would expect that such a measure-
ment should destroy the interference pattern. But 
a straightforward calculation shows that the 
crest-to-valley ratio R given by 

equals approximately f . Despite 
the fact that we know with 99% certainty the paths 
of the photons, they still have strong wavelike 
properties. In a sense we have localized the 
cause of what appeared to be a violation of the 

FIG. 3. Partial-interference patterns i K ( ( ) correspond-
ing to the different measured momenta k and the result-
ing total interference pattern ?{£) , according to formula 
(7). 

complementarity principle. 
To make sure that our present reasoning is 

consistent and that our apparent paradox survives 
the objection raised at the end of Sec. I, let us add 
up all the partial interference patterns, all the 
differently smudged-out contributions. According 
to Eqs. (3) and (5), each of them can be written as 

Weighting them by D(«) and adding them together, 
as represented in Fig. 3, we obtain 

(7) 
This is exactly what we obtained previously 
[Eq. (1)] by adding perfect, but shifted, inter-
ference patterns. This way of obtaining the total 
interference pattern is illustrated symbolically 
in Fig. 3. 

IV. EINSTEIN ROSEN-PODOLSKY "PARADOX" IN 
THE DOUBLE SLIT EXPERIMENT 

Let us recall the two possible measurements one 
can perform using the experimental set-up of 
Fig. 1: (1) Measure the position of screen 1 — 
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get perfect  but shi f ted partial interference pat
terns. (2) Measure the momentum of screen 1 — 
get smeared out but centered partial interference 
patterns. 

Notice that in both cases the measurement on 
screen 1 is performed after the photon has inter
acted with it. How does the photon know in which 
partial interference pattern to fall? How can it 
know what we decided to measure when it is 
already separated from the plate by a large dis
tance? 

There is no doubt that our choice affects the 
wave function of the photon: (1) If we measure 
plate 1 to have position x, the photon arrives at 
plate 3 in the state 

of «•*>+£-·*</««>. (8 a)  

(2) If we measure plate 1 to have momentum κ, 
the photon arrives at plate 3 in the state 

Vt(V)CZρ A
l k (K) e" 1 O i  +Pe l i 2 (K) e ' l k o t . (8b) 

This effect of our measurement on the photon's 
wave function can be understood in the following 
way. After the photon has interacted with plate 1, 
it no longer has an individual wave function; 
there is only the state Φ of the combined system 
(plate 1 + photon). This combined state can be 
expanded in terms of any complete set of ortho
gonal states of plate 1. For example, if o% is the 
eigenstate of position of plate 1 corresponding to 
the eigenvalue χ, we can always write the com
bined state as 

Φ = J  dxc x ^ x  Qi σ,, (9a) 

where the photon states μ χ  are all normalized but 
not necessarily orthogonal, and |ct|2 is the prob
ability distribution of the plate's position x. Al
ternatively, we can use the set of eigenstates of 
momentum of plate 1, {τ,}, as our basis, in 
which case Φ is written as 

Φ = Jdhd x  T K  . (9b) 

Thus, each plate eigenstate (σ χ  or rj has its 
corresponding photon state. When we measure 
the plate's position and obtain the value x, the 
photon is forced into the state μ.χ, and similarly 
for momentum. In this way our choice affects 
the wave function of the photon. 

Our object now is to identify the various quanti
ties which appear in Eqs. (9), and thus to check 
that this idea of the combined state is consistent 
with the analysis of the previous sections. For 
definiteness we will write Φ as a function of the 
positions of plate 1 and the photon, to which we 
assign the symbols  "z"  and "ξ"  respectively ("x"  

is reserved as a lable for eigenfunctions; hence 
the necessity of introducing "z"). According to 
our previous analysis, βχ and vK should be given 
by Eqs. (8), and the other quantities in Eqs. (9) 
should be interpreted as follows: 

C ,  =  Ψ( Χ ) =  ^ L M A I H E " 2 ' 2 * 2  [see Eq. (1)], 

σ χ (ζ)  = δ(ζ  -χ),  

d K  = n l k (K) [see Eq. (3)J, 

T K (2)=e""  .  

Inserting these identifications into Eqs. (9), we 
obtain the following expressions for Φ: 

According to Eq. (9a), 

f  dxe-o^leW'he-W»] 

x δ ( ζ - χ ) ;  (IOa) 

according to Eq. (9b), 

Φ = φα j  dK^ l h (K)[p A
i k (K) e ' "o !  

+ p B
l h (K) e-'V] 

Xe'",  (IOb) 

where the constant factors have been chosen so 
that Φ conforms to our normalization convention; 
i.e., J £?ζ|φ|2 is a function of ξ whose average 
value is 1. One can verify that these two expres
sions for the combined wave function are indeed 
equal. This is in fact the real justification for 
our identification of vK [Eq. (8b)] as the wave 
function of photons corresponding to plate mo
mentum κ, and hence also for our expression (6) 
for the partial interference pattern. 

In Sees. II and III we found that although our 
choice of what to measure (about plate 1) does 
affect the photon's wave function, it does not 
affect the total interference pattern. From the 
point of view of the present section, this result 
is seen quite easily. The total interference pat
tern is 

/(ξ) = f  άζ\*(ζ , ξ ) \ \  

which is independent of any measurements made 
on plate 1. 

The situation described here and the analysis 
outlined above are essentially the same as in the 
Einstein-Podolsky-Rosen "paradox."4'5·6 There 
too what we choose to measure on one system 
affects the wave-function of another system far 
away. But the final distribution of measured 
values of the far away system is again independent 
of our choice. Thus in discussing Einstein's 
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double-slit experiment we have encountered the 
classic nonseparability feature of quantum 
mechanics.7 

To make sure that the analogy is complete, one 
may consider a situation where the photon is 
first localized on screen 3, and the position (or 

, 1 

momentum) of screen 1 is measured only after
wards. In that case the wave function of the photon 
is simply 6(ξ - |0). It is readily seen that the 
total wave function Ψ(ζ, ξ) can be decomposed into 
a wave function of a photon localized at I0 and a 
wave function describing plate 1: 

* ( * >  i )  =  f  < 1 ξ 0 { δ ( ξ  - ξο)}0{(2α)" ιΑ7ΐ" ι/4βχρΙ-ζ2/(2α2))[εχρ1^ο(ξο + ζ)) + βχρΙ-ί^ο(ξο4 ζ))]} . 

From this expression a wave function, and, con
sequently, a corresponding probability distribu
tion correlated to an ensemble of photons landing 
at the given coordinate value ξ0 can be obtained. 

That is, the measurement can be first per
formed either on the plate 1 or on the photon, and 
the obtained information will allow us to deter
mine what is the probability distribution of the 
other, yet unmeasured part of an unseparable 
system. 

V. INFORMATION AND THE COMPLEMENTARITY 

PRINCIPLE 

In the preceding sections we have presented a 
a result which, although not paradoxical, was 
nevertheless surprising (that is, that one can 
make a fairly precise determination of the slit 
through which each photon comes with only a 
slight disturbance of the interference pattern). 
It is worthwhile to notice that the two limiting 
cases of Einstein's version of the double-slit 
experiment do not surprise us at all. These are 
the  c a se s  i n  wh ich  t he  s mudg i ng  pa r ame te r  u  
takes the values zero (no determination is made 
of the path of the photon) and infinity (each pho
ton's path is determined completely). As we can 
see from Eq. (1), in the former case the inter
ference pattern is perfect, while in the latter 
case it is completely washed out. This result has 
been known for so long that we have learned how 
to talk about it, and it is therefore no longer 
surprising. 

The apparent paradox of our present example 
clearly arises from the fact that we are con
sidering an intermediate situation in which one 
obtains some information about the photons' 
paths, and still retains an interference pattern 
having some degree of clarity. The problem is 
that we lack a good way of talking about such a 
situation, and we have no simple rule which tells 
us what to expect. The aim of this section is to 
fill this gap. We will find that information theory 

provides a good language for dealing with an 
imprecise path determination, and this will lead 
us naturally to a rule which defines the extent 
to which the two complementary aspects of light 
(wave and particle) may be manifested simul
taneously. 

Intuitively, one expects that if the interference 
pattern has a certain sharpness of definition, 
then there must be some limit on the amount of 
information which could have been obtained re
garding through which slit each photon passed. 
What we wish to do here is simply to make this 
statement more precise. For this we need a way 
to quantify "information." We will use the mea
sure of information discovered by Shannon,8 which 
has all the mathematical properties one usually 
requires of information, and which has been fruit
fully applied to a wide variety of problems,9 in
cluding quantum mechanics itself.10 Its most 
general definition is the following: If a system 
can be in one of N possible states, but if we know 
only the probabilities P i  of its being in each state 
i, then the amount of information we lack about 
the system is the positive number 

N 
H  =  -  ̂  P i  ln/)t. 

i=l 
In our experiment we can consider each photon 
as a system with two possible states (in the 
above sense): passing through slit A and passing 
through slit B. If we determine the probabilities 
of these two paths to be pA and pa  (wherepA+pB 

= 1), then the information we lack about the path 
of that photon is 

H =  ~ (Pa  ^PA +PB 1 Π / > β )  ·  ( 1 1 )  

As an example, we note that if we know nothing 
about the path of a photon, that is, if each slit 
is equally likely, then the amount of information 
we lack is 

Zi0 = -(iln j + ^lnj) = ln2 . 

Now we are ready to formulate the problem. 
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Suppose we are interested in obtaining an inter
ference pattern with a certain crest-to-valley 
ratio of intensities, say, 8.8 as in the above 
example. Notice that there are many ways to 
make such a pattern. We list a few of them here: 

(1) Perform the experiment described in Sec. 
II, in which the measured momentum of plate 1 
is used to judge the path of each photon. In this 
case we have seen that the paths of some photons 
will be better determined than the paths of others, 
depending on the value κ of the measured mo
mentum. 

(2) Keep all the plates fixed, but let one of the 
slits be bigger than the other. We have seen in 
Sec. Ill that the resulting pattern will again be 
partially smeared out, and that the same pattern 
arises from a subensemble of photons all having 
the same value of κ. The crucial thing about 
these experiments is that we cannot differentiate 
f u r t h e r  a m o n g  t h e  p h o t o n s .  T h e r e  i s  o n l y  o n e  
subensemble (the whole ensemble); each photon 
gives us the same amount of information; the 
photons are in a pure state. 

(3) Allow some of the photons to pass through 
one slit only (the other being blocked), making 
a completely smeared out pattern; then open the 
other slit, allowing the rest of the photons to 
interfere perfectly. The sum of the two patterns 
can be arranged to have the desired crest-to-
valley ratio. 

(4) Make no measurement of the photons' paths, 
but let the slit in plate 1 be of a size comparable 
to the spacing between fringes, so that the result
ing pattern is smudged. 

The point is that the amount of information one 
obtains about the photons' paths varies from One 
case to another, even though the "summed-up 
interference pattern" is the same in each case. 
For example, in case 4 one loses some of the 
sharpness of the pattern without gaining any 
information at all. 

The question naturally arises: Of all possible 
methods of generating this particular interference 
pattern, which one gives us the most information 
regarding the photons' paths? If we can find this 
method, then we will have found the limit on the 
amount of information which can be obtained, 
given that we insist on a certain sharpness of 
definition of the pattern. We will then have to 
admit that no amount of cleverness can produce 
an experiment in which the information gained 
exceeds this limit. 

We will find that this question is indeed answer
able, and that the best method turns out to be ex
periment (2) above, in which the photons are in a 
pure state. To see this, we first need to write 
down a general expression for information which 

applies to all the experiments we are considering. 
A typical experiment can be described as fol

lows. As in Sec. Ill, all the photons can be di
vided into different subensembles, such that the 
photons of a given subensemble all have the same 
probability of passing through slit A. In Sec. Ill 
we labeled the subensembles by the measured 
quantity κ, and we called the probabilities of the 
two paths ρΑ(κ) and ρΒ(κ). In the general case 
which we are considering now, it will be more 
convenient simply to label each subensemble by 
its values of pA and pB. To simplify the notation 
let us define γ =ρΛ, from which it follows that 
pB = I- γ. For our purpose, each experiment is 
completely characterized once we specify the 
fraction of the photons in each subensemble. 
Therefore, let p(y)dy be the fraction of the pho
tons whose probabilities of going through slit A 
a r e  b e t w e e n  y  a n d  y  + ά γ .  

According to Eq. (7) the information we lack 
about the path of each photon of the subensemble 
y is 

H(y) = -[y Iny + (1 - y) ln(l - y)]. 

The total information we lack is the sum of H ( y )  
over all photons. To obtain the average informa
tion H we lack per photon, we divide this sum by 
the total number of photons, arriving at the 
formula 

H  =  (  ά γ ρ { γ ) Η ( γ )  
jO 

=  - (  ά γ ρ ( γ ) [ γ  Iny + (1-y) ln(l-y)]. (12) 
jO 

Now we would also like to write an expression 
for the interference pattern ϊ(ξ) in terms of the 
function p(y). As in Sec. Ill [Eq. (6)], we again 
associate with each subensemble y a partial 
interference pattern ίγ(ξ), given by 

ιγ(ξ) cc 1 + 2ylfe(l - y)ih cos2fc0£. 

Notice that we have assumed the best possible 
ϊ,(ξ). One could always be sloppy (as in experi
ment 4) and obtain a more smudged pattern. 
Furthermore, we have assumed that all of the 
contributions I1 from the various subensembles 
are not shifted relative to each other; that is, 
they all have their maxima at the same places. 
For our purpose here, these assumptions entail 
no loss of generality; we are trying to get as 
good a pattern as we can in order to investigate 
the theoretical limit on the amount of information 
which can be obtained. We now generalize Eq., (7), 
and find that the total interference pattern is 

d y p ( a ) i r ( i )  =  I + S  c o s 2 k 0 i ,  (13) 
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where 

S  [ Ι ά γ ρ ( γ ) γ ^ ( 1 - γ ) ί / 2 .  (14) 
jO 

From Eq. (13) it is clear that the quantity S is 
a measure of the sharpness of definition of the 

interference pattern. In terms of S, the main 

problem of this section can now be stated very 

simply: For a given value of S1 what distribution 
ρ minimizes H, and what is this minimum value 

o i H ?  

Our answer, whose proof is outlined in Appen
dix B, is that the best ρ is 

f > 0 ( y )  =  5 ( r - y 0 ) ,  ( 1 5 )  

where y0 is determined by the chosen sharpness 

of the interference pattern. In fact, according to 
Eqs. (13)-(15), 

S=2y0
l/2(l-y0) l/2, 

or, if we solve this for y0, 

y0 =IUMl-S2)172]. (16) 

What Eq. (15) says is that if we wish to get as 
much information as we can about the photons' 

paths, the best experiment we can do is of the kind 

exemplified by experiment 2, where all photons 

have the same probability y0 of passing through 

slit A, and are thus in a pure state. (Actually, as 
is shown in Appendix B, there is a one-parameter 
family of distributions which are as good as p0; 

they differ from P0 only in that some of the photons 
have their probabilities pA and pB reversed.) We 

have thus answered the first part of our question. 

For an interference pattern of given sharpness 
S, the amount of information H(S) one gives up 

when he uses this "best" method can be found 

from Eqs. (12) and (15) (and this answers the 

second part of our question): 

H ( S )  = -[y0Iny0 +(1- y0)ln(l -y0)], (17) 

where y0 is given by Eq. (16). The main result 

of this section is that one must forfeit at least 

this much information about the photons' paths 
in order to obtain an interference pattern of 

sharpness S. That is, 

H ^ H ( S ) .  (18) 

Let us now apply this result to our original 
experiment (experiment 1), with the smudging 

parameter u having the same value as before. 
The interference pattern is [Eq. (2)] 

ϊ(ξ) = 1 + e""2 cos2fc04 

= 1 + (0.796) cos2£0£. (19) 

That is, S =0.796. The value of H ( S ) 1  given by 

Eqs. (17) and (16), is then H ( S )  = 0.497. This num
ber becomes more meaningful if we compare it to 
the total amount of information H0 = ln2 available 

about each photon: 

H ( S ) Z H 0  =  0.717. 

Thus, according to our result, in order to obtain 
the interference pattern (19), we must sacrifice 
at least 71.7% of the available information re
garding the photons' paths. 

This is the minimum amount of information we 
must sacrifice. How much information do we in 
fact give up when we perform Einstein's experi
ment? The easiest way to answer this is to re
turn to the κ notation. According to Eq. (4), the 

probability ρΑ(κ) that a photon in the subensemble 

κ will pass through slit A is 

„ expj -Q2(Ktfe0)2] 
εχρ[-α2(κ+£0)2] + εχρ(-α2(κ-έ0)2]' 

and ρ Β ( κ )  =  1  - p A ( n ) .  The average information we 

lack per photon is 

H  =  J ά κ ΐ > ( κ ) [ ρ Α ( κ )  Inρ Α ( κ )  + ρ Β ( κ )  1η/>Β(κ)], 

where the distribution D of measured momentum 
κ is given by Eq. (3). Upon evaluating this integral 

numerically, we find that 

H f H 0  = 0.728. 

This is only slightly greater than the minimum 

Valuetf(S)7ZZ0=O^n, associated with this inter
ference pattern. Thus, Einstein's experiment 
gives almost as much information as one could 
possibly get [which, by the way, is not very much 
in this case—only 28.3% (i.e., 1-71.7%) of the 
available information; this is perhaps in better 
agreement with what we might expect for this 
interference pattern, as compared to the expres
sion "75% accuracy" which we used earlier]. But 
the point is that the amount of information one 
c a n  g e t  i s  l i m i t e d  b y  H ( S ) .  

Let us conclude this section with a clear state
ment of the complementarity principle in the 
language of information theory, as it applies to 
the double-slit experiment. The sharpness of the 
interference pattern can be regarded as a mea
sure of how wavelike the light is, and the amount 
of information we have obtained about the photons' 
trajectories can be regarded as a measure of 
how particlelike it is. Equation (14) can be ex
pressed in words as follows: (Information lost 
about the photons' paths )s (information H(S) lost 
in pure-state experiment giving the same inter
ference pattern). H(S) [given by Eqs. (17) and 
(16)] increases monotonically as the sharpness 
increases. The above inequality is thus a pre-
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cise statement of the following fact: The more 
clearly we wish to observe the wave nature of 
light, the more information we must give up about 

its particle properties. 
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APPENDIX A MULTIPLATE DOUBLE SLIT EXPERIMENT 

As we have discussed in the introduction, 
Einstein proposed to modify the double-slit ex
periment in such a way that in principle one 
should be able to determine through which slit 
the photon passed. In this appendix we shall pro
pose an arrangement where one would be able to 
carry out an equivalent experiment in practice 

The major difficulty encountered in an attempt 
to realize Einstein's proposal is the error in 
the determination of the lateral kick. This mea
surement may be performed by releasing any of 
the three screens involved (we do not consider any 
causality effects in this appendix), and measuring 
the momentum of the screen after its interaction 
with the photon. But regardless of the particular 
screen, the square average momentum of the 
random, noiselike Brownian motion is larger than 
the value of the kick we want to determine. For 
the case where the photographic plate is released 
Wheeler13 recently calculated that the resulting 
fluctuations in the value of the momentum are 
12 orders of magnitude larger than the signal 
itself. We are consequently forced to look for 
some alternative indicator of the particle path 
that would replace the momentum kick. 

The direction was all that the kick could have 
told us. Can we determine the direction of the 
photon in a straightforward manner? To do it we 
propose the experimental arrangement envisaged 
in Fig. 4. There, the usual photographic plate 
is replaced by the set of nontransparent, thin 
"photoplates" covered with the photographic 
emulsion on both sides. In such a "multiplate 
double-slit" experiment, when the photon blackens 
a grain of sliver bromide on the top (bottom) of 
one of the photoplates, we expect that it came from 
the top (bottom) slit. The analysis of the experi
ment is simplest when the photoplates are oc
cupying the region &ξ«$, that is, when they lie 
close to the optical axis of the double-slit appa
ratus. We shall assume that this is true in the 

MULTIPLATE 

PHOTO DETECTOR 

PHOTOGRAPHIC EMULSION 

\ COORDINATE χ 

FIG. 4. Multiplate double-slit experiment. 

rest of this section unless otherwise stated. 

Let us now consider only those plates in the 
positions where previously, with the help of the 
normal photographic plate, maxima and minima 
of the perfect interference pattern 

iF(|) cc 1 + cos2fc0£ 

were observed. Will the plates placed at £, =2nn/ 
Ika  become dark while the ones at  ξ =[(2η + l)n]/2k a  

remain untouched by the radiation? Shall we re
cover the perfect interference pattern? If so, 
quantum mechanics would prove inconsistent: The 
same photon goes through two slits producing an 
interference pattern and yet it comes from the 
top (bottom) slit. 

What other outcomes of the experiment are con
ceivable? Let us examine more carefully the 
possible fate of photons landing on the photoplates 
to establish if: (1) The interference pattern may 
disappear—and all the plates will be "grey." 
(2) The fact that the photon lands on the top (bot
tom) of the photoplate does not yet allow us to 
be sure from which slit it came. 

While the experiment remains to be done, one 
really expects (1) to occur. The reason for it in 
a carefully performed multiplate double-slit ex
periment is clear enough: The photons coming 
from two different slits never meet on the same 
side of the photoplate—they can never interfere. 
We can conclude this already from the wave optics 
interpretation, unless the wave representing the 
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electrical field of the photon can get i n  s o m e  
fashion from the bottom slit to the top side of 
the photoplate. 

If this "landing on the wrong side" does occur, 
then we have the situation described by (2). 
Physical reasons for that effect can be found in 
the reflections that direct the ray coming from 
the top slit to the bottom side of the photoplate 
[see Fig. 5(a)], Consequently, the probability 
of detecting a photon from a certain slit changes 
accordingly. We can use pA(x) as in Sec. Ill, to 
denote the probability that a photon from the top 
slit will arrive at the position x, where χ is de
f ined  in  F ig .  5 (a ) .  As  be fo re ,  we  a s sume  p A {x )  
+Psix) = 1· We can also assume that the phases of 
the photons arriving at the given χ are not ran
domized through the undergone reflection 
processes. 

With this in mind one does not encounter any 
difficulties in carrying out an analysis similar 
to the one performed in Sec. III. The only impor
tant change is the different shape of pA(x) and 
pB(x), which is qualitatively shown in Fig. 5(b). 
What we shall measure here can be described 
in terms of the partial interference pattern and 
totaL interference pattern. For when we record 
the intensity at a certain position * on each plate, 
we sample at a set of discrete points {ξί} (which 
are the positions of the photoplates) the partial 
interference pattern ι,(ξ). As in Sec. Ill, from 
the knowledge of pA(x) andpB(x), we have 

( a )  

COORDINATE χ 

INTERFERENCE FRINGES 

DUE TO THE REFLECTIONS 

( b )  

P8 (χ) χ oCU) PA (X) X ^(X) 

/ 
I r  ν κ Π 1 Π 

X 

FIG. 5. Origin of the residual interference pattern in 
the multiplate double-slit experiment, (a) The paths of 
the photons and the resulting interference pattern, (b) 
Probabilities of arrival from one of the slits as a func
t i o n  o f  x .  

i  χ ( ξ )  =  1  + ρ Α
υ ' 2 ( χ ) ρ Β

ι / 2 ( χ )  c o s 2 k ^ .  

This formula is true since all the photons landing 
a t  a  c e r t a i n  χ  h a v e  t h e  i d e n t i c a l  p r o b a b i l i t i e s  p A ( x )  
and pB(x), and for that reason constitute one 
"subensemble" in the sense of Sec. III. Thus, we 
have succeeded in designing a measurement that 
gives directly the partial-interference pattern. 

To obtain the total interference pattern, ϊ(ξ), 
we use formula (6): 

¢(1) = /  dxp(x ) i x ( i ) .  (Al) 

That is, the total number of grains blackened on 
the photoplate at a position ξ gives the value of 
the total interference pattern ίί(ξ). The ρ(χ) used 
in Eq. (Al) is the weight function proportional 
to the total number of photons that land at a certain 
* and plays the same role asD<K) in formula (6). 

To show that the discussed proposal is practical 
and realizable, let us go through the calculations 
in an example. The separation of photoplates 6 
should not be larger than the distance between 
the maximum and minimum expected in the inter
ference pattern—in fact it is advantageous to 
sample the pattern only at these points: This 
yields for δ: 

δ = ;r/fe0. 

We have assumed previously that δ/s «1. This 
assumption is not crucial. We have used it solely 
to ascertain that in the set of photoplates one side 
of the photoplate can see only one slit. However, 
even if 6~s, we can still make sure that this last 
statement is true by orienting the photoplates so 
that the plane in which each one of them lies 
always intercepts the double-slit screen half-way 
between the two slits. Still, it is easier to do 
with s bigger than δ. 

Taking λ = 10 μιη (there are lasers which have 
wavelength of this order), we get for L = IOO cm 
and s = 5 mm the photoplate separation δ =0.85 mm. 
This is well within reach of experimental pos
sibilities. 

We have seen here an experiment that attempts 
to determine the slit through which each photon 
passed while trying to retain the interference 
pattern—the same purpose for which the ex
periment described in the introduction was de
signed. However, no data clarifying the Einstein-
Podolsky-Rosen paradox as discussed in Sec. IV 
can be obtained here, since both the path deter
mination and contribution to the interference pat
tern follow from a single event—photoinduced 
transition in a silver-bromide grain. Still, our 
proposal is the only practical version of Ein
stein's double-slit experiment we are aware of. 
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APPENDIX B: OUTLINE OF A PROOF THAT THE PURE 
STATE MINIMIZES THE LOSS OF INFORMATION 

For a given value of S, what distribution p min-
imizes S ? This question can be simplified by 
the following definitions: 

restr icted to the interval . Then 

(Bl) 

( B 2 ) 

What we wish to show is that the distribution 
minimizes H for a given value of S. 

This will imply in particular that the pure state 
minimizes H. [So does any other p 

which gives the same p. These other p 's are all 
of the form 

Step 1. One can prove that s and h are monoton-
ically increasing in the interval and 
that in this interval. (A prime de-
notes differentiation with respect to y.) 

Step 2. Let us compare the distribution 
with the tr ial distribution 

in which and 
the parameters are assumed to be adjusted so 
that both distributions give the same value of S; 

CB3) 
We will show that gives a smaller value of H 
than does; that is 

( B 4 ) 

To prove this, it i s helpful to define by 

The following things a re true about h: 
(i) 

(iii) By (i) and Eq. (B3), 
(iv) To prove Eq. (B4), it is sufficient to prove 

that 

From (iii) and (iv) it is clear that what we have 
to prove is that , In fact it is not hard 
to show from properties (i) and (ii) that 
for all y between and and thus for , in 
particular. 

Step 3. We have seen in Step 2 that the distribu-
tion is better at minimizing H than 
any sum of two 5 functions. This result can be 
extended by induction to any sum of n functions. 

Step 4. For the purpose of calculating S and 11, 
any distribution can be approximated arbitrari ly 
closely by a sum of n 5 functions. Therefore, the 
distribution minimizes H with respect 
to all possible distributions. 
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III. 12 COMPLEMENTARITY IN THE DOUBLE-SLIT EXPERIMENT: 
ON SIMPLE REALIZABLE SYSTEMS FOR OBSERVING 

INTERMEDIATE PARTICLE-WAVE BEHAVIOR 

LAWRENCE S. BARTELL 

In the course of a detailed analysis of observable intermediate particle-wave aspects of light, Wootters and 

Zurek invented an ingenious but technically difficult practical apparatus for performing Einstein's version of 

the double-slit experiment. The present note discusses two very simple alternative systems for displaying the 

Bohr-Einstem particle-wave extremes or, if desired, any intermediate trajectory-interference manifestation 

associated with the double-slit experiment. 

In a recent analysis of Einstein's version of the 
double-slit experiment, Wootters and Zurek1 pre
sented a detailed treatment of the potentially ob
servable manifestations of particle and wave char
acteristics of light. This approach led them to a 
quantitative expression of Bohr's complementarity 
principle appropriate for such experiments. 
Einstein had originally proposed that the lateral 
kick imparted by a photon to an interference screen 
could be used to identify which slit the photon 
traveled through on its way to the screen. Pointing 
out that thermal noise in practical experiments 
would utterly obscure such photon-induced recoils, 
Wheeler2 recently reformulated the Einstein experi
ment in such a way that simple optical discrimin
ation replaced measurements of photon kicks. In 
Wheeler's revised experiment, the operator is 
free to choose (after the photon has passed the 
slits, if he wishes) either to observe which slit 
has been traversed or to accumulate interference 
fringes. Wootters and Zurek showed how to mod
ify the double-slit experiment to permit intermed
iate choices. In their thought experiment strongly 
visible interference fringes are displayed under 
conditions allowing "trajectories of the photons" to 
be "determined with fairly high accuracy." Al
though their theoretical analysis was developed in 
terms of measurements of Einstein photon kicks, 
Wootters and Zurek also proposed an ingenious 
practical version of the experiment not requiring 
measurements of recoil. Instead of adapting the 
Wheeler version, however, they introduced a new 
type of multiplate detector. 

It seems worthwhile to point out that a small 
modification of Wheeler's apparatus leads to an 
even simpler demonstration of intermediate "par
ticle-wave" behavior. This modification is illus
trated in Fig. 1. In Wheeler's design the interfer
ence screen is placed at the focal plane of the lens 
at a distance L from the slits, where the Fraun-
hofer pattern can be observed. If, instead, it is 
desired to observe the trajectory of a particular 

photon, the screen is turned aside and the photon 
activates one or the other counter.3 All that is 
needed to observe intermediate behavior is to 
move the interference screen to a new distance 
I = L + z, on either side of the focus, where the 
Fresnel pattern can be viewed. It is convenient to 
analyze a system with equivalent slits incorpora
ting Wheeler's Gaussian transmission filters. 
Such filters circumvent the subsidiary diffraction 
spots characteristic of slits with abrupt edges. 
Elementary diffraction theory for a case I» d » λ 
yields the intensity 

l ( y )  =/v[F(ji)]2cosh(ay)[l+ 7(;y)cos6}>], (1) 

where F { y )  is the slit form factor exp(-v2/2cr2), 
V(y) is the Michelson "fringe visibility" (parame
ter S of Wootters and Zurek) given by sechfay), 
and K, a, b, and σ are identified in Ref. 4. 

Although the fringe visibility damps as y  in
creases, it is easy to choose conditions making 
the variation of V(y) small across a span of many 
fringes. As is true also for the Wootters and 
Zurek system, fringe visibility is related to the 
slit transmission probabilities PA(y) and PB(y) for 
radiation reaching coordinate y via 

V ( y )  =  2 [ P A ( y ) P B ( y ) } l / 2 .  (2) 

Therefore, if the slit discrimination ratio PA : PB 

is selected to be 4 :1, for example, the resultant 

FIG. 1. Modification of Wheeler's version of Einstein's 
double-slit experiment. Fraunhofer fringes can be ac-
cutaulated on a screen at L, or counters at right can de
tect which slit a photon came through. Alternatively, an 
observation region y atl#L can be selected to yield any 
desired slit transmission probability ratio, PA-PB, and 
fringe visibility. See text. 

Originally published in Physical Review, D21, 1698-99 (1980). 
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FIG. 2. Double-slit apparatus with controllable tra
jectory/interference characteristics. SIitsA and B 
transmit light polarized at +45° and —45°, respectively. 
Any desired slit transmission ratio Pa-PB anc* corre
sponding fringe visibility received at the detectors can 
be chosen by adjusting the analyzer-detector orientation. 
O and E represent ordinary and extraordinary rays. 

fringe visibility is only 20¾ lower than that of an 
ideal two-slit pattern. Although such a ratio sug
gests a fairly high probability of a trajectory 
through slit A, it cannot, of course, be rigidly in
terpreted in terms of individual photons going 
through slit A four times out of five. Equation (2) 
obviously reduces to the Bohr-Einstein extremes 
as V, PA, or PB approach unity. At intermediate 
values of these variables, Eq. (2) offers a quanti
tative expression of complementarity for interme
diate cases. Expectation values of V (wave) and PA 

(particle) cannot both be unity simultaneously; the 
sacrifice of knowledge of one for the other is plain. 

The extreme simplicity of the foregoing experi
ment may not be an adequate compensation for its 
unattractive but characteristic variation of PA : PB 

across the diffraction pattern. Therefore, an al
ternate apparatus designed to produce patterns 
with uniform, controllable PA : PB ratios is 
sketched in Fig. 2. In this apparatus, slits A and 
B transmit light polarized at +45° and -45°, re
spectively. When the analyzer-recorder is ori
ented as illustrated, two-slit patterns of unit visi

bility arrive at C and D (one pattern with a light 
fringe and one with a dark fringe at the center). A 
rotation of the analyzer system by 45° about the 
optic axis produces a single-slit pattern from A 
at C and a corresponding pattern from B at Ό. In
termediate rotations θ generate intermediate 
fringe visibilities (V = cos29) and intermediate 
transmission probabilities PA and PB. Again, the 
visibility is related to transmission probabilities 
by Eq. (2) but the ratio PA : PB now depends only 
o n  t h e  o r i e n t a t i o n  Θ .  I n  p r i n c i p l e ,  b y  a d j u s t i n g  Θ ,  
a choice can be made (after the photon has passed 
the slits, if desired) of what fraction of it (89%, 
say) shall have passed through one slit and what 
fraction through the other. The experimenter can
not, of course, choose which slit shall have trans
mitted 89%—that is left to chance—but only that 
one of the slits shall have transmitted 89%. and 
one, 11%. The 11%, although small, is quite cru
cial to the 63% fringe visibility. 

In each of the two experiments sketched above, 
the Fresnel and the polarization, Wootters and 
Zurek reflectionless multiplate detectors could be 
introduced to determine directly the PA : PB ratio 
inferred only indirectly in the foregoing. Natur
ally, such direct observations would render the 
interference fringes unobservable. Each of the 
experiments can be adjusted to manifest a variable 
degree of wave-particle behavior analogous to that 
discussed at length by Wootters and Zurek. As 
thought experiments the present designs offer no 
new lessons. As realizable experiments, however, 
they offer quite the simplest arrangements possi
ble. 
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III. 13 A "DELAYED-CHOICE" QUANTUM 
MECHANICS EXPERIMENT 

WILLIAM C. WICKES, CARROLL O. ALLEY, AND OLEG JAKUBOWICZ 

We describe an experiment currently being assembled to test the 

quantum-mechanical assertion that the results of a split-beam inter
ference measurement are unchanged even if the decision to recom-
bine the two light beams is delayed until after each photon interacts 
with the beam splitter and enters a superposition state. 

In a traditional optical double-slit interference experiment (Fig. 1), photons 
from a distant point-source are incident upon a screen containing two small 
apertures. With a lens behind the screen, an image of the source is formed on, 
for example, a photographic plate situated in the focal plane of the lens. The size 
and shape of the image depend upon the apertures, but the image will be crossed 
by interference fringes of angular frequency λ/D, where D is the separation of the 
apertures and λ is the wavelength of the light. Such an experiment isolates the 
wave character of the incident radiation: the interference fringes can be best under
stood by describing the energy contained in the radiation as passing through both 
apertures, even if the intensity is reduced so that usually only one photon at a 
time enters the system. 

To Source 

•O 

"O 

Double 
Slit 
Screen 

Lens Hinged Photomultipliers 
Photographic 
Plate 

FIGURE 1. IdealDouble-SlitExperiment 

If the photographic plate is replaced by a pair of photomultipliers situated so 
that each one receives light from only one of the apertures, then the experiment 
emphasizes the particle nature of the light. If, for example, one of the apertures is 
covered, there is no effect on the count rate observed with the photomultiplier 
associated with the other aperture. This effect implies that each photon passes 
through one aperture or the other, never both. 
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This reasoning suggests that the configuration of the apparatus, and hence, the 

choice of an experimenter, determines whether the photons exhibit particle-like 
or wave-like behavior. Acceptance of this apparent paradox is central to the 
Copenhagen interpretation of quantum mechanics. Bohr (1949) moreover asserts 
that the outcome of a double-slit experiment will not change even if the apparatus 
is changed after the photon is already in flight. The experiment we propose will 
test this prediction. 

In an idealized "delayed choice" double-slit experiment (Wheeler, 1978, 1979), 
the choice of whether the experiment is to demonstrate the wave properties (inter

ference fringes on a photographic plate) or the particle properties (individual 
events in photomultipliers) is delayed until after a particular photon has passed 
the plane of the double slit. The light intensity is adjusted so that there is a low 
probability of more than one quantum being in the apparatus at any time. We 
might imagine that the photographic plate is hinged to swing rapidly into or out of 
the photon paths: if the plate intercepts the beams, an interference pattern is 
recorded, one grain at a time; if the plate is swung out of the way, photons passing 
through individual apertures are detected. If the interference pattern obtained is 
the same as obtained with a static plate, the quantum-mechanical prediction is 
confirmed. In what Wheeler (1979) calls a bad set of words, the behavior of the 
photons at the time of their interaction with the double slit, i.e., whether they pass 
through one aperture or both, is determined by our choice of photographic plate 
position after the interaction has taken place. There is no doubt that interference 
effects are obtained with a fixed system; however, an actual delayed-choice ex
periment of this type has not been performed. Various tests of hidden variable 
theories and of the EPR paradox have been proposed (Clauser et al., 1969; Woot-
ters and Zurek, 1979) or carried out (Faraci, 1974; Freedman and Clauser, 1972; 

Kasday, 1971). Aspect (1975, 1976) is undertaking an experiment to test Einstein 
separability by studying the polarization of correlated photons separated by 
spacelike intervals. The delayed-choice experiment considered here looks at the 
behavior of single photons with a choice of trajectories to a single recombination 
region in space-time rather than at pairs of photons at distant points. 

For any practical realization of a delayed-choice experiment, devices analogous 
to the hinged photographic plate are not possible because of the high speed of 
propagation of the photons. It is conceptually equivalent and technologically 

feasible to change the beam paths, switching among stationary detectors. In our 
configuration, to facilitate the beam switching the "double slit" is replaced by a 
beam splitter, resulting in an arrangement similar to the split-beam apparatus 
described by Wheeler (1978). 

In the proposed system (Fig. 2), the detection of both "particles" and "waves" 
is accomplished by photomultipliers in which detection events can be localized 
in time. We will use RCA 31024 photomultipliers, which have a pulse jitter of 
approximately 500 ps for detection of single photons. Discriminated photon 
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FIGURE 2. The "Delayed Choice" Interferometer 

events will be recorded with the University of Maryland Lunar Ranging Program 
event timer (Currie et al., 1972; Steggerda, 1973), modified to accept inputs from 

four independent photomultipliers. The event timer will record the epoch of each 

photon event to an accuracy of 200-300 ps, as well as identify the appropriate 
detector. The delayed-choice switching is implemented in both arms of the appa
ratus by a combination of a Pockels cell and a thin-film polarizer. Upon application 

of a high voltage, the Pockels cells produce a 90° rotation of the plane of polariza

tion of transmitted light. If the light from the original source is plane polarized, 
then the state of the Pockels cells at the time the photons pass through them will 
determine whether the photons are transmitted by the thin-film polarizers into 
the Koster prism, or reflected into photomultipliers A and B, depending upon 
the relative orientations of the source polarizer and the thin-film polarizers. This 
type of switching is routinely employed in modern short-pulse laser systems, with 
a rise time of the Pockels cells switching of about 2-3 ns. The cumulative uncer
tainty in the overall system timing is thus less than 3 ns; the photon paths from 

beam splitter to Pockels cells are about 15 ns light travel time. 
Photomultipliers A and B play the role of "particle" detectors, since each can 

receive light from only one arm of the apparatus and thus is isolated from any 

wave interference effects. Photomultipliers 1 and 2 then serve to detect "wave" 
properties through the interference of the beams recombined within the Koster 
prism. In Figure 2, the dotted line in the Koster prism represents a beam splitter 
surface. The silvering of that surface is adjusted to provide a net 90° phase dif
ference between the reflected and transmitted rays, so that if the two waves from 
the two arms of the apparatus entering the prism differ in phase by 90°, there will 

be destructive interference in the two waves leaving the prism on one side, and 
constructive interference on the other side. The initial 90° phase difference is 

supplied by the adjustable phase shifter situated in one arm of the system. The 
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presence of interference is thus simply indicated by the relative count rates in 

photomultipliers 1 and 2. In the absence of interference, for example, if one arm 

or the other is blocked, the two photomultipliers will exhibit identical count rates. 

Perfect interference would be indicated by an absence of counts in one detector. 

An advantage other than simplicity of using photomultipliers to detect inter

ference effects is that there is no necessity then to control in advance the emission 

times of the photons entering the apparatus. Since the arrival time of each detected 
photon is recorded, its distance from the Pockels cells can be computed backwards 

from that time rather than forwards from an emission time. We may therefore 
use a low intensity thermal source, emitting photons at random, and may also 
switch the Pockels cells at random (or periodically, which is more convenient). 
The recorded events can later be sorted according to the computed position of 

each detected photon at the time of a Pockels cells switch. The only events of 
interest are those for which the photons are "found" to have been between the 

beam splitter and the Pockels cells at the time of the switch; these events are then 
analyzed for possible delayed-choice effects on their interference properties as 
reflected in the relative number of these events found with photomultipliers 1 and 2. 

As a second approach, we plan also to use a mode-locked neodymium YAG 
laser as a light source. This emits pulses with a time duration of 100 ps, corre
sponding to a wave packet with spatial extension of 3 cm. In this case, the time 

can be known at which a suitable attenuated pulse containing energy equivalent 
to one photon enters the apparatus. 

Any interpretation of the results of this experiment will depend, of course, on 
whether it is sensible to speak of the "position" of individual photons, especially 
as regards the extrapolation backwards in time from the detection of photo-
multiplier pulses. It should be emphasized that there is no requirement to identify 
the photons entering the Koster prism as having been in one arm or the other of 
the apparatus; we are only interested in whether the photons, considered as 
particles, wave packets, etc., were between the initial beam splitter and the Pockels 
cells at the time when the cells changed state, with no consideration of whether 
the photons were "in" one arm or the other or both. That such a "one-dimensional" 
positioning is meaningful is clear from experiments such as the lunar ranging 
work (Alley, 1972; Bender et al., 1973; Silverberg, 1974; Williams et al., 1976), 
where a 3 ns pulse of laser radiation is emitted, sent to a distant corner reflector 
target, and returned. The return detections, which require single photon sensitivity, 
occur within a well-defined time window corresponding to the emission time plus 
round trip travel time. We could, in principle, calculate the emission epoch from 
the reception time with equally consistent results. According to the uncertainty 
principle, the uncertainty in a photon's position along the direction of propagation 
is given by λζ/Δλ, where λ and Αλ are respectively the central wavelength and 

bandwidth of the optical bandpass filter at the entrance to the delayed-choice 

apparatus. Choosing Α/ΔΑ to be ~ 50 gives a position uncertainty of ~ 50/1, which 
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is negligible compared to the dimensions of the apparatus while still permitting 

small path length differences in the two arms without eliminating interference. 

All measurements for calibration purposes such as determining the overall 

photon count rate, relative transmissions of the two arms overall and of individual 

components, photomultiplier efficiencies and dark rates, and adjustments of the 

phase shifter, can be made with a static system. The basic split-beam/Koster 

prism interferometer is the principal part of an existing long baseline stellar 

interferometer (Liewer, 1979), so that the optical stability of and detection of 

interference with the system have already been verified. This experiment is further 

forgiving in that by asking only one simple question (at least initially), i.e., does 

the delayed-choice switching of the Pockels cells affect the wave/particle properties 

exhibited by photons in a static system, there is no necessity for ideal behavior 

of components such as the thin-film polarizers, the initial beam splitter, or the 

Koster prism. The initial experiment will be to detect gross effects; refinements 

can follow if the results are interesting. 

The most "interesting" result would be an observable delayed-choice effect 

on the photons' interference. At present, it is safe to say that few physicists would 

expect such an effect. However, until questions of superluminal connections 

(Stapp, 1977), hidden variable theories (see d'Espagnat, 1979, for a review), or 

the continuing problem of interpretation of the wave function (Wheeler, 1977) 

are satisfactorily answered, we believe that it is desirable to continue to test and 

probe all fundamental predictions of quantum mechanics as it becomes techno
logically possible to do so. 

The undertaking of this experiment was inspired by an Einstein Centennial 
Address delivered at the University of Maryland by J. A. Wheeler. We are grateful 
to A. Shimony and to A. Wightman for their encouragement. 
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IV. 1 EXTENSION OF THE UNCERTAINTY PRINCIPLE 
TO RELATIVISTIC QUANTUM THEORY 

LEV DAVIDOVICH LANDAU AND RUDOLF PEIERLS 

It is shown by considering possible methods of measurement that all the 
physical quantities occurring in wave mechanics can in general no longer be 
defined in the relativistic rannge. This is related to the well-known failure of the 
methods of wave mechanics in that range. 

] .  I N T R O D U C T I O N  

IT is known that the application of the methods of wave mechanics to prob
lems in which the speed of light cannot be regarded as infinite leads to absurd 
results. In the first place, states with negative mass appear in Dirac's relati
vistic equation1. This difficulty arises because the relation between momentum 
and energy in relativity theory is quadratic, so that two energy states are pos
sible for a given momentum. In contrast to classical (h = 0) relativity theory, 
where the continuous change of all quantities means that transitions between 
the two kinds of state are impossible, such transitions cannot reasonably be 
forbidden in quantum theory. 

In the second place, the interaction of a charged particle with the field pro
duced by itself is inevitably divergent2. 

The infinite zero-point energy of the radiation field which occurs on quanti
sation of the field3 can be avoided by the use of suitable variables4, but it 
still has the effect that the energy-density matrix elements become infinite. 
This is very closely related to the self-energy difficulty mentioned above (see 
also ref. 5). 

This complete failure of the theory suggests that in the range considered 
the physical requirements for the applicability of the methods of wave mech
anics are no longer satisfied. The present paper investigates this problem.y 

2 T .  T H E  C O N C E P T  O F  M E A S U E E M E N T  I N  W A V E  M E C H A N I C S  

The significance of any physical theory is to derive from the result of ail ex
periment conclusions regarding the results of subsequent experiments. Thus 
the relations between measurements and the physical states of a system are 

L. Landau und R. Peierls, Erweiterung des Unbestimmtheitsprinzips fiir die relativistische 
Quantentheorie, Z. Phys. 69, 56 (1931). 

t The uncertainty relations on which our conclusions are based are derived mainly from 
discussions in Copenhagen. Professor Bohr's attitude to these relations will be described in an 
article to appear shortly in Nature. 

This section is essentially a development of ideas put forward bv X. Bohr in his lecture at 
Como6. 

Translation originally published in Collected Papers of Landau, D. ter Haar, ed., pp. 40-51, Gordon and 
Breach, New York (1965). 
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of two kinds. Firstly, the measurement determines the state of the system 
after the measurement is made, and secondly it examines the state of the system 
which existed before the measurement. In classical {h — 0) mechanics this dis
tinction is of no importance, since the states of the system before and after the 
measurement can be regarded as identical. 

In wave mechanics, however, the situation is quite different, since the mea
surement always causes a change in the state of the system, and this change 
is in principle impossible to determine. If the measurement had no other pro
perty, the wave-mechanics description would be neither possible nor meaning
ful. It is necessary to make use of another physical property of measurements, 
which is usually described as repeatability. This signifies that, when the same 
measurement is immediately repeated, the same result is certainly obtained. 
In this form, however, the hypothesis is physically incorrect in most cases, as 
will be shown in more detail below; and in this strict form it is not necessary 
for wave mechanics. The important point is that for any system there should 
exist predictable measurements. This means measurements such that for every 
result there is a state of the system in which this measurement certainly gives 
that result. For, if this requirement were not fulfilled, the state of the system 
after a measurement could not be described by a ψ function. This may be 
seen as follows. We can describe the state of the system and the measuring 
apparatus together by a wave function which, before the measurement, con
sists of a product ψ <p0. Here ψ is the initially arbitrary wave function of the 
system, and φ0 the known wave function of the measuring apparatus. After 
the interaction, the wave function will in general no longer be a product. If 
we expand it in terms of the eigenfunctions of the measuring apparatus, in the 
form 2] ψη φη, then y>n describes the state in which the system remains after 
the measurement. In general, the form of ψη depends on that of ψ. If the wave 
function of the system is to be deduced from an observation of the measuring 
apparatus, ψη must be independent of ψ apart from a constant factor, i.e. 
ψn = an un, with un normalised to unity. From the linearity of the wave equa
tion it follows that an depends linearly on ψ, i.e. can be written in the form 

J ψ ν* άτ, with vn any function dependent on the process of measurement. Then 

I an I2 is the probability that the measurement gives the rath result. The sum 
of all these probabilities must be equal to unity, i.e. ΣI an |2 = 1 independent of ψ 
(rpovided that ψ is normalised): 

This expression must therefore always equal unity if J ψ ψ * ά τ  = 1, i.e. we 
must have 

(The vH form a complete orthogonal system). From this, however, it follows 
that the measurement is predictable if we take ψ to have the particular value 
of one of the vn; then only one of the an is not zero. The repeatability of the 
ClTj 2 a 

Σ α η  v n  =  W -
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measurement would signify that the v n  and the u n  are identical, and this is 
not in general true.f 

If, however, the wave function of the system can not be determined by any 
measurement, it can have no physical meaning. The use of wave functions 
would then be as pointless as, for example, the use of the concept of paths 
in quantum mechanics. Thus the existence of predictable measurements is 
an absolutely necessary condition for the validity of wave mechanics. 

The condition of repeatability cannot in general be satisfied. This is parti
cularly seen if the time necessary for the measurement is taken into account. 
This time is restricted by the relation AE At > A, which has very often been 
stated, but which has been correctly interpreted only by Bohr6. Clearly it 
does not signify that the energy can not be known exactly at a given time (for 
in that case the concept of energy would have no meaning), nor does it mean 
that the energy can not be measured with arbitrary accuracy within a short 
time. We must take into account the change caused by the process of measure
ment even in the case of a predictable measurement, i.e. of the difference 
between the result of the measurement (vn) and the state after the measurement 
(«„). The relation then signifies that this difference causes an energy uncer
tainty of the order of h/At, so that in time At no measurement can be per
formed for which the energy uncertainty in both states is less than h/At. 

This follows from a consideration of the time evolution of the interaction 
process. The method of the variation of constants shows that transitions 
within short times occur not only between states which satisfy the condition 
E + ε = E' + ε' (Ε and E' being the energy of the system before and after the 
transition, ε and ε' that of the apparatus). These states are given preference 
by resonance only after a long time, the corresponding transition probabilities 
increasing greatly with time. In practice, after a time At, only transitions 
for which \E + ε — E' — ε'| ^ hjA t are of importance. This fact does not, of 
course, contradict the strict validity of the law of conservation of energy in 
wave mechanics, but the energy of interaction between the system and the appa
ratus is also indeterminate by the same amount. In the most favourable case, 
where ε and ε'  are precisely known, the uncertainty must be A (E — E') > hjA t .  

This relation has important consequences as regards the measurement of 
momentum. Any measurement of momentum is made by allowing the body 
to collide with another. In measuring a component of momentum (most sim
ply done by collision with a plane mirror) the law of conservation of momentum 
is to be applied rigorously, but that of conservation of energy applies only to 
within hi A t, because of the unknown interaction energy. Thus to determine the 

t In a measurement which occupies a short time it can easily be shown that the un are identical 
with the Vn only when the corresponding operator commutes with the energy of interaction between 
the system and the apparatus. In wave mechanics (neglecting relativity) this interaction energy 
is always a function of the co-ordinate. The only quantity for which a repeatable measurement 
is possible is therefore the co-ordinate. Measurements of the co-ordinate always actually have 
this property. It is also seen that the «„ need not in general be orthogonal, i.e. the measurement 
does not in general diagonalise an operator. This physical circumstance also is usually overlooked 
in the presentation of transformation theory. 
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particle momentum P we have the equations 

ρ + P -  p' -  P' = 0, 

h 
I ε + E — ε — E' \ ~> ; 

ρ, ρ',  ε, ε ',  i.e. the motion of the measuring apparatus before and after the 
collision, may be regarded as known. Then AP=AP' and, since AE = ν AP, 

Thus any measurement of momentum necessarily involves a definite change of 
momentum (in addition to the unknown change which restricts the accuracy 
of the measurement).·)· This fact was first recognised by Bohr6. The non-repeat
ability of the momentum measurement in a short time is thus shown with 
particular clarity. Momentum measurements which last a long time, on the 
other hand, are meaningful only for free particles. 

3 .  M O M E N T U M  M E A S U R E M E N T  I N  T H E  R E L A T I V I S T I C  C A S E  

We now wish to make use of relativity, i.e. of the finite speed of propagation. 
There exists as yet no satisfactory relativistic quantum theory, but it is clear 
that here also we certainly cannot go beyond the limits imposed on the accu
racy of measurement by the general principles of wave mechanics. 

The scope of the relation just derived for momentum measurement is con
siderably extended by relativity. In the non-relativistic theory, the definite 
change of velocity could be made arbitrarily large, and so the momentum could 
be measured with arbitrary accuracy even in a short time. If, however, we 
take into account the fact that the velocity cannot exceed c, then ν — υ' can 
be at most of the order of c, so that equation (1) gives 

The inequality (2) is particularly easy to derive for the state after the measu
rements. If we assume that the particle had a definite position before the 
measurement, then after a time A t, on account of the finite velocity limit, the 
position is still known with accuracy c At. If the momentum after this time 
were determined more accurately than as given by (2), this would contradict 
the result AP Aq > h. 

t Here an important point is that not every Hamilton's function can actually occur in nature; 
as already mentioned, the interaction function is always a function of the co-ordinates and so 
does not commute with the momentum. If the form of the Hamilton's function could be chosen 
aibitrarily, the momentum could be measured in an arbitrarily short time without change of 
velocity; this is a trivial deduction from the fact that co-ordinates and momenta are then equi
valent. 

(1) 

h 
A P A t  >  —  

c 
(2) 
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On account of (2) the concept of momentum has a precise significance only 
over long times. Thus, in cases where the momentum changes appreciably 
within such times, the use of the concept of momentum is purposeless. 

In the measurement of momentum of a charged body, in addition to the 
above-mentioned inaccuracy, a further perturbation of the measurement arises 
because the body will emit radiation in the necessary change of velocity. 
We shall consider only the case where the velocity of the body before the mea
surement is certainly small compared with c. In this case it is favourable to 
conduct the measurement so that after the measurement the velocity is again 
considerably less than c. For, if the velocity approaches c, the relation (1) 
gives very little benefit, while the accuracy is greatly reduced by the emission 
of radiation. Thus the non-relativistic formula for radiation damping can be 
used. The energy emitted is then 

•  j *  ν 2  d t ,  

where e is the charge on the body. This energy evidently has its least value 
for uniform acceleration, i.e. for ν = (ν' — υ)/At, so that the energy emitted is 

e2 (ν' — ν)2 

c3 A t  

This unknown change of energy has to be taken into account in the energy 
balance, and there thus arises in the momentum a further inaccuracy: 

e2 ( v '  — v)2 

c3 At ' 
or 

{v '  — v )  AP  >  

AP A t  >  — ( ν '  — v ) .  (3) 

Eor electrons this inequality gives no new information, since even in the most 
unfavourable case where ν ~ v' + c it gives only AP At > e2jc2, and this is 
weaker than (2), since e2 < h c. For macroscopic bodies, however, the relation 
(3) is significant. Multiplication by (1) gives 

h I e2 

A P  A t  >  — J——, (4) 
c  \  k c  

and in this form we shall make use of it later. The inequality (4) is, of course, 
valid independently of the method of measurement used, and in particular 
when the measurement is made by means of the charge on the body, as in the 
case of the Compton effect, where, in addition to the Compton scattered radi
ation used in the measurement, there is a further radiation corresponding to 
that discussed above, obtained when higher approximations are taken into 
account in the perturbation calculation for the interaction between the radia
tion and the particle7. (In the ordinary Compton effect with electrons this 
ef fec t  i s  of  no  impor tance ,  on  account  of  the  smal lness  of  e 2 j h  c . )  
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4.  FIELD MEASUEEMENT 

The simplest method of measuring an electric field is to observe the accele
ration of a charged test body. In order to avoid interference by magnetic 
fields, we use a body of very large mass and very small velocity. Let the mo
mentum of the body before the measurement be known, and let the momentum 
afterwards be measured, again with accuracy A P. From this we car deduce the 
electric field strength with accuracy such that 

e A S A t > A P .  ( 5 )  

In addition, however, the condition (4) must be satisfied in the momentum 
measurement. Multiplication of equations (4) and (5) gives 

J h  c  
A& > — . (6) 

MO2 

For the magnetic field strength we easily obtain the same result by considering 
the motion of a magnetic needle: 

A3f > ^kc . (6a) 
Mi)2 

If it is desired to measure the electric and magnetic field strengths simultane
ously, then, in addition to the effects already discussed, we have to take into 
account the effect on the needle of the magnetic field due to the charged body 
and vice versa. This magnetic field is, in order of magnitude, 

e  v '  
AJf > (7) 

( Α ψ  c  K  '  

where A e is the distance between the test body and the needle. If we multiply 
this inequality by equations (5) and (1), then (with ν = 0) we have 

AS AJF > —— —. (6b) 
(c A i)2 (Zle)2 

This condition differs from the product of (6) and (6a) in that c  A t  in the de
nominator is partly replaced by Ae. 

If follows from (6), (6a) and (6b) that for A t  = oo the measurement can 
be made arbitrarily accurate for both S and JC. Thus static fields can be com
pletely defined in the classical sense.f 

In wave fields (that is, field which are further than c j v  =  λ  from the bodies 
which produce them), it is sufficient to use (6) and (6a), because as a result 
of the coupling of the space and time variation nothing is discovered about the 

f Our thanks are due to Professor Bohr for pointing out this situation and the significance of 
time in general. 
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field if the region of measurement has an extent less than c  A t  for a given Δ t .  
Thus here also the measurements of S and Jf do not interfere, and to the extent 
that the field strengths can be measured in accordance with (6) and (6a) they 
can be measured simultaneously. Thus the field strengths are in accordance 
with the classical theory inasfar as they can be defined at all. In the quantum 
range, on the other hand, the field strengths are not measurable quantities.f 

We shall now show that in a radiation field no measurements can be carried 
out with certainty within a short time, i. e. measurements for which every 
possible result gives information about the state of the system. (Thus we do 
not consider such measurements as, for example, a measurement of position 
by means of a collision which does not occur with probability unity within the 
period of observation, so that, although a deflection of the test body shows that 
the body under measurement was at the point considered, the absence of such 
a deflection shows nothing.) The time necessary for the measurement depends 
on the state of the system. If the energy of the radiation field is approximately 
determined as E, we shall show that this time is greater than h/E. Since the 
field consists of light quanta, the greatest frequency occurring in the Fourier 
resolution of the field can be at most Ε1/A; if we carry out the measurements 
in times small compared with h/E, we remain within the period of oscillation, 
and so the field strength may be regarded as constant during the measurements. 
All measurements in such short times are therefore field measurements and are 
subject to the inaccuracy (6). Thus, in order than an effect should be detect
able, the field strength must considerably exceedc/(c At)2. The smallest 
wavelength occurring, on the other hand, is h c/E, and so the field strength, 
if non-zero at any point, must be non-zero in a region of at least this extent. 
Consequently, the total field energy must be at least of the order E > 

in contradiction with our hypothesis. Thus measurements which do not satisfy 
equation (8) are impossible. 

This result applies in particular, of course, when the radiation field consists 
of a single quantum of light. Within the time given by (8), a quantum of light 
is therefore undetectable, and in particular its position cannot be determined 
with any accuracy. In a measurement of position, the time to which that posi
tion refers is therefore indeterminate by more than h/E. If the measurement 
of position is to be used to investigate a state, as discussed in section 2, we are 
interested in the position at a time up to which the state under investigation 

5 .  ME A S U R E M E N T S  O N  LIGHT QU A N T A  

<? 2 (h  c /E) 3  > (h  Cf jE 3  {cAt f ,  i.e. 

(8) 

f The inaccuracy for the field measurement with an electron found by Jordan and Fock8 

is greater than (6) and therefore proves only that the electron is not a suitable means of measuring 
the field. 
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(i.e. the state whose energy was of the order of E) existed. The measurement 
o f  p o s i t i o n  i n d i c a t e s  s u c h  a  q u a n t i t y  w i t h  i n a c c u r a c y ,  a t  b e s t  A  q  >  f i  c j E .  

It might be thought that the accuracy could be improved by measuring momen
t u m  a t  t h e  s a m e  t i m e  a s  p o s i t i o n  ( w i t h i n  t h e  l i m i t s  g i v e n  b y  A P A q  >  h ,  
of course), and seeking to deduce how far and in which direction the light 
quantum has meanwhile travelled. A closer examination, however, shows that 
the resulting accuracy can be no better than h cjE. Thus in every state it is 
meaningful to give the probability of presence of the light quantum only for 
regions large compared with the wavelength, and the position of the light quan
tum is a meaningful concept only in geometrical optics. 

If the number of light quanta varies appreciably within the period of oscilla
tion, the concept of light quanta itself is meaningless. 

6.  MEASTTREMENTS ON MATERIAL PARTICLES 

Let us now investigate the corresponding relations for material particles. 
(We shall always speak of electrons, but the arguments of course apply for 
any kind of material particle.) Such particles can best be detected by means 
of collision processes, for example using the Compton effect. Thus the presence 
of an electron is demonstrated by making two momentum measurements 
on the light quantum and deducing from the change in momentum that a 
collision has occurred in between. Here, however, the course of the process 
depends considerably on the length of the time interval between the two measu
rements. Over long times the Compton effect is obtained, i.e. the momentum 
of the light quantum changes either not at all or by an amount determined by 
the initial momenta, which can be made arbitrarily large by using very hard 
radiation. -Over very short times, however, any changes of momentum may 
occur, provided that the law of conservation of momentum remains valid; 
the sum of the energies of the electron and the light quantum need be conserved 
only to within h/A t, as shown in section 2. For the same reasons as in measure
ments on light quanta, the small momentum changes have much the greatest 
probability. An elementary calculation shows that the second behaviour 
b e g i n s  w h e n  t h e  t i m e  i n t e r v a l  i s  n o  l o n g e r  l a r g e  c o m p a r e d  w i t h  h / E ,  w h e r e  E  
is the approximate energy of the electron before the measurement. 

Thus, if the duration of the process of measurement is made shorter than 
h/E, the momentum of the light quantum (and therefore also that of the elec
tron) changes by an arbitrary amount. Hence, from the fact that no measurable 
change of momentum has occurred, we cannot conclude that no collision 
has taken place. Physically this signifies that the measurement of the momentum 
of the light quantum destroys the initial state of the electron. We cannot 
ensure that the electron is found with probability unity at the first measure
ment : if it was in a volume δ q before the measurement, a time δ qjc is necessary 
b e f o r e  w e  c a n  b e  s u r e  t h a t  t h e  l i g h t  h a s  r e a c h e d  t h e  e l e c t r o n .  S i n c e  δ  q j c  >  

h/c δ P > hjc P > h/E, we should therefore have to make several measurements 
before being able to detect the electron, and thus completely destroy its state 
before we find it. Measurements in times less than h/E are therefore useless. 
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We now again ask how accurately this measurement can be used to derive 
the position of the electron at a time up to which it was in its former state. 
To do this, of course, only the knowledge about the velocity which is compatible 
with the position measurement can be used, and not, for example, the velocity 
in the state before the measurement. If an exact measurement of position is 
made, no information is obtained as regards the velocity, which thus remains 
indeterminate within c. The co-ordinate can therefore be derived only with an 
error Aq > h c/E. Elementary considerations show that no higher accuracy 
can be achieved by measuring the momentum and co-ordinate simultaneously 
with any accuracies compatible with A P Aq > h. Thus 

represents the limit of the accuracy with which the position of the electron 
can reasonably be defined. If in particular, if the velocity of the electron is 
not very close to c, this becomes 

The derivation of (IOa) shows that it is valid only for electrons which are not 
moving too rapidly. The statement frequently found in the literature that 
h Im c is a general limit for the accuracy of measurements of position is based 
on incorrect arguments. 

A superficial consideration might suggest that the uncertainty relations 
derived above are not relativistically invariant. In reality, of course, there 
can be no contradiction with relativity, which has been taken into account 
throughout the derivations. The explanation is that the inequalities themselves 
need not transform in a relativistically invariant manner, since the most 
favourable possible measurements of a quantity need not be so when they 
are viewed from a moving system of co-ordinates. Thus we have only to require 
that the limit of accuracy should not be exceeded when such a measurement 
is viewed from a moving system of co-ordinates. This requirement is, of course, 
always satisfied. 

Particular care is needed in this respect with position measurements, for 
here the statement of the problem is itself not relativistically invariant, but 
distinguishes a time axis, since we ask for the co-ordinate at a time up to which 
the unperturbed state existed. 

(9) 

Aq >  (IOa) 
mc 

7. MATHEMATICAL FAILURE OF THE METHODS 
OF WAVE MECHANICS 

The above-stated unmeasurability of all wave-mechanical quantities also 
appears, of course, in the formalism which results when we attempt to apply 
the methods of wave mechanics to the relativistic case. 
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The most fundamental quantity in the theory, both for electrons and for 
light quanta, is the momentum; this is of course due to the fact that if it 
remains constant in time it can be defined with arbitrary accuracy, although 
very long times are needed for its measurement. This latter fact does not, 
of course, appear in the wave-mechanics formalism, and in consequence the 
statements of the theory regarding short times have no meaning. 

The unmeasurability of the position, on the other hand, is directly expressed 
in the formalism. For electrons this is because the Dirac equation also allows 
the physically meaningless solutions with negative energy. The result of a 
measurement can, of course, in reality only be a wave function composed only 
of states with positive energy. Such states cannot, however, form an arbitrary 
wave packet. It is easily seen that the dimensions of a wave packet in general 
cannot be less than έ/m c. There are, it is true, special wave packets of smaller 
size (namely those whose centre moves at almost the speed of light f), but the 
corresponding wave functions do not form a complete system, and the state 
before the measurement cannot in general be expanded in terms of them. This 
corresponds to the result shown earlier that in short times a determination of 
position may sometimes chance to be possible, but a measurement cannot 
be carried out with certainty. 

The conditions for light quanta are still more extreme in that no mathema
tical expression can be given for the probability density. This is seen from the 
fact that, on account of polarisation properties, the wave function for a light 
quantum must be a tensor of rank two4. The probability density and current 
must form a four-vector, which is impossible, because they depend quadrati-
cally on the wave function. In geometrical optics it is, of course, possible to 
construct wave packets in which all effects vanish outside a certain region. But 
here also these wave functions do not form a complete system. 

The unmeasurability of the field strength is shown by the fact that in empty 
space (no light quanta) the field strength operator2'4 is not zero, but even the 
expectation of the square of the field strength is infinite. This is related to the 
fact that for Δ t = 0 we have from (6) an infinite indeterminacy of the field 
strength. 

8.  CONCLUSIONS 

We have seen that no predictable measurements can exist for the funda
mental quantities of wave mechanics (except when these quantities are con
stant in time, and then an infinitely long time is needed for an exactly predict
able measurement). It cannot, of course, be formally demonstrated that there 
are not in nature some particularly complicated quantities for which predict
able measurements are possible, but such a speculation need not be discussed. 
The assumptions of wave mechanics which have been shown to be necessary 
in section 2 are therefore not fulfilled in the relativistic range, and the applica
tion of wave mechanics methods to this range goes beyond their scope. It is 

t Our thanks are due to Professor 0. Klein for pointing this out. 



IV. 1 INDETERMINISM FOR FIELDS 475 

therefore not surprising that the formalism leads to various infinities; it would 
be surprising if the formalism bore any resemblance to reality. 

The applicability of wave mechanics is restricted to processes where the state 
of the system varies sufficiently slowly. In cases where the ordinary Schrodinger's 
equation is applicable this is of course not always true. For radiation alone wave 
mechanics is never meaningful, since the limit C= oo has no meaning. 

In the correct relativistic quantum theory (which does not yet exist), 
there will therefore be no physical quantities and no measurements in the sense 
of wave mechanics. One can, of course, cause the system to interact with some 
apparatus and ask what happens to the latter. The theory will give a probabil
ity for the result of this experiment, but this cannot be interpreted as the 
probability of a parameter of the system under investigation, since it can in 
no way be ensured that the probability of a given result is unity and that of 
all other results is zero. In addition, it is in principle impossible to make the 
duration of such an experiment arbitrarily short. 

This view is confirmed by the known fact that the /3-spectra of radioactive 
nuclei are continuous, although the uniform lifetime indicates that the nuclei 
are not in different states. For, if all the /S-particles had the same energy, the 
process could be regarded as a predictable measurement. 

This fact presents an insuperable difficulty in wave mechanics because, 
as Bohr has emphasised, it means that the law of conservation of energy is 
probably invalid for nuclear electrons. This law is indissolubly connected 
with the foundations of wave mechanics. In relativistic quantum theory, 
however, the preceding discussion shows that the concept of energy need not 
be mechanically definable. It is of course definable in a certain sense in terms 
of the total mass of the nucleus, because the nucleus in its motion as a whole 
satisfies wave mechanics, but this does not imply a predictable measurement 
of quantities related to the internal state of the nucleus. 

If the law of conservation of energy is not valid, then in radioactive processes 
the mass of the whole system will of course change, but this change cannot 
be followed in the course of time, since the mass cannot be measured in an 
arbitrarily short time. If we consider the process of measurement of the mass 
as in section 3, the time needed for the measurement is such that 

, , * a m  A t  >  —  
C2 

The preceding discussion is not contradicted by the fact that the spectra 
of protons and α-particles are discrete. On account of their large mass (low 
velocity) these particles obey wave mechanics even in the nucleus, rather as 
the nuclei in a molecule can be essentially described in classical terms despite 
their strong interaction with the electrons, for which classical mechanics 
fails completely. 

One of us (Landau) thanks the Rockefeller Foundation for making it possible 
for him to work in Copenhagen and in Zurich. 
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IV.2 THE MEASURABILITY OF 
THE ELECTROMAGNETIC FIELD 

COMMENTARY OF ROSENFELD (1955) 

When I arrived at the Institute on the 
last day of February, 1931, for my 

annual stay, the first person I saw was 
Gamow. As I asked him about the 

news, he replied in his own picturesque 

way by showing me a neat pen drawing 

he had just made.* It represented 
Landau, tightly bound to a chair and 

gagged, while Bohr, standing before 

him with upraised forefinger, was say

ing: "Bitte, bitte, Landau, muss ich1 

nur ein Wort sagen!" I learned that 
Landau and Peierls had just come a 
few days before with some new paper 

of theirs which they wanted to show 
Bohr, "but" (Gamow added airily) "he 

does not seem to agree—and this is the 
kind of discussion which has been 
going on all the time." Peierls had left 

the day before, "in a state of complete 
exhaustion," Gamow said. Landau 
stayed for a few weeks longer, and I had 

the opportunity of ascertaining that 
Gamow's representation of the situa

tion was only exaggerated to the extent 

usually conceded to artistic fantasy. 
There was indeed reason for excite

ment, for the point raised by Landau 
and Peierls was a very fundamental one. 

They questioned the logical consistency 
of quantum electrodynamics by con

tending that the very concept of elec-

* I am afraid this work of art has been allowed 

to disintegrate before its historical value could 
be realized. 

f This is a familiar danicism of Bohr's for "darf 
ich." 

tromagnetic field is not susceptible, in 

quantum theory, to any physical deter

mination by means of measurements. 

The measurement of a field component 

requires determinations of the momen

tum of a charged test-body; and the 

reaction from the field radiated by the 

test-body in the course of these opera

tions would (except in trivial cases) 

lead to a limitation of the accuracy of 
the field measurement, entirely at vari
ance with the premises of the theory. 
In fact, the quantization of the field only 
entails reciprocal limitations of the 
measurements of pairs of components, 

arising from their non-commutability, 
but no limitation whatsoever to the 
definition of any single field component. 
On the other hand, one had to face 
another inescapable consequence of 
the field quantization, the occurrence 

of irregular fluctuations in the value of 
any field component; the existence of 
this fluctuating "zero-field" (as it was 
called because it persists even in a 
vacuum) was known to be responsible 
for one of the divergent contributions 
to the self-energy of charged particles, 
but its meaning was very obscure. 
Landau and Peierls, somewhat illogi-

cally, tried to bring it in relation with 
their alleged limitation of measur-
ability of the field, and this only further 
c o n f u s e d  a n  a l r e a d y  t a n g l e d  i s s u e  . . . .  

. . .  B o h r ' s  s t a t e  o f  m i n d  w h e n  h e  
attacked the problem reminded me of 
an anecdote about Pasteur. When the 

latter set about investigating the silk-
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worm sickness, he went to Avignon to 
consult Fabre. "I should like to see 

cocoons," he said, "I have never seen 
any, I know them only by name." 
Fabre gave him a handful: "he took 
one, turned it between his fingers, 
examined it curiously as we would 

some singular object brought from the 
other end of the world. He shook it 

near his ear. 'It rattles,' he said, much 
surprised, 'there is something inside.'" 

My first task was to lecture Bohr on the 
fundamentals of field quantization; the 
mathematical structure of the commu
tation relations and the underlying 
physical assumptions of the theory were 
subjected to unrelenting scrutiny. After 
a very short time, needless to say, the 

roles were inverted and he was pointing 
out to me essential features to which 
nobody had as yet paid sufficient 
attention. 

His first remark, which threw decisive 
light on the problem, was that field 
components taken at definite space-
time points are used in the formalism 
as idealizations without immediate 
physical meaning; the only meaningful 
statements of the theory concern aver
ages of such field components over 
finite space-time regions. This meant 
that in studying the measurability of 
field components we must use as test-
bodies finite distributions of charge and 

current, and not point charges as had 
been loosely done so far. The consider
ation of finite test-bodies immediately 
disposed of Landau and Peierls' argu

ment concerning the perturbation of 
the momentum measurements by the 
radiation reaction: it is easily seen that 
this reaction is so much reduced, for 

finite test-bodies, as to be always 
negligible. 

On the other hand, the construction 
and manipulation of extended test-
bodies proved a most perplexing 

affair.... in fact, it seemed as if we had 

hit upon a mode of measurement 
exactly suited to give the best combined 

accuracy, for pairs of field determina
tions, compatible with the theoretical 
limitation. We little imagined that it 
would still take us almost two years to 

r e a c h  t h a t  g o a l . . . .  
. . .  A t  t h e  e n d  o f  o u r  l a b o r i o u s  

inquiry, we had completely vindicated 
the consistency of quantum electro
dynamics, at least in its simplest form. 
Our increased insight invited a re
assessment of the scope of the analysis 
we had just completed. We had set out 
on the suspicion of grave defects in the 
logical structure of the theory, and used 
the direct method of testing definitions 
of concepts by investigating the con
crete measuring processes they embody. 



IV.2 ON THE QUESTION OF THE MEASURABILITY OF 
ELECTROMAGNETIC FIELD QUANTITIES* 

NIELS BOHR AND L£ON ROSENFELD 

1. INTRODUCTION 

The question of limitations on the measurability of electromagnetic field 
quantities, rooted in the quantum of action, has acquired particular 
interest in the course of the discussion of the still unsolved difficulties in 
relativistic atomic mechanics. On the basis of exploratory considerations, 
Heisenberg1 attempted to demonstrate that the connection between the 
limitation on the measurability of field quantities and the quantum theory 
of fields is similar to the relationship between the complementary limita
tions on the measurability of kinematical and dynamical quantities 
expressed in the indeterminacy principle and the non-relativistic formal
ism of quantum mechanics. However, in the course of a critical investiga
tion of the foundations of the relativistic generalization of this formalism, 
Landau and Peierls2 came to the conclusion that the measurability of 
field quantities is subjected to further restrictions which go essentially 
beyond the presuppositions of quantum field theory, and which therefore 
deprive this theory of any physical basis. 

At first glance, one might see in this contradiction a serious dilemma. 
On the one hand, the quantum theory of fields surely ought to be con
sidered a consistent re-interpretation of classical electromagnetic theory 
in the sense of the correspondence argument, just as quantum mechanics 
represents a reformulation of classical mechanics adapted to the existence 
of the quantum of action. On the other hand, quantum electrodynamics 
has essentially increased the difficulties, already encountered in classical 
electron theory, of a harmonious blending of field theory and atomic 
theory. However, closer consideration shows that the various problems 
involved here can be to a large extent separated from each other, since 
the quantum-electromagnetic formalism in itself is independent of all 
ideas concerning the atomic constitution of matter. This is evident from 
the fact that in addition to the velocity of light only the quantum of action 

Originally published under the title, "Zur Frage der Messbarkeit der elektromagnetischen Feld-
grossen," Mat.-fys. Medd. Dan. Vid. Selsk., 12, no. 8 (1933); this translation into English by Aage 
Petersen is taken from Selected Papers of Lion Rosenfeld, Cohen and Stachel, eds. (1979), Reidel, 
Dordrecht, pp. 357-400. 



480 BOHR, ROSENFELD 

enters the formalism as a universal constant; for these two constants 
obviously do not suffice to determine any specific space-time dimensions. 
In the quantum theory of atomic structure such a determination will be 
obtained only by the inclusion of the electric charge and the rest masses of 
the elementary particles. 

Just the insufficient distinction between field theory and atomic theory 
is the principal reason for the conflicting results of previous investigations 
of the measurability of field quantities in which single electrically charged 
mass points were used as test bodies. The utilization of classical electron 
theory, in the sense of the correspondence argument, which underlies 
current atomic mechanics, rests above all on the smallness of the elemen
tary charge in comparison with the square root of the product of the 
quantum of action and the velocity of light, which makes it possible to 
treat all radiation reactions as small compared to the ponderomotive 
forces exerted on the particles. However, in measurements of field quanti
ties it turns out to be essential to be able to adjust the charge of the test 
bodies to an extent which would be in conflict with the latter presupposi
tion if one were to consider these bodies as point charges. As we shall see, 
however, these difficulties disappear if one uses test bodies whose linear 
extensions are chosen sufficiently large, compared to atomic dimensions, 
that their charge density can be considered approximately constant over 
the whole body. 

In this connection, it is also of essential importance that the customary 
description of an electric field in terms of the field components at each 
space-time point, which characterizes classical field theory and according 
to which the field should be measurable by means of point charges in the 
sense of the electron theory, is an idealization which has only a restricted 
applicability in quantum theory. This circumstance finds its proper ex
pression in the quantum-electromagnetic formalism, in which the field 
quantities are no longer represented by true point functions but by func
tions of space-time regions, which formally correspond to the average 
values of the idealized field components over the regions in question. The 
formalism only allows the derivation of unambiguous predictions about 
the measurability of such region-functions, and our task will thus consist 
in investigating whether the complementary limitations on the measur
ability of field quantities, defined in this way, are in accordance with the 
physical possibilities of measurement. 
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Insofar as we can disregard all restrictions arising from the atomistic 
structure of the measuring instruments, it is actually possible to demon
strate a complete accord in this respect. Besides a thorough investigation 
of the construction and handling of the test bodies, this demonstration 
requires, however, consideration of certain new features of the comple
mentary mode of description, which come to light in the discussion of the 
measurability question, but which were not included in the customary 
formulation of the indeterminacy principle in connection with non-
relativistic quantum mechanics. Not only is it an essential complication 
of the problem of field measurements that, when comparing field averages 
over different space-time regions, we cannot in an unambiguous way 
speak about a temporal sequence of the measurement processes; but even 
the interpretation of individual measurement results requires a still greater 
caution in the case of field measurements than in the usual quantum-
mechanical measurement problem. 

Characteristic of the latter problem is the possibility of attributing to 
each individual measurement result a well-defined meaning in the sense 
of classical mechanics, while the quantum-imposed interaction, uncon
trollable in principle, between instrument and object is fully taken into 
account through the influence of each measuring process on the statistical 
expectations testable in succeeding measurements. In contrast, in 
measurements of field quantities, indeed, every measuring result is well 
defined on the basis of the classical field concept; but, the limited appli
cability of classical field theory to the description of the unavoidable 
electromagnetic field effects of the test bodies during the measurement 
implies, as we shall see, that these field effects to a certain degree influence 
the measurement result itself in a way which cannot be compensated for. 
However, a closer investigation of the fundamentally statistical character 
of the consequences of the quantum-electromagnetic formalism shows 
that this influence on the object of measurement by the measuring process 
in no way impairs the possibility of testing such consequences, but rather 
is to be regarded as an essential feature of the intimate adaptation of 
quantum field theory to the measurability problem. 

Before we turn to a detailed exposition of the considerations indicated 
above, we want to stress once more that the fundamental difficulties which 
confront the consistent utilization of field theory in atomic theory remain 
entirely untouched by the present investigation. Indeed, consideration of 
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the atomistic constitution of all measuring instruments would be essential 
for an assessment of the connection between these difficulties and the 
well-known paradoxes of the measurement problem in relativistic quan
tum mechanics. Also particularly relevant in this context is the limitation 
which the finite value of the elementary charge compared to the square 
root of the product of the velocity of light and the quantum of action 
places on atomic mechanics based on the correspondence argument.3 

2. MEASURABILITY OF FIELDS ACCORDING TO 
QUANTUM THEORY 

The quantum electromagnetic formalism found its starting point in the 
quantum theory of radiation developed by Dirac, which is characterized 
by the introduction of a non-commutativity, consistent with the quan
tum-mechanical commutation relations, of canonically conjugate ampli
tudes of vibration of a radiation field. On the basis of this theory, Jordan 
and Pauli set up commutation relations between the electromagnetic 
field components for the case of charge-free fields, and the formalism was 
then brought to a certain completion by Heisenberg and Pauli who 
treated the interaction between field and material charges on correspond
ence lines. However, the consistent application of the theory to atomic 
problems is essentially impaired by the occurrence of the well-known 
paradoxes of the infinite self-energy of the elementary particles, which 
were not removed by Dirac's proposed modifications in the representa
tion of the formalism.4 Yet, in our discussion of the limitations of the 
measurability of field quantities these difficulties play no role, since for 
this purpose the atomistic structure of matter is not an essential issue. 
It is true that the measurement of fields requires the use of material 
charged test bodies, but their unambiguous application as measuring 
instruments depends exactly on the extent to which we can treat their 
response to the fields as well as their influence as field sources on the 
basis of classical electrodynamics. 

In these circumstances we may restrict ourselves to the pure field 
theory, and thus take the commutation relations for charge-free fields as 
our starting point for the investigation of the consequences of the quan
tum electromagnetic formalism with respect to the measurability of field 
quantities. Using the usual notation, [ρ, q\=pq—qp, we thus have the 
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following typical relations between the field components in two space-
time points and from which the remaining 
commutation relations are obtained by cyclic permutation : 5 

Here, are the electric and magnetic field com-
ponents at the space-time point while the following ab-
breviations have been used: 

Further, h is Planck's constant divided by 2n, c the velocity of light, and r 
the spatial separation between the two points. Finally, <5 denotes the sym-
bolic function introduced by Dirac which, as is well known, is character-
ized by the property 

(3) 

and which is formally differentiated like an ordinary function. 
The occurrence of the (5-function, defined in (3), in the commutation 

relations (1) brings to the fore the fact mentioned above that the quantum 
theoretical field quantities are not to be considered as true point functions 
but that unambiguous meaning can be attached only to space-time 
integrals of the field components. With a view to the simplest possibility 
of testing the formalism we shall consider only averages of field com-
ponents over simply connected space-time regions whose spatial exten-
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sion remains constant during a given time interval. Thus, for example, if 
the volume of such a region G is denoted by V and the corresponding time 
interval is T, we define the average value of by the formula 

(4) 

For the average values of two field components over two given space-
^ time regions I and II there exist commutation relations which follow 

immediately from (1) by integration over the two regions and division by 
the product of their four-dimensional extensions. Thus, the value of the 
bracket symbols . . . are obtained from (1) simply by replacing 
the quantities , by their average values over the two regions 

In exactly the same way as the Heisenberg relation for two canonically 
conjugate mechanical quantities 

(6) 

which is the basis for the uncertainty principle, can be derived from the 
general quantum mechanical commutation relation 

(7) 
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one obtains for the products of the complementary uncertainties of the 
field averages in question the following typical formulae: 

(8) 

Several results of importance for our problem follow immediately from 
the expressions (5) and (8). Above all, we see that, in accord with the prop-
erty of the 5-function expressed in (3), the quantities change 
continuously as a result of a continuous displacement of the boundaries of 
regions I and II, as long as the extension of these regions, i.e. the values of 

remain different from zero. In particular, the differences 
vanish without discontinuity when the 

boundaries of the two regions gradually are made to coincide. From this 
it follows that the averages of all field components over the same space-
time region commute, and thus should be exactly measurable, inde-
pendently of one another. In fact, this consequence of the theory, which 
goes essentially beyond the presupposition of unrestricted measurability 
of each single field quantity, appears as a special case of two more general 
theorems which follow from the symmetry properties of the quantities 

. For the fact that the expressions change their 
sign when the times t t and t2 are interchanged, implies that the averages 
of two components of the same kind (i.e. two electric or two magnetic 
components) over two arbitrary space-time regions always commute if 
the associated time intervals coincide. Further, the corresponding anti-
symmetry of the expressions and with respect to interchange 
of the spatial points implies that the averages of 
two components of different kind, e.g. over two arbitrary time 
intervals commute when the corresponding spatial regions coincide. 

At first sight these results might seem incompatible with the commuta-
tion relations between averages of field quantities at one and the same 
time and over finite space regions, which can be derived from the Heisen-
berg-Pauli representation of the formalism and are discussed in the book 
by Heisenberg previously cited. While it is stated there too that averages 
of components of the same kind commute, it is deduced that components 
of different kind over one and the same region of space do not commute. 
However, this contradiction is solved easily by noting that Heisenberg's 
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treatment involves a limiting process in which two originally non-
coinciding space-time regions are brought into coincidence only after 
their temporal extension has been contracted to one and the same instant 
of time. For from the symmetry of the expression (2) for BiJy^ with respect 

to tj and t2, and from the property of the ^-function stated in (3), we find 
in the case of coinciding time intervals 

where we have put T1 = T11=T and where the double integration is over 

all pairs of points, one in each of the spatial regions, whose separation r 

is smaller than cT If we now further assume that the two spatial regions 
have the same volume, V1 = Fu = V, and the same shape, but are displaced 

relative to each other in the z-direction, then in the limit where cT can be 
considered negligible compared with the linear extensions of the space 

reg ions,  the  space  integra l  in  (9)  g ives  by  par t ia l  in tegrat ion  ±2Uc 2 T 2 F,  

where F is the area enclosed by the projection on the xy-plane of the curve 
in which the surfaces of V1 and F11 intersect, and where the sign is + or — 
depending on whether region II is displaced relative to region I in the 
positive or the negative z-direction. Thus, if the regions are displaced 
continuously through each other the difference 1¾"'- 5¾'1* undergoes 
a discontinuous change of SncFjV2, while both expressions 1¾1" an^ 
Β'"· p change their sign. Therefore, the commutation relation between the 
instantaneous spatial averages of QEx and in the limiting case under 
discussion displays an essential ambiguity, which is responsible for the 

apparent contradiction mentioned above. 
Furthermore, as we shall see, the supposed demonstration, on the basis 

of previous investigations of the physical possibilities of measurement, 
that there is a complementary limitation on the measurability of field 
components of different kinds in one and same region of space, also 
depends entirely on the use of point charges as test bodies, which does 
not permit a sufficiently sharp delimitation of the region of measurement. 
As we have already emphasized, only measurements employing test 
bodies with a charge distribution of finite extension should be considered 
for the testing of the quantum-electromagnetic formalism, since every 
well-defined statement of this formalism refers to averages of field com-

(9) 

V1 V i l  
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ponents over finite space-time regions. Yet this circumstance in no way 

prevents us from testing by field measurements all unambiguous conclu
sions that can be drawn from the Heisenberg-Pauli representation con
cerning the time dependence of spatial field averages. For this purpose 
we need only introduce averaging regions whose temporal extension T, 
multiplied by c, is sufficiently small compared to their linear spatial 
dimensions, the order of magnitude of which we shall in the following 
always denote by L. 

In fact, the case L > c T  is particularly suited for a thorough testing of 
the consequences of the formalism in the properly quantum-theoretical 
domain. Of course, already in the domain of validity of classical theory 
the case L <cT is of little interest, since all the peculiarities of the wave 
fields inside the volume V are smoothed out to a large extent by the 
averaging procedure, because of the propagation during the time inter
val T. In addition to this smoothing out, there are, in the quantum 
domain, the peculiar fluctuation phenomena which derive from the basic
ally statistical character of the formalism. As we shall see shortly, these 
fluctuations, while essentially entering the solutions of problems in the 
case  L  ̂  o f ,  play  a  compara t ive ly  smal l  ro le  in  the  case  L > c T .  

The fluctuations in question are intimately related to the impossibility, 
which is characteristic of the quantum theory of fields, of visualizing the 
concept of light quanta in terms of classical concepts. In particular, they 
give expression to the mutual exclusiveness of an accurate knowledge of 
the light quantum composition of an electromagnetic field and of know
ledge of the average value of any of its components in a well-defined space-
time region. Let the density ΩΙ(κχ, KY, κζ) of light quanta with definite 
polarization parameter i and given momentum and energy, ίικχ, FIKY, HKZ  

and hv=hc ^JK2
x + Ky+ 1c2

z be known; then the expectation value of all 

field averages are indeed zero, but the mean square fluctuation of each 
field quantity, such as(£(

x
G) defined in (4), is given by the easily derivable 

formula 

T T V V  
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From formula (10) we see that for a given light quantum composition the 
fluctuations in question can never vanish, since even when Coi=O, i.e., in 

the complete absence of light quanta, they assume a finite positive value, 
which by an easy calculation can be put in the form 

For every other light quantum distribution defined by a given density OJh 

the mean square fluctuation of the average of a field component becomes 

larger than S0(G). However, the fluctuations of a field average expected 
according to the formalism can be arbitrarily small when a direct know
ledge of field quantities, obtained by measurement for example, is 
assumed. In such a case the light quantum density ω, is obviously not 
well defined, and we must content ourselves with statistical statements 
about this density. 

Furthermore, it is of decisive importance for the discussion of the 

measurement possibilities that the expression (11) holds not only for the 
field fluctuations in a region free of light quanta, but also represents the 
mean square fluctuation of each field average in the more general case 
where only classically describable current and charge distributions occur 
as sources of the field. The state of the field is then uniquely defined by 
the requirement that the expectation value of every field quantity coincide 
with the classically computed value, and that the numbers of light quanta 
of given momentum and polarization be distributed around their mean 
value n0, estimated by means of the correspondence argument, according 
to the probability law valid for independent events 

An easy calculation shows that the field fluctuations in this state are 
given just by the expression (11). Moreover, in correspondence with the 

characteristics of black-body fluctuations, it follows that also in the 
general case of a field of given light quantum composition, the inclusion 
of field effects of any classically describable sources will have no influence 
on the fluctuation phenomena. 

The square root of the expression (11) may be regarded as a critical 

(H) 

ν ν 
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field strength, <5, in the sense that only when considering field averages 
essentially larger than <S are we allowed to neglect the corresponding 
fluctuations. To assess the possibilities of testing the formalism in the 
properly quantum domain, still another critical field size, U, is relevant, 
which equals the square root of the products, given by (8), of the comple
mentary uncertainties of two field averages over space-time regions that 
only partially coincide, being displaced relative to each other by spatial 
and temporal distances of order of magnitude L and T, respectively. For 
when the field strengths are essentially larger than U we obviously enter 
the domain of validity of classical electromagnetic theory, where all 
quantum mechanical features of the formalism lose their significance. A 
simple estimate based on formulae (8) and (11), shows that in the case 
L^cT both critical expressions U and S are of the same order of magnitude 

(13) 
L c T  

On the other hand, in the case L>cT one has 

(14) Uand . 

so that in the limiting case L»cT the critical field strength U is much 
larger than ® and, therefore, in testing the characteristic consequences 
of the formalism we can to a large extent disregard the field fluctuations. 

Before we turn to the comparison of the consequences of the quantum 
electromagnetic formalism discussed in this section, with the physical 
measurement possibilities for field quantities, we want to emphasize here 
once again that the consistent interpretability of this formalism is in no 
way endangered by such paradoxical features of its mathematical repre
sentation as the infinite zero-point energy. In particular, this latter para
dox, which moreover can be removed by a formal change in the repre
sentation6 that does not influence the physical interpretation, has no 
direct connection with the problem of measurability of field quantities. 
In fact, a field-theoretic determination of the electromagnetic energy in a 
given space-time domain would require knowledge of the values of the 
field components at each space-time point of a region, which are inacces
sible to measurement. A physical measurement of the field energy can be 
carried out only by means of a suitable mechanical device that would 
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make it possible to separate the electromagnetic fields in a given region 
from the rest of the field, so that the energy contained in the region could 
be measured subsequently by application of the conservation law. How
ever, because of the interaction with the measuring mechanism, any such 
separation of the fields would be accompanied by an uncontrollable 

change in the field energy in the region in question, the consideration of 
which is essential for clarification of the well-known paradoxes that arise 
in the discussion of energy fluctuations in black-body radiation.7 

3. PRESUPPOSITIONS FOR PHYSICAL FIELD MEASUREMENTS 

The measurement of electromagnetic field quantities rests by definition 
on the transfer of momentum to suitable electric or magnetic test bodies 
situated in the field. Quite apart from the caution required by quantum 
theory in applying the customary idealization of field components defined 

in each space-time point, we are here always concerned with averages of 
these components over the finite time intervals necessary for the momen
tum transfer as well as over the spatial domains in which the electric 
charges or magnetic pole strengths of the test bodies in question are dis

tributed. Obviously, even the assumption of a uniform charge distribu
tion on a test body is an idealization, subject to a certain restriction be
cause of the atomic constitution of all material bodies, but indispensable 
for the unambiguous definition of field quantities. 

In order to have a definite case in mind we consider the measurement 
of the average of the electrical field component in the x-direction, (Ex, 

over a space-time domain of volume V and duration T. For this purpose 

we therefore use a test body whose electric charge is uniformly distributed 

over the volume V with a density p, and determine the values px and p "x of 
this body's momentum components in the x-direction at the beginning t' 
and at the end t" of the interval T. The average we are looking for is 
then determined by the equation 

(15) px-px=p$xVT, 

where it is assumed that the time intervals required for the momentum 
measurements, whose order of magnitude we shall denote by At, can be 
regarded as negligibly small compared to T, and that we can disregard 
the displacements suffered by the test body due to the momentum 
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measurements as well as the acceleration given to it during the time inter

val T by the field that is being measured, in comparison with the linear 
dimensions L of the spatial domain V. 

By choosing a sufficiently heavy test body we can obviously make 

its acceleration due to the field arbitrarily small. In the momentum 
measurements, however, we encounter conditions which are independent 

of the mass of the test body. As a consequence of the indeterminacy 

principle, any measurement of the momentum component px carried out 
with the accuracy Apx is accompanied by a loss Ax in the knowledge of 

the position of the body in question, the order of magnitude of which is 
given by the relation contained in (6) 

(16) Ap x  Ax~h. 

Nevertheless, in itself this state of affairs does not imply any restriction 

on the accuracy to be achieved by the field measurement, because we 
still have at our disposal the value of the charge density. In fact, if we 
neglect At and Ax in comparison with T and L, we get from (15) and (16) 
for the order of magnitude of the accuracy Adtx of the field measurement 

(17) AQx 
pAx-VT 

which for any value of Ax, however small, can be made arbitrarily small 

by choosing a sufficiently large value of p. 

Strictly speaking, the accuracy of the field measurement is also de
pendent on the absolute magnitude of the value of itself, for with given 
ranges of At and Ax the value of ascertained from (15), even if 

^IJPx were zero, would be affected with an uncertainty arising from the 
latitude in the delineation of the domain of measurement which would 
surpass any limit as (£a increases indefinitely. Yet, the latter circumstance 
merely reflects the general limitation on all physical measurements, for 
which a knowledge of the order of magnitude of the expected effects is 
always required in order to choose the appropriate measuring instru

ments. In our problem an upper limit to the effects that we are interested 
in is set by the fact that as the magnitude of the field components increases 

we gradually reach the domain of validity of classical electromagnetic 
theory. As mentioned in the previous section, in the case L>cT, which is 
particularly suited for testing the quantum electromagnetic formalism, 
the expression 
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(18) Q-Jyf-

which is equivalent to the right-hand side of the first formula (14), repre

sents a critical field size in this respect. Substituting this into (17), the 
latter relation assumes the form 

is a dimensionless factor determining the accuracy of the field measure
ment. 

The requirement that λ be small compared to unity and simultaneously 

Ax be small compared to L means that the total electric charge of the 

test body must consist of a large number of elementary charges ε. In fact, 

according to (20) this number is given by 

and is very large when the above requirements are fulfilled and when 
L>cT as assumed. The last factor is of course the reciprocal square root 

of the fine-structure constant whose smallness, as we already mentioned 

in the Introduction, is an essential presupposition for the correspondence 

approach to electron theory. As emphasized there, essential restrictions 

are imposed on a field measurement with an elementary charge as a test 

body, a fact which is also directly visible from (21) if one puts N = I.8 

Moreover, the assumption of a large value of N is a necessary condition 

for the physical realization of a uniform distribution of the charge of the 

test body over the volume V; and as long as the linear dimensions of the 

test body are large compared to the atomic dimensions, its fulfillment 

obviously presents no difficulties in principle. It need hardly be mentioned 

that with this presupposition the assumption used above about the mass 

of the test body, equivalent to the requirement that this mass be very large 

compared to that of a light quantum of wave length L, always can be 
satisfied. 

(19) 

where 

(21) 
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Thus far we have completely disregarded the electromagnetic field 

effects which accompany the acceleration of any test body during the 

momentum measurement. These effects superpose themselves on the 

original field and must be included in the field averages defined by equa

tions of type (15). Hence, the main task of the following investigation will 

be to find a measuring arrangement in which the field effects of the test 
bodies can be controlled or compensated to the largest possible extent. 

Yet here we must first of all discuss the question of whether the reaction 
of the radiation fields produced by the acceleration of the test body in the 

momentum measurements could impair even the practicability of measur

ing the values occurring in (15) of the test body's momentum components 
at the beginning and end of the measuring interval. It was just this possi

bility that led Landau and Peierls, in the work cited at the beginning, to 
doubt the reliability of the indeterminacy relation (16) for charged bodies 

and to conclude that it should be replaced by another even more restric
tive relation in which the charge of the test body enters in an essential 
way. However, they likened the electromagnetic behavior of such a body 
to that of a point charge e, and consequently used the following expres
sion for estimating the order of magnitude of the test body's momentum 

change, brought about by radiation recoil,  during the time A t 

(22) δ ε Ρ χ~ 3-
e 2  Ax 

c3 Zli2 

If, however, SePx is considered an additional indeterminacy of the momen
tum measurement, then if one puts pV=e and does not distinguish 

between Sx and &x, one gets instead of (17) 

, ^ h eAx 
(23) 

whose minimum under variation of e is obviously given by 

(24) AmGx-^-
c TAt 

If, still following Landau and Peierls, one does not distinguish between T 
and At, this expression agrees with the absolute limit on the measurability 
of field components that they gave, on which they based their criticism 
of the foundations of the quantum electromagnetic formalism. 
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However, the supposed difficulties of the momentum measurement dis

appear as soon as sufficient account is taken of the finite extension of the 
test body's electric charge. Using the idealization of a uniform, rigidly 
displaceable charge distribution, to be more closely examined below, the 
electric field strengths in the region V during the acceleration of the test 

body within the time At can at most reach a value of the order of magni

tude ρ Ax; since, according to Maxwell's equations, their time derivatives 

are at most of the same order of magnitude as that of the current density, 

given by p{AxjAt). Hence, any electromagnetic reaction on the body 

during the measuring interval At can only contribute a momentum trans
fer of the order of magnitude 

(25) d p p x ~^p 2 V AxAt .  

Thus, in view of (18) and (20), we get by comparison of (16) and (25) 

(26) δρρχ^Αρχ·λ~2~ 

which implies that for any desired accuracy of the field measurement, 

symbolized by a given value of λ, the influence of the electromagnetic 

reaction on the momentum measurement of the test body can be neglected 

if only At is chosen sufficiently small in comparison with T. It is precisely 

this circumstance that is decisive for assessing the accuracy of the field 

measurements; for it turns out to be impossible to directly take into 

account the influence of the radiation reaction on the momentum and 

energy balance in the individual momentum measurements. For example, 

Pauli's proposal9 to measure subsequently by means of a special device 

the momentum and energy contained in the emitted radiation would 

already be impracticable because of the fact that, at least in the case 

L>cT which is of particular importance for field measurements, the 

radiation fields that are produced in the momentum measurements at 

the beginning and at the end of the interval T cannot be separated from 

each other to the degree sufficient for this purpose. In fact, in the following 

sections we shall show quite generally that any attempt at such a control 

of the test body's field effects would essentially impair the realization of 

the field measurement in question. 

Besides, not only for discussing the behavior of an individual test body 

during the measurement but also for assessing the mutual influence of 
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several test bodies, it is essential to treat these not as point charges but as 

continuous charge distributions. This is because the customary identifica

tion of the position indeterminacy of a test body, considered as a point 

charge, with the linear dimensions of the domain of measurement is an 

arbitrary assumption that is foreign to the measurability problem. For 
this reason, not only do the estimates of the product of the uncertainties 

of Sjc and f)y inside the same space-time domain, obtained by Heisenberg 

and by Landau and Peierls by considering point charges, deviate from 

the predictions of the quantum-electromagnetic formalism as already 

mentioned; they are in agreement with each other only in the special 
case L~cT. In this case, both estimates give the expression Qi, which 
corresponds to the order of magnitude, to be expected from the formalism, 
of the value of the product of the complementary indeterminacies of two 

field averages in space-time regions that are displaced relative to each other 
through space-time distances of the same order of magnitude as L and T. 

Moreover, it is an essential feature of the formalism that the product in 
question vanishes identically for coinciding regions. The physical mean
ing of this result becomes obvious as soon as one takes into account the 
uniform charge distribution of the test body used to measure &x; since the 

magnetic field strength which is produced at a point P2 of the volume V 

by the displacement of the charge pdv contained in a volume element 
situated at the point P1 is exactly equal and opposite to the magnetic 
field strength produced at the point P1 by the same displacement of the 

charge pdv at the point P1, so that the average over the volume V of every 
magnetic field component produced by the displacement of the test body 
disappears. 

From the foregoing it emerges that in the investigation of the measure-
ability of field quantities it is decisively important to assume that the test 
bodies to be used behave like uniformly charged rigid bodies whose 
momenta can be measured, in any given arbitrarily small time interval, 
with an accuracy, expressed by (16), complementary to the accompanying 
uncontrollable displacement. Of course, in view of the finite propagation 

of all forces, we should not think here of the usual mechanical idealization 

of rigid bodies, but must think of every test body as a system of individual 

components of sufficiently small dimensions; and think of the measure
ment of the total momentum of this system as carried out in such a way 
that, to a sufficient approximation, all the components undergo the same 



496 BOHR, ROSENFELD 

displacement during the momentum measurement. That this requirement 

can be fulfilled without difficulties of principle, at least insofar as one can 

disregard the atomic constitution of the test body„ is due to the fact that 

the required momentum measurements can be fully described on a classi

cal basis, irrespective of whether they depend on looking at a collision 

process between the test body and a suitable material colliding body; or, 

say, on the study of the Doppler effect involved in the reflection of 

radiation from the test body. For, if only the mass of the colliding body 

is sufficiently large or if the packet of radiation that is used to measure 

the Doppler effect contains a sufficient number of light quanta, then the 

interaction between the test body and the colliding body can be described 

classically to any approximation. In fact, the loss of knowledge of the 

position of the test body, which accompanies the momentum measure

ment, is due solely to the impossibility of simultaneously fixing the course 

of the collision process relative to a well-defined space-time reference 

frame. Indeed, the peculiar complementarity of the mode of description 

ultimately derives from the fact that any such fixation is bound up with 

an unavoidable, and in principle uncontrollable, transfer of energy and 

momentum to the scales and clocks needed to establish the co-ordinate 

system.10 

We recall that, according to the indeterminacy principle, the latitude 

in the time At that is left open in any description and the accuracy with 

which the energy exchanged in the collision process between colliding 

body and test body is known are connected by the well-known relation 

(27) AE-At-^k 

Because of the relation between energy and momentum and velocity 

components 

(28) d£ = vx  dpx  

which is valid for both bodies, it follows directly that 

(29) Apx\v'x-i/x\At~h. 

Even though, as noted above, the change of velocity \v"x — v'x\ of the test 

body in the momentum measurement can be considered as arbitrarily 

well known for a sufficiently heavy test body, the factor 

(30) \vx  — v'x\A t = Ax 
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obviously implies a completely free latitude in the position of the body 

relative to the fixed frame of reference, in complete agreement with the 

indeterminacy relation (16). From (30) the condition 

(31) Ax<cAt,  

follows immediately, which, because of (16), imposes an absolute limit on 

the accuracy Apx that can be achieved in a momentum measurement with 
a given upper limit for the time latitude At. However, in view of the 

relativistic invariance of the relations (16) and (27) and in particular of 

formula (28), this circumstance implies no restriction in the formulation 
and applicability of the indeterminacy principle. In our problem it is even 

permissible to disregard all mechanical relativistic effects, for by using 
sufficiently heavy test bodies we can always arrange that the velocities of 
all test bodies during the whole measurement process remain small com
pared to the velocity of light. Consequently, we can even consider any 

displacement Ax in the momentum measurements very small compared 
to the corresponding value of cAt which itself must be chosen arbitrarily 
small. 

It is exactly the possibility of accurately tracing the relative space-time 
course of the process serving as momentum measurement that enables us 

to measure the total momentum of an extended body within any given 
time interval with the required accuracy expressed by (16). Thus, we can 
determine the total momentum of the system of charged material com
ponent bodies serving as test body by a single collision process if we make 
use of a colliding body of special construction which intervenes every
where in the test body system and gives every component the same 
acceleration at the same time. It is true that this device imposes severe 

demands on the construction of the colliding and test bodies, but these 
demands do not present any difficulties of principle as long as we can 

disregard the atomic constitution of the bodies. The measurement of the 

total momentum of the test body would presumably be performed most 
simply by optical means, i.e. by determination of the Doppler effect; for 

this purpose one might proceed as follows: imagine that every component 
body is equipped with a small mirror at right angles to the x-direction, 
and that a number of other mirrors are placed in fixed positions in such a 
way that the light path from the radiation source to each component 
body is the same. If now by means of a suitable device we produce a packet 
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of radiation of duration At and containing a number of light quanta 
sufficiently large compared to the number of component bodies, then all 

these bodies will suffer a collision simultaneously and undergo an 
acceleration which for all component bodies can be made equal with 
arbitrary accuracy. 

In order to show that one can in fact measure the total momentum of the 
test body with an accuracy satisfying relation (16) by means of such an 
arrangement, we shall consider somewhat more closely the interaction 

between the test body system and the packet of radiation. In view of the 
assumed smallness of the velocity of the test body compared to the velo
city of light, we have for each component body 

where mt denotes the mass of a component body, v't x, v">x are its velocity 
before and after the reflection, and where the summation extends over the 
nt light quanta reflected from the component body whose frequency (reci
procal  period t imes 2π) before and after  the ref lection are denoted by V 

and v", respectively. It follows from (32) that the momentum of the com
ponent body in question before and after the collision is 

If we now assume that the mean spectral frequency v0 of the radiation 
packet is very large compared to the mean width (At)'1 of its frequency 
distribution as well as to all frequency changes ν' — ν", then we can take 
the change of velocity of the component body in the collision, to a 
sufficient approximation, as 

"ΦΪ, *-<,*)=- Σ(ν'+ν")> 

(32) 

~ m M 2
x ~<*) = h Σ(ν'"ν"), 

Kx = mtvlx = 
«I 

,  ,  h „ ,  ,  2nThv, 
(34) ν" x - i/t,x=— X v' + v")=—^ 

mtc £ mzc 

and we can assume that it is the same for all component bodies. Thus, in 
the collision all component bodies suffer displacements which, although 
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uncontrollable, are arbitrarily close to being identical and whose order of 

magnitude Ax satisfies relation (30) where 11\ - | is to be identified with 

the common velocity change of the whole test body system. Consequently, 

since according to our assumptions Ax can be considered negligibly small 

compared to cAt, we get from (33) and (34), for the product of Ax and the 
uncertainty of the total momentum of the test body, approximately 

(35) Ap x Ax~At αΙς Σ Η ν '~Σ Σ^ v "I  
\ τ ητ τ ητ / 

The quantities in the bracket in (35) are precisely the total energies of 

the radiation packets impinging on and reflected from the test body. The 
energy of the latter packet can be measured with arbitrary accuracy, e.g. 

by spectral analysis of the reflected radiation. For the incoming radiation 

packet, however, such an analysis would obviously be incompatible with 

the experimental conditions. Yet the total energy of this radiation can be 
measured with an accuracy that is complementary to At, as given by (27). 

To do that it suffices to use a purely mechanical device by means of which 
the packet in question is separated from a radiation field, whose energy 
before and after the separation can be determined with arbitrary accuracy, 

e.g. by spectral measurements. Thus, the relation (35) is identical with the 
usual indeterminacy relation (16). Note further that the demonstration of 
this identity is essentially dependent on the fact that in accordance with 
the described arrangement we obtain no information about the momen
tum of the single component bodies but only about the total momentum 
of the test body. 

The fact that the test body system suffers a common translation during 
the required momentum measurements is not only important for the 
calculation of the field effects of the test body which accompany these 
measurements, but also gives us the possibility to arrange things in such 
a way that outside the short time intervals occupied by the momentum 
measurements all the test bodies employed in the field measurement can 
be considered as being at rest, which greatly simplifies the calculation. 
For immediately after each momentum measurement, i.e. practically 
speaking still inside the interval At, we can give the test body system a 
second push in the opposite direction by means of a suitable device, such 
that the velocity change which every component body suffered in the first 
collision is cancelled out; this can be done with an arbitrary accuracy, i.e. 
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an accuracy that is inversely proportional to the mass of the component 

body, and without losing the desired knowledge of the total momentum 

of the test body. However, with this arrangement it is impossible to know 

the time interval between the two collision processes with a latitude 

smaller than At, and so, as required by the indeterminacy principle, the 

test body is not returned to its original position by the counter-collision, 

but rather is brought to rest to the required approximation at an un

known position, displaced by a distance of the order Ax. 

To assess the complementary limitations on the measurability of field 

quantities, which will be more closely investigated in the following 

sections, we must follow the behavior of the test body as accurately as 

possible during the whole measuring process. It turns out that for this 

purpose it is necessary first of all to know accurately the position of each 

test body at all times before and after its use in the measurement. This is 

achieved most expediently by having the test body firmly attached to a 

rigid frame serving as a spatial reference system, except in the time 

interval during which the momentum transfer to the test body from the 

field is to be determined. At the beginning of this interval the attachment 

must be disconnected, and the momentum component of the test body in 

the direction of the field component that is to be determined must be 

measured. We always assume that by an immediately following counter-

impulse, as discussed above, the body is brought back to rest with an 

accuracy inversely proportional to its mass, at a position which is not 

accurately predictable. At the end of the time interval and after renewed 

measurement of the momentum component in question, the firm attach

ment is re-established; here it turns out to be not unessential that the test 

body be brought back into exactly the same position as it had originally. 

If the space-time averaging domains are to be sufficiently sharply defined, 

these prescriptions alone impose far-reaching demands on the detailed 

construction of the test body system. For due to the retardation of all 

forces it is strictly speaking necessary that the severance as well as the 

re-establishment of the attachment of the test body system to the fixed 

frame are performed in such a way that all its independent component 

bodies, whose linear dimensions must be at least as small as the smallest 

relevant value of cAt, are unfastened and fastened simultaneously, i.e. 

within the time latitude At of the momentum measurement, which itself 

must be chosen sufficiently small compared to the time interval T. 
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Still more far-reaching demands on idealization with respect to the con
struction and handling of the test body system are obviously needed to 
measure field averages over two partially overlapping space-time regions. 
For in this case we must have test bodies at our disposal which can be 
displaced inside each other without mutual mechanical influence. In 
order that the electromagnetic field to be measured be disturbed as little 
as possible by the presence of the test body system, we shall imagine, 
moreover, that every electric or magnetic component body is placed 
adjacent to a neutralization body with exactly the opposite charge. In 
the case of a magnetic test body system it is to be noted that a uniform 
pole strength distribution cannot exist on a strictly delimited body. How
ever, one can imagine, at least in principle, that every component body 
of such a system is connected with the corresponding neutralization body 
by magnetizable flexible threads. All these neutralization bodies are to 
remain connected with the fixed frame during the whole measurement 
process without mechanically influencing the free mobility of the com
ponent bodies belonging to the test body system proper. Of course, the 
idealizations entailed in such presuppositions, as well as in the still needed 
compensation mechanisms to be introduced below, are justifiable only 
as long as we can neglect the atomic constitution of the test body. How
ever, as already mentioned, this neglect does not imply any restrictions 
in principle on the possibility of testing the quantum electromagnetic 
formalism, since no universal space-time dimensions appear in this for
malism. Accordingly, the purpose of the preceding considerations was 
above all to show that in the purely mechanical problems which are 
relevant to the field measurements, it is possible to distinguish strictly 
between the restrictions on the constitution of the test body stemming 
from the atomic structure of matter and the restrictions on the handling 
of these bodies that are due to the quantum of action, formulated in 
particular in the principle of indeterminacy. 

4. CALCULATION OF THE FIELD EFFECTS OF THE TEST BODY 

After having investigated the physical presuppositions for the constitu
tion of the test body we now turn to a closer consideration of the electro
magnetic field effects of the test body which accompany the measurement 
of field quantities and which are of decisive importance for the measur-
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ability question. In accordance with the discussion above we shall treat 
each test body as a charge distribution which uniformly fills the spatial 
averaging domain and which undergoes a simple translation during the 

momentum measurement. We shall first carry out the calculation of the 
electromagnetic fields thereby produced on the basis of classical electro
dynamics, and only afterwards discuss the restriction on the validity of 
this treatment due to the quantum of action. 

Let us consider two space-time regions, I and II, with volumes V, and 
F11 and durations T1 and Tlb and let us ask for the electromagnetic field 
'which is produced at a point (x2, y2, z2> h) °f region II by a measurement 
of the average of (Ex over the region I. Thus, we assume that in volume V1 

there are originally two electric charge distributions with the constant 
densities +ρ, and — pv In the interval from t[ to ([ + Jtl the first charge 
distribution experiences a simple non-uniform translation in the x-
direction through a distance D® ; in the interval from t\ + At, to f|' it 
remains at rest at the displaced position; finally, in the interval from t'{ to 
I1" + Atl it moves non-uniformly parallel to the x-axis back to its original 
position, which coincides with that of the neutralization distribution. In 
accordance with the requirement discussed in the preceding sections, we 
assume further that At, is very small compared IoTl = t'{ - tj and that 
is very small not only compared to the linear dimensions of the spatial 
averaging region of volume Vh  but also small compared with CAt l .  

Hence, in the limiting case of vanishingly small Ath  the sources of the 
field that we are looking for may be represented as a polarization in the 
x-direction of constant density, P®=p, D^\ existing in the region I during 
the time interval from % to I1", as well as a current density present only in 
the immediate vicinity of the times tj and i,", which we can write as 

(36) JV=P1Dmt-Q-Sit-IO], 

using δ symbol defined by formula (3). By means of the same symbol we 
can similarly express the polarization at an arbitrary time t by the 
formula 

(37) Ρ® =P1D? J<5(i- ̂ di1. 
<i 

As is well-known, the components of the fields at the space time point 
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produced by these sources may be calculated from the 
formulae 

(38) 

where we have used latin letters to distinguish these fields from the field 
components that are to be measured. In signifies the retarded 
scalar potential 

(39) 

and the retarded vector potential component 

(40) 

where r is the distance between the space points and 
Noting that the expression (36) can also be written in the form 

(41) 

and taking into account (37) and (41) one sees that the field components 
given by (38), (39) and (40) can be expressed by the typical formulae 

(42) 

where the abbreviations defined in (2) have been used. 
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In view of the properties of the symbolic ̂ -function it is easy to see that 
the field components given by (42) always remain finite and even cannot 
surpass a value of the order of magnitude PlDi^ at any space-time point 

(x2, y2-> zi, t2)· As already mentioned, the electromagnetic forces which 
occur during the momentum measurement of the test body in the time 

interval At are just of this order of magnitude (cf. p. 372). The fact that 
the field intensities do not subsequently increase essentially is solely a 

consequence of the counter collision taking place right after the momen

tum measurement which brings the body back to rest, and finds its ideal

ized mathematical expressions in (36) and (37). 
The averages of these field components over the region II, which are 

of particular interest to us, are obtained from (42) by a simple space-time 

integration and, in accordance with (5), are given by the formulae 

(43) I K1 Tii'V" 

[m·U) = o, Hf "> = DWplVlT1B%ll\ 

As a result of the properties of the expressions A and B, already dis
cussed in Section 2, we see that for a given value of D® the field averages 
given by (43) are well-defined continuous functions of the regions I and 

II. Hence, for decreasing latitudes, At and Ax, of the duration of the 
momentum measurements and of the accompanying unpredictable dis
placements, these field averages are completely independent of the de
tailed space-time course of the collision process, and simply proportional 
to the constant displacement of the test body in the measuring interval T1. 

As we shall see, this very fact turns out to be decisive for the possibility 
of an extensive compensation of the uncontrollable field effects of the 
test bodies. 

Thus far, the calculation of the field effects has been carried out on a 
purely classical basis. Yet for a more detailed comparison of the measure
ment possibilities and the requirements of the quantum-electromagnetic 
formalism one must also take into account the limitation imposed on the 
classical mode of calculation by the quantum-theoretical features of any 
field effect, symbolized by the concept of light quanta. In order to get a 
general view of the situation we assume that the averaging regions in 
question are of the same order of magnitude and spatially displaced 
relative to each other through distances of the same order of magnitude 
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as their linear dimensions, which we denote by L; and that further the 

corresponding time intervals of order of magnitude T are smaller than 

L/c. Under these conditions, the spectral decomposition of the field effects 

contains essentially only waves of wave length of the same order of magni
tude as L. Since, furthermore, in the case under consideration the intensity 
of the field produced in the momentum measurement is of the order ρΔχ, 

and consequently the field energy contained in the volume V is of the 

order p2Ax2V, then the number of light quanta in question is approxi
mated by the expression 

where λ is the factor, defined in (20), that provides the measure for the 

accuracy of the measurement. Thus we see that in our case η is always 

large compared to unity if an accuracy of measurement is required that 
permits field strengths to be measured which are smaller than the critical 

field quantity Q. 

Evidently, the classically calculated expressions (42) and (43) for the 

field effects become relatively more exact, the greater the accuracy aimed 

at for the field measurements. However, it is essential to note that the 
absolute accuracy of these expressions does not change for increasing 
values of n. For in our case the statistical range of fluctuation of the 

field averages is approximately given by 

This expression for the range of fluctuations of the field effects of the test 

body, which depends only on the linear dimensions of the measurement 
domain and which always remains finite, agrees in fact with the expression 
(14) for the order of magnitude of the pure black-body fluctuations which 

was derived from the formalism in the case L>cT. Actually, in the above 

consideration we are dealing merely with an example of the general rela
tion, mentioned in Section 2, between black-body fluctuations and the 
deviations, only describable statistically, of field averages from field 
quantities that are calculated according to classical theory from specifica
tion of the sources. Furthermore, as was already there pointed out, in the 
case L >cT, especially important for testing the formalism, the black-body 

(44) n—P2Ax2V^-=X 2^-,  
he cT 
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fluctuations are always smaller than the field strength Q which is a 
measure of the complementary measurability of field quantities; and, 
indeed, so much the smaller, the larger the ratio between L and cT. Thus, 
in the following comparison between field measurements and formalism 
we shall always start from the classically calculated expressions (43), and 
only afterwards discuss the significance of the fluctuation phenomena for 
the consistency of the formalism. 

5 .  MEASUREMENT OF SINGLE FIELD AVERAGES 

By definition we base the investigation of the measurement possibilities 
for field averages on equation (15) which expresses the classically de
scribed momentum balance for a test body situated in the field. According 
to the preceding arguments, each field component, such as ®x, is in this 
context to be regarded as the superposition of the fields originating from 
all field sources, including the test body itself, and the core of the measure
ment problem is precisely the question of the extent to which these fields 
can be associated with the various sources. However, we must emphasize 
here immediately that the strict applicability of the classical field concept 
in defining field averages is not in itself impaired by the previously dis
cussed limited validity of the classical description of the field effects of 
the test body. Quite apart from the question of the accuracy attainable in 
the momentum measurements of the test body at the beginning and end 
of the measuring interval, which was discussed in Section 3, the un
ambiguous character of this definition would itself require that the masses 
of the test bodies be chosen sufficiently large that any modifications of the 
electromagnetic fields, stemming from their accelerations under the in
fluence of these fields during the measuring interval, may be neglected. 
If one were inclined to regard this neglect as in contradiction with the 
atomic character of the momentum transfer between electromagnetic 
wave fields and material bodies, then it must be recalled that in the 
measurement problem under consideration there is no question of tracing 
well-defined elementary processes in the sense of the light quantum con
cept. In particular, in the measuring arrangement described, an uncon
trollable amount of momentum is absorbed by the rigid frame to which 
every test body is attached before and after the measuring interval. In the 
limiting case of a classically describable interaction between an electro-
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magnetic wave train and a sufficiently heavy charged body, the momen
tum transfer just mentioned would obviously exactly compensate the 
momentum absorbed by the test body in the measuring interval. 

As a preparation for the general'discussion of the measurement prob
lem, we first consider a single field measurement and, as in Section 3, ask 
for the average value of Sx in a certain space-time domain which we 

•denote, as in the previous sections, by I. Thus, from the fundamental 
equation (15), we get for the momentum balance of the test body 

(45) pT - pf=P1V1T1^ + £»·"), 

where &(
Χ

Ό represents the part of the average of Qx which would be present 
in the space-time domain I under consideration if no momentum measure
ment were made on the test body at time t', while Ex· " is the part of the 
field average that arises from this measurement, whose classically esti
mated expression is given by (43), if regions I and II are set equal. 

According to the arguments of Section 3, the sum of the field averages 
<%" and Ex·" appearing in (45) can be determined with arbitrary accuracy 
by choosing a sufficiently large value of pv However, the larger p, is 
chosen, the larger will be the uncontrollable value of Ex-"; and therefore, 
the attainable accuracy in the determination of (Sf by means of the simple 
measuring arrangement previously described, which according to (45) is 
given by 

(46) ΔΕ*·", 
PiVlTl ' 

has a limit imposed upon it. Indeed, due to relation (16) and to the fact 
that the quantity D® appearing in (43) is predictable only with a latitude 
Axb we get from (46) the expression 

for whose minimal value obviously is 

(48) 4¾"-/¾ 

and in the case Lx>cTY precisely equals the critical quantity Q1. It is true 
that when L1 is large compared to c7j, (48) is essentially smaller than the 
expression (24) which was given by Landau and Peierls as the absolute 
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limit on the measurability of field quantities; yet if (48) were to be con
sidered as an unavoidable limit on the accuracy of measurement, we 
should still arrive at the conclusion, in agreement with the view of these 
authors, that the quantum-electromagnetic formalism admits of no test 
in the properly quantum domain, and that therefore physical reality can 
be ascribed to the entire field theory only in the classical limit. 

However, this conclusion cannot be maintained, for the fact that 
according to (43) the coefficient of the unpredictable displacement D™ in 

" is a well-defined quantity depending solely on geometrical relations, 
allows us to so arrange things in the measurements that the effect of the 
field E"] is completely compensated except for the unavoidable field 
fluctuations. This is achieved by a measuring arrangement in which the 
test body is not freely movable, even during the measuring interval T1, 
but remains connected with the rigid frame through a spring mechanism 
whose tension is proportional to Di

x". If the force in the x-direction exerted 
by this mechanism on the test body is —FXD<*\ then the total momentum 
transferred from the field to this body will obviously be completely 
cancelled by the spring if the spring constant is chosen to be 

(49) Fl=PfVl
2TlA^. 

At any rate, this holds when the test body is so heavy that its oscillation 
period under the influence of the spring is large compared to T1 and thus 
its displacement due to the spring tension during the time T1 is small 
compared to D®. Furthermore, the action of the spring, which strictly 
speaking is classically describable only in the asymptotic limiting case, 
may be calculated on the basis of classical mechanics with an accuracy 
which is the greater the larger the mass of the test body. Apart from the 
limitations due to the atomic structure of all bodies, no objection of 
principle could exist against such a compensation device. In the first place, 
by using a mechanical spring all electromagnetic fields are avoided, which 
would be inseparable from the fields to be measured. Secondly, if the 
length of the spring is sufficiently small, i.e. small compared to cTh one 
may obviously disregard all retardation effects. In doing so, if the test 
body system is sufficiently heavy, it is clearly immaterial whether the 
spring acts only on a component body or whether one uses a system of 
springs that affects each component body uniformly. 

Thus we see that the sharpness of a single field measurement is restricted 
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solely by the limit set for the classical description of the field effects of the 
test body. However, even in the case L,<c7J this limitation, which is the 
more insignificant the larger L1 is compared to cTh implies no restriction 
at all on the possibility of testing the consequences of the quantum-
electromagnetic formalism. In assessing this question, we must distinguish 
sharply between the testing of theoretical predictions which presuppose 
data concerning electric or magnetic forces obtained by field measure
ments, and of those which depend on knowledge of the state of the field 
in question obtained on some other basis. As for the former predictions, 
their testing obviously requires a closer investigation of the mutual rela
tions between several field measurements; thus, to begin with, here it can 
only be a matter of testing predictions of the latter kind. 

Now, as mentioned in Section 2, it is a major result of the quantum 
theory of fields that all predictions concerning field averages which do not 
rest on true field measurements, but on the light quantum composition 
of the field to be investigated or on the knowledge of classically described 
field sources, must be of an essentially statistical nature. Further, the more 
detailed argument presented there shows that inclusion of the fluctuations 
of the test body's field effects around their classically estimated value 
brings about no change whatsoever in these statistical predictions. With
out further correction, the measurement results obtained by means of the 
experimental arrangement described thus appear as the desired field 
averages for testing the theoretical statements. Such a view of the measur
ing results, whose general justification we shall investigate more closely 
in the following, is also suggested by the fact that all measurements of 
physical quantities, by definition, must be a matter of the application of 
classical concepts ; and that, therefore, in field measurements any con
sideration of limitations on the strict applicability of classical electro
dynamics would be in contradiction with the measurement concept itself. 

Even though, consequently, as already stressed in the Introduction, the 
measurement concept is to be applied with even greater caution in field 
measurements than in the usual quantum mechanical measurement prob
lems; nevertheless, as regards the inseparability of phenomenon and 
measuring process the situation described exhibits a far-reaching analogy 
to these problems. Indeed, even in a position or momentum measurement 
on the electron in a hydrogen atom in a given stationary state one can 
assert with a certain right that the measuring result is produced only by 
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the measurement itself. It is here not a question of a limitation on the 
sharpness of the measuring result on the basis of classical mechanics, 
indeed; but only of abandonment of any control over the influence of 
the measuring process on the state of the atom. In field measurements, 
this complementary feature of the description, essential for consistency, 
corresponds to the fact that the knowledge of the light quantum com
position of the field is lost through the field effects of the test body; and in 
fact, according to (44) the more so, the greater the desired accuracy of the 
measurement. Moreover, it will appear from the following discussion that 
any attempt to re-establish the knowledge of the light quantum composi
tion of the field through a subsequent measurement by means of any 
suitable device would at the same time prevent any further utilization of 
the field measurement in question. 

However, the fact that pure black-body fluctuations appear as the 
common limitation in the demonstration of the correspondence between 
the testability of the consequences of the quantum-electromagnetic 
formalism by means of a single field measurement and the interpretability 
of such a measurement on the basis of classical electrodynamics in no 
way implies that these fluctuations set an absolute limit for any utiliza
tion of field measurements. Indeed, such a general limitation exists 
neither for the consequences of the formalism regarding relations between 
averages of a field component over different regions, nor for the testing of 
such relations through direct field measurements. This will become clear 
from the considerations in the following sections; and in particular it will 
be shown that the requirement of repeatability of measurements of 
kinematical and dynamical quantities, essential for the discussion of the 
consistency of the usual quantum mechanics, possesses its natural analog 
in field measurements. 

6. MEASURABILITY OF TWO-FOLD AVERAGES 
OF A FIELD COMPONENT 

In investigating the measurability of two field quantities it is convenient 
to start with the measurement of the average of one and the same field 
component over two different regions, I and II. Thus, considering as 
above the field component (fx, and disregarding to begin with the limita
tions of the classical describability of the test bodies' field effects, we have 
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in this case for the momentum balance of the two test bodies, instead of 
(45): 

(50) 

where is defined by expression (43), and is obtained from this 
expression by simple interchange of the indices I and II. 

According to the considerations in the previous sections, the appear-
ance of the expressions and in equations (50) implies that each 
of the desired field averages, 1 and can only be determined with a 
limited accuracy, given by (48), by means of a simple measuring arrange-
ment. Thus, it is evident from the beginning that a compensation pro-
cedure is unavoidable, and for preliminary orientation about the more 
complicated measuring problem considered here we therefore first use a 
measuring arrangement in which the reactions, 

are cancelled by means of two springs acting on the test bodies I 
and II, the spring constants beirig given by (49) and an analogous ex-
pression. 

From equations (50), with omitted, it follows, using (16) 
and (43), that in this arrangement the uncertainties of the two field 
measurements, taking into account that the displacements of the test 
bodies, and appearing in 1 and _ are completely inde-
pendent of each other and known only with the latitudes 
are given by 

(51) 

By suitable choice of the values of and either one of the 
quantities can obviously be arbitrarily diminished, but only 
at the expense of an increase of the other. For according to (51) we get 
for the product of the two quantities the minimum value 

(52) 
In spite of the great similarity of relation (52) to the uncertainty rela-

tions (8) required by the formalism, there is, nevertheless, a fundamental 
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difference in that the latter contains not the sum of the magnitudes of the 

quantities A^'x
ll) and Ai

xx" but their algebraic difference. It is true that (8) 

and (52) are in general in agreement as to order of magnitude when the 

regions I and II are spatially and temporally displaced relative to each 

other by distances of order of magnitude L and T, in which case they both 

have the approximate value Q2. However, as mentioned in Section 2, the 

difference sign appearing in the indeterminacy relation (8) has the effect 

that in important cases the product of the complementary uncertainties 

vanishes identically, even though the quantities AcJ^w and Ai
xx 

0 each re
main different from zero. This happens, for example, when the temporal 
averaging intervals Tj and T11 coincide, and in particular when the two 

averaging regions I and II completely overlap. In the latter case even the 
limit on the measurability of two field averages given by (52) would be in 
glaring contradiction to the result of the previous discussion of measure
ment of a single field average. In general, the two expressions (52) and (8) 
agree exactly only when at least one of the quantities Α^·χ

η) or Axx " 

vanishes which in general requires that one of the expressions I1 -12 — rjc 

or f2 -ii — rjc, appearing as arguments of the (5-function in the integrals 
(5), remain different from zero for every pair of points (X1, ^1, zu J1) and 

(χ2, y2i z2> h) of regions I and II. 

Thus, apart from the last mentioned case in which there exists no 

correlation, or at any rate only a one-way correlation, between the two 

field averages, the demonstration of the agreement between measurability 

and quantum electromagnetic formalism requires a more refined measur
ing arrangement in which the uncontrollable effects can be compensated 
to a larger extent. It is true that there appears here, in comparison with 

the compensation procedure needed already for measuring a single field 

quantity, the further complication that the displacements of the two test 

bodies not only must remain unknown but are also completely indepen
dent of each other. However, this circumstance implies no fundamental 
difficulty; only a somewhat more complicated procedure is necessary in 
order to compensate as much as possible the influence of the relative dis
placement of the test bodies on the field measurements. For this purpose 
we select two component bodies ε, and ε„, one from each test body 

system I and II, for which the expression r — c(tj —12) vanishes for two 
times i,* and tfi lying in the time intervals T1 and Tn, respectively. If such 
a choice were not possible, then as said above the agreement between 
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measurability and formalism would already be attained without further 

compensation. To establish the necessary correlation between the test 

bodies one might at first think of a spring which should connect the bodies 

ε, and ε„ directly with each other; however, due to the retardation of the 

forces one would thereby run into difficulties. But one can manage with 

a short spring, i.e. small compared to cT, if one adds to the second test 

body system a neutral component body 6m which is situated in the 

immediate neighborhood of component body ε,, belonging to the first 

system, and connected with it by a spring. 

Like all component bodies of the two test body systems, the body εηι is 

initially to be bound to the rigid frame. Then at time t\, its momentum is to 

be measured, after severing of this link, with the same accuracy as that of 

test body system II. It thereby undergoes an unknown displacement 

Dfl) in the x-direction which is of the same order of magnitude as Axn. 

If now the tension of the spring mounted between εΠΙ and ε, is chosen 

equal to jPiPi^V^T^Af^ + Af^, then in the time interval T1 the 

momentum 

(53) P = IPlPaVlVnTMAlW + Af • "XD® - Df>) 

will be transferred from Em to ε,, while εΠ( undergoes the momentum 

change — P during the same time interval. At time t" the momentum of 

εΙΠ is measured again with the same accuracy. However, before this 

measurement, and in fact at time ί|ξ, a short light signal is to be sent from 

ε„ to εΙΠ, by which the relative displacement Dfl) — Df] of these bodies 
can be measured with arbitrary accuracy by means of a suitable device. 

At the emission and absorption of the signal the two bodies undergo 
momentum changes which indeed remain completely unknown, but 

cancel each other exactly in the sum of the momentum changes measured 
on the bodies. 

Thus, for the momentum balance of the two test body systems during 
the measurement we have, if we include the body εΙΠ in system II, 

(54) { Px'-pf^PMWf + Ef^ + P 

Taking into account (43) and (53), these formulae can be put into the form 
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(55) 

The last terms in the curly brackets in (55) are proportional to the un-
known displacements of the test bodies I and II and can therefore, exactly 
as the simple reactions of each test body on itself, be cancelled by means of 
suitable spring connections with the rigid frame. This simply amounts to 
replacing the expression (49) for the tension of the spring acting on body I 
by 

(56) 
and similarly changing the tension of the spring between the frame and 
body II. Furthermore, in the measuring arrangement described, the terms 
proportional to the relative displacement are known with 
arbitrary accuracy and can therefore easily be taken into account in the 
field measurements. In fact, by means of a somewhat more complicated 
device one could even obtain the vanishing of the difference 
by using (in analogy to the arrangement for measuring the 
total momentum of a test body system described in Section 3) to deter-
mine one and the same radiation packet and, by means of suitably placed 
fixed mirrors, by regulating the light path in such a way that in the first 
momentum measurement the reflections at body e m and at all com-
ponent bodies of system II occur at the times and respectively, and 
in the second momentum measurement occur at the times and 

By means of all these contrivances, whose considerable complexity lies 
in the nature of the problem, being due solely to the finite propagation of 
all field effects, we now have actually removed the apparent conflict be-
tween the determination of single and two-fold averages of a field com-
ponent described at the beginning of this section. For from (55) we now 
obtain for the indeterminacies of and instead of (51), 
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+-P l lAx l lV l lT l^-A%»\ 

+ 1-P1Ax lV lT lIA^-Af^\ 

which immediately yields for the minimal value of the product of the 
uncertainties 

(58) A®?A<&™~h\A^-A<™\ 

in agreement with the consequence of the quantum theory of fields ex
pressed by (8). 

However, in order to demonstrate the complete accord between the 

measurability of the averages of a field component over two space-time 
regions and the requirements of the quantum electromagnetic formalism, 

we must go somewhat further into the question of the extent to which the 
assumption of the classical describability of the test body's field effects 

impairs the possibilities of testing theoretical predictions. For, as already 
indicated, exactly in the case of measurement of several field averages one 
might think beforehand that the neglect of the fluctuations of all field 

effects of the test body, which cannot be followed classically, and are 
inseparable from the pure black-body fluctuations, in this respect signifies 

an essential renunciation. At any rate, as long as we are dealing with av
eraging regions which are displaced spatially and temporally relative to 
each other by distances of the same order of magnitude as their linear 

dimensions L and corresponding time intervals T, this neglect is of little 
significance in the important case where L is large compared to cT. How

ever, if L is of the same order of magnitude or smaller than cT, then the 
black-body fluctuations, as mentioned in Section 2, are of just the same 

order of magnitude as the critical field strength U, which is defined for 
such displaced regions by means of the indeterminacy relations and is to 
be regarded as the limit of the classical field description. The neglect in 
question might appear even more doubtful and seem to imply a complete 

renunciation of the repeatability of field measurements in the case of two 
almost coinciding domains, in which the product of the complementary 
uncertainties of the field averages, given by (8), tends to zero independently 

of the ratio between L and cT, and where thus the critical field strength 
U can be arbitrarily small compared to the black-body fluctuations. 
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Nevertheless, a closer consideration shows that we obtain a consistent 
interpretation of all consequences of the quantum theory of fields, if, in a 

necessary generalization of the measurement concept, we interpret the 
measuring results obtained by the arrangement described as the desired 
field averages. For the classically undescribable fluctuations included in 

the field effects of all test bodies cannot be separated in any way from the 
fundamentally statistical features of every theoretical assertion whose 
conditions do not refer to actual field measurements. Without in any 

way limiting the given measurement problem we can therefore always 
regard the fluctuations in question as an integral part of the field to be 
measured. The situation in multiple field measurements differs in this 
respect from that obtaining in measurement of a single field average only 
insofar as the state of the field, with which we are concerned in every 

single measurement in the general case, is codetermined by the result of 
the other field measurements. 

However, with regard to this state of affairs it may not be superfluous 
to point out that in the correlation of several field measurements we have 

to do with a feature of the general complementarity of description which 
is alien to the usual measuring problem of non-relativistic quantum 
mechanics. Indeed, the fundamental simplification which we meet in the 
latter theory lies precisely in the separation made there between spatial 

coordination and temporal evolution, which makes it possible to order 
all measuring processes in a simple temporal sequence. On the other 
hand, it is possible to speak of such a sequence of measuring processes 
during the measurement of two field averages only when the correspond
ing time intervals do not overlap at all. In general, in accordance with the 
formalism, the correlation of the two measurements is also a reciprocal 

one; and only when one of the quantities r — c(t1 — t2) and r — c(t2 — ^i) 
remains different from zero for all pairs of points of the regions I and II, 
do we encounter conditions similar to those of the usual measurement 

problem of atomic mechanics, since the result of the one field measure
ment may then be simply included in the preconditions used in the pre
dictions to be tested by the other measurement. 

We meet an instructive example of an intimate reciprocal correlation 
in measurements of the averages of a field component over two almost 
coinciding space-time domains. In conformity with the requirement of the 
repeatability of measurement results, the theory demands in this case that 
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both measurements yield the same result to an arbitrary degree of ap
proximation quite independently of the statistical assertions about the 
values of the field quantities to be measured which are implied by the pre
conditions. That this requirement is actually fulfilled in our experimental 
arrangement follows from the fact that in this case we have to do with two 
test body systems which occupy almost the same spatial region and are 
used during almost the same interval of time. Thus, by definition, they 
are exposed to almost the same field, quite irrespective of the sources 
producing this field, and of which contribution comes from one or the 
other test body. 

Actually, it follows from the last remark that in the case of coinciding 
averaging regions we would get exactly identical results of the two 
measurements even without any compensation. However, on account of 
the field effects of the test bodies the measurement results so obtained 
would differ in an unpredictable way from the theoretical predictions to 
be tested, the more so, the greater the desired measuring accuracy. It is 
true that by means of the compensation mechanism suitable for single 
field measurements, which we had retained unaltered at the beginning of 
this section, these deviations are in general diminished; but at the same 
time any strict correlation of the measuring results is prevented by the 
effects of the springs which are proportional to the independent displace
ments of the test bodies. In the arrangement for two field measurements 
finally adopted, in which all well-defined differences between measure
ment results and theoretical predictions are compensated, such a correla
tion is also re-established just in the case of coinciding regions. For, as 
one easily sees, quite independently of the relation between the magni
tudes of the uncontrollable displacements of the test bodies, the momenta 
transferred to each test body through the combined effect of all the springs, 
divided by the corresponding charge densities, are exactly identical in this 
case. 

As far as the consistency of the description is concerned, we might still 
remark that any attempt to control the change in the light quantum com
position of the field caused by the field measurement by investigation of 
the test body's radiation, as already mentioned several times, would ex
clude the possibility of utilizing the measurement result for a comparison 
with a second field measurement. For in order even to be able to speak of 
such a utilization, there must exist pairs of points from the regions I and 
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II, respectively, for which one of the expressions r—Cit1-12) or 
r—c(i2 — h) vanishes. But this implies that the radiation fields produced 

by the test bodies I and II during the measurement cannot be intercepted 

and analyzed on their way from one test body to the other without at the 
same time essentially influencing the fields to be measured by these bodies. 
Only after the completion of all field measurements, when their direct 

utilization is no longer of concern, is it possible to perform an arbitrarily 

accurate analysis of the light quantum composition of the entire field 

without adversely affecting the given measurement problem. 

7. MEASURABILITY OF TWO AVERAGES OF DIFFERENT 

FIELD COMPONENTS 

As far as measurements of averages of different field components are con

cerned, only the case of perpendicular, similar or dissimilar components 
needs closer investigation; for the complete commutativity and inde
pendent measurability of averages of parallel dissimilar components re
quired by the quantum electromagnetic formalism finds its direct inter
pretation in the identical vanishing of the component H® of the field 
produced by the measurement of δ®, as shown by (42). Besides, on the 

basis of equations (43), the measurement of averages of perpendicular 

field components allows a method of treatment analogous to the pro
cedure described in the previous section. 

Let us consider the measurement of the average of Qx over the region I 
and the average of Sv or over the region II. If to begin with we use a 
measuring arrangement in which the field effects of each test body on 
itself during the measurement are compensated in the manner described 
in Section 5, we get equations of the following type for the momentum 
balance of the two test bodies to be used: 

(59) ί p",'~p®' =  ^ (® ) +  (> ¾¾CS•I,) 

1 P?" - Pfy = σ„ Vn + Di
x

0Pi V17iC<V") 

Depending on whether we are dealing with a measurement of similar or 

dissimilar components, the letter 91 here represents the usual designation 

of the field components ©or S>, while C is written instead of the symbols A 

or B appearing in (43); further, the designation σ„ represents the charge 

density or the pole strength distribution of the test body II accordingly. 
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In a manner similar to the derivation of (52) one obtains from (59) the 
relation 

(60) 

which, like (52), does not generally, but only in certain cases, represent an 

agreement between measurability and quantum electromagnetic formal
ism. Of such cases we might mention in particular the measurement of 
dissimilar perpendicular field components inside the same spatial region, 
for which, as stressed in Section 2, both expressions B(l

y
[[> and Ba'·1' 

vanish. The correctness of interpreting this fact as an arbitrarily accurate 
independent measurability of the field quantities in question was sug
gested already in Section 3 by elementary considerations in the case of 
coinciding space-time regions. 

For the general treatment of the measurability problem of perpendi
cular field components we choose, as in the previous section, two com
ponent bodies ε, and ε„ of the test body systems I and II, respectively, 

whose separation is r = c(i[* — ij), where tf and tS are within the time inter
vals T1 and Tn, respectively. Furthermore, in the immediate neighborhood 
of ε, we introduce a third body εΙΠ, whose momentum in the y-direction 
is measured at the times rj and if; the relative displacements Dj!1 0  - D ( ' ] )  

of the bodies εΙΠ and επ are again determined by means of a light signal, 
as a result of which both bodies undergo equal and opposite momentum 
changes. Instead of connecting εΙΠ directly with ε, by a spring we must, 
however, in order to make the force transfer through the spring mechan
ism proportional to D(

y
m) — D(

x
l), use a device which consists of two springs 

and an angular level with two equally long mutually perpendicular arms 
which can rotate on a hinge mounted on the rigid frame, and the arms of 
which are initially parallel to the x- and y-directions, respectively. A spring 
parallel to the y-axis is fastened between the first arm and the body εΠΙ, 
and a spring parallel to the x-axis acts between the second arm and the 
body ε,. Let the tension of the springs be so chosen that the force which 

acts on the body ε,„ in the y-direction and on the body ε, in the x-

direction during the time interval T1 is given by 

+ C%< ")(D® - D<"»). 

Thus, the momentum balance of the two test body systems, after suit-
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able rearrangement, may be expressed in the following form, analogous 
to (55) 

(61) 

After compensation of the last terms we thus obtain for the uncertainties 
of the field averages: 

(62) 

from which the minimal value of their product is obtained as 
(63) 

again in complete agreement with the quantum electromagnetic for-
malism. 

Furthermore, from the general arguments at the end of the previous 
section it follows that also in the case considered here the utilization of 
field measurements for testing the formalism's assertions in no way is 
impaired by the classical evaluation of the field effects. Besides, in measure-
ments of averages of dissimilar field components the question of repeat-
ability does not arise at all, and the pure black-body fluctuations are 
included in all theoretical assertions as an unavoidable statistical feature. 

8. C O N C L U D I N G R E M A R K S 

We thus arrive at the conclusion already stated at the beginning, that 
with respect to the measurability question the quantum theory of fields 
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represents a consistent idealization to the extent that we can disregard 
all limitations due to the atomic structure of the field sources and the 
measuring instruments. As already emphasized in the Introduction, this 
result should properly be regarded as an immediate consequence of the 
fact that both the quantum electromagnetic formalism and the viewpoints 
on which the possibilities of testing this formalism are to be assessed have 
as their common foundation the correspondence argument. Nevertheless, 
it would seem that the somewhat complicated character of the considera
tions used to demonstrate the agreement between formalism and measur-
ability are hardly avoidable. For in the first place the physical require
ments to be imposed on the measuring arrangement are conditioned by 
the integral form in which the assertions of the quantum-electromagnetic 
formalism are expressed, whereby the peculiar simplicity of the classical 
field theory as a purely differential theory is lost. Furthermore, as we have 
seen, the interpretation of the measuring results and their utilization by 
means of the formalism require consideration of certain features of the 
complementary mode of description which do not appear in the measure
ment problems of non-relativistic quantum mechanics. 

At the completion of this work we should not like to leave unmentioned 
that we have found much stimulation and help in many discussions of the 
questions considered with past and present colleagues at the Institute, 
among them Heisenberg and Pauli as well as Landau and Peierls. 

Universitetets Institut for teoretisk Fysik 

Copenhagen, April 1933 

NOTES 

* Translated by Prof. Aage Petersen; revised by RSC and JS. 
1 W. Heisenberg, The Physical Principles of the Quantum Theory, transl. by C. Eckart and 
F. Hoyt (Dover, New York, 1930), pp. 42 if. 
2 L. Landau and R. Peierls, Zs. f. Phys. 69 (1931), 56. 
3 Cf. N. Bohr, 'Atomic Stability and Conservation Laws', Atti del Congresso di Fisica 
Nucleare (1932). Added in the proof: A separate publication to appear shortly will contain a 
discussion of the consequences for the problems discussed in the cited reference implied by 
the recent discovery of the occurrence, under special circumstances, of so-called 'positive 
electrons'; and by the recognition of the connection of this discovery with Dirac's relativ-
istic electron theory. 
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4 Cf. L. Rosenfeld, Zs. f Phys. 76 (1932), 729. 
5 Cf. P. Jordan and W. Pauli, Zs. f. Phys. 47 (1928), 151 and also W. Heisenberg and W. 
Pauli, Zs. f. Phys. 56 (1929), 33. Apart from an unessential difference in sign resulting from 
a difference in the choice of time direction in the Fourier decomposition of the field strengths, 
the formulae above are equivalent in content with those derived in the papers quoted. In 
particular, the notation used here, where all terms appear as retarded, is a purely formal 
change which aims at an interpretation of the measurement problems that is as intuitive 
as possible. 
6 Cf. L. Rosenfeld and J. Solomon, J. de Physique 2 (1931), 139 and also W. Pauli, Hand-
buch d. Physik, 2nd edition, Vol. 24/1 (1933), p. 255. 
7 Cf. W. Heisenberg, Leipziger Berichte 83 (1931), 1. 
8 Cf. V. Fock and P. Jordan, Zs. f. Phys. 66 (1930), 206, where reference is made to such 
restrictions on field measurements, which are unrelated to the quantum theory of fields. 
Cf. also J. Solomon, J. de Physique 4 (1933), 368. 
9 Cf. W. Pauli, Handbuch d. Physik, 2nd edition, Vol. 24/1 (1933), p. 257. 
10 See N. Bohr, Atomic Theory and the Description of Nature (Cambridge University Press, 
Cambridge, England, 1934). In the meantime, this question has been treated in more detail 
by the author in a guest lecture in Vienna, to appear shortly, in which in particular the 
paradoxes arising in the interpretation of the indeterminacy principle when account is taken 
of the requirements of relativity are further discussed. 



IV.3 FIELD AND CHARGE MEASUREMENTS IN 
QUANTUM ELECTRODYNAMICS 

NIELS BOHR AND LTON ROSENFELD 

ABSTRACT. A survey is given of the problem of measurabihty in quantum electro

dynamics and it is shown that it is possible in principle, by the use of idealized measuring 
arrangements, to achieve full conformity with the interpretation of the formalism as 
regards the determination of field and charge quantities. 

I N T R O D U C T I O N  

Recent important contributions1 to quantum electrodynamics by 
Tomonaga Schwinger and others have shown that the problem of the 

interaction between charged particles and electromagnetic fields can be 
treated in a manner satisfying at every step the requirements of relativistic 
covariance. In this formulation, essential use is made of a representation 
of the electromagnetic field components on the one hand, and of the 
quantities specifying the electrified particles on the other, corresponding 
to a vanishing interaction between field and particles. The account of such 
interaction is subsequently introduced by an approximation procedure 
based on an expansion in powers of the nondimensional constant e2jhc. 
As regards the interpretation of the formalism, this method has the ad
vantage of a clear emphasis on the dualistic aspect of electrodynamics. In 
fact, an unambiguous definition of the electromagnetic field quantities 
rests solely on the consideration of the momentum imparted to appro
priate test bodies carrying charges or currents, while the charge-current 
distributions referring to the presence of particles are ultimately defined 
by the fields to which these distributions give rise. 

Just from this point of view the problem of the measurabihty of field 
quantities has been discussed by the authors in a previous paper.2 A 
similar investigation of the measurability of electric charge density was 
then also undertaken, but, owing to various circumstances, its publication 
has been delayed.3 When recently the work was resumed, it appeared 
that by making use of the new development as regards the formulation of 
quantum electrodynamics a more general and exhaustive treatment 

Originally published in Physical Review, 78, 794-98 (1950); reproduced here from Selected 

Papers of Lion Rosenfeld, Cohen and Stachel, eds. (1979), Reidel, Dordrecht, pp. 401-412. 
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could be obtained.4 As these considerations my be helpful in the current 

discussion of the situation in atomic physics, we shall here give a brief 

account of the implications of present electron theory for measurements 

of charge-current densities. For this purpose, it will be convenient to 

start with a summary of our earlier treatment of the measurability of 

field quantities.5 

1 .  M E A S U R E M E N T S  O F  E L E C T R O M A G N E T I C  F I E L D S  

Classical electrodynamics operates with the idealization of field compo
nents /μν(χ) defined at every point (x) of space-time. Although in the 

quantum theory of fields these concepts are formally upheld, it is essential 

to realize that only averages of such field components over finite space-

time regions R, like 

have a well-defined meaning (I, §2) In the initial step of approximation, 
in which all effects involving e2/hc are disregarded, these averages obey 
commutation relations of the general form 

(2) [F l i v (R) ,  F K X (R ' ) - ]  =  ihc{A^ K X (R ,  Κ ) - Α κ Χ , μ ν ( Κ ,  R j ] ,  

where the expressions of the type A l i v  kX(R, R'), defined as integrals over 

the space-time regions R and R' of certain singular functions, have finite 

values depending on the shapes and relative situation of the regions R 

and R'. 

The measurement of a field average FLIV(R) demands the control of the 

total momentum transferred within the space-time region R to a system 

of movable test bodies with an appropriate distribution of charge or 

current, of density p„ covering the whole part of space which at any time 
belongs to the region R. In the case of an electric field component F41, we 
shall take a distribution of charge, with constant density p4, and in the 
case of a magnetic field component FMM a uniform distribution of current 
in a perpendicular direction, with density components pm and pn. The 
field action of such charge-current distribution, so far as it does not 
originate from the displacements of the test bodies accompanying the 
momentum control, can in principle be eliminated by the use of fixed 
auxiliary bodies carrying a charge-current distribution of opposite sign, 

(1) 

R 
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and constructed in a way which does not hinder the free motion of the 

test bodies. In the case of a current distribution, such auxiliary bodies are 
even indispensable in providing closed circuits for the currents by means 
of some flexible conducting connection with the test bodies. As a result 
of this compensation, the field sources of the whole measuring arrange
ment will thus merely be described by a polarization Pfiv arising from the 
uncontrollable displacements of the test bodies in the course of the field 
measurements. 

If the test bodies are chosen sufficiently heavy, we can throughout 
disregard any latitude in their velocities, but the control of their momen
tum will of course imply an essential latitude in their position, to the ex
tent demanded by the indeterminacy relation. Still, it is possible, without 
violating any requirement of quantum mechanics, not only to keep every 
test body fixed in its original position except during the time interval 
within the region R corresponding to this position, but also to secure 
that, during such time intervals, the displacements of all test bodies in the 
direction of the momentum transfer to be measured, although uncon
trollable, are exactly the same. This common displacement Dli is described, 
in the case of the measurement of an electric field, by the component Di 

parallel to the field component F41, and when a magnetic field is measured, 
by the components Dm and Dn perpendicular to Fmn. Without imposing 
any limit on the accuracy of the field measurement, it is, moreover, 
possible to keep the displacement Dfl arbitrarily small, if only the charge-
current density pv of the test bodies is chosen sufficiently large. By a 
further refinement of the composite measuring arrangement described in 
our earlier paper (1, §3), it is even possible to reduce the measurement of 
any field average to the momentum control of a single supplementary 
body, and thus to obtain a still more compendious expression for the 
ultimate consequences of the general indeterminacy relation. 

An essential point in field measurements is, however, the necessity of 
eliminating so far as possible the uncontrollable contribution to the 

average field present in R, arising from the displacement of the test bodies 
in the course of the measurement In fact, the expectation value of this 
contribution will vary in inverse proportion to the latitude allowed in the 
field measurement, since it is proportional to the polarization P l iv = 

DfiPv-DvPti within the region R. Just this circumstance, however, makes 
it possible, by a suitable mechanical device, by which a force proportional 
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to their displacement is exerted on the test bodies, to compensate the mo

mentum transferred to these bodies by the uncontrollable field, insofar as 

the relation of this field to its sources is expressed by classical field theory. 

With the compensation procedure described, the resulting measurement 

of F l iv(R) actually fulfils all requirements of the quantum theory of fields 

as regards the definition of field averages (I, §5). In fact, the incompensable 

part of the field action of the text bodies due to the essentially statistical 

character of the elementary processes involving photon emission and 

absorption, corresponds exactly to the characteristic field fluctuations 

which in quantum electrodynamics are superposed on all expectation 

values determined by the field sources. 

When the measurement of two field averages F f i y (R)  and F k X (R ' )  is 

considered, it appears (I, §4) that the expectation value of the average field 

component Φ„νκ/ί(Κ, R') which the displacement of the test bodies 

operated in the region R produces in the region R' is equal to the product 

of jRPwith the quantity Αμ ν  k X(R, R') occurring in the commutation 

relation (2). Likewise, the expectation value of the average component 

ΦκΑ. R) of the field in R due to the test bodies in R' is equal to 

\R'Ρ'κ λΛκ λ  ^(R', R). When optimum compensation of the momenta 

transferred to the test bodies by these fields is established by suitable 

devices, making use of a correlation by light signals transmitted between 

points of the two regions R and R', it can be deduced from the reciprocal 

indeterminacy of position and momentum control that the only limita

tions of the measurability of the two field averages considered corre

spond exactly to the consequences of the commutation rule (2) for such 

averages (I, §6, 7). In this connection, it must be stressed that the field 

fluctuations which are inseparable form the incompensable parts of the 

fields created by the operation of the test bodies, do not imply any 

restriction in the measurability of a field component in two asymptoti

cally coinciding space-time regions. In fact, we have here to do with a 

complete analog to the reproducibility of the fixation of observables in 

quantum mechanics by immediately repeated measurements. 

2 .  C H A R G E - C U R R E N T  M E A S U R E M E N T S  I N  

I N I T I A L  A P P R O X I M A T I O N  

In the formalism of quantum electrodynamics, charge-current densities, 



IV.3 MEASURABILITY OF FIELDS 527 

like field quantities, are introduced by components j v (x)  at every space-

time point, but, even in the initial approximation in which such symbols 

are formally commutable, well-defined expressions are only given by 

integrals of the type 

(3) J v (R) :)d4x, 

representing the average charge-current density within the finite space-

time region R. From the fundamental equations of electrodynamics it 

follows quite generally that 

(4) RJ v (R) = 
SL 

dx„ 
f-νμ dO"^ 5  

which expresses the definition of the average charge-current density over 

the region R in terms of the flux of the electromagnetic field through the 

boundary S of this region. In this four-dimensional representation, such 

generalized fluxes comprise, of course, besides the ordinary electric field 

flux defining the average charge density, other expressions pertaining to 

the average current densities and representing magnetic field circulations 

and displacement currents. 

In the simple special case in which the region R is defined by a fixed 

spatial extension V and a constant time interval T, the average charge 

density, in accordance with (4), will be given, in the ordinary vectorial 

representation, by 

(5) •MK τ)  =± f 
VTJ 

d( J Enda, 

τ  s  

where S is the surface limiting the extension V, and η the unit vector in the 

outward normal direction on this surface. In such representation, the 

average current density will be given by 

(6) J ( K T )  =  
1 

VT 
d t  η Λ Hdff--

1 

VT 
Edy 
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where the first term on the right-hand side represents the time integral of 

the tangential component of the magnetic field integrated over the surface 

S, while the last term expresses the difference of the volume integrals of 

the electric field at the beginning and at the end of the time interval T. 

The determination of an average charge-current density J v (R)  thus 
demands the measurement of a field flux through the boundary S of the 

space-time region R. The approach to the problem of such measurement 

must rationally start from the consideration of the average flux over a 

thin four-dimensional shell situated at the boundary S, and which for 
simplicity we shall assume to have a constant thickness in space-time. As 

in the situation met with in the measurement of an average field compo

nent Ffiv(R), we shall require for this purpose a system of movable test 

bodies, filling the space which belongs to the shell at any time with an 

appropriate uniform charge-current distribution, and whose field actions 

are ordinarily neutralized by a distribution of opposite sign on fixed, 
penetrable, auxiliary bodies. For the measurement of an average charge 

density J4, it suffices to take a set of test bodies with a uniform charge 

distribution of density p4, while in the measurement of a current compo

nent, J1, we shall have to use, besides such test bodies, another independent 
set of freely movable test bodies with a uniform current distribution p, 

parallel to the current component to be measured. 

In the measurement of an average charge density, the estimation of the 
flux over the shell demands the determination of the algebraic sum of the 
momenta transferred to the test bodies in the direction of the normal to 

the instantaneous spatial boundary. The evaluation of this sum, however, 
does not require independent measurements of the momenta transferred 

to the individual test bodies within the time intervals during which their 

positions belong to the space-time shell, but can be obtained by a com

posite measuring process in which the positions of all test bodies are 
correlated by suitable devices to secure during these intervals a dis

placement of every test body in the normal direction by the same amount. 
By choosing the product of the thickness of the shell and the charge 

density of the test bodies sufficiently large, it is possible to keep the un

controllable common displacement D of all the test bodies in the normal 
direction arbitrarily small, and still to obtain unlimited accuracy for the 

average flux over the shell. Like in the measurement of a simple field 
average, it is further possible to achieve an automatic compensation of 
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the uncontrollable contribution to this average flux, due to the fields 

created by the displacement of the test bodies, and proportional to Dp4. 

This compensation will even be complete, in the initial approximation 

considered, because the field fluctuations, owing to their source-free 

character, do not give any contribution to the flux. Since these considera
tions hold for any given thickness of the shell, it is in principle possible, 
in the asymptotic limit of a sharp boundary, to measure accurately the 
average charge density within a well-defined space-time region. 

In measurements of an average current component J1, we have to take 
into account the magnetic circulation as well as the electric field in the 
space-time shell. Thus, in the special case in which R is defined by a 
spatial extension V and a time interval T, we have to do, according to (6), 
not only with a contribution from the time average over T of the magnetic 
circulation around the direction / within a thin spatial shell on the 
boundary of K but also with a contribution representing the difference 
between the volume integrals over Kof the electric field component in the 
direction /, averaged over two short time invervals at the beginning 
and at the end of the interval T. The evaluation of these contributions 
requires measuring procedures of a similar kind as those described above 
in the case of measurements of simple field averages. While the measure
ment of the latter contribution demands the control of the momentum in 
the direction / transferred to a set of test bodies with uniform charge 
density p, the evaluation of the former contribution demands the control 
of the momentum normal to the spatial boundary transferred to another 
set of test bodies with uniform current density p,. 

Just as in the field or change measurements discussed above, all these 
operations can be correlated in such a way that the determination of the 
algebraic sum of the momenta transferred to each test body within the 
time interval and in the direction required can be reduced to the momen
tum control of some supplementary body. In such a correlation, all the 
test bodies of charge density ρ will be subjected during the appropriate 

time intervals to the same displacement D1 and all the test bodies of 

current density p, to the same normal displacement D. The interpretation 

of the current measurement requires further the establishment of a 

correlation between these two displacement, satisfying the condition 

pD, = ptD. Under such circumstances, it is possible, by choosing ρ and p, 

sufficiently large, to achieve that the displacements Dt and D be arbitrarily 
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small without imposing any limitation upon the accuracy of the measure
ment. Moreover, it is possible, by suitable mechanical devices of the kind 
already mentioned, to obtain a complete automatic elimination of the 
uncontrollable contributions from the operation of the test bodies to the 
average current to be measured. 

It need hardly be added that the procedure can be extended to quite 
general space-time regions R, by using an arrangement in which each test 
body is displaced just in the time interval during which its position 
belongs to the space-time shell surrounding the region R. In this connec
tion, it may be noted that a compendious four-dimensional description 
of all the measuring processes pertaining to charge-current components 
involves a uniform four-vector current distribution in the shell, parallel 
to the charge-current component to be measured. 

Like in charge measurements, all the considerations concerning current 
measurements are independent of the thickness of the shell, and in prin
ciple it is therefore possible, in the initial approximation considered, to 
determine with unlimited accuracy any average charge-current compo
nent Jv (R) within a sharply bounded region R. As regards charge-current 
measurements over two space-time regions, it can easily be seen that, in 
the limiting case of sharp boundaries, all field actions accompanying the 
flux measurements will vanish at any point of space-time which does not 
belong to the boundaries. In conformity with the formalism, there will 
therefore, to the approximation concerned, be no mutual influence of 
measurements of average charge-current densities in different space-time 
regions. 

The situation so far described is of course merely an illustration of the 
compatibility of a consistent mathematical scheme with a strict applica
tion of the definition of the physical concepts to which it refers, and is in 
particular quite independent of the question of the possibility of actually 
constructing and manipulating test bodies with the required properties. 
The disregard of all limitations in this respect, which may originate in 
the atomic constitution of matter, is, however, entirely justified when 
dealing with quantum electrodynamics in the initial stage of approxima-
tioa In fact, at this stage, the formalism is essentially independent of 
space-time scale, since it contains only the universal constants c and ft 
which alone do not suffice to define any quantity of the dimensions of a 
length or time interval. 
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3. CH A R G E - C U R R E N T  M E A S U R E M E N T S  I N  P A I R  T H E O R Y  

New aspects of the problem of measurements arise in quantum electro
dynamics in the next approximation, in which effects proportional to 
e2/hc are taken into consideration, and where we meet with additional 
features connected with electron pair production induced by the electro
magnetic fields. For the commutation rules of the field components, this 
means in general only a smaller modification expressed by additional 
terms containing e2/hc. The charge-current quantities, however, will no 
longer be commutable but will obey commutation relations of the form. 

(7) DU*), J»M = IHCLBJR,  R ' ) -BJR' ,  R)] ,  

where the expressions B V L L (R,  R ' )  are integrals of singular functions over 
the regions R and R'. In contrast to the quantities AFIY KX(R, RJ) occurring 
in (2), which depend only on simple spatio-temporal characteristics of the 
problem, the B's will, however, besides such characteristics, also essen
tially involve the length h/mc and the period h/mc2, related to the electron 
mass m. 

To approach the problem of the measurability of a charge-current 
quantity JV(R) in this approximation, we must again consider systems of 
electrified test bodies operated in a space-time shell on the boundary of 
the region R, but we shall now have to examine the effect of the charge-
current density appearing as a consequence of actual or virtual electron 
pair production by the field action of the displacement of the test bodies 
during the measuring process. As we shall see, these effects, which are 
inseparably connected with the measurements, do not in any way limit 
the possibilities of testing the theory.6 

In the first place, the average effect of the polarization of the vacuum 
by virtual and actual pair production in the measuring process can be 
eliminated by a compensation arrangement like that previously de
scribed. It is true that a direct estimate of these polarization effects in 
quantum electrodynamics involves divergent expressions which can only 
be given finite values by some renormalization or regularization proce
dure.7 By such a procedure the average polarization effects will give rise 
to a contribution to the charge current density which is proportional to 
the common displacement of the test bodies. Thus in the limit of a sharp 
boundary of the region R we get, denoting the surface polarization on the 
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boundary by P v t  the expression RPVB„V(J?, R), where the last factor 
represents the value of Bliv (R, R') in (7) for coinciding space-time exten
sions. 

Moreover, the statistical effects caused by actual production of electron 
pairs in the measurement process are inseparably connected with the 
interpretation of the fluctuations of average charge-current densities in 
quantum electrodynamics. While the mean square deviation of the field 
component Fliy(R) over a sharply bounded space-time region R has a 
finite value, finite mean-square fluctuations of charge-current quantities 
can only be obtained, however, by further averaging over an ensemble of 
regions R whose boundaries are allowed a certain latitude around some 
given surface.8 

This feature finds its exact counterpart in the estimate of the statistical 
effects of the real pairs which are produced in measurements of charge-
current quantities by the indicated procedure. In fact, the mean square 
fluctuation of an average flux will increase indefinitely with decreasing 
thickness of the shell in which the test bodies are operated, in just the same 
way as, according to the formalism, the mean-square fluctuation of the 
corresponding charge-current density will vary with the latitude of the 
ensemble of space-time extensions over which the averaging is performed. 
The appearance of an infinite mean-square fluctuation in a sharply 
limited space-time region is in no way connected with the divergencies 
which appear in vacuum polarization effects but is a direct consequence 
of the fundamental assumptions of the theory, according to which the 
electrons are regarded as point charges. 

In the case of measurements of charge-current averages over two space-
time regions, it can be shown that the polarization effects of the manipula
tion of the test bodies used for the measurement of Jv(R) will give rise, 
in the limit of sharp boundaries, to a contribution to the average charge-
current density component of index μ in the region R', equal to the pro
duct of the quantity Βμν(/?', R) occurring in formula (7) with RPv, where 

Pv is the surface polarization created on the boundary of R during the 

measuring process. Conversely, the measurement of J11(R ) will give a 

contribution R'FllBvpi(R, R') to the average charge-current density of 

index ν in R. By similar compensation devices as required for two field 

measurements, it is therefore possible, as readily seen, to obtain an 

accuracy of measurements of average charge-current densities in two 
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space-time regions subject only to the reciprocal limitation expressed by 
the commutation relation (7). 

4 .  CONCLUDING REMARKS 

The conformity of the formalism of quantum electrodynamics with the 
interpretation of idealized field and charge measurements has of course 
no immediate relation to the question of the scope of the theory and of 
the actual possibility of measuring the physical quantities with which it 
deals. 

In the present state of atomic physics, the problem of an actual limita
tion of measurements interpreted by means of the concepts of classical 
electrodynamics can hardly be fully explored. Still, in view of the great 
success of quantum electrodynamics in accounting for numerous phe
nomena, the formal interpretation of which involves space-time coordi
nation of electrons within regions of dimensions far smaller than tt/mc and 
h/mc2, it may be reasonable to assume that measurements within such 
regions are in principle possible Indeed, the comparatively heavy and 
highly charged test bodies of such small dimensions and operated over 
such short time intervals, which would be required for these measure
ments, might be conceived to be built up of nuclear particles. 

Yet,an ultimate limitation of the consistent application of theformalism 
is indicated by the necessity of introducing forces of short range in nuclear 
theory, with no analog in classical electrodynamics, and by the circum
stance that the ratio between the electron mass and the rest mass of the 
quanta of the nuclear field has the same order of magnitude as the fun
damental parameter e2/hc of quantum electrodynamics.9 The further 
exploration of such problems may, however, demand a radical revision 
of the foundation for the application of the basic dual concepts of fields 
and particles. 

NOTES 
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2 N. Bohr and L.  Rosenfeld, Kgl. Danske Vid. Seis., Math.-fys. Medd. 12  (1933), No. 8. 
This paper will be referred to in the following as I. [English translation: this volume, p. 357). 
3 An account of the preliminary results of the investigation, which were discussed at 
several physical conferences in 1938, has recently been included in the monograph by 
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A. Pais, Developments in the Theory of the Electron, Princeton University Press, Princeton, 
New Jersey, 1948. 
4 The bearing of this development on the elucidation of the problem of measurability was 
brought to the attention of the writers in a stimulating correspondence with Professor Pauli. 
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6 In a paper by Halpern and Johnson, Phy.\. Rev. 59 (1941), 896, arguments are brought 
forward pointing to a far more restrictive limitation of the field and charge measurements. 
In these arguments, however, no sufficient separation is made between such actions of 
the charged test bodies as are directly connected with their use in the measuring procedure 
and those actions which can be eliminated by appropriate neutralization by auxiliary bodies 
of opposite charge. 
7 Cf. W. Pauli and F. Villars, Rev. Mod. Phys. 21 (1949), 434. 
8 Cf. W. Heisenberg, Leipziger Ber. 86 (1934), 317. We are indebted to Drs. Jost and 
Luttinger for information about their more precise evaluation of charge-current fluctua
tions, showing that the unlimited increase of the charge-current fluctuations in a space-
time region with decreasing latitude in the fixation of its boundary involves only the 
logarithm of the ratio between the linear dimensions of the region and the width of this 
latitude. Even a latitude very small compared with h/mc will therefore imply no excessive 
effect of the charge fluctuations. A situation entirely similar in all such respects to that in 
electron theory is met with in a quantum electrodynamics dealing with electrical particles 
of spin zero which obey Bose statistics. We are indebted to Dr. Corinaldesi for the com
munication of his results regarding the charge-current fluctuations and pair production 
effects in such a theory. 
9 Cf., e.g., N. Bohr, Report of the Solvay Council (1948). 
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THE DECREASE OF ENTROPY BY INTELLIGENT BEINGS 

COMMENTARY OF 

BEHAVIORAL SCIENCE (1964) 

In memory of Leo Szilard, who passed 
away on May 30, 1964, we present an 
English translation of his classical paper 
Ober die Entropieverminderung in einem 
thermodynamischen System bei Eingrijfen 
intelligenter Wesen, which appeared in the 
Zeitschriftfiir Physik, 1929, 53, 840-856. 
The publication in this journal of this 
translation was approved by Dr. Szilard 
before he died, but he never saw the copy. 
At Mrs. Szilard's request, Dr. Carl Eckart 
revised the translation. 

This is one of the earliest, if not the 
earliest paper, in which the relations of 
physical entropy to information (in the sense 
of modern mathematical theory of com
munication) were rigorously demon
strated and in which Maxwell's famous 
demon was successfully exorcised: a mile
stone in the integration of physical and 
cognitive concepts. 





V. 1 ON THE DECREASE OF ENTROPY IN A THERMODYNAMIC SYSTEM 
BY THE INTERVENTION OF INTELLIGENT BEINGS 

LEO SZILARD 

Translated by Analol Rapoport and Mechthilde Knoller from the original article "Uber die Entropiever-
minderung in einem thermodynamischen System bei Eingriffen intelligenier Wesen.'' Zeitschrift fur 
Physik, 1989, 53, 840-856. 

C+J> 

The objective of the investigation is to 
find the conditions which apparently allow 
the construction of a perpetual-motion ma
chine of the second kind, if one permits an 
intelligent being to intervene in a thermo
dynamic system. When such beings make 
measurements, they make the system behave 
in a manner distinctly different from the way 
a mechanical system behaves when left to 
itself. We show that it is a sort of a memory 
faculty, manifested by a system where 
measurements occur, that might cause a 
permanent decrease of entropy and thus a 
violation of the Second Law of Thermody
namics, were it not for the fact that the 
measurements themselves are necessarily 
accompanied by a production of entropy. At 
first we calculate this production of entropy 
quite generally from the postulate that full 
compensation is made in the sense of the 
Second LaAv (Equation [1]). Second, by 
using an inanimate device able to make 
measurements—however under continual 
entropy production—we shall calculate the 
resulting quantity of entropy. W- find that 
it is exactly as great as is necessary for full 
compensation. The actual production of 

entropy in connection with the measure
ment, therefore, need not be greater than 
Equation (1) requires. 

THERE is an objection, already historical, 
against the universal validity of the 

Second Law of Thermodynamics, which in
deed looks rather ominous. The objection is 
embodied in the notion of Maxwell's demon, 
who in a different form appears even nowa
days again and again; perhaps not unreason
ably, inasmuch as behind the precisely 
formulated question quantitative connec
tions seem to be hidden which to date have 
not been clarified. The objection in its origi
nal formulation concerns a demon who 
catches the fast molecules and lets the slow 
ones pass. To be sure, the objection can be 
met with the reply that man cannot in prin
ciple foresee the value of a thermally fluc
tuating parameter. However, one cannot 
deny that we can very well measure the 
value of such a fluctuating parameter and 
therefore could certainly gain energy at the 
expense of heat by arranging our interven-

Translation originally published in Behavioral Science, 9, 301-10 (1964). 
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tion according to the results of the measure
ments. Presently, of course, we do not know 
whether we commit an error by not includ
ing the intervening man into the system and 
by disregarding his biological phenomena. 

Apart from this unresolved matter, it is 
known today that in a system left to itself no 
"perpetuum mobile" (perpetual motion ma
chine) of the second kind (more exactly, no 
"automatic machine of continual finite 
work-yield which uses heat at the lowest 
temperature") can operate in spite of the 
fluctuation phenomena. Λ perpetuum mobile 
would have to be a machine which in the 
long run could lift a weight at the expense of 
the heat content of a reservoir. In other 
words, if we want to use the fluctuation phe
nomena in order to gain energy at the ex
pense of heat, we are in the same position as 
playing a game of chance, in which we may 
win certain amounts now and then, although 
the expectation value of the winnings is zero 
or negative. The same applies to a system 
where the intervention from outside is per
formed strictly periodically, say by periodi
cally moving machines. We consider this as 
established (Szilard, 1925) and intend here 
only to consider the difficulties that occur 
when intelligent beings intervene in a sys
tem. We shall try to discover the quantita
tive relations having to do with this inter
vention. 

Smoluchowski (1914, p. 89) writes: "As 
far as we know today, there is no automatic, 
permanently effective perpetual motion ma
chine, in spite of the molecular fluctuations, 
but such a device might, perhaps, function 
regularly if it were appropriately operated by 
intelligent beings...." 

A perpetual motion machine therefore is 
possible if—according to the general method 
of physics—we view the experimenting man 
as a sort of deus ex machina, one who is con
tinuously and exactly informed of the exist
ing state of nature and who is able to start or 
interrupt the macroscopic course of nature 
at any moment without expenditure of work. 
Therefore he would definitely not have to 
possess the ability to catch single molecules 
like Maxwell's demon, although he would 
definitely be different from real living beings 
in possessing the above abilities. In eliciting 
any physical effect by action of the sensory 

as well as the motor nervous systems a 
degradation of energy is always involved, 
quite apart from the fact that the very 
existence of a nervous system is dependent 
on continual dissipation of energy. 

Whether—considering these circum
stances—real living beings could continually 
or at least regularly produce energy at the 
expense of heat of the lowest temperature ap
pears very doubtful, even though our ignor
ance of the biological phenomena does not 
allow a definite answer. However, the latter 
questions lead beyond the scope of physics 
in the strict sense. 

It appears that the ignorance of the bio
logical phenomena need not prevent us from 
understanding that which seems to us to be 
the essential thing. We may be sure that 
intelligent living beings—insofar as we are 
dealing with their intervention in a ther
modynamic system—can be replaced by non
living devices whose "biological phenomena" 
one could follow and determine whether in 
fact a compensation of the entropy decrease 
takes place as a result of the intervention by 
such a device in a system. 

In the first place, Ave wish to learn what 
circumstance conditions the decrease of 
entropy which takes place when intelligent 
living beings intervene in a thermodynamic 
system. We shall see that this depends on a 
certain type of coupling between different 
parameters of the system. We shall consider 
an unusually simple type of these ominous 
couplings.1 For brevity we shall talk about a 
"measurement," if we succeed in coupling 
the value of a parameter y. (for instance the 
position co-ordinate of a pointer of a meas
uring instrument) at one moment with the 
simultaneous value of a fluctuating parame
ter χ of the system, in such a way that, from 
the value y, we can draw conclusions about 
the value that χ had at the moment of the 
"measurement." Then let χ and y be un
coupled after the measurement, so that χ can 
change, while y retains its value for some 
time. Such measurements are not harmless 
interventions. A system in which such 
measurements occur shows a sort of memory 

1 The author evidently uses the word "omi
nous" in the sense that the possibility of realizing 
the proposed arrangement threatens the validitj-
of the Second Law.—Translator 
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faculty, in the sense that one can recognize 
by the state parameter y what value another 
state parameter .r had at an earlier moment, 
and we shall see that simply because of such 
a memory the Second Law would be vio
lated, if the measurement could take place 
without compensation. We shall realize that 
the Second Law is not threatened as much 
by this entropy decrease as one would think, 
as soon as we see that the entropy decrease 
resulting from the intervention would be 
compensated completely in any event if the 
execution of such a measurement were, for 
instance, always accompanied by produc
tion of k log 2 units of entropy. In that case 
it will be possible to find a more general 
entropy law, which applies universally to all 
measurements. Finally we shall consider a 
very simple (of course, not living) device, 
that is able to make measurements con
tinually and whose "biological phenomena" 
we can easily follow. By direct calculation, 
one finds in fact a continual entropy produc
tion of the magnitude required by the above-
mentioned more general entropy law de
rived from the validity of the Second Law. 

The first example, which we are going to 
consider more closely as a typical one, is the 
following. A standing hollow cylinder, closed 
at both ends, can be separated into two 
possibly unequal sections of volumes Vi and 
V2 respectively by inserting a partition from 
the side at an arbitrarily fixed height. This 
partition forms a piston that can be moved 
up and down in the cylinder. An infinitely 
large heat reservoir of a given temperature T 
insures that any gas present in the cylinder 
undergoes isothermal expansion as the 
piston moves. This gas shall consist of a 
single molecule which, as long as the piston 
is not inserted into the cylinder, tumbles 
about in the whole cylinder by virtue of its 
thermal motion. 

Imagine, specifically, a man who at a given 
time inserts the piston into the cylinder and 
somehow notes whether the molecule is 
caught in the upper or lower part of the cyl
inder, that is, in volume Vi or F2. If he 
should find that the former is the case, then 
he would move the piston slowly downward 
until it reaches the bottom of the cylinder. 
During this slow movement of the piston the 
molecule stays, of course, above the piston. 

However, it is no longer constrained to the 
upper part of the cylinder but bounces many 
times against the piston which is already 
moving in the lower part of the cylinder. In 
this way the molecule does a certain amount 
of work on the piston. This is the work that 
corresponds to the isothermal expansion of 
an ideal gas—consisting of one single mole
cule—from volume Fi to the volume 
V1 + V2 • After some time, when the piston 
has reached the bottom of the container, the 
molecule has again the full volume Ti + T2 

to move about in, and the piston is then re
moved. The procedure can be repeated as 
many times as desired. The man moves the 
piston up or down depending on whether the 
molecule is trapped in the upper or lower half 
of the piston. In more detail, this motion 
may be caused by a weight, that is to be 
raised, through a mechanism that transmits 
the force from the piston to the weight, in 
such a way that the latter is always dis
placed upwards. In this way the potential 
energy of the weight certainly increases 
constantly. (The transmission of force to the 
weight is best arranged so thar the force 
exerted by the weight on the piston at any 
position of the latter equals the average 
pressure of the gas.) It is clear that in this 
manner energy is constantly gained at the 
expense of heat, insofar as the biological 
phenomena of the intervening man are ig
nored in the calculation. 

In order to understand the essence of the 
man's effect on the system, one best imagines 
that the movement of the piston is performed 
mechanically and that the man's activity 
consists only in determining the altitude of 
the molecule and in pushing a lever (which 
steers the piston) to the right or left, depend
ing on whether the molecule's height requires 
a down- or upward movement. This means 
that the intervention of the human being-
consists only in the coupling of two position 
co-ordinates, namely a co-ordinate which 
determines the altitude of the molecule, with 
another co-ordinate y, which determines the 
position of the lever and therefore also 
whether an upward or downward motion is 
imparted to the piston. It is best ro imagine 
the mass of the piston as large and its speed 
sufficiently great, so that the thermal agita-
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tion of the piston at the temperature in ques
tion can he neglected. 

In the typical example presented here, we 
wish to distinguish two periods, namely: 

1. The period of measurement when the 
piston has just been inserted in the middle of 
the cylinder and the molecule is trapped 
either in the upper or lower part; so that if we 
choose the origin of co-ordinates appropri
ately, the .r-co-ordinate of the molecule is 
restricted to either the interval χ > 0 or 
.ι· < 0; 

'2. The period of utilization of the measure
ment, "the period of decrease of entropy," 
during which the piston is moving up or 
down. During this period the .c-co-ordinate 
of the molecule is certainly not restricted to 
the original interval χ > 0 or χ < 0. Rather, 
if the molecule was in the upper half of the 
cylinder during the period of measurement, 
i.e., when j: > 0, the molecule must bounce 
on the downward-moving piston in the lower 
part of the cylinder, if it is to transmit 
energy to the piston; that is, the co-ordinate 
.τ has to enter the interval χ < 0. The lever, 
on the contrary, retains during the whole pe
riod its position toward the right, corre
sponding to downward motion. If the posi
tion of the lever toward the right is desig
nated by ,/ = 1 (and correspondingly the 
position toward the left by y = —1) we see 
that during the period of measurement, the 
position ι > 0 corresponds to y = 1; but 
afterwards y = 1 stays on, even though χ 
passes into the other interval χ < 0. We see 
that in the utilization of the measurement 
the coupling of the two parameters .r and y 
disappears. 

We shall say, quite generally, that a pa
rameter <j "measures" a parameter χ (which 
varies according to a probability law), if the 
value of <j is directed by the value of param
eter .r at a given moment. A measurement 
procedure underlies the entropy decrease 
effected by the intervention of intelligent 
beings. 

One may reasonably assume that a meas
urement procedure is fundamentally asso
ciated with a certain definite average entropy 
production, and that this restores concord
ance with the Second Law. The amount of 
entropy generated by the measurement may, 
of course, always be greater than this funda

mental amount, but not smaller. To put it 
precisely: we have to distinguish here be
tween two entropy values .  One of  them, Si ,  
is produced when during the measurement y 
assumes the value 1, and the other, »§2, when 
y assumes the value — 1. We cannot expect 
to get general information about S1 or S2 
separately, but we shall see that if the 
amount of entropy produced by the "meas
urement" is to compensate the entropy de
crease affected by utilization, the relation 
must always hold good. 

-S1Ik 1 -S,lk 
+ e ' < 1 ( 1 )  

One sees from this formula that one can 
make one of the values, for instance Si, as 
small as one wishes, but then the other value 
(S2 becomes correspondingly greater. Fur
thermore, one can notice that the magnitude 
of the interval under consideration is of no 
consequence. One can also easily understand 
that it cannot be otherwise. 

Conversely, as long as the entropies Si and 
S 2, produced by the measurements, satisfy 
the inequality (1), we can be sure that the' 
expected decrease of entropy caused by the 
later utilization of the measurement will be 
fully compensated. 

Before we proceed with the proof of in
equality (1), let us see in the light of the 
above mechanical example, how all this fits 
together. For the entropies Si and S2 pro
duced by the measurements, we make the 
following Ansatz: 

Si = S2 = k log 2 (2) 

This ansatz satisfies inequality (1) and 
the mean value of the quantity of entropy 
produced by a measurement is (of course in 
this special case independent of the fre
quencies Wi, W2 of the two events): 

S = k log 2 (3) 

In this example one achieves a decrease of 
entropy by the isothermal expansion :-

§1 = —/clog F1 

F1 + F2 ' 

- S2 = -Hog F2 

(4)  

F 1  + F 2 '  

2 The entropy generated is denoted by Si, Sj. 
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depending on whether the molecule was 
found in volume Fi or F2 when the piston 
was inserted. (The decrease of entropy 
equals the ratio of the quantity of heat taken 
from the heat reservoir during the isothermal 
expansion, to the temperature of the heat 
reservoir in question). Since in the above 
case the frequencies Wi, Wi are in the ratio of 
the volumes Fj, F2, the mean value of the 
entropy generated is (a negative number): 

S = WL · ( + .VI ) + WI · ( -F- S2 ) = 

F1 

F1 + V i  
k log 

F2 

F 
F1+ F2 

• k log: 

r + (.3) 

F 
Fi + F2" F1 + F2 

As one can see, we have, indeed 

F, F1 , , F1 

F1 + F2 * °g F1 + F2 

T T  

•/.log 

+ 

1 ι + F2 

and therefore: 

Fi + F2 

+ k log 2 ^ 0 

( 6 )  

also shall look upon them as chemically dif
ferent, if they differ only in that the y co
ordinate is +1 for one and — 1 for the other. 

We should like to give the box in which the 
"molecules" are stored the form of a hollow 
cylinder containing four pistons. Pistons A 
and A' are fixed while the other two are mov
able, so that the distance BB' always equals 
the distance AA', as is indicated in Figure 1 
by the two brackets. A', the bottom, and B, 
the cover of the container, are impermeable 
for all "molecules," while A and B' are semi
permeable; namely, A is permeable only for 
those "molecules" for which the parameter χ 
is in the preassigned interval, i.e., (.T1, .T2), B' 
is only permeable for the rest. 

B 

S + s ^ 0. (7) 

In the special case considered, we would 
actually have a full compensation for the de
crease of entropy achieved by the utilization 
of the measurement. 

We shall not examine more special cases, 
but instead try to clarify the matter by a 
general argument, and to derive formula (1). 
We shall therefore imagine the whole sys
tem—in which the co-ordinate x, exposed to 
some kind of thermal fluctuations, can be 
measured by the parameter y in the way just 
explained—as a multitude of particles, all 
enclosed in one box. Every one of these par
ticles can move freely, so that they may be 
considered as the molecules of an ideal gas, 
which, because of thermal agitation, wander 
about in the common box independently of 
each other and exert a certain pressure on the 
walls of the box—the pressure being deter
mined by the temperature. We shall now 
consider two of these molecules as chemi
cally different and, in principle, separable by 
semipermeable Avails, if the co-ordinate χ for 
one molecule is in a preassigned interval 
while the corresponding co-ordinate of the 
other molecule falls outside that interval. We 

A' 

B' 

FIG. 1 

In the beginning the piston β is at A and 
therefore B' at A', and all "molecules" are 
in the space between. A certain fraction of 
the molecules have their co-ordinate χ in the 
preassigned interval. We shall designate by 
Wi the probability that this is the case for a 
randomly selected molecule and by W2 the 
probability that χ is outside the interval. 
Then Wi + W2 = 1. 

Let the distribution of the parameter y  be 
over the values -fl and —1 in any propor
tion but in any event independent of the 
χ-values. We imagine an intervention by an 
intelligent being, who imparts to y the value 
1 for all "molecules" whose χ at that moment 
is in the selected interval. Otherwise the 
value —1 is assigned. If then, because of 
thermal fluctuation, for any "molecule," the 
parameter χ should come out of the preas
signed interval or, as we also may put it, if 
the "molecule" suffers a monomoleeular 
chemical reaction with regard to χ (by which 
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it is transformed from a species that can pass 
the semipermeable piston A into a species for 
which the piston is impermeable), then the 
parameter y retains its value 1 for the time 
being, so that the "molecule," because of the 
value of the parameter y, "remembers" 
during the whole following process that χ 
originally was in the preassigned interval. 
We shall see immediately what part this 
memory may play. After the intervention 
just discussed, we move the piston, so that 
Ave separate the two kinds of molecules with
out doing work. This results in two con
tainers, of which the first contains only the 
one modification and the second only the 
other. Each modification now occupies the 
same volume as the mixture did previously. 
In one of these containers, if considered by 
itself, there is now no equilibrium with re
gard to the two "modifications in x." Of 
course the ratio of the two modifications has 
remained Wi: w2. If we allow this equilibrium 
to be achieved in both containers independ
ently and at constant volume and tempera
ture, then the "entropy of the system cer
tainly has increased. For the total heat 
release is 0, since the ratio of the two "modifi
cations in x" wi\w2 does not change. If we 
accomplish the equilibrium distribution in 
both containers in a reversible fashion then 
the entropy of the rest of the world will de
crease by the same amount. Therefore the 
entropy increases by a negative value, and, 
the value of the entropy increase per mole
cule is exactly: 

s = l \ ( w i  log W i  + W 2  log W i ) .  (9) 

(The entropy constants that Ave must, as
sign Io the two "modifications in .τ" do not 
occur here explicitly, as the process leaves the 
total number of molecules belonging to the 
one or the other species unchanged.) 

Xow of course we cannot bring the two 
gases back to the original volume without 
expenditure of work by simply moving the 
piston back, as there are now in the con
tainer—which is bounded by the pistons 
BB'—also molecules whose .r-co-ordinate lies 
outside of the preassigned interval and for 
which the piston A is not permeable any 
longer. Thus one can see that the calculated 
decrease of entropy (Equation [9]) does not 
mean a contradiction of the Second Law. ,4.$ 

long as we do not use the Jact that the molecules 
in the container BB', by virtue of their co
ordinate y, "remember" that the χ-co-ordinate 
for the violecides of this container originally 
was in the -preassigned interval, full compensa
tion exists for the calculated decrease of entropy, 
by virtue of the fact that the partial pres
sures in the two containers are smaller than 
in the original mixture. 

But now we can use the fact that all -mole
cules in the container BB' have the y-co-ordi-
nate 1, and in the other accordingly —1, to 
bring all molecules back again to the original 
volume. To accomplish this we only need to 
replace the semipermeable wall .1 by a Avail 
.-1*, which is semipermeable not with regard 
to χ but with regard to y, namely so that it is 
permeable for the molecules with the y-co
ordinate 1 and impermeable for the others. 
Correspondingly we replace B' by a piston 
B'*, which is impermeable for the molecules 
with ?/=—l and permeable for the others. 
Then both containers can be put into each 
other again without expenditure of energy. 
The distribution of the (/-co-ordinate with 
regard to 1 and —1 now has become sta
tistically independent of the .i -values and be
sides we are able to re-establish the original 
distribution over 1 and —1. Thus we would 
have gone through a complete cycle. The 
o n l y  c h a n g e  t h a t  w e  h a v e  t o  r e g i s t e r  i s  t h e  
resulting decrease of entropy given by (9): 

s = k ( w i  log W 1  + i v 2  log W i ) .  (10) 

If we do not wish to admit that the Second 
Law has been violated, we must conclude 
that the intervention which establishes the 
coupling between y and x, the measurement of 
χ by y, must be accompanied by a production 
of entropy. If a definite way of achieving this 
coupling is adopted and if the quantity of 
entropy that is inevitably produced is desig
n a t e d  b y  S i  a n d  S 2 ,  w h e r e  N i  s t a n d s  f o r  I h e  
mean increase in entropy that occurs when y 
acquires the value 1, and accordingly S2 for 
t h e  i n c r e a s e  t h a t  o c c u r s  w h e n  y  a c q u i r e s  t h e  
value — 1, we arrive at the equation: 

u >nSi +  W 2S2 = S (11) 

In order for the Second Law to remain in 
force, this quantity of entropy must be 
greater than the decrease of entropy s, which 
according to (9) is produced by the utiliza-
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tion of the measurement. Therefore the fol-
lowing unequality must be valid: 

(12) 

This equation must be valid for any values 
of and and of course the constraint 

cannot be violated. We ask, in 
particular, for which and and given 
,S'-values the expression becomes a minimum. 
For the two minimizing values Wi and the 
inequality (12) must still be valid. Under the 
above constraint, the minimum occurs when 
the following equation holds: 

(13) 

But then: 

(14) 

This is easily seen if one introduces the no-
tation 

(15) 

then: 

(16) 

If one substitutes these values into the in-
equality (12) one gets: 

(17) 

Therefore the following also holds: 

(18) 

If one puts the values IL\ and from (16) 
into the equation _ _ 1, one gets 

(19) 

And bccause 0, the following holds: 

(20) 

This equation must be universally valid, if 
thermodynamics is not to be violated. 

As long as we allow intelligent beings to 
perform the intervention, a direct test is 

3 The increase in entropy can depend only on 
the types of measurement and their results but 
not on how many systems of one or the other type 
were present. 

not possible. But we can try to describe sim-
ple nonliving devices that effect such cou-
pling, and see if indeed entropy is generated 
and in what quant ity. Having already recog-
nized that the only important factor is a 
certain characteristic type of coupling, a 
"measurement," we need not construct any 
complicated models which imitate the inter-
vention of living beings in detail. We can be 
satisfied with the construction of this par-
ticular type of coupling which is accom-
panied by memory. 

In our next example, the position co-or-
dinate of an oscillating pointer is "measured" 
by the energy content of a body K. The 
pointer is supposed to connect, in a purely 
mechanical way, the body K—by whose 
energy content the position of the pointer is 
to be measured—by heat conduction with 
one of two intermediate pieces, A or B. The 
body is connected with A as long as the co-
ordinate—which determines the position of 
the pointer—falls into a certain preassigned, 
but otherwise arbitrarily large or small inter-
val a, and otherwise if the co-ordinate is in 
the interval b, with B. Up to a certain mo-
ment, namely the moment of the "measure-
ment," both intermediate pieces will be 
thermally connected with a heat reservoir at 
temperature . At this moment the inser-
tion A will be cooled reversibly to the tem-
perature e.g., by a pei'iodically function-
ing mechanical device. That is, after 
successive contacts with heat reservoirs of 
intermediate temperatures, A will be brought 
into contact with a heat reservoir of the 
temperature . At the same time the inser-
tion B will be heated in the same way to 
temperature . Then the intermediate 
pieces will again be isolated from the corre-
sponding heat reservoirs. 

We assume that the position of the pointer 
changes so slowly that all the operations 
that we have sketched take place while the 
position of the pointer remains unchanged. 
If the position co-ordinate of the pointer fell 
in the preassigned interval, then the body 
was connected with the insertion A during 
the above-mentioned operation, and conse-
quently is now cooled to temperature 

In the opposite case, the body is now 
heated to temperature . Its energy con-
tent becomes—according to the position of 
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the pointer at ihe time of "measurement"— 
small at temperature or great at tempera-
ture and will retain its value, even if the 
pointer eventually leaves the preassigned 
interval or enters into it. After some time, 
while the pointer is still oscillating, one can 
no longer draw any definite conclusion from 
the energy content of the body K with re-
gard to the momentary position of the 
pointer but one can draw a definite conclu-
sion with regard to the position of the pointer 
at the time of the measurement. Then the 
measurement is completed. 

After the measurement has been ac-
complished, the above-mentioned periodic-
ally functioning mechanical device should 
connect the thermally isolated insertions A 
and B with the heat reservoir This has 
the purpose of bringing the body K—which 
is now also connected with one of the two 
intermediate pieces—back into its original 
state. The direct connection of the intermedi-
ate pieces and hence of the body K—which 
has been either cooled to or heated to 

to the reservoir consequently causes 
an increase of entropy. This cannot possibly 
be avoided, because it would make no sense 
to heat the insertion A reversibly to the 
temperature by successive contacts with 
the reservoirs of intermediate temperatures 
and to cool B in the same manner. After the 
measurement we do not know with which of 
the two insertions the body K is in contact 
at that moment; nor do we know whether it 
had been in connection with or in the 
end. Therefore neither do we know whether 
we should use intermediate temperatures be-
tween and or between and 

The mean value of the quantity of en-
tropy and per measurement, can be 
calculated, if the heat capacity as a function 
of the temperature is known for the 
body K, since the entropy can be calculated 
from the heat capacity. We have, of course, 
neglected the heat capacities of the inter-
mediate pieces. If the position co-ordinate 
of the pointer was 111 the preassigned inter-
val at the time of the "measurement," and 
accordingly the body in connection with in-
sertion A, then the entropy conveyed to the 
heat reservoirs during successive cooling was 

However, following this, the entropy, with-
drawn from the reservoir by direct con-
tact with it was 

(22) 

All in all the entropy was increased by 
the amount 

Analogously, (he entropy will increase by 
the following amount, if the body was in con-
tact with the intermediate piece B at the 
time of the "measurement": 

We shall now evaluate these expressions 
for the very simple case, where the body 
which we use has only two energy states, a 
lower and a higher state. If such a body is in 
thermal contact with a heat reservoir at any 
temperature T, the probability that, it is in 
the lower or upper state is given by re-
spectively: 

(25) 

Here u stands for the difference of energy 
of the two states and g for the statistical 
weight. We can set the energy of the 
lower state equal to zero without loss of 
generality. Therefore:4 

(21) 
Here q and p are Ihe functions of T given 
4 See the Appendix. 
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by equat ion (25), which are here to be taken 
for the arguments 

If (as is necessitated by the above concept 
of a "measurement") we wish to draw a 
dependable conclusion from the energy con-
tent of the body K as to the position co-or-
dinate of the pointer, we have to see to it 
that the body surely gets into the lower 
energy state when it gets into contact with 

. In other words: 

(27) 

and if we form the expression 
we find: 

(29) 

and the mean energy of the body is given by: 

(28) 

This of course cannot be achieved, but may 
be arbitrarily approximated by allowing TA 
to approach absolute zero and the statis-
tical weight g to approach infinity. (In 
this limiting process, T0 is also changed, in 
such a way that p(T0) and q(T0) remain 
constant.) The equation (26) then becomes: 

Our foregoing considerations have thus 
just realized the smallest permissible limiting 
care. The use of semipermeable walls ac-
cording to Figure 1 allows a complete 
utilization of the measurement: inequality 
(1) certainly cannot be sharpened. 

As we have seen in this example, a simple 
inanimate device can achieve the same 
essential result as would be achieved by the 
intervention of intelligent beings. We have 
examined the "biological phenomena" of a 
nonliving device and have seen that it gen-
erates exactly that quantity of entropy 
which is required by thermodynamics. 

APPENDIX 

In the case considered, when the frequency of 
the two states depends on the temperature ac-
cording to the equations: 

(31) 

the following identity is valid: 

(32) 

Therefore we can also write the equation: 

(33) 

as 

(34) 

and by substituting the limits we obtain: 

(35) 

If we write the latter equation according to 
(25): 

(36) 

for TA and To, then we obtain: 

(37) 

and if we then write according to (31): 

(38) 

we obtain: 

(39) 

If we finally write according to (25): 

(40) 

for TA and , then we obtain: 

(41) 
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We obtain the corresponding equation for , 
if we replace the index A with B. Then we ob-
tain: 

(42) 

Formula (41) is identical with (26), given, for 
SA, in the text. 

We can bring the formula for into a some-
what different, form, if we write: 

(43) 

expand and collect terms, then we get 

(44) 

This is the formula given in the text for 
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V . 2 ' ' M E A S U R E M E N T A N D R E V E R S I B I L I T Y ' ' A N D 

" T H E M E A S U R I N G P R O C E S S " 

JOHN VON NEUMANN 

1 . M E A S U R E M E N T A N D R E V E R S I B I L I T Y 

W h a t h a p p e n s to a m i x t u r e w i t h t h e s t a t i s t i c a l 

o p e r a t o r D , if a q u a n t i t y w i t h t h e o p e r a t o r R is 

m e a s u r e d in it? T h i s o p e r a t o r m u s t b e t h o u g h t of a s 

m e a s u r i n g in e a c h e l e m e n t of the e n s e m b l e a n d c o l l e c t -

i n g t h e e l e m e n t s t h a t h a v e b e e n t h u s t r e a t e d i n t o a n e w 

e n s e m b l e . W e c a n a n s w e r t h i s q u e s t i o n — to t h e e x t e n t to 

w h i c h it a d m i t s of a n u n a m b i g u o u s answer-

F i r s t , let R h a v e a p u r e d i s c r e t e , s i m p l e 

s p e c t r u m , l e t . b e t h e c o m p l e t e o r t h o n o r m a l set 

of e i g e n f u n c t i o n s a n d X ^ X g , . . . t h e c o r r e s p o n d i n g e i g e n -

v a l u e s (by a s s u m p t i o n , a l l d i f f e r e n t f r o m e a c h o t h e r ) . 

A f t e r t h e m e a s u r e m e n t , t h e s t a t e o f a f f a i r s is t h e f o l l o w -

i n g : I n t h e f r a c t i o n of t h e o r i g i n a l e n s e m b l e , 

h a s t h e v a l u e • T h i s f r a c t i o n t h e n 

f o r m s a n e n s e m b l e i n w h i c h h a s t h e v a l u e X-n w i t h 

c e r t a i n t y (M. i n I V - 3 . ) ; it is t h e r e f o r e i n t h e s t a t e <t>n 

w i t h t h e ( c o r r e c t l y n o r m a l i z e d ) s t a t i s t i c a l o p e r a t o r 

Pr i • U p o n c o l l e c t i n g t h e s e s u b - e n s e m b l e s , t h e r e f o r e , 
n 

w e o b t a i n a m i x t u r e w i t h t h e s t a t i s t i c a l o p e r a t o r 

Originally published as chapters V and VI of Mathematische Grundlugen der Quantenmechanik 
by John von Neumann, pp. 184-237, Springer, Berlin (1932); translation into English by Robert 
T. Beyer, Mathematical Foundations of Quantum Mechanics, pp. 347-445, Princeton University 
Press, Princeton (1955). 
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S e c o n d , l e t R h a v e just a p u r e d i s c r e t e s p e c -

t r u m , a n d l e t t h e m e a n i n g of •.• a n d 

b e a s b e f o r e , e x c e p t t h a t t h e e i g e n v a l u e s a r e n o t a l l 

s i m p l e — i . e . , a m o n g t h e t h e r e a r e c o i n c i d e n c e s . * 

T h e n t h e m e a s u r i n g p r o c e s s of is n o t u n i q u e l y d e f i n e d 

(the s a m e w a s t h e c a s e , f o r e x a m p l e , w i t h i n I V . 3 - ) . 

I n d e e d : L e t .. b e d i s t i n c t r e a l n u m b e r s , a n d S 

t h e o p e r a t o r c o r r e s p o n d i n g t o t h e .. a n d 

• L e t b e t h e c o r r e s p o n d i n g q u a n t i t y . If 

is a f u n c t i o n w i t h 

t h e n F ( S ) = R , t h e r e f o r e . H e n c e t h e 

m e a s u r e m e n t c a n a l s o b e r e g a r d e d a s a n m e a s u r e m e n t . 

T h i s n o w c h a n g e s U into t h e U ' g i v e n a b o v e , a n d U 1 

is i n d e p e n d e n t of t h e ( e n t i r e l y a r b i t r a r y ) 

b u t n o t o f t h e . . Y e t t h e • a r e n o t 

u n i q u e l y d e t e r m i n e d , b e c a u s e of t h e m u l t i p l i c i t y o f t h e 

e i g e n v a l u e s o f R . I n I V . 2 - , w e s t a t e d ( f o l l o w i n g I I - 8 . ), 

w h a t c a n b e s a i d r e g a r d i n g t h e : L e t 

b e t h e d i f f e r e n t e i g e n v a l u e s a m o n g t h e let 

b e t h e sets of t h e f w i t h 

r e s p e c t i v e l y . F i n a l l y , let 

. , r e s p e c t i v e l y b e a r b i t r a r y o r t h o n o r m a l sets 

w h i c h s p a n .. . T h e n ...... 

is t h e m o s t g e n e r a l set- H e n c e U ' m a y b e 

d e p e n d i n g u p o n t h e c h o i c e of , i . e . , d e p e n d i n g u p o n t h e 

a c t u a l m e a s u r i n g a r r a n g e m e n t , a n y e x p r e s s i o n 

T h i s e x p r e s s i o n , h o w e v e r , is u n a m b i g u o u s o n l y i n s p e c i a l 

c a s e s . 

W e d e t e r m i n e t h i s s p e c i a l c a s e . E a c h i n d i v i d u a l 

t e r m m u s t b e u n a m b i g u o u s . T h a t i s , f o r e a c h e i g e n v a l u e 

* Eds. note: A. S. Wightmann informs us that von Neumann's expression here is incorrect 
for the density matrix after a measurement in which the observable in question has degenerate 
eigenvalues (Luders, 1951; Furry, 1966). 
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if is the set of the f w i t h Rf , the s u m 

m u s t h a v e the same value f o r every choice of the ortho-

n o r m a l set .. spanning the m a n i f o l d . If w e 

call this sum V , t h e n v e r b a t i m repetition of the o b s e r v a -

tions in IV.3- (in w h i c h the U , there are to b e 

replaced b y U , shows that w e must h a v e 

constant, , and that this is equivalent to the 

v a l i d i t y of (Uf, f ) = f o r a l l f of 

S i n c e these f are the same as the f o r a l l g , w e 

require: i.e., 

, i . e . , 

f o r all eigenvalues of R . But if this condition, 

clearly restricting U sharply, is not satisfied, t h e n 

different arrangements of m e a s u r e m e n t f o r c a n a c t u a l l y 

t r a n sf orm U into different U 1 • (Nevertheless, w e shall 

succeed in Y - 4 . in m a k i n g some statements about the result 

of a g e n e r a l m e a s u r e m e n t , on a t h e r m o d y n a m i c a l b a s i s . 

T h i r d , let R h a v e n o p u r e discrete s p e c t r u m . 

T h e n b y I I I . 3 . (or IV-3., c r i t e r i o n 1.), it is not m e a s u r -

able w i t h absolute p r e c i s i o n , and m e a s u r e m e n t s of 

limited p r e c i s i o n (as w e d i s c u s s e d in the case referred t o ) 

are equivalent to m e a s u r e m e n t s of q u a n t i t i e s w i t h p u r e 

discrete s p e c t r a . 

A n o t h e r type of intervention in m a t e r i a l systems, 

i n contrast to the d i s c o n t i n u o u s , n o n - c a u s a l and instanta-

n e o u s l y acting e x p e r i m e n t s or m e a s u r e m e n t s , is g i v e n b y 

the time d e p e n d e n t S c h r o d i n g e r d i f f e r e n t i a l e q u a t i o n . T h i s 

describes h o w the system changes c o n t i n u o u s l y and causally 

in the course of t i m e , if its t o t a l energy is k n o w n . F o r 
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states these equations are 

w h e r e H is the e n e r g y o p e r a t o r . 

F o r the statistical operator of the state 

, this m e a n s : 

that is: 

N o w if is not a state, b u t a m i x t u r e of several 

states, say ... w i t h the respective 

w e i g h t s .. , t h e n it m u s t b e changed i n such a w a y 

as results f r o m the changes of the individual 

. . . . B y the a d d i t i o n of the correspond-

ing equations , w e recognize that h o l d s f o r this 

U t also- N o w since a l l U are such m i x t u r e s , or limiting 

cases of such (for e x a m p l e , each U w i t h f i n i t e T r U is 

such a m i x t u r e ) , w e can claim the g e n e r a l validity of 

In m o r e o v e r , H m a y also d e p e n d o n t , 

just as i n the S c h r o d i n g e r d i f f e r e n t i a l equation If 

that is n o t the c a s e , t h e n w e can e v e n g i v e n explicit 

solutions: F o r as w e a l r e a d y k n o w , 
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a n d f o r 

(It is e a s i l y v e r i f i e d t h a t t h e s e a r e s o l u t i o n s , a n d a l s o 

t h a t t h e y f o l l o w f r o m e a c h o t h e r . I t is c l e a r a l s o t h a t 

t h e r e is o n l y o n e s o l u t i o n w i t h a f i x e d i n i t i a l o r 

U Q r e s p e c t i v e l y : t h e d i f f e r e n t i a l e q u a t i o n s . a r e 

of f i r s t o r d e r i n t .) 

W e t h e r e f o r e h a v e t w o f u n d a m e n t a l l y d i f f e r e n t 

t y p e s of i n t e r v e n t i o n s w h i c h c a n o c c u r i n a s y s t e m S o r 

i n a n e n s e m b l e . F i r s t , t h e a r b i t r a r y c h a n g e s 

b y m e a s u r e m e n t s w h i c h a r e g i v e n b y t h e f o r m u l a 

a c o m p l e t e o r t h o n o r m a l s e t , c f . s u p r a ) . S e c o n d , 

t h e a u t o m a t i c c h a n g e s w h i c h o c c u r w i t h p a s s a g e of t i m e . 

T h e s e a r e g i v e n b y t h e f o r m u l a 

( H is t h e e n e r g y o p e r a t o r , t t h e t i m e ; H is i n d e p e n d e n t 

o f t ) . If H d e p e n d s o n t , t h e n w e m a y d i v i d e t h e t i m e 

i n t e r v a l u n d e r c o n s i d e r a t i o n i n t o s m a l l t i m e i n t e r v a l s i n 

e a c h o n e of w h i c h H d o e s n o t c h a n g e — o r c h a n g e s o n l y 

v e r y s l i g h t l y , a n d a p p l y 2- to t h e s e i n d i v i d u a l i n t e r v a l s . 

S u p e r p o s i t i o n t h e n g i v e s t h e f i n a l r e s u l t . 

F e m u s t n o w a n a l y z e i n m o r e d e t a i l t h e s e two 

t y p e s of i n t e r v e n t i o n , t h e i r n a t u r e , a n d t h e i r r e l a t i o n 

o n e t o a n o t h e r . 

F i r s t of a l l , it is n o t e w o r t h y t h a t t h e t i m e 
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dependence of H is included in 2. (in the manner described 

there), so that one should expect that 2. would suffice to 

describe the intervention caused by a measurement: Indeed, 

a physical intervention can be nothing else than the 

temporary insertion of a certain energy coupling into the 

observed system, i.e., the introduction of an appropriate 

time dependency of H (prescribed by the observer). Why 

then do we need the special process l. for the measurement? 

The reason is this: In the measurement we cannot observe 

the system S by itself, but must rather investigate the 

system S + M , in order to obtain (numerically) its inter

action with the measuring apparatus M· The theory of the 

measurement is a statement concerning S + M , and should 

describe how the state of S is related to certain prop

erties of the state of M (namely, the positions of a 

certain pointer, since the observer reads these) · More

over, it is rather arbitrary whether or not one includes 

the observer in M , and replaces the relation between the 

S state and the pointer positions in M by the relations 

of this state and the chemical changes in the observer's 

eye or even in his brain (i.e., to that which he has "seen" 

or "perceived"). We shall investigate this more precisely 

in VI.1. In any case, therefore, the application of 2. is 

of importance only for S + M · Of course, we must show 

that this gives the same result for S as the direct 

application of 1. on S . If this is successful, then we 

have achieved a unified way of looking at the physical 

world on a quantum mechanical basis· We postpone the dis

cussion of this question until VI.3· 

Second, it is to be noted, with regard to 1., 

that we have repeatedly shown that a measurement in the 

sense of l. must be instantaneous, i.e., must be carried 

through in so short a time that the change of U given by 

2. is not yet noticeable· (If we wanted to correct this 

by calculating the changed by 2., we would still gain 

nothing, because to apply any , we must first know t , 

the moment of measurement, exactly, i.e., the time duration 
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of the measurement must be short. ) This is now question

able in principle, because it is well-known that there is 

a quantity which, in classical mechanics, is canonically 
1 A π 

conjugate with the time: the energy. Therefore it is 

to be expected that for the canonically conjugate pair time-

energy, there must exist indeterminacy relations similar to 
T δ 1 

those of the pair cartesian coordinate-momentum· Kote 

that the special relativity theory shows that a far reach

ing analogy must exist: the three space coordinates and 

time form a "four vector" as do the three momentum coordi

nates and the energy. Such an indeterminacy relation would 

mean that it is not possible to carry out a very precise 

measurement of the energy in a very short time. In fact, 

one would expect for the error of measurement (in the 

energy) and the time duration τ a relation of the form 

ε τ ~ h -

A physical discussion, similar to that carried out in III.U. 
1 A 1 

for p, q , actually leads to this result· Without 

going into details, we shall consider the case of a light 

quantum. Its energy uncertainty ε is, because of the 

Bohr frequency condition, h times the frequency uncer

tainty: hAv . But, as we discussed in Note 137, Δν is 

at best the reciprocal of the time duration, 1/τ , i.e., 

e Z h/τ — and in order that the monochromatic nature of 

the light quantum be established in the entire time inter

val τ , the measurement must extend over this entire time 

interval. The case of the light quantum is characteristic, 

ι 8 ο 
Any textbook of classical (Hamiltonian) mechanics gives 

an account of these connections. 

j Q 4 

The uncertainty relations for the pair time-energy have 

been discussed frequently. Cf. the comprehensive treatment 

of Heisenberg, Die Physikalischen Prinzipien der Quanten-

theorie, II.2-d·, Leipzig, ι 93ο. 
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since the atomic energy levels, as a rule, are determined 

from the frequency of tne corresponding spectral lines. 

Since the energy behaves in such fashion, a relation be

tween the precision of measurement for other quantities iR 

and the duration of the measurement is also possible- Then 

how can our assumption of instantaneous measurements be 

justified? 

First of all we must admit that this objection 

points at an essential weakness which is, in fact, the 

chief weakness of quantum mechanics: its non-relativistic 

character, which distinguishes the time t from the three 

space coordinates x, y, ζ , and presupposes an objective 

simultaneity concept. In fact, while all other quantities 

(especially those x, y, ζ closely connected with t by 

the Lorentz transformation) are represented by operators, 

there corresponds to the time an ordinary number-parameter 

t , just as in classical mechanics. Or: a system con

sisting of 2 particles has a wave function which depends 

on its 2x3=6 space coordinates, and only upon one time 

t , although, because of the Lorentz transformation, two 

times would be desirable- It may be connected with this 

non-relativistic character of quantum mechanics that we can 

ignore the natural law of minimum duration of the measure

ments. This might be a clarification, but not a happy one! 

A more detailed Investigation of the problem, 

however, shows that the situation is really not so bad as 

this. Por what we really need is not that the change of t 

be small, but only that it have little effect in the calcu

lation of the probabilities (Utin, 4>n) , and therefore in 

the formation of 

D '  •  Σ  < ®v V i  
n=l "n l  

whether we start out from U itself or from a 

4- Lf 2πΐ j_ ι. 
— — 1T"U π -• ·ι Π 

Ut = e n Ue n 
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B e c a u s e of 

> 

this can "be a c c o m p l i s h e d b y so changing H b y a n appro-

p r i a t e p e r t u r b a t i o n energy that 

differs f r o m only b y a constant f a c t o r of absolute 

value 1 . T h a t i s , the state should b e e s s e n t i a l l y 

constant u n d e r the influence of 2 . , i.e., a stationary 

state; or e q u i v a l e n t l y m u s t b e equal to a r e a l 

constant times i.e., a n e i g e n f u n c t i o n of H . 

At first g l a n c e , such a change of the e n e r g y o p e r a t o r H , 

w h i c h m a k e s the eigenfunctions of R stationary, and 

t h e r e f o r e eigenfunctions of H (i.e., R , H c o m m u t a t i v e ) 

m a y seem i m p l a u s i b l e . But this is n o t really the case, 

and one can even see that the t y p i c a l a r r a n g e m e n t s of 

m e a s u r e m e n t aim at exactly this sort of effect o n H • 

In f a c t , each m e a s u r e m e n t results in the e m i s s i o n 

of a light q u a n t u m or a m a s s p a r t i c l e , w i t h a c e r t a i n 

e n e r g y , in a certain direction- It is t h e n b y these 

c h a r a c t e r i s t i c s , i.e., b y its m o m e n t u m , that the p a r t i c l e 

expresses the result of the m e a s u r e m e n t o r , a m a s s p o i n t 

(for e x a m p l e , a p o i n t e r o n a s c a l e ) comes to r e s t , and its 

cartesian coordinates give the result of the m e a s u r e m e n t . 

In the case of light q u a n t a , u s i n g t h e t e r m i n o l o g y of 

III.6., the d e s i r e d m e a s u r e m e n t is thus equivalent to the 

statement as to w h i c h (the rest b e i n g = o) , 

i.e., to the enumeration of a l l ... v a l u e s . F o r a 

m o v i n g (departing) m a s s p o i n t , the statement of its three 

m o m e n t u m components is the c o r r e s p o n d i n g 
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equivalent; f o r a m a s s p o i n t at rest (the index p o i n t ) , 

the statement of its three cartesian coordinates x , y , z , 

o r , u s i n g t h e i r o p e r a t o r s , of the . B u t the 

m e a s u r e m e n t is completed o n l y if the light q u a n t u m or m a s s 

p o i n t is a c t u a l l y b o r n e "away," i.e., only w h e n the light 

q u a n t u m is n o t i n d a n g e r of absorption; o r w h e n the m a s s 

p o i n t m a y no l o n g e r b e d e f l e c t e d b y p o t e n t i a l energies; 

o r , if the mass p o i n t is a c t u a l l y at r e s t , in w h i c h case a 
1 Bp 

large m a s s is n e c e s s a r y . (This l a t t e r is certainly 

n e c e s s a r y b e c a u s e of the u n c e r t a i n t y r e l a t i o n s , since the 

v e l o c i t y m u s t b e n e a r 0 , and therefore its dispersion 

m u s t b e small, although its p r o d u c t w i t h the m a s s — the 

m o m e n t u m — ha s a large d i s p e r s i o n , b e c a u s e of the small 

d i s p e r s i o n of the c o o r d i n a t e s . O r d i n a r i l y , the p o i n t e r s 

are m a c r o s c o p i c objects, i.e., e n o r m o u s . ) Now the energy 

operator H , so far as it concerns the light q u a n t u m , is 

(III.6, p a g e 270) 

w h i l e f o r b o t h m a s s p o i n t e x a m p l e s , H is g i v e n b y 

182 A l l o t h e r details of the m e a s u r i n g arrangement a i m only at the connection of the q u a n t i t y , w h i c h is actually of i n t e r e s t , or of its operator R , w i t h the or the or the , respectively, that have 
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(m the mass, V the potential energy). Our criteria say: 

the w£. should vanish, or V should be constant, or m 

should be very large. But this actually produces the 

effect that the Px, Py, Pz and the Qx, Q ,̂ Qz respec

tively commute with the H given above-

In conclusion, it should be mentioned that the 

making stationary of the really interesting states (here 

the φι>φ
2> ···) plays a role elsewhere, too, in theoreti

cal physics. The assumptions on the possibility of the 

interruption of chemical reactions (i.e., their "poison

ing"), which are often unavoidable in physical-chemical 

"ideal experiments," are of this nature.1̂  

The two interventions 1.  and 2.  are fundamentally 

different from one another. That both are formally unique, 

i.e., causal, is unimportant; indeed, since we are working 

in terms of the statistical properties of mixtures, it is 

not surprising that each change, even if it is statistical, 

effects a causal change of the probabilities and the ex

pectation values. Indeed, it is precisely for this 

reason, that one introduces statistical ensembles and 

probabilities! On the other hand, it is important that 2.  

does not increase the statistical uncertainty existing in 

U , but that 1. does: 2. transforms states into states 

( Ρ[Φ] P -^itH ) 

y [e Φ ] J 
while 1. can transform states into mixtures. In this 

sense, therefore, the development of a state according to 

1. is statistical, while according to 2. it is causal. 

been mentioned- Of course, this is the most important 

practical aspect of the measuring technique· 

l8̂ Cf- e.g., Nernst, Theoretische Chemie, Stuttgart 

(numerous editions since 1893), Book IV, Discussion of the 

thermodynamic proof of the "mass action law." 
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Furthermore, for fixed H and t , 2 .  is simply 

a unitary transformation of all U : U. = AUA-1 , 

~ iYT tH A = e is unitary. That is, Uf = g implies that 

Ufc(Af) = Ag , so that U^ results from U by the unitary 

transformation A of Hilbert space, that is, by an 

isomorphism which leaves all our basic geometric concepts 

invariant (cf. the principles set down In 1-4.)· There

fore it is reversible: it suffices to replace A by 

A"1 — and this is possible, since A, A-1 can be regarded 

as entirely arbitrary unitary operators because of the far 

reaching freedom in the choice of H, t . Just as in 

classical mechanics therefore, 2. does not reproduce one 

of the most important and striking properties of the real 

world, namely its irreversibility, the fundamental differ

ence between the time directions, "future" and "past." 

1. behaves in a fundamentally different fashion: 

the transition 

OO 

u — D._ Σ (ϋ.„, Φη)Ρ[, ι 

n = 1  

is certainly not prima facie reversible. We shall soon see 

that it is in general irreversible, in the sense that it is 

not possible in general to come back from a given U1 to 

its U by repeated applications of any processes ., 2. 

Therefore, we have reached a point at which it is 

desirable to utilize the thermodynamical method of analysis, 

because it alone makes it possible for us to understand 

correctly the difference between 1. and 2., into which 

reversibility questions obviously enter. 

2 · THEiWODmAMICAL CONSIDERATIONS 

We shall investigate the thermodynamics of quan

tum mechanical ensembles according to two different points 

of view- First, let us assume the validity of both funda-
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mental laws of thermodynamics, i.e., the impossibility of 

perpetual motion of the first and second kind (energy law 
184 

and entropy law), and calculate the entropy for each 

ensemble from this. In this case, normal methods of the 

phenomenological thermodynamics are applied, and quantum 

mechanics plays a role only insofar as our thermodynamical 

observations relate to such objects whose behavior is 

regulated by the laws of quantum mechanics (our ensembles, 

as well as their statistical operators U) — but the 

correctness of both laws will be assumed and not proved. 

Afteivards we shall prove the validity of these fundamental 

laws in quantum mechanics. Since the energy law holds in any 

case, only the entropy law has to be considered. That is, 

we shall show that the interventions 1., 2. never decrease 

the entropy, as calculated by the first method- This order 

may seem somewhat unnatural, but it is based on the fact 

that it is by the phenomenological discussion that we ob

tain that overall view of the problem which is required for 

considerations of the second kind. 

We therefore begin with the phenomenological 

consideration, which will also permit us to solve a well-

known paradox of classical thermodynamics. First we must 

emphasize that the unusual character of our "ideal experi

ments, " i.e., their practical infeasibility, does not im

pair their demonstrative power: In the sense of phenome

nological thermodynamics, each conceivable process 

constitutes valid evidence, provided that it does not 

conflict with the two fundamental laws of -thermodynamics. 

184 The phenomenological system of thermodynamics built upon 

this foundation can be found In numerous texts. For ex

ample, Planck, Treatise on Thermodynamics, London, 1927-

For the following, the statistical aspect of these laws is 

of chief importance. This is analyzed in the following 

treatises: Einstein, Verh- d- dtsch. physik, Ges. _1_2 

(1914); Szilard, Z- Physlk 32 (1925 ) · 
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Oiir purpose is to determine the entropy of an 

ensemble [ S 1 , . . . , S ^ ]  with the statistical operator U , 

where U is assumed to be correctly normalized, i.e., 

Tr U = 1 · In the terminology of classical statistical 

mechanics, we are dealing with a Gibbs ensemble: i.e., the 

application of statistics and thermodynamics will be made 

not on the (interacting) components of a single, very 

complicated mechanical system with many (only imperfectly 
1 As 

known) degrees of freedom — but on an ensemble of very 

many (identical) mechanical systems, each of which may have 

an arbitrarily large number of degrees of freedom, and each 

of which is entirely separated from the others, and does 
1 8 fi not interact with any of them. As a consequence of the 

complete separation of the systems S1,...,, and of the 

fact that we shall apply to them the ordinary methods of 

enumeration of the calculus of probability, it is evident 

that ordinary statistics be used, and that the Bose-

Einstein and Fermi-Dirac statistics, which differ from 

those and which are applicable to certain ensembles of in

distinguishable and interacting particles (namely, for 

light quanta or electrons and protons, cf. 111.6., in 

particular, Note 1^7), do not enter into the problem. 

·» Q E 
This is the Maxwell-Boltzmann method of statistical 

mechanics (cf. the review in the article of P· and T- Ehren-

fest in Enzykl. d. Math. Wiss., Vol. II.4. D·, Leipzig, 

1907) · In the gas theory for example, the "very compli

cated" system is the gas which consists of many (inter

acting) molecules, and the molecules are investigated 

statistically. 

186 
This is the Gibbs method (cf. the reference in Note 185). 

Here the individual system is the entire gas, and many 

replicas of the same system (i.e., of the same gas) are 

considered simultaneously, and their properties are eval

uated statistically. 
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The m e t h o d introduced b y E i n s t e i n f o r the thermo-

d y n a m i c s ! treatment of such e n s e m b l e s i s the 

1 81 

following: E a c h system is confined in a b o x 

, w h o s e w a l l s are impenetrable to all transmis-

s i o n effects — w h i c h is p o s s i b l e for this system b e c a u s e 

of the l a c k of interaction- F u r t h e r m o r e , each b o x m u s t 

h a v e a v e r y large m a s s , so that the p o s s i b l e state (and 

h e n c e energy and m a s s ) changes of the affects 

its m a s s only s l i g h t l y . A l s o , t h e i r velocities in the 

ideal experiments w h i c h are to b e carried out are thereby 

kept so small that the calculations m a y b e p e r f o r m e d non-

r e l a t i v i s t i c a l l y . W e t h e n enclose these b o x e s into a very 

large b o x (i•e., the v o l u m e of should b e m u c h 

l a r g e r t h a n the sum of the volumes of the 

F o r simplicity, no force f i e l d w i l l b e p r e s e n t i n K (in 

p a r t i c u l a r , it should b e free f r o m all g r a v i t a t i o n a l f i e l d s , 

and so large that the m a s s e s of the h a v e no 

relevant effects either- W e can therefore regard the 

(which contain r e s p e c t i v e l y ) as the 

m o l e c u l e s of a gas w h i c h is enclosed in the large container 

• If w e n o w b r i n g into contact w i t h a very large 

h e a t r e s e r v o i r of t e m p e r a t u r e T , t h e n the w a l l s of 

also take on this t e m p e r a t u r e , and its (true) m o l e c u l e s 

assume the corresponding B r o w n i a n m o t i o n . T h e r e f o r e they 

w i l l contribute m o m e n t u m to the adjacent , so 

that these engage in m o t i o n , a n d t r a n s f e r m o m e n t u m to the 

o t h e r . S o o n a l l w i l l b e i n m o t i o n 

and w i l l b e exchanging m o m e n t u m (on the w a l l of K) w i t h 

the (true) m o l e c u l e s of the w a l l , a n d w i t h e a c h other (in 

the interior of K) b y c o l l i s i o n processes- T h e stationary 

e q u i l i b r i u m state of m o t i o n is t h e n obtained if the 

h a v e taken o n that v e l o c i t y d i s t r i b u t i o n w h i c h 

is in equilibrium w i t h the B r o w n i a n m o t i o n of the w a l l 

1 8 T 

See the r e f e r e n c e in N o t e 181*- This w a s f u r t h e r 

d e v e l o p e d b y L- Szilard-
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m o l e c u l e s (of temperature T ) — i. e . , the M a x w e l l i a n 

velocity d i s t r i b u t i o n of a gas of temperature T , the 
1 88 

"molecules" of w h i c h are the • W e c a n t h e n 

say: the gas h a s ta k e n on the temperature T . 

F o r b r e v i t y , w e shall call the ensemble w i t h 

the statistical o p e r a t o r U the U - e n s e m b l e , and the 

-gas the U -gas . 

T h e r e a s o n that w e concern ourselves w i t h such a 

gas is that w e m u s t d e t e r m i n e the entropy difference of the 

U - e n s e m b l e and the V - e n s e m b l e (U, V definite operators 

w i t h T r U = 1, T r V = 1 , and w i t h the corresponding 

ensembles and • The determina-

t i o n requires b y d e f i n i t i o n a reversible t r a n s f o r m a t i o n of 

the f o r m e r ensemble into the l a t t e r , ̂ ^ a n d this is best 

accomplished b y the aid of the U- a n d V - g a s e s . That i s , 

w e m a i n t a i n that the e n t r o p y d i f f e r e n c e of the U- a n d V-

ensembles is exactly the same as that of the U- and V-

g a s e s — if b o t h are observed at the same temperature T , 

b u t are otherwise a r b i t r a r y . If T is very n e a r 0 , t h e n 

this is obviously the case w i t h a r b i t r a r y p r e c i s i o n ; b e -

cause the d i f f e r e n c e b e t w e e n the U - e n s e m b l e a n d the V-

gas vanishes at the t e m p e r a t u r e 0 , since the 

of the l a t t e r have t h e n no m o t i o n of t h e i r own, and the 

1 8 8 
T h e k i n e t i c theory of g a s e s , as is w e l l - k n o w n , describes 

in this w a y that process i n w h i c h the w a l l s communicate 

t h e i r temperature to the gas enclosed b y them- Cf• the 

references in N o t e s 18^ and i85• 

this t r a n s f o r m a t i o n , if the h e a t q u a n t i t i e s 

are required at the respective temperatures 

then the entropy d i f f e r e n c e is equal to 

C f . the reference in Note 18^-
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presence of the κ , when they are at rest is 

thermodynamically unimportant (and likewise for V) · 

Therefore we shall have accomplished our aim if we can show 

that for a given change of τ , the entropy of the U-gas 

changes just as much as the entropy of the Y-gas. The 

entropy change of a gas which is heated from T1 to T2 

depends only upon its caloric equation of state, or more 

precisely, upon its specific heat.1^0 Naturally, the gas 

must not be assumed to be an ideal gas here if, as in our 

case, T1 must be chosen near 0 On the other hand,, 

it is certain that both gases (U and V) have the same 

equation of state and the same specific heats because, by 

kinetic theory, the boxes K1,dominate and cover 

co m p l e t e l y  t h e  s y s t e m s  S 1 , . . . , a n d  S J , . · . , w h i c h  

are enclosed in them· In this heating process therefore, 

the difference of U and V is not noticeable, and the 

two entropy differences coincide, as was maintained. In 

the following therefore, we shall compare only the U- and 

V-gases with each other, and we shall choose the tempera

ture T so high that these can be regarded as ideal 
1 Qp 

gases. ^ In this way, we control its kinetic behavior 

1̂ 0If c(T) is the specific heat at the temperature T 

of the gas quantum under discussion, then in the temperature 

interval T, T + dT it takes on the quantity of heat 

c(T)dT . By Note 185, the entropy difference is then 

f c (T )d T 

T 1  T  

1̂ 1Por an ideal gas, C(T) is constant; for very small 

T, this certainly fails. Cf. for example, the reference 

in Note 6. 

1 92 In addition to this, it is required that the volume V 

of κ be large in comparison to the total volume of the 
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c o m p l e t e l y , and w e c a n a p p l y ourselves to the r e a l p r o b l e m : 

to transform U - g a s r e v e r s i b l y into V - g a s . In this 

case, In contrast to the p r o c e s s e s u s e d so f a r , w e shall 

also h a v e to c o n s i d e r t h e f o u n d i n the interior 

of the i.e., w e shall h a v e to "open" the b o x e s 

N e x t , w e show that a l l states h a v e the 

same e n t r o p y , i . e . , that the reversible t r a n s f o r m a t i o n of 

the ensemble into the ensemble is accomp-

lished w i t h o u t the a b s o r p t i o n or l i b e r a t i o n of h e a t e n e r g y 

(mechanical energy m u s t n a t u r a l l y b e consumed o r p r o d u c e d 

if the e x p e c t a t i o n value of the e n e r g y i n is differ-

ent f r o m that in c f . Note 189. In f a c t , w e shall 

not e v e n h a v e to r e f e r to the gases just c o n s i d e r e d . T h i s 

t r a n s f o r m a t i o n succeeds e v e n a t the temperature 0 , i.e., 

w i t h the ensembles themselves• It should b e m e n t i o n e d , 

f u r t h e r m o r e , that as soon as this is p r o v e d , w e shall b e 

able to and shall so n o r m a l i z e the entropies of the U 

ensembles that a l l states h a v e the entropy 0 . 

M o r e o v e r , the t r a n s f o r m a t i o n of into 

d e s c r i b e d above does n o t n e e d to b e reversible: B e c a u s e if 

it is not so, t h e n the entropy d i f f e r e n c e m u s t b e the 

e x p r e s s i o n g i v e n in N o t e 189 (cf. r e f e r e n c e in Note 185), 

therefore . P e r m u t a t i o n of shows that 

this value m u s t also b e . T h e r e f o r e the value is 

= 0 . 

; f u r t h e r m o r e that the "energy p e r d e g r e e of 

freedom" B o l t z m a n n ' s c o n s t a n t ) b e large in compar-.ison to 

(h = Planck's constant, = m a s s of the i n d i v i d u a l m o l e -

cule; this q u a n t i t y is of the d i m e n s i o n s of e n e r g y ) . C f . 

f o r e x a m p l e , F e r m i , Z- P h y s i k , 36. (1926). 
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The simplest process would be to refer to the 

time dependent Schrodinger differential equation, i.e., our 

process 2., in which an energy operator H and a numerical 

value of t must be found such that the unitary operator 

transforms Φ into ψ . Then, in t seconds, Ρ[φ] 

would change spontaneously into P· The process is 

also reversible, and no mention has been made of the heat 

(cf. V.1·)· However, we prefer to avoid assumptions re

garding the possible forms of the energy operators H and 

to apply the process 1. alone, i.e., measuring interven

tions . The simplest such measurement would be to measure 

the quantity 91 in the ensemble Ρ[φ] , whose operator R 

has a pure discrete spectrum with simple eigenvalues 

, , and in which ψ occurs among the eigenfunc

tions 1̂,ψ , ... , say ψ1 = ψ . This measurement trans

forms Φ into a mixture of the states If1Jt2,... , and 

there = ψ will be present along with the other states 

ψ · However, this procedure is unsuitable, because 

ψ = ψ occurs only with the probability |(Φ, ψ)| , while 
ρ 

the portion Ι - |(Φ, Ψ)| goes over into other states. 

In fact, the latter portion is the entire result for 

orthogonal Φ , ψ - A different experiment however will 

accomplish our purpose· By repetition of a great number 

of different measurements, we shall change Ρ[φ] into such 

an ensemble, which differs from Pby an arbitrarily 

small amount. That all these operators are (or at least, 

can be) irreversible is unimportant, as we discussed above-

We assume φ, ψ orthogonal, since we could 

otherwise choose a χ (llxll = 1 ) orthogonal to both, and 

could go from Φ to χ , and then from χ to ψ · Now 

let k = 1,2, · · · be a number which is at our disposal, and 

set ψ ̂ v ^ = cos •Φ + sin . ψ (v = o,i,...,k). 

Clearly, = φ, = ψ , and I U^ll = 1 · We 
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e x t e n d e a c h to a complete ortho-

n o r m a l set L e t R ̂ v ̂  

b e a n o p e r a t o r w i t h a p u r e d i s c r e t e spectrum and different 

e i g e n v a l u e s , say ... , w h o s e eigenfunctions are 

the . , and the corresponding q u a n t i t y . 

W e observe f u r t h e r that 

I n the e n s e m b l e w i t h w e 

n o w m e a s u r e the q u a n t i t y , i n w h i c h case ^ re-

sults . W e t h e n m e a s u r e the q u a n t i t y on , w h e n 

r e s u l t s , e t c . W e f i n a l l y m e a s u r e t h e q u a n t i t y 

o n w h e n c e _ r e s u l t s . T h a t , f o r suffi-

ciently large k , lies a r b i t r a r i l y close to 

c a n e a s i l y b e e s t a b l i s h e d . If w e m e a s u r e o n 

, t h e n the f r a c t i o n 

g o e s o v e r into , and in the successive m e a s u r e m e n t s 

of t h e r e f o r e , at l e a s t the f r a c t i o n 

w i l l go o v e r f r o m o v e r 

into A n d since 

— 1 as k results as n e a r l y ex-

clusively as one m a y w i s h , if k is sufficiently large-

T h e exact p r o o f runs as f o l l o w s . Since the process 1. does 

n o t change the t r a c e , and since T r , 

t h e r e f o r e O n the 

o t h e r h a n d , 
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T h e r e f o r e , f o r and , 

and f o r v = k and w e h a v e : 

t o g e t h e r w i t h 

this gives 

Since 1 a n d as 

, w e can a p p l y the result obtained i n II•i1•: 

converges to . H e n c e o u r a i m Is a c c o m p l i s h e d . 

How far m a y w e u s e one of the m a i n instruments 

of "ideal experiments" of p h e n o m e n o l o g i c a l t h e r m o d y n a m i c s , 

n a m e l y the so-called semipermeable w a l l s , w h e n d e a l i n g 

w i t h q u a n t u m m e c h a n i c a l systems? 

In p h e n o m e n o l o g i c a l t h e r m o d y n a m i c s , this t h e o r e m 

h o l d s : If I and II are two d i f f e r e n t states of the 

same system S, t h e n it is p e r m i s s i b l e to a s s u m e the 

existence of a w a l l w h i c h is completely p e r m e a b l e f o r I 

a n d n o t p e r m e a b l e f o r I I 1 — this is, so to speak, the t h e r m o d y n a m i c a l d e f i n i t i o n of d i f f e r e n c e , and t h e r e f o r e of 

1 05 
C f . f o r e x a m p l e , the r e f e r e n c e i n N o t e 18^. 
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equality a l s o , f o r two s y s t e m s . H o w f a r is such a n assump-

t i o n p e r m i s s i b l e i n q u a n t u m mechanics? 

W e first show that if . is 

a n orthonormal set, t h e n there is a semi-permeable w a l l 

w h i c h lets the system S in e a c h of the states 

p a s s through u n h i n d e r e d , and w h i c h reflects u n c h a n g e d the 

system in each of the states .. . Systems w h i c h 

are in other states m a y , o n the other h a n d , b e changed b y 

collision w i t h the w a l l . 

T h e system ... can b e a s s u m e d 

to b e complete, since otherwise it could b e m a d e so b y 

a d d i t i o n a l ... w h i c h one could t h e n add to the 

. . W e n o w choose a n operator R w i t h a p u r e 

d i s c r e t e s p e c t r u m , and only simple eigenvalues 

w h o s e e i g e n f u n c t i o n s are 

r e s p e c t i v e l y . I n f a c t , let the a n d the 

L e t the q u a n t i t y b e l o n g to R . W e construct m a n y 

w i n d o w s i n the w a l l , e a c h of w h i c h is d e f i n e d as follows: 

e a c h "molecule" of our gas (we are a g a i n con-

sidering U-gases at the temperature 0 ) is d e t a i n e d 

t h e r e , opened, the q u a n t i t y SR m e a s u r e d o n the system 

o r or contained i n i t . T h e n the b o x is 

closed a g a i n , and a c c o r d i n g to w h e t h e r t h e m e a s u r e d value 

of is 0 or 0 , the b o x , t o g e t h e r w i t h its con-

t e n t s , p e n e t r a t e s the w i n d o w or is r e f l e c t e d , w i t h u n c h a n g e d 

m o m e n t u m . T h a t this contrivance satisfies the d e s i r e d end 

is clear — it remains o n l y to d i s c u s s w h a t changes r e m a i n 

i n It a f t e r such c o l l i s i o n s , a n d h o w c l o s e l y it is related 

to the so-called "Maxwell's demon" of t h e r a o d y n a m i c s . 1 ^ 

I n t h e first p l a c e , it m u s t b e said that since 

the m e a s u r e m e n t (under certain c i r c u m s t a n c e s ) changes the 

1 q4 

C f . the r e f e r e n c e i n Note 185. T h e r e a d e r w i l l f i n d a 

d e t a i l e d d i s c u s s i o n of the d i f f i c u l t i e s connected w i t h the 

concept o f " M a x w e l l ' s demon" i n L . S z i l a r d , Z . P h y s i k , 53 

( 1 9 2 9 ) -
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state of S , and perhaps its energy expectation value 

also, this difference in the mechanical energy must be 

added or absorbed by the measurement action, in the sense 

of the first law of thermodynamics (for example, by in

stalling a spring which can be extended or compressed, or 

something similar). Since it is a case of a purely auto

matically functioning measuring mechanism, and since only 

mechanical (not heat!) energies are transformed, certainly 

no entropy changes occur, and at present, only this is of 

importance to us. (If S is in one of the states 

> *2' · · * > 1IfI > Ψ2' ' '' ' then the 9i measurement does not, 

in general, change S , and no compensating changes remain 

in the measuring apparatus.) 

The second point is more doubtful. Our arrange

ment is rather similar to "Maxwell's demon," i.e., to a 

semi-permeable wall which transmits molecules coming from 

the right and reflects those coming from the left. If we 

insert such a wall in the midst of a container filled with 

a gas, then all the gas is soon on the left hand side — 

i-e·, the volume is halved without entropy consumption· 

This means an uncompensated entropy increase of the gas, 

and therefore, by the second law of thermodynamics, such a 

wall cannot exist. Nevertheless, our semi-permeable wall 

is essentially different from this thermodynamically un

acceptable one; because reference is made with it only to 

the internal properties of the "molecules" 

(i.e., the state of S1 or ... or enclosed therein), 

and not to the exterior (i.e., whether it comes from the 

right or left, or something similar). This, however, is 

the decisive circumstance. A thorough going analysis of 

this question is made possible by the researches of 

L· Szilard, which clarified the nature of the semi-permeable 

wall, "Maxwell's demon," and the general role of the "inter

vention of an intelligent being in thermodynamical systems ." 

We cannot go any further into these things here, especially 

since the reader can find a treatment of this in the 

refsrences to Note 19k• 
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In particular, the above treatment shows that two 

states <t>, ψ of the system S can be certainly divided by 

a semi-permeable wall if they are orthogonal. We now want 

to prove the converse: if Φ, ψ are not orthogonal, then 

the assumption of such a semi-permeable wall contradicts 

the second law of thermodynamics. That is, the necessary 

and sufficient condition for the separability by semi

permeable walls is (φ, ψ) = θ , and not, as in classical 

theory, φ 4 Ψ (we write φ, ψ instead of the I, II 

used above). This clarifies an old paradox of the classi

cal form of thermodynamics, namely, the uncomfortable 

discontinuity in the operations with semi-permeable walls: 

states whose differences are arbitrarily small are always 

100# separable, the absolutely equal states are in general 

not separable! We now have a continuous transition: It 

will be seen that 100# separability exists only for (φ, ψ)= 

0 and for increasing (¢, if) it becomes steadily worse. 

Finally, at maximum (φ, ψ) , i.e., |(Φ, ψ)| = 1 (here 

1 I φ  I I  =  I U I I  =  1  ,  a n d  t h e r e f o r e  i t  f o l l o w s  f r o m  

I(Φ, ψ) I = ι that Φ = οψ , c constant, |c| = 1) , the 

states Φ, ψ are identical, and the separation is com

pletely impossible. 

In order to carry out these considerations, we 

must anticipate the end result of this section, the value 

of the entropy of the U-ensemble. Natiirally we shall 

not use this result in its derivation. 

Let us then assume that there is a semi-permeable 

wall separating φ and ψ . We shall then prove 

(φ, ψ) = 0 . We consider a 2.(p^ + P^j ) gas (i-e·, of 

N/2 systems in the state φ and N/2 systems in the 

state ψ , the trace of this operator is 1) , and choose 

Ϋ (i-e·, κ) , and T so that the gas is ideal. Let Ic 

have the longitudinal cross section shown in Fig· 3: 

1 2 3 ^ ι . We insert a semi-permeable wall at one end 

aa , and then move it halfway, up to the center bb . The 

temperature of the gas is kept fixed by contact with a large 

heat reservoir w of temperature τ at the other end 2 3 . 
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I n t h i s p r o c e s s , n o t h i n g h a p p e n s to t h e m o l e c u l e s , b u t 

t h e m o l e c u l e s a r e p u s h e d i n t o t h e r i g h t h a l f o f 

( b e t w e e n b b a n d 2 3 ) . T h a t i s , t h e 

g a s is a 1:1 m i x t u r e of a g a s a n d a g a s . 

N o t h i n g h a p p e n s t o t h e f o r m e r , b u t t h e l a t t e r i s i s o t h e r -

m a l l y c o m p r e s s e d to o n e h a l f i t s o r i g i n a l v o l u m e . P r o m 

t h e e q u a t i o n of s t a t e of t h e i d e a l g a s , i t f o l l o w s t h a t i n 

t h i s p r o c e s s t h e m e c h a n i c a l w o r k T I n 2 i s p e r f o r m e d 

is t h e n u m b e r o f t h e m o l e c u l e s o f t h e g a s , 

K i s B o l t z m a n n ' s c o n s t a n t ) , 1 ^ a n d s i n c e t h e e n e r g y of t h e 

g a s i s n o t c h a n g e d ( b e c a u s e o f t h e i s o t h e r m y ) , 1 ^ t h i s 

q u a n t i t y of e n e r g y i s t a k e n o v e r b y t h e h e a t r e s e r v o i r W . 

T h e e n t r o p y c h a n g e of t h e r e s e r v o i r i s t h e n 

1 95 

^If a n i d e a l g a s c o n s i s t s o f M m o l e c u l e s , t h e n its 

p r e s s u r e is . I n t h e c o m p r e s s i o n f r o m t h e v o l u m e 

t o t h e v o l u m e t h e r e f o r e , t h e m e c h a n i c a l w o r k 

i s d o n e . I n o u r c a s e , 

1 ng 

T h e e n e r g y of a n i d e a l g a s , a s is w e l l k n o w n , d e p e n d s 

o n l y o n its t e m p e r a t u r e • 



5 7 4 VON NEUMANN 

I n 2 (see N o t e 186). 

A f t e r this p r o c e s s , the h a l f o f the o r i g i n a l gas 

is p r e s e n t to the left of b b , i.e., m o l e c u l e s . T o 

t h e right of b b o n the other h a n d , there is t h e h a l f of 

the o r i g i n a l g a s , i.e., i- m o l e c u l e s , a n d the 

entire g a s , i.e., m o l e c u l e s — therefore a 

t o t a l of m o l e c u l e s of a g a s . W e 

compress o r expand t h e s e g a s e s to the v o l u m e s and 

r e s p e c t i v e l y , and m e c h a n i c a l w o r k is a g a i n t a k e n f r o m 

o r g i v e n to the h e a t r e s e r v o i r w : this amounts to 

I n 2 and T I n r e s p e c t i v e l y (see N o t e 195)* 

a n d the entropy increase of the r e s e r v o i r is t h e n 

I n 2 and r e s p e c t i v e l y . Altogether: 

F i n a l l y , w e h a v e a and a gas of 

and m o l e c u l e s r e s p e c t i v e l y , w i t h the respective 

volumes , and . r . O r i g i n a l l y there w a s a 

gas of N m o l e c u l e s in the v o l u m e 

i . e . , if w e w i l l , two gases w i t h 

and m o l e c u l e s r e s p e c t i v e l y , in the volumes a n d 

r e s p e c t i v e l y . T h e change effected b y the entire 

p r o c e s s is t h e n this: .... m o l e c u l e s in v o l u m e 

changed f r o m a gas into a g a s , 

m o l e c u l e s I n the v o l u m e changed f r o m a 

gas into a g a s , and the 

e n t r o p y of W increased b y Nk - | - I n y . Since the p r o c e s s 

w a s r e v e r s i b l e , the entire entropy increase m u s t b e zero, 

i.e., the two g a s - e n t r o p y changes m u s t e n t i r e l y compensate 

the change of e n t r o p y of w - W e m u s t t h e r e f o r e find the 

e n t r o p y changes of the g a s e s . 

As w e shall see, a U - g a s of N m o l e c u l e s h a s 

the entropy - M K - T r (U I n U ) if that of the gas 

of equal volume and temperature is t a k e n as zero (see 

a b o v e ) . If therefore U h a s a p u r e d i s c r e t e spectrum w i t h 
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the eigenvalues , then this is 

(therefore x In x is to be set equal to 0 for x = o) . 
As may easily be calculated, 

have the respective eigenvalues 1, o and 
and 

0 

, therefore in which the 
multiplicity of the sero is always infinite, but in which 
the others are simple. 1Therefore the entropy of the 

197 
We determine the eigenvalues o f . The 

requirement is 

Since the left side is a linear combination of the , 
the right side is also, therefore also f , is too if 

0 is certainly an infinitely multiple eigen-
value, since each f orthogonal to belongs to it. 
It therefore suffices to consider and 
(let be linearly independent, otherwise, 

, and the two states are identical). 
The above equation then becomes 

i.e., 
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gas has Increased by 

This should equal o when the entropy Increase 
of W Is added to It. If we divide by then we have 

Also 
Now it can easily be seen that the left side in-

1 98 

creases monotonically as a varies from 0 to \ , * 

The determinant of these equations must vanish: 

If we put a = 1, b = 0 or a = 
respectively, then the formulas of the text are 

obtained. 
4 qO 

Since (x In x)1 = In x + 1 , therefore 
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and In fact from 0 to 3 In ; therefore must be 
zero (for the inverse process to that described 

and the derivative of our expression is 

That this is 0 means that 

i.e., 

We shall Drove this with in place of . Since 

and (which follows from the 
former, since , this means that 

and this is proved if is shown to be mono-
tonically decreasing in This last property, 
however, follows, for example, from the power series ex-
pansion: 
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would be entropy decreasing, contrary to the second law). 
Therefore 0 has been proved 

After these preparations, we can go on to deter-
mine theentropy of a u-gas of N molecules in the 
volume and at temperature , more precisely, 
its entropy excess with respect to a gas under the 
same conditions. By our earlier remarks and in the sense 
of the normalization given above, this is the entropy of a 
U-ensemble of N individual systems. Let Tr U = 1 , as 
was done above-

The U , as we know, has a pure discrete spectrum 
.• with ... = l . 

Let the corresponding eigenfunctions be . Then 

(cf. IV-3- )• Consequently, our U-gas is composed of a 
mixture of ,. gases of . mole-
cules respectively, all in the volume . Let T, 
again be such that all these gases are ideal, and let 
be of rectangular cross section. Now we will apply the 
following reversible interventions in order to separate the 

... molecules from each other (cf. Fig. We 
add an equally large rectangular box Tc* ( 1 2 5 6 1 ) on 
to K (2 3 5 2 ) j and replace the common wall 2 5 by 
two walls lying next to each other. Let the one (2 5) 
be fixed and semi-permeable — transparent for , but 
opaque for .. ; let the other wall (bb) be 
movable, but an ordinary, absolutely impenetrable wall. 
In addition, we insert another semi-permeable wall at dd , 
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close to 3 4 , which is transparent for . and 
opaque for . We then push bb and dd , the distance 
between them being kept constant, to aa and cc respec-
tively (i.e., close to i 6 and 2 5 respectively). By 
this means, t h e • • are not affected, but the 
are forced to remain between the moving walls bb, dd • 
Since the distance between these walls is a constant, no 
work is done (against the gas pressure), and no heat 
development takes place. Finally, we replace the walls 
2 5, cc by a rigid, absolutely impenetrable wall 2 5 , 
and remove aa — in this way the boxes K, "K1 are re-
stored. There is, however, this change- All mole-
cules are in K' , i.e., we have transferred all these 
from K into the same sized box "K1 , reversibly and with-
out any work being done, without any evolution of heat or 
tenperature change.1^ 

Similarly, we "tap off" the ••• molecules 
into the equal boxes .. , and have finally, 

gases, consisting of ... mole-

for example, the reference in Note 184 for this 
artifice which is characteristic of the phenomenological 
thermodynamical method. 
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cules, respectively, each in the volume . We now com-
press these isothermally to the volumes 
respectively. We must therefore add the quantities of heat 

... , respectively, as compensation, 
from a large heat reservoir (of temperature T, so that 
the process may be reversible; the quantities of heat are 
all less than zero), since the amounts of work done in 
compressing the individual gases are the negatives of these 
values (cf. Note 191 ). Therefore, the entropy increase for 
this process amounts to 

Finally, we transform the ... gases all into 
gas (reversibly, cf. above, an arbitrarily 

chosen state). We have then o n l y g a s e s of 
molecules respectively, in the volumes 

• • Since all of these are identical and of 
equal density , we can mix them, and this is also 
reversible. We then obtain a g a s of N molecules 
in the volume (since 

Consequently, we have carried out the desired 
reversible process- The entropy has increased by 

and since it is zero in the final state, it was 

in the initial state-
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Since U has the eigenfunctions • with 
the eigenvalues , U In U has the same eigen-
functions, but the eigenvalues I n . . • 
Consequently, 

It may be observed that 1 , therefore 
In , and in fact equals zero only for 

Note that for 0 , In is to be taken equal 
to zero — this follows from the circumstance that in our 
above considerations, the vanishing are not considered 
at all. The same conclusion may also be obtained from 
continuity considerations. 

We have then determined the entropy of a U-
ensemble, consisting of N individual systems, to be 
- Nk Tr (U In U) . "The p^evious^di^iilsion on In 
shows that it is always 0 , and ill order that it be 0 , 
all -w must be zero or 1 • Since Tr U = 1 , exactly 
one w n = 1 , while the others = 0 , therefore 
That is, the states have an entropy = 0 , and the other 
mixtures have entropies > 0 . 

3 • REVERSIBILITY 
AND EQUILIBRIUM PROBLEMS 

We can now prove the irreversibility of the 
measurement process as asserted in V-1• For example, if 
U is a state, , then in the measurement of a 
quantity iH whose operator R has the eigenfunctions 

•• , it goes over into the ensemble 

and if U' is not a state, then an entropy increase has 
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occurred (the entropy of U was 0 , that of U' is 
, so that the process is irreversible. If U1 , too, 

is to be a state, it must be a , and since the 
are its eigenfunctions, this means that all o 
except one (that one = i) i.e., is orthogonal to all 

but then , where , and 
therefore Therefore, each measure-
ment on a state is irreversible, unless the eigenvalue of 
the measured quantity (i.e., this quantity in the given 
state) has a sharp value, in which case the measurement 
does not change the state at all. As we see, the non-
causal behavior is thus unambiguously related to a certain 
concomitant thermodynamical phenomena. 

We shall now discuss in complete generality when 
the process 1., 

increases the entropy. 
U has the entropy - Nk Tr (U In U) • If 
are its eigenvalues a n d i t s eigen-

functions then this is equal to 

U1 has the e i g e n v a l u e s . , and 
therefore its entropy is 

Consequently the entropy of U is that of U1 depend-
ing on whether 
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We next show that In holds in any case, 
i.e., that the process is not entropy-diminish-
ing — this is indeed clear thermodynamically, but it is of 
importance for our subsequent purposes to have a purely 
mathematical proof of this fact. We proceed in such a way 
that U , and with it •• , are fixed, while the 

run through all -complete orthonormal sets. 
Next, for reasons of continuity, we may limit 

ourselves to such sets ... in which only a finite 
number of are different from the corresponding 
Then, for example, let for . Then the 

are linear combinations of the , and 
conversely — therefore, 

(m = 1,••-,M) , 

and the M dimensional matrix is obviously unitary. 
We obtain and, as can easily be calculated, 

so that 

is to be proved. Since the right side is a continuous 
function of the bounded variables , it has a 
maximum, and it also assumes its maximum value 
unitary); since the left side is its value for 

we must show: the maximum just mentioned occurs at this 
-complex• 
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Therefore, let be a set 
of values for which the maximum occurs. If we multiply 
the matrix by the unitary matrix 

then we obtain a unitary matrix , and therefore an 
acceptable Now, let 

will be small, and in the follow-
* dig we Hbal^1 carry in our calculations the 1, terns 

only, and neglect the •. terms. Then 
, and in the new matrix , 

therefore 
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t 

If we substitute these expressions in In x , in 
which 

and add the resulting expressions together, then 
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In order that the first term on the right be the maximum 
value, the coefficient must be = o , and the 
coefficient . The former has two factors, 

and 

If the first is zero, then the first term in the 
coefficient = 0 (this is always so that the 
second term, which is clearly always, must vanish in 
order that the entire coefficient be • This means 
that 

Therefore, the second factor of the coefficient is 
= 0 in any case, which can also be written 

Since this goes over into the absolute value of the 

for appropriate e , this must disappear: 

Since we can replace 1,2 by any two different 
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k, j = l,...,M , we have 

That is, the unitary coordinate transformation with the 
matrix brings the diagonal matrix with the elements 

again into diagonal form. Since the diagonal 
elements are the multipliers (or eigenvalues) of the 
matrix, they are not changed by the coordinate transforma-
tion, and are at most permuted. Before the transformation 
they were the afterwards, they are the (m = 1,...,N) • The sums 

then have the same values. Hence there is at any rate a 
maximum at 

too, as was asserted. 
Let us determine when the equality holds in * . 

If it does hold, then 

takes on its maximum value not only for 
(these are the eigenfunctions of U , cf. 
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above), but also for 
running through all complete orthonormal sets). This holds 
in particular if only the first M among the are 
transformed and hence, of 
course, transformed unitarily among each other. Let 

(m, n = 1,••.,M) , let be the 
eigenvalues of the finite (and at the same time Hermitian 
and definite) matrix (m, n = 1,...,M) 
the matrix that transforms to the diagonal form-
This transforms the into , 

(m = 1,...,M) , and then 

therefore 
For 

(m = 1,...,M , let also be unitary), 
Because of the assumption on the , takes on its maximum for . According to our previous proof, it follows from this that 
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0 

for , i . e . , f o r k j , 
k, j = 1,...,M • 

This must hold for all M , therefore is 
orthogonal to a l l — hence it is equal to 

a constant). Consequently, the .. are 
the eigenfunctions of U . The corresponding eigenvalues 

are ... (and therefore a permutation of the 
But under these circumstances, 

We have therefore found-
The process 1., 

are the eigenfunctions of the operator R of 
the measured qu^^'ty , never diminishes the entropy-
It actually increases it, unless all •• are 
eigenfunctions of U , in which case U = U1 • 

In the case mentioned moreover, U commutes 
with R , and this is actually characteristic for it (be-
cause it is equivalent to the existence of the common 
eigenfunctions .. , cf. 11-10.). 

Hence the process 1 - is irreversible in all 
cases in which it effects a change at all. 

The reversibility question should now be treated 
for the processes 1-, 2., independently of phenomenological 
thermodynamics, as was announced as the second point of the 
program in V.2.. The mathematical method with which this 
can be accomplished we already know: if the second law of 
thermodynamics holds, the entropy must be equal to 
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- NK Tr (U In U) , and this may not decrease in any process 
1 ., 2. We must then treat - Nk Tr (U In U) merely as a 
calculated quantity, independently of its meaning as 
entropy, and find out what it does in 1., 2.200 

In 2., we obtain 

from U , i.e., if we designate the unitary operator 

by A, . Since f — - Af , because of the 
unitary nature of A , is an isomorphic mapping of Hilbert 
space on itself, which transforms each operator P into 
APA~1 , therefore always . Conse-
quently . Hence Tr (Ut In Ut)= 
Tr (U In U) , i.e., our quantity Tr (U In U) is 
constant in 2. We have already ascertained what happens 
in l., and in fact, without reference to the second law of 
thermodynamics. If U changes (i.e., , then 
- NK Tr (U In U) increases, while for unchanged U (i.e., 
U = U' ; or .. eigenfunctions of U ; or U, R 
commutative), it naturally remains unchanged. In an inter-
vention composed of several process 1. and 2. (in arbitrary 
number and order) - (U In U) remains unchanged if 
each process is ineffective (i.e., causes no change), 
but in all other cases it increases. 

Therefore, if only interventions l., 2. are 
taken into consideration, then each process I., which 
effects a change at all, is irreversible. 

It is worth noting, there are also other, simpler 

200Naturally, we could neglect the factor and consider 
- Tr (U In U) • Or, preserving the proportionality with 
the number of elements N, - N Tr (U In U) • 
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expressions than - Tr (U In U) which do not decrease in 
1., and are constant in 2.: for example, the largest 
eigenvalue of U • Indeed: For 2., it is invariant, as 
are all eigenvalues of U — while in 1., the eigenvalues 

of U go over into the eigenvalues of U' : 

(cf. the earlier considerations of this section), and 
since, by the unitary nature of the matrix 
all these numbers are than the l a r g e s t ( A maximum 
w n exists, since all , and since 

Now since it is possible so to change U that 

remains invariant, but that the largest decreases, we 
see that these are changes which are possible according to 
phenomenological thermodynamics — therefore they are 
actually possible of execution with our gas processes — 
but which can never be brought about by successive applica-
tions of 1., 2. alone- This proves that our introduction 
of gas processes was indeed necessary. 

Instead of - Tr ( we can also consider 
Tr (F(U)) for appropriate functions • That this 
increases in 1. for (for U = U' , as well as in 
2., it is of course invariant),- can also be proved, as was 
done for x In x , if the special properties of 
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this function, which we used above are also present in 

F(x) · These are: F"(x) < O , and the monotonic decrease 

of F1(x) ; but the latter follows from the former- There

fore, for our non-thermodynamical irreversibility consider

ations, we can use each Tr F(U) , if F(x) is a function 

that is convex from above, i.e., if F"(x) < O (in 

O <_ χ < 1 since all eigenvalues of U lie in that 

interval). 

Finally, it should be shown that the mixing of 

two ensembles U, V (say in the ratio α: β ; a > ο, β > ο, 

a + β = 1) is also not entropy-diminishing, i.e., 

- Tr ((aU + PV) In (orU + BV)) 

> - a Tr (U In U) - β Tr (V In V) 

This also holds for each convex F(x) in place of 

- χ In χ . The proof is left to the reader. 

We shall now investigate the stationary equilib

rium superposition, i.e., the mixture of maximum entropy, 

when the energy is given- The latter is, of course, to be 

understood to mean that the expectation value of the energy 

is prescribed — only this interpretation is admissible, in 

view of the method indicated in Note 184 for the thermo-

dynamical investigation of statistical ensembles. Conse

quently, only such mixtures will be allowed, for the U 

of which Tr U = 1, Tr (TJ H ) = E , where H is the energy 

operator and E the prescribed energy expectation value. 

Under these auxiliary conditions, - NK Tr (U In U) is to 

be made a maximum. We also make the simplifying assumption 

that H has a pure discrete spectrum; say the eigenvalues 

W1 ,W2, . . . and the eigenfunctions Φ , Φ ,... (there may 

also be multiple values among these)· 

Let W be a quantity whose operator R has the 

eigenfunctions (of H ) Φ , Φ , , but only distinct 

eigenvalues. The measurement of gj transforms U , by 

2., into 
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i 

and therefore increases, unless 
Also, Tr (U), Tr (U H) do not change — the latter 
because the are eigenfunctions of H , and therefore 

vanishes for : 

Tr 

4. 

This must also be true because of the commutativity of 
R, H (i.e., simultaneous measurability of and energy). 
Consequently, the desired maximum is the same if we limit 
ourselves to the U' , i.e., to statistical operators with 
eigenfunctions .. , and, furthermore it is assumed 
only among these-

Therefore 

i 

and since U, U H, U In U all have the eigenfunctions 
but the respective eigenvalues it 
suffices to make 

a maximum, with the auxiliary conditions 
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But this is exactly the same problem as that which is ob-
tained for the corresponding equilibrium problem of the 
ordinary gas theory,201 and Is solved in the same way. 
According to the well-known rules of extremum calculation, 
for the set of maximizing 

must hold, in which are suitable constants, and 
n = 1,2,... , that is, 

where the constant is introduced in place of 
Prom 

it follows that 

and therefore 

2 01 
Cf., for example, Planck, Theorie der Warmestrahlung, 

Leipzig, 1913-
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and because of 

which determines . If, as is customary, we introduce 
the "partition function," 

(cf. Notes 183, 184 for this and the following), then 

and therefore the condition for is 

(We are making the assumption here that 

converge for all , , i.e., that 1 for 
and in fact, with sufficient rapidity. For 
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example, suffices.) We then obtain the 

following expression for U itself: 

The properties of the equilibrium ensemble U 

(which is determined by the enumeration of the values of 

E or of p , and which therefore depends on a parameter, 

as it must) can now be determined with the method customary 

in gas theory. 

The entropy of our ensemble is 

and the total energy 

(this, and not E itself, is to be considered in conjunc-

tion with S ) . Thus U, S, NE are expressed by p . 

Instead of inverting the last relationship, i.e., express-

ing p by E , it is more practical to determine the 
temperature T of the equilibrium mixture, and to reduce 

everything to this. This is done as follows: Our equi-

librium mixture is brought into contact with a heat 
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reservoir of temperature T' , and the energy NdE is 

transferred to it from that reservoir- The two laws of 

thermodynamics imply, then, that the total energy must 

remain unchanged, and that the entropy must not decrease-

Consequently, the heat reservoir loses the energy NdE , 

and therefore its entropy increase is , and we 

must now have 

On the other hand, must hold according to whether 

because the colder body absorbs energy from the 

warmer — consequently implies 

Hence 

Therefore U, S, NE are now all expressed as functions of 

the temperature. 

The analogy of the expressions obtained above 

for the entropy, equilibrium ensemble etc., with the corre-

sponding results of the classical thermodynamical theory 

is striking. First, the entropy - Nk Tr (U In U) • 
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is a mixture of the ensembles with the 

relative weights -systems, 

Nw2 * -systems,... . The Boltzmann entropy of this 

ensemble is obtained with the aid of the "thermodynamical 

p r o b a b i l i t y " I t is its K fold 
p o 1 

logarithm. Since N is large, we may approximate the 

factorial by the Stirling formula, and 

then becomes essentially 

~ and this is exactly - Nk Tr (U In U) . 

Furthermore, if we had the equilibrium ensemble 

(we neglect the normalization f a c t o r . this is equal 

to 

therefore a mixture of the states 

of the stationary states with the e n e r g i e s a n d 

with the respective (relative) weights 

If an energy value is multiple, say 

then appears in the equilibrium 

ensemble with the weight 
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i.e., the correctly normalized mixture 

Φ_ 

(cf. the beginning of IV-3-) appears with the weight 

ve 

W 

But the classical "canonical" ensemble is defined in ex

actly the same way (aside from the appearance of the 

specifically quantum mechanical form 

7  <  Γ [ .  J  Η -  · · ·  •  P 1 ,  , )  ) • •  

1 ν 

ο η 1 
this is known a3 Boltzmann1s Theorem-

For T —^ O , the weights 

?n 
e~ *T 

approach ι , therefore our U tends to 

Σ 
n=l 

Pl· η 

Consequently, U ~ 1 is the absolute equilibrium state, 

if no energy limitations apply — a result that we had 

already obtained in IV-3- We see that the "a priori equal 

probability of the quantum orbits" (i.e., of the simple, 

non-degenerate ones — in general the multiplicity of the 

eigenvalues is the "a priori" weight, cf. discussion above) 

follows automatically from this theory. 

It remains to ascertain how much can be said non-

thermodynamically about the equilibrium ensemble U of 

given energy — i.e., only from the fact that U is 

stationary (does not change in the course of time, process 

2.), and that it remains unchanged in all measurements 
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which do not affect the energy (i.e., in measurements of 

quantities that are measurable simultaneously with the 

energy, process l. with commutative 

eigenfunctions of H ) . 
Because of the differential equation 

the former means only that H U com-

mute- The latter means that if are usable, as 

a complete eigenfunction set of H , then 

are also eigenfunctions of U - Let the 

corresponding H-eigenvalues be those of U , 

then we can replace by 

for H , and therefore these are also eigenfunctions of U 

from which it follows that Therefore, a func-

tion F(x) with can be con-

structed, and It is clear that this is 

sufficient, and also that it implies the commutativity of 

H and U . 

Hence there results . , but a determina-

tion of F(x) (it is, as we know 

is not accomplished. From Tr U = 1, 

Tr it follows that 

but with this, all that this method can furnish us Is 

exhausted. 

THE MACROSCOPIC MEASUREMENT 

Although our entropy expression, as we saw, is 

completely analogous to the classical entropy, it is still 
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surprising that it is invariant in the normal evolution in 

time of the system (process 2.), and only increases with 

measurements (process 1.) — in the classical theory (where 

the measurements in general played no role) it increased 

as a rule even with the ordinary mechanical evolution in 

time of the system. It is therefore necessary to clear up 

this apparently paradoxical situation. 

The normal classical thermodynamical considera

tion runs as follows: One could take a container of 

volrne Ύ , in which M molecules of a gas (for simplicity, 

an ideal gas) of temperature T are present in the right 

half (volume ^/2 , separated by a partition from the 

other half). If we were to expand this gas isothermally 

and reversibly to the volume by driving back the partition 

with the gas pressure, utilizing the mechanical work that 

this performs, and by keeping the gas temperature constant 

by means of a large heat reservoir of temperature T ) , 

then the entropy outside (in the reservoir) would decrease 

by MK In 2 (cf. Note τ 95), and therefore the gas entropy 

could increase by the same amount. On the other hand, if 

we simply remove the partition, the gas diffuses into the 

free left half, the volume increases to <Y — i.e., the 

entropy increases by MK In 2 without the corresponding 

compensation taking place. The process is consequently 

irreversible, for the entropy has increased in the course 

of the simple mechanical evolution in time of the system 

(namely, in diffusion). Why does our theory give nothing 

similar? 

This situation is best clarified if we set 

M = 1 . Thermodynamics is still valid for such a one-

molecule gas, and it is true that its entropy increases by 

κ In 2 if its volume is doubled. Nevertheless, this 

difference is κ In 2 actually only so long as one knows 

no more about the molecule than that it is found in the 

volume Ύ/2 or <Ϋ, respectively. For example, if the 

molecule is in the volume iZ , but it is known whether it 
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is In the right side or left side of the middle of the 

container, then it suffices to insert a partition in the 

middle and allow this to be pushed (isothermally and re-

versibly) by the molecule to the left or right end of the 

container. In this case, the mechanical work κ T In 2 

is performed, i·e., this energy is taken from the heat 

reservoir. Consequently, at the end of the process, the 

molecule is again in the volume Ύ , but we no longer know 

whether it is on the left or right of the middle· Hence 

there is a compensating entropy decrease of κ In 2 (in 

the reservoir). That is, we have exchanged our knowledge 
ρ op 

for the entropy decrease κ In 2 . Or, the entropy is 

the same in the volume Ϋ as in the volume tV/2 , provided 

that we know in the first mentioned case, in which half of 

the container the molecule is to be found. Therefore, if 

we knew all the properties of the molecule before diffu

sion (position and momentum), we could calculate for each 

moment after the diffusion whether it is on the right or 

left side, i.e., the entropy has not decreased. If, how

ever, the only information at our disposal was the macro

scopic one that the volume was initially <Ϋ/2 , then the 

entropy does increase upon diffusion-

For a classical observer, who knows all coordi

nates and momenta, the entropy is therefore constant, and 

is in fact 0 , since the Boltzmann "thermodynamical 

probability" is l (cf· the reference in Note 201 ); just 

POP 
L- Szilard has (see reference in Note 19^) shown that 

one cannot get this "knowledge" without a compensating 

entropy increase κ In 2 · In general, κ In 2 is the 

"thermodynamic value" of the knowledge, which consists of 

an alternative of two cases. All attempts to carry out the 

process described above without the knowledge of the half 

of the container in which the molecule is located, can be 

proved to be invalid, although they may occasionally lead 

to very complicated automatic mechanisms. 
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as in our theory for states, since these again 

correspond to the highest possible state of knowledge of 

the observer relative to the system. 

The time variations of the entropy are then based 

on the fact that the observer does not know everything, 

that he cannot find out (measure) everything which is 

measurable in principle. His senses allow him to perceive 

only the so-called macroscopic quantities. But this 

clarification of the apparent contradiction mentioned at 

the outset imposes on us the obligation of investigating 

the precise analog of the classical macroscopic entropy for 

the quantum mechanical ensemble, i.e., the entropy as seen 

by an observer who cannot measure all quantities, but only 

a few special quantities, namely, the macroscopic ones, and 

even these, under certain circumstances, with only limited 

accuracy• 

In III.3•, we learned that all measurements with 

limited accuracy can be replaced by absolutely accurate 

measurements of other quantities which are functions of 

these, and which have discrete spectra. If now 3? is such 

a quantity, and R is its operator, if are 

the distinct eigenvalues, then the measurement of 9i is 

equivalent to the answering of the following questions: 

In fact, we can also 

say directly: Assume that © , with the operator S , is 

to be measured with limited accuracy — say one wishes to 

determine within which interval 

it lies. This is 

then a case of answering all these questions "Does S lie 

in 

Such questions now correspond, by III•5•, to 

projections E whose quantities <S (which have only the 

two values 0, i) are actually to be measured. In our 

examples, the 6 are the functions 

in which 
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or the functions G- ( S ), η = 0, + 1, + 2, . . . , in which 

Gn(X) 

1  '  f o r  c n-l  <  λ  - 
cn 

O , otherwise 

— and. the corresponding E are the F1n(R) an̂  Gn(S) 

respectively. Therefore, instead of giving the macro-

scopically measurable quantities 3 (together with the 

(macroscopic) measurement precision obtainable, we may 

equivalently give the questions 6 which are answered by 

macroscopic measurements, or their projections E (cf. 

111-5·)· This can be viewed as the characterization of a 

macroscopic observer. The specification of his E . (Thus, 

classically, one might characterize him by stating that he 

can measure the temperature and the pressure in each cm·* 

of the gas volume [perhaps with certain limitations of 

precision], but nothing else)·203 

Now it is a fundamental fact with macroscopic 

measurements that everything which is measurable at all, 

is also simultaneously measurable, i.e., that all questions 

which can be answered separately can also be answered 

simultaneously, i.e., that all the E commute. The reason 

that the non-simultaneous measurability of quantum mechani

cal quantities has made such a paradoxical impression is 

just that this concept is so alien to the macroscopic 

method of observation. Because of the fundamental impor

tance of this point, it is best to discuss it somewhat more 

in detail. 

Let us consider the method by which two non-

simultaneously measurable quantities [e.g., the coordinate 

q and the momentum ρ (cf. III.b. ) ] can be measured 

simultaneously with limited precision. Let the mean errors 

2 0 λ  
This characterization of the macroscopic observer is due 

to E. Wigner· 
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be ε, η respectively (according to the uncertainty 

principle, εη ~ h ). The discussion in III.4. showed 

that with such precision requirements simultaneous measure

ment is indeed possible: the q (position) measurement 

is performed with light wave lengths which are not too 

short, the ρ (momentum) measurement is performed with 

light wave trains which are not too long· If everything 

is properly arranged, then the actual measurements con

sist in detecting two light quanta in some way, e.g., by 

photographing: one (in the q measurement) is the light 

quantum scattered by the Compton effect, the other (in the 

p-measurement by means of the Doppler effect) is reflected, 

changed in frequency and then, in the determination of this 

frequency, is deflected by an optical device (prism, dif

fraction grating). At the end of the experiment therefore, 

there are two light quanta or two photographic plates, and 

from the directions of the light quanta, or the blackened 

places on the plates, we must calculate q and ρ · But 

we must emphasize here that nothing prevents us from 

determining (with arbitrary precision) the two directions 

mentioned, or the blackened places, because these are 

obviously simultaneously measurable quantities (they are 

momenta or coordinates of two different objects)· However, 

excessive precision at this point is not of much help for 

the measurement of q and ρ · As was shown in III Λ., 

the connection of these quantities with q and ρ is 

such that the uncertainties ε, η remain for q and ρ 

(even if the above quantities are measured with greater 

precision), and the apparatus cannot be arranged so that 

εη « h · 

Therefore, if we introduce the two directions 

mentioned, or the blackened places themselves as physical 

quantities (with operators Q', P' )> then we see that 

Q', P' are commutative, but the operators Q, P belonging 

to q, ρ can be expressed by means of them with no higher 

precision than e, η respectively. Let the quantities 

belonging to Q', P1 be q1, p' . The interpretation that 
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the actually macroscopically measurable quantities are not 

the q, ρ themselves but the q', p* is a very plausible 

one (indeed the q·, p1 are in fact measured), and it is 

in accord with our postulate of the simultaneous measura-

bility of all macroscopic quantities. 

It is reasonable to attribute to this result a 

general significance, and to view it as disclosing a 

characteristic of the macroscopic method of observation. 

According to this, the macroscopic procedure consists of 

the replacing of all possible operators A,B,C,... , which 

as a rule do not commute with each other, by other opera

tors A1,B',C1,··· (of which these are functions to 

within a certain approximation) which do commute with each 

other- Since we can just as well denote these functions of 

A1,B1,C1,... themselves by Α',Β',Ο',··· > we may also say 

this: A',B1,C1,... are approximations of the A,B,C,... , 

but commute exactly with one another. If the respective 

numbers ε^,ε^,e^,... give a measure for the magnitudes of 

the operators A1 - A, B1 - B, C' - C,·•· , then we see 

t h a t  € A e g  w i l l  b e  o f  t h e  o r d e r  o f  m a g n i t u d e  o f  A B - B A  

(that is, 4 0 > generally), etc. — this gives the limit 

of the approximations which can be achieved. It is, of 

course, advisable, in enumerating the A,B,C,··· to 

restrict oneself to those operators whose physical quanti

ties are inaccessible to macroscopic observation, at least 

within a reasonable approximation. 

These wholly qualitative developments remain an 

empty program so long as we cannot show that they require 

only things which are mathematically practicable. There

fore, for the characteristic case Q, P , we shall discuss 

further the question of the existence of the above Q1, P1 

on a mathematical basis- For this purpose, let e, η be 

two positive numbers with ε η = . We seek two commuting 

Q', P1 such that Q,1 - Q, P' - P (in a sense still to be 

defined more precisely), have the orders of magnitude e, η 

respectively· 
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We do this with quantities which are 

measurable with perfect precision, i.e., Q,1, P' have pure 

discrete spectra; since they commute, there is a complete 

orthonormalset consisting of the eigenfunctions common to 

both, (cf. II.10. ). Let the corresponding 

eigenvalues of and 

respectively. Then 

Arrange their measurement in such a manner, that it creates 

one of the states measure a quantity 91 

whose operator R has the eigenfunctions and 

distinct eigenvalues and then Q', P 1 are 

functions of R . That this measurement implies a measure-

ment of Q and P in approximate fashion is clearly 

implied by this: In the state the values of Q, P 

are expressed approximately by the respective values of 

That is, their dispersions about 

these values are small. These dispersions are the 

expectation values of the quantities 

They are the measures for the squares of the differences 

of Q' and Q, P' and P respectively, i.e., they must 
2 ? 

be approximately e and r\ respectively. We therefore 

require 

Instead of speaking of it is then more appro-

priate only to seek a complete orthonormal set 



6 0 8 VON NEUMANN 

for which, for suitable choice of a 1,a 2,... and 

b^b2> •' • > the above estimates hold. 

Individual <u (with | U || = 1 ) > f°r which 

(for suitable a, b) 

are known from III.^.: 

Hence, because of we have again 

, and we choose a = a, b = p . We now 

must construct a complete orthonormal set with the help of 

these * . Since a is the Q- and p the P-ex-

pectation value, it is plausible that p, a should each 

run through a set of numbers independently of each other, 

and in fact, in such a way that the p-set has approxi-

mately the density e and the a-set approximately the 

density ri . It proves practical to choose the units 

i.e., 

ought then to correspond to the 
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It is obviously irrelevant that we 

have two indices n, v in place of the one n . 

However, these are not yet orthogonal. 

(They are normalized, however, and they satisfy 

If we now orthogonalize them by the E. Schmidt process (in 

order, cf. II.2., proof of THEOREM 8.), then we can prove 

the completeness of the resulting normalized orthogonal set 

without any particular difficulties, and can also 

establish the estimates 

with certain fixed C . A value C —Go has been obtained 

in this way, and it could probably be reduced. The proof 

of this fact leads to rather tedious calculations, which 

require no new concepts, and we shall omit them. The 

factors C 6o are not important, since st] = Yi/bn 
measured in macroscopic (CGS) units is exceedingly small 

(c. io" 2 8) . 

Summing up, we can then say that it is justified 

to assume the commutativity of all macroscopic operators, 

and in particular the commutativity of the macroscopic 

projections E introduced above. 

The E correspond to all macroscopically answer-

able questions 6 , i.e., to all discriminations of alter-

natives in the system investigated, that can be carried 

out macroscopically. They are all commutative. We can 

conclude from II•5•, that 1 - E belongs to them along 

with E , and that EP, E + F - E F , E - E F belong along 

with E, F • It is reasonable to assume that there are 

only a finite number of them: • We introduce 

the notation and consider all 

2 n products E 1 ' ••• E n " (s 1,•••,s n = + ) . Any 
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two different ones among these have the product zero: For 

if and are two 

such, and then there appear in their product the 

factors i.e., 

1 - E , whose product is zero- Each E y Is the sum of 

several such products: Indeed, 

Among these products consider the ones which are different 

from zero. Call them . (Evidently 

but actually even _ since these must occur among 

the and be . Now clearly: 

f o r : each E is the sum of several E 1 

' | i v 

(From the latter it also follows that It should 

be noted that can never occur, unless 

or . Otherwise, 

would be sums of several E 1 , and therefore E' the sum « p 
of > 2 terms E^ (possibly with repetitions). By II-4., 

THEOREMS 15>, 16., these would all differ from one another, 

since their number is > 2 and all are , they also 

differ from E^ — therefore their product with would 

be zero. Hence the product of their sum with would 

also be zero, but this contradicts the assertion that the 

sum is 

The properties corresponding to the 

are then macroscopic properties of the following 

type: None is absurd. Every two are mutually exclusive. 

Each macroscopic property obtains by disjunction of several 

of them. None of them can be resolved by disjunction into 

two sharper macroscopic properties. therefore 

represent the furthest that we can go in macroscopic dis-

crimination, for they are macroscopically indecomposable. 
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In the following, we shall not require that their 

number be finite, but only that there exist macroscopically 

indecomposable properties Let their projec-

tions be all again different from zero, 

mutually orthogonal, and each macroscopic E the sum of 

several of them. 

Therefore 1 is also a sum of several of them. 

If an E^ did not occur in this sum, it would be orthog-

onal to each term and hence to the sum, that is to i : 

which is impossible. Therefore 

We drop the prime notation: 

and The closed linear manifolds belonging to 

these will be called and their dimension 

numbers s 1 , s 2 , ... . 

If all the , all one dimension-

al, then and because 

, the would form a complete orthonormal 

set. This would mean that macroscopic measurements would 

themselves make a complete determination of the state of 

the observed system possible. Since this is ordinarily 

not the case, we have in general , and in fact, 

In addition, it should be observed that the E n , 

which are the elementary building blocks of the macroscopic 

description of the world, correspond in a certain sense to 

the ordinary cell division of phase space in the classical 

theory. We have already seen that they can reproduce the 

behavior of non-commutative operators in an approximate 

fashion, in particular, that of Q, P , which are so 

important for phase space. 

Now, what entropy does the mixture U have for 

a macroscopic observer whose indecomposable projections are 

E^Eg,... 1 Or, more precisely, how much entropy can such 

an observer maximally obtain by transforming U into V 

— i.e., what entropy decrease (under suitable conditions, 

naturally this decrease may be can he produce, under 
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the most favorable circumstances, in external objects as 

compensation for the transition 

First, it must be emphasized that he cannot 

distinguish between each two ensembles U, U' , if both 

give the same expectation value to E n for each 

n = 1,2,... , that is, if 

1,2,... )• After some time, of course, the discrimination 

may become possible, since U, U' change according to 

2., and 

2 Ok 
must no longer hold. But we considered only measure-

ments which are carried out immediately. Under the above 

conditions we may therefore regard U, U' as indistin-

guishable- Furthermore, the observer can also use only 

such semi-permeable walls which transmit the <t> of some 

E n and reflect the remainder unchanged. This possibility 

suffices, as can be seen without difficulty. By means of 

the method of V-2-, to transform a 

20b 
If E n commutes with H , and therefore with A , the 

equality still holds because 

But all E Q , i-e-, all macroscopically observable quan-

tities, are in no way-all commutative with H . Indeed, 

many such quantities, for example, the center of gravity of 

a gas in diffusion, change appreciably with t , i-e-, 

Tr (UE^) is not constant. Since all macroscopic quantities 

do commute, H is never a macroscopic quantity, i.e., the 
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Into a 

reversibly, so that the entropy difference is still 

the entropy of 

U' equals To be sure, in order that 

such U' with Tr U' = 1 exist in general, the Tr ^ , 

i.e., the numbers s n , must be finite. We therefore 

assume that all s n are finite. U' has the s^fold 

eigenvalue x 1 , the s 2-fold eigenvalue x 2,- - - . There-

fore - U' In U' has the s^fold eigenvalue 

the s 2-fold eigenvalue Consequently 

Tr implies 

and the entropy Is equal to 

Because of 

therefore the entropy is equal to 
For arbitrary , the entropy must 

energy is not measured macroscopically with complete preci-

sion. This is plausible without additional comment. 
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also be equal to 

because, if we set 

then and since U, U' are indis-

tinguishable, they have the same entropy. 

We must also mention the fact that this entropy 

always exceeds the customary entropy: 

and that the equality holds only for 

By t h e r e s u l t s o f V - 3 - , t h i s i s c e r t a i n l y t h e c a s e i f 

can be obtained from TJ by several (not necessarily 

macroscopic) applications of the process 1. — because on 

the left we have - K Tr (U' In U') , and 

means the same as We take an orthonormal set 

which spans the closed linear manifold 

a»n belonging to • Because of 
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all form a complete 

orthonormal set. Let R be an operator belonging to these 

eigenfunctions (with only distinct eigenvalues) and SH its 

physical quantity. In the measurement of 9J , we get from 

U (by I. ) 

Then, if we set 

the form an orthonormal set which spans 

the same closed linear manifold as the 

Therefore the 

also form a complete orthonormal set, and we form an 

operator S with these eigenfunctions, and the corre-

sponding physical quantity S . We must note the validity 

of the following formulas: 

In the measurement of , therefore, U" becomes (by 1•) 



6 1 6 VON NEUMANN 

C o n s e q u e n t l y , two p r o c e s s e s 1. s u f f i c e t o t r a n s f o r m U 

i n t o U' — a n d t h i s i s a l l we n e e d e d f o r t h e p r o o f . 

T h i s e n t r o p y f o r s t a t e s 

i s no l o n g e r s u b j e c t t o t h e i n c o n v e n i e n c e s o f t h e " m a c r o -

s c o p i c " e n t r o p y : I n g e n e r a l , i t i s n o t c o n s t a n t i n t i m e 

( I . e . , i n p r o c e s s 2 . ) , and n o t = 0 f o r a l l s t a t e s 

. I n f a c t : t h a t t h e T r (UE^) , f r o m w h i c h o u r 
e n t r o p y i s f o r m e d , a r e n o t t i m e c o n s t a n t i n g e n e r a l , w a s 
d i s c u s s e d I n N o t e 20h. i t i s e a s y t o d e t e r m i n e when t h e 
s t a t e h a s t h e e n t r o p y 0 : S i n c e 

a l l summands 
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in the entropy expression a r e A l l these must there-

fore be That is, 

The former means that the latter that 

, but since 

this implies 

or: The latter can certainly not 

hold for two different n , but also, it cannot hold at all 

because then would always be true, and therefore 

since 

Hence, for exactly one is in 2R n , and then 

Since we determined that in general all 

this is impossible. That is, our entropy is always > 0 . 

Since the macroscopic entropy is time variable, 

the next question to be answered is this: does it behave 

like the entropy of the phenomenological thermodynamics in 

the real world, i.e., does it increase predominantly? This 

question is answered affirmatively in classical mechanical 

theory by the so-called Boltzmann H-theorem. In that, 

however, certain statistical assumptions, the so-called 

"disorder assumptions" must be made. In quantum 

2 05 
^For the classical H-theorem, see Boltzmann, Vorlesungen 

iiber G-astheorle, Leipzig, 1896, as well as the extremely 

instructive discussion by P. and T- Ehrenfest in the article 

cited In Note 185- The "disorder assumptions" which can 

take the place (in quantum mechanics) of those of Boltzmann 
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mechanics, it was possible for the author to prove the 

corresponding theorem without such assumptions.20̂  Since 

the detailed discussion of this subject, as well as of the 

ergodic theorem closely connected with it (cf. the refer

ence in Note 206, where this theorem is also proved) would 

go beyond the scope of this volume, we cannot report on 

these investigations. The reader who is interested in 

this problem can refer to the treatments in the references. 

have been formulated by ¥· Paiili (Sommerfeld-Pestschrift, 

1928), and the H-theorem is proved there with their help. 

More recently, the author also succeeded in proving the 

classical-mechanical ergodic theorem, cf. Proc- Nat. Ac., 

Jan. and March, 1932, as well as the improved treatment of 

G. D. Birkhoff, Proc. Nat. Ac., Dec- 1931 and March, 1932. 

206Z- Physik, 57 (1929)· 
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THE MEASURING PROCESS 

1• FORMULATION OF THE PROBLEM 

In the discussions so far, we have treated the 

relation of quantum mechanics to the various causal and 

statistical methods of describing nature. In the course 

of this we found a peculiar dual nature of the quantum 

mechanical procedure which could not be satisfactorily ex-

plained. Namely, we found that on the one hand, a state * 

is transformed into the state <»1 under the action of an 

energy operator H in the time interval 

so if we write , then 

which is purely causal. A mixture U is correspondingly 

transformed into 

Therefore, as a consequence of the causal change of * 
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into , the states go over into the states 

(process 2. in V-1•)• On the other hand, the 

state D -- which may measure a quantity with a pure dis-

crete spectrum, distinct eigenvalues and eigenfunctions 

undergoes in a measurement a non-causal change 

in which each of the states ^ , $ 2 , .. . can result, and in 

fact does result with the respective probabilities 

That is, the mixture 

obtains• More generally, the mixture U goes over into 

(process 1. in V.1.). Since the states go over into mix-

tures, the process is not causal. 

The difference between these two processes 

is a very fundamental one: aside from the 

different behaviors in regard to the principle of causal-

ity, they are also different in that the former is 

(thermodynamically) reversible, while the latter is not 

(cf. V- 3 • ) • 

Let us now compare these circumstances with those 

which actually exist in nature or in its observation. 

First, it is inherently entirely correct that the measure-

ment or the related process of the subjective perception 

is a new entity relative to the physical environment and 

is not reducible to the latter. Indeed, subjective per-

ception leads us into the intellectual inner life of the 

individual, which is extra-observational by its very nature 

(since It must be taken for granted by any conceivable 

observation or experiment). (Cf- the discussion above.) 

Nevertheless, it is a fundamental requirement of the 

scientific viewpoint — the so-called principle of the 
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psycho-physical parallelism — that it must be possible so 

to describe the extra-physical process of the subjective 

perception as if it were in reality in the physical world 

— i-e·, to assign to its parts equivalent physical 

processes in the objective environment, in ordinary space. 

(Of course, in this correlating procedure there arises the 

frequent necessity of localizing some of these processes 

at points which lie within the portion of space occupied 

by our own bodies. But this does not alter the fact of 

their belonging to the "world about us," the objective 

environment referred to above - ) In a simple example, these 

concepts might be applied about as follows: We wish to 

measure a temperature. If we want, we can pursue this 

process numerically until we have the temperature of the 

environment of the mercury container of the thermometer, 

and then say: this temperature is measured by the 

thermometer. But we can carry the calculation further, 

and from the properties of the mercury, which can be ex

plained in kinetic and molecular terms, we can calculate 

its heating, expansion, and the resultant length of the 

mercury column, and then say: this length is seen by the 

observer. Going still further, and taking the light source 

into consideration, we could find out the reflection of the 

light quanta on the opaque mercury column, and the path of 

the remaining light quanta into the eye of the observer, 

their refraction in the eye lens, and the formation of an 

image on the retina, and then we would say: this image is 

registered by the retina of the observer. And were our 

physiological knowledge more precise than it is today, we 

could go still further, tracing the chemical reactions 

which produce the impression of this image on the retina, 

in the optic nerve tract and in the brain, and then in the 

end say: these chemical changes of his brain cells are 

perceived by the observer. But in any case, no matter how 

far we calculate — to the mercury vessel, to the scale of 

the thermometer, to the retina, or into the brain, at some 
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time we must say: and this is perceived by the observer. 

That is, we must always divide the world into two parts, 

the one being the observed system, the other the observer. 

In the former, we can follow up all physical processes (in 

principle at least) arbitrarily precisely. In the latter, 

this is meaningless. The boundary between the two is 

arbitrary to a very large extent. In particular we saw in 

the four different possibilities in the example above, 

that the observer in this sense needs not to become 

identified with the body of the actual observer: In one 

instance in the above example, we included even the ther

mometer in it, while in another instance, even the eyes 

and optic nerve tract were not included. That this 

boundary can be pushed arbitrarily deeply into the interior 

of the body of the actual observer is the content of the 

principle of the psycho-physical parallelism — but this 

does not change the fact that in each method of descrip

tion the boundary must be put somewhere, if the method is 

not to proceed vacuously, i.e., if a comparison with ex

periment is to be possible. Indeed experience only makes 

statements of this type: an observer has made a 

certain (subjective) observation; and never any like this: 

a physical quantity has a certain value-

Now quantum mechanics describes the events which 

occur in the observed portions of the world, so long as 

they do not interact with the observing portion, with the 

aid of the process 2. (V. 1 . ), but as soon as such an inter

action occurs, i.e., a measurement, it requires the 

application of process l. The dual form is therefore 
P07 justified. However, the danger lies in the fact that 

2 07 N- Bohr, Naturwiss. _1_7 (1929), was the first to point out 

that the dual description which is necessitated by the 

formalism of the quantum mechanical description of nature 

is fully justified by the physical nature of things that it 

may be connected with the principle of the psycho-physical 

parallelism. 
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the principle of the psycho-physical parallelism is vio

lated, so long as it is not shown that the boundary between 

the observed system and the observer can be displaced 

arbitrarily in the sense given above. 

In order to discuss this, let us divide the 

world into three parts: I, II, III. Let I be the system 

actually observed, II the measuring instrument, and III 

the actual observer·20® It is to be shown that the bound

ary can just as well be drawn between I and II + III 

as between I + II and III . (In our example above, in 

the comparison of the first and second cases, I was the 

system to be observed, II the thermometer, and III the 

light plus the observer; in the comparison of the second 

and third cases, I was the system to be observed plus the 

thermometer, II the light plus the eye of the observer, 

III the observer, from the retina on; in the comparison 

of the third and fourth cases, I was everything up to the 

retina of the observer, II his retina, nerve tracts and 

brain, III his abstract "ego.") That is, in one case 2. 

is to be applied to I , and 1. to the interaction between 

I and II + III ; and in the other case, 2. to I + II , 

and 1. to the interaction between I + II and III . (In 

each case, III itself remains outside of the calculation.) 

The proof of this assertion, that both procedures give the 

same results regarding I (this and only this belongs to 

the observed part of the world in both cases), is then our 

problem. 

But in order to be able to accomplish this 

successfully, we must first investigate more closely the 

process of forming the union of two physical systems (which 

leads from I and II to I + II) · 

20̂ The discussion which is carried out in the following, as 

well as that in νΐ·3·, contains essential elements which 

the author owes to conversations with L· Szilard- Cf. also 

the similar considerations of Heisenberg, in the reference 

cited in Note 181. 
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2. COMPOSITE SYSTEMS 

As was stated at the end of the preceding sec-

tion, we consider two physical systems I, II (which do 

not necessarily have the meaning of the I, II above), 

and their combination . In the classical mechan-

ical method of description, I would have k degrees of 

freedom, and therefore the coordinates , in 

place of which we shall use the one symbol q ; corre-

spondingly, let II have 1 degrees of freedom, and the 

coordinates which shall be denoted by r . 

Therefore, has degrees of freedom and the 

coordinates , or, more briefly, 

q, r . In quantum mechanics then, the wave functions of 

I have the form , those of II the form |(r) and 

those of the form _ - I n the corresponding 

Hilbert spaces , the inner product is 

defined by ' dr and 

dq dr respectively. The physical quan-

tities of I, II, I + II are correspondingly the (hyper-

maximal) Hermitian operators and A in 

and respectively. 

Each physical quantity in I Is naturally also 

one in , and in fact its A is to be obtained from 

its A in this way: to obtain consider r as 

a constant and apply A to the q function $(q, r) • 

This rule of transformation is correct in any case for the 

coordinate and momentum operators and 

(cf. 1-2. ), and it conforms with the principles I., II• in 

2 0 9 

It can easily be shown that if A is Hermitian or hypermaximal, A is also. 
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2 1 0 
IV-2. We therefore postulate them generally. (This Is 

the customary procedure In quantum mechanics•) 

In the same way, each physical quantity in II 

is also one in I + II , and its A gives its A by the 

same rule: equals if in the latter 

expression, q is taken as constant, and is 

considered as a function of r • 

If is a complete ortho-

normal set in one in 

9! 1 1 , then "is 

clearly one in • The operators can there-

fore be represented by matrices , and 

{Q!mn|m'n'] respectively 

We shall make frequent use of this. The matrix representa-

tion means that 

and 

i.e., 

21°Por l. this is clear, and for ll. also, so long as only polynomials are concerned. For general functions, it can be inferred from the fact that the correspondence of a resolution of the Identity and a Hermitian operator is not disturbed in our transition 211 Because of the large number and variety of indices, we use this method of denoting the matrices, which differs somewhat from the notation used thus far. 
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In particular the correspondence means that 

i.e., In an analogous fashion, the correspondence implies that A statistical ensemble in I + II is character-ized by its statistical operator U or by its matrix This also determines the statistical proper-ties of all quantities in I + II , and therefore the properties of the quantities iji I also- Consequently there also corresponds to it a statistical ensemble in I alone. In fact, an observer who could perceive only I , and not II , would view the ensemble of systems I + II as one such of systems I . What is now the statistical operator u or its matrix , which belongs to this I ensemble? We determine it as follows: The I quantity with the matrix has the matrix as an I+II quantity, and therefore, by reason of a calcula-tion in I , it has the expectation value while the calculation in gives 
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In order that both expressions be equal, we must have 

In the same way, our I + II ensemble, If only 
II Is considered and I is ignored, determines a II 
ensemble, with a statistical operator U and matrix 

By analogy, we obtain 

We have thus established the rules of corre-
spondence for the statistical operators of I, II, I + II , 
i.e., u , U, U . They proved to be essentially different 
from those which control the correspondence between the 
operators A, A, A of physical quantities. 

It should be mentioned that our u , U, u corre-
spondence depends only apparently on the choice of the 
complete orthonormal sets and • Indeed it 
was derived from an invariant condition (which is satisfied 
by this arrangement alone): Namely, from the requirement 
of agreement between the expectation values of A and of 
A , or of those of A and of A . 

V expresses the statistics in I + II , U and 
U those statistics restricted to I or II respectively. 
There now arises the question: do u, II determine u 
uniquely or not? In general one will expect a negative 
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answer because all "probability dependencies" which may 
exist between the two systems disappear as the information 
is reduced to the sole knowledge of U and U , i.e., of 
the separated systems I and II . But if one knows the 
state of I precisely, as also that of II , "probability 
questions" do not arise, and then , too, is pre-
cisely known. An exact mathematical discussion is, how-
ever, preferable to these qualitative considerations, and 
we shall proceed to this. 

The problem is, then: For two given definite 
matrices and , find a third definite 
matrix {Vi|m'n'} > such that 

(Prom 

it then follows directly that 

i-e-, the correct normalization is obtained.) This prob-
lem is always solvable, for example, 
is always a solution (it can easily be seen that this 
matrix is definite), but the question arises as to whether 
this is the only solution-

We shall show that this is the case if and only 
if at least one of the two matrices is 
a state. First we prove the necessity of this condition, 
i.e., the existence of several solutions if both matrices 
correspond to mixtures. In such a case (cf. IV-2.) 
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also, differing 
by more than a constant factor, 

1 

We easily verify that each 

is a solution- Then can be chosen in an in-
finite number of ways: Because of only 
three of the four equations are independent; therefore, 

, and in order that 
all be > 0 , we must require 
which is the case for infinitely many • Now different 

lead to different because the 
are linearly independent, 

since the are such, as well as the 

Next we prove the sufficiency, and here we may 
assume that corresponds to a state (the other case 
is disposed of in the same way). Then and since 
the complete orthonormal set ... was arbitrary, we 
can assume has the matrix 
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Therefore 

In particular, for 

but since all because of the definiteness of 
, therefore in this case 

, and hence, be-
cause of the definiteness of also = o 
(cf. II.5-, THEOREM 19-), where m1, n' are arbitrary. 
That is, it follows from that 0 , and 
because of the Hermitian nature, this also follows from 

For m = m' = 1 however, this gives 

Consequently, as was asserted, the s o l u t i o n i s 
determined uniquely. 

We can thus summarize our result as follows: A 
statistical ensemble in I + II with the operator 

is determined uniquely by the statistical 
ensembles determined by it in I and II individually, 
with the respective operators and U = 

, if and only if the following two conditions are 
satisfied: 
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it follows that, by multiplication of and vn|ni 
with two reciprocal constant factors, we can obtain 

But then we see that 
2• Either 

(Indeed means that 

and therefore and correspondingly for 
by analogy the same is true with 
We shall call U and U the projections of u 

in I and II respectively.212 
We now apply ourselves to the states of I + II , 

. The corresponding wave functions can 
be expanded according to the complete orthonormal set 

We can therefore replace them by the coefficients 
which are subject only to the condition 

that 

be finite. 

212The projections of a state of I + II are in general 
mixtures in I or II ; cf. above. This circumstance was 
discovered by Landau, Z- Physik (1 927) -
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* We can define two operators F, F by 

( F - ) 

These are linear, but have the peculiarity of being de-
fined in and respectively, and of taking on 
values from and respectively. Their relation 
is that of adjoints, since obviously 
(the inner product on the left is to beformed in 1 and 
that on the right is to be formed in Since the 
difference of SR ̂  and is mathematically unimportant, 
we can apply the results of 11.11: then, since we are 
dealing with integral operators, and are 
equal to 

and are therefore finite- Consequently F, F are con-
tinuous, 

in fact are completely continuous operators, and 
as well as __ are definite operators, 

If we again consider the difference between SĤ  
-st-and then we see that F F is defined and assumes 

values in , and similarly in SB11 . 
Since comes out equal, to 

F has the matrix [by use of the complete ortho-
normal sets and respectively — note that 
the latter is a complete orthonormal set along with 

likewise has the matrix (with the 
same complete orthonormal systems). Therefore 
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have the matrices 

(using the complete orthonormal set and 

(using the complete orthonormal set 
On the other hand, has the matrix 

(using the complete orthonormal set 
so that its projec-

tions in I and II , U and U have the matrices 

and 

respectively (with the complete orthonormal sets given o i o 

above) • J Consequently 

( U . ) 

Note that the definitions (F.) and the equations 
(U.) make no use of the hence they are valid 
independently of these. 

The operators U , U are completely continuous, 
and by 11.11. and IV.3-, they can be written in the form 

21^ 
The mathematical discussion is based on a paper by 

E. Schmidt, Math. Ann- 83_ (1907)-
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i 

in which the form a complete orthonormal set in , 
the one in 5R11 and all . We now neglect 
theterms in each of the two formulas with w^ = 0 or 

respectively, and number the remaining terms with 
•• • Then the and again form ortho-

normal, but not necessarily complete sets; the sums 

appear in place of the two 

where M', M" can be equal to » or finite- Also, all 
are now > 0 . 
Let us now consider a and 

therefore 
Furthermore 

therefore, in particular, 

then form an orthonormal set in R"1""1" and they are eigen-
functions of U , with the same eigenvalues as the 
for u That is, each eigenvalue of u is 
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also one of U with at least the same multiplicity. 
Interchanging u , U shows that they have the same eigen-
values with the same multiplicities. The and 
therefore coincide except for their order. Hence M' = 

, and by re-enumeration of the we can obtain 
And if this occurs, then we can clearly 

choose 

in general. Then % 

Therefore 

(V.) 
Let us now extend the orthonormal set 

to a complete , .. . , . . and likewise 
to .. (each of the two sets 
and can be empty, finite or in-

finite, and in addition each set independently of the other 
set). We have observed before, that (F.), (U- ) make no 
reference to the . We may therefore use (V. ), as 
well as the above construction, and let them determine the 
choice of the complete orthonormal sets ••• and 

• • Specifically we let these coincide with the 
•, •• and ,••• respec-

tively. Now let correspond to 
.. different from one another, 

likewise). Then 
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Therefore 

or equivalently 

By suitable choice of the complete orthonormal 
sets and we have thus established that each 
column of the matrix contains at most one element 

0 (that this is real and 0 , namely , is un-
important for what follows)• What is the physical meaning 
of this mathematical statement? 

Let A be an operator with the eigenfunctions 
•• and with only distinct eigenvalues, say 
• • ; likewise B with • and ... . 

A corresponds to a physical quantity in I , B to one in 
II • They are therefore simultaneously measurable. It is 
easily seen that the statement "A has the value and 
B has the value bn" determines the state 

, and that this has the probability 
in the state 

Consequently, our statement means that A, B are simul-
taneously measurable, and that if one of them was measured 
in , then the value of the other is determined by it 
uniquely. (An with a l l 0 cannot result, be-
cause its total probability 

cannot be 0 , if is ever observed — therefore for 
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exactly one n, ; likewise for .) That is, 
there are several possible A values in the state 
(namely, those for which 

7 

i.e., for which there exists an n with 
usually all are such), and an equal number of possible 
B values (those for which 

i 

i.e., for which there exists an m with , but 
establishes a one-to-one correspondence between the 

possible A values and the possible B values. 
If we call the possible m values 

and the corresponding possible n values then 

therefore (M finite or 

hence 
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and therefore 

Hence, when is projected in I or II , it in general 
becomes a mixture, while it is a state in I + II only. 
Indeed, it involves certain information regarding I + II 
which cannot be made use of in I alone or in II alone, 
namely the one-to-one correspondence of the A and B 
values with each other. 

For each we can therefore so choose A, B , 
i-e., the and the , that our condition is satis-
fied; for arbitrary A, B , it may of course be violated. 
Each state then establishes a particular relation 
between I and II , while the related quantities A, B 
depend on • How far detennines them, i.e., the 
and the , is not difficult to answer. If all 
are different and , then U, U (which are determined 
by determine the respective uniquely (cf. 
IV.3.). The general discussion is left to the reader. 

Finally, let us mention the fact that for 
neither U nor U is a state (because all 
For M = 1 they both are: • Then 

We can absorb 
Therefore u, U are states if and only if has 
the form , and in that case they are equal to 

a n d respectively. 
On the basis of the above results, we note: If 
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I is In the state 4>(q) and II in the state |(r) , 

then I + II is in the state 5>(q, r) = 4>(q)§(r) . If on 

the other hand I + II is in a state ®(q, r) which is 

not a product $(q)|(r) , then I and II are mixtures 

and not states, hut Φ establishes a one-to-one correspond

ence between the possible values of certain quantities in 

I and in II . 

Before we complete the discussion of the measur

ing process in the sense of the ideas developed in VI.i. 

(with the aid of the formal tools developed in VI-2·), we 

shall make use of the results of VI·2· to exclude a possi

ble explanation often proposed for the statistical charac

ter of the process 1. (V-1 .) - This rests on the following 

idea: Let I be the observed system, II the observer. 

If I is in a state υ = Ρ[φ] before the measurement, 

while II on the other hand is in a mixture 

then I + II is a uniquely determined mixture U , and in 

fact, as we can easily calculate from VI-2·, 

If now a measurement of a quantity A takes place in I , 

then this is to be regarded as an interaction of I and 

II · This is a process 2. (V.i.), with an energy operator 

H . If it has the time duration t , then we obtain 

3· DISCUSSION OF THE MEASURING PROCESS 

00 

n= 1 

OO 
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from U , and In fact 

OO 

If now each 

were of the form ) > where the Ψη are the 

eigenfunctions of A , and the ηη any fixed complete 

orthonormal set, then this intervention would have the 

character of a measurement. For it transforms each state 

φ of I into a mixture of the eigenfunctions ψ of A . 

The statistical character therefore arises in this way: 

Before the measurement I was in a (unique) state, but II 

was a mixture — and the mixture character of II has, in 

the course of the interaction, associated itself with 

I + II , and in particular, it has made a mixture of the 

projection in I . That is, the result of the measurement 

is indeterminate, because the state of the observer before 

the measurement is not known exactly. It is conceivable 

that such a mechanism might function, because the state of 

information of the observer regarding his own state could 

have absolute limitations, by the laws of nature. These 

limitations would be expressed in the values of the wn , 

which are characteristic of the observer alone (and there

fore independent of Φ  )  .  

At this point, the attempted explanation breaks 

down. For quantum mechanics requires that wn = 

(P. Φ ,  Φ )  =  I ( Φ, * ) 12 , i-e·, w_ dependent on Φ  ' ·  
*n 

There might exist another decomposition 

OO 

n=1 
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(the are orthonormal) but this is 
of no use either; because the are (except for order) 
determined uniquely by U' and are therefore 
equal to the 

Therefore, the non-causal nature of the process 
1. is not produced by any incomplete knowledge of the state 
of the observer, and we shall therefore assume in all that 
follows that this state is completely known. 

Let us now apply ourselves again to the problem 
formulated at the end of VI.1. I, II, III shall have the 
meanings given there, and, for the quantum mechanical in-
vestigation of I, II , we shall use the notation of VI.2-, 
while III remains outside of the calculations (cf. the 
discussion of this in VI-l.). Let A be the quantity (in 
I) actually to be measured, ••• its eigen-
functions. Let I be in the state <t>(q) • 

If I is the observed system, II + III the 
observer, then we must apply the process 1., and we find 
that the measurement transforms I from the state into 
one of the states , the probabilities for 
which are respectively . Now, 
what is the method of description if I + II is the ob-
served system, and only III the observer? 

In this case we must say that II is a measuring 
instrument which shows on a scale the value of A (in I) : 
the position of the pointer on this scale is a physical 
quantity B (in II) which is actually observed by III 
(if II is already within the body of the observer, we 
have the corresponding physiological concepts in place of 
the scale and pointer, e.g., retina and image on the retina, 
etc.) Let A have the values ••• , B the values 

... , and let the numbering be such t h a t i s 
associated with 

p i!+ 
This approach is capable of still more variants, which 

must be rejected for similar reasons. 
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Initially, I is in the (unknown) state 
and II in the (known) state , therefore is 
in the state . The measurement (so far 
as it is performed by II on I) is, as in the earlier 
example, carried out by an energy operator H (in I + II) 
in the time t : This is the process 2., which transforms 
the into 

Viewed by the observer III , one has a measurement only 
if the following is the case: If III were to measure 
(by process 1.) the simultaneously measurable quantities 
A, B (in I or II respectively, or both in I + II) , 
then the pair of values a , b n would "have the probability 
0 for , and the probability for m = n • That 
is, it suffices "to look at" II , and A is measured in 
1 • Quantum mechanics then requires in addition 

If this is established, then the measuring 
process so far as it occurs in II , is "explained" theo-
retically, i.e., the division of I | II + III discussed 
in VI.1. is shifted to I + II | III . 

The mathematical problem is then the following. 
A complete orthonormal set .. is given in I • 
Such a set as well as a state in 
R^ , also an (energy) operator H in and a t , are 
to be found so that the following holds. If is an 
arbitrary state in R 1 and 

then must have the form 
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(the cn are naturally dependent on Φ ). Therefore 

P ρ 
IcnI =» I (φ, • )| · (That the latter Is equivalent to 

the physical requirement formulated above was discussed in 

VI.2.) 

In the following we shall use a fixed set 

IijI2,... and a fixed | along with the fixed Φ 1,* 2,••• 

and shall investigate the unitary operator 

"  Ψ- t H  

Δ = e 

instead of H · 

The mathematical problem leads us back to the 

problem solved in VI-2·: there the quantity corresponding 

to our present Φ was given, and we showed the existence 

of c , Φ , In · Now φ , In are fixed and Φ, cR are 

given dependent on Φ , and it remains so to determine a 

fixed Δ that for Φ' = ΔΦ these cn, Φη, In result-

We shall show that such a determination of Δ 

is indeed possible- In this case only the principle is of 

importance to us, i-e·, the existence of any such Δ. 

The further question, whether the 

- 2^tH 
Δ = e 1 

corresponding to simple and plausible measuring arrange

ments also have this property, shall not concern us. In

deed, we saw that our requirements coincide with a plausible 

intuitive criterion of the measurement character in an 

intervention. Furthermore the arrangements in question are 

to possess the characteristics of the measurement. Hence 

quantum mechanics, as applied to observation would be in 

blatant contradiction with experience, if these Δ did 

not satisfy the requirements in question (at least approx

imately).215 Therefore, in the following, only an abstract 

21̂ The corresponding calculation for the case of the posi-
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which satisfies our conditions exactly, shall be given-
Therefore, let the and 

the respectively be two given 
complete orthonormal sets in and respectively. 
(We do not let m, n run over 1,2,... , but over 

.. . This is purely for technical conven-
ience, and is in principle equivalent to the former). Let 
the state be, for s i m p l i c i t y , W e define the 
operator by 

since the as well as the form 
a complete orthonormal set in , this is unitary. 
Now 

therefore 

Hence our purpose is accomplished- We have in addition 

A better overall view of the mechanism of this 
process can be obtained if we exemplify it by concrete 
Schrodinger wave functions, and give H in place of 

The observed object, as well as the observer 

tion measurement discussed in III-^- is contained in a 
paper by Weizsacker, Z. Physik JO (193 0 -
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(i.e., I and II respectively) may be characterized by 
a single variable q and r respectively, running con-
tinuously from . That is, let both be 
thought of as points which can move along a line. Their 
wave functions then have always the form and 
respectively. We assume that their masses m1 and m 2 
are so large that the kinetic energy portion of the energy 
operator can be 

neglected. Then there remains of H only the interaction 
energy part which is decisive for the measurement. For 
this we choose the particular form 

The Schrodinger time dependent differential 
equation then is (for the I + II wave functions 

i.e., 

If, for , then we have 
and therefore 

In particular, if the initial states of I, II are repre-
sented by and respectively, then, In the 
sense of our calculation scheme (if the time t appearing 
therein is chosen to be i) 
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We now wish to show that this can be used by II for a 
position measurement of I , i.e., that the coordinates 
are tied to each other. (Since q, r have continuous 
spectra, they are therefore measurable with only arbitrary 
precision, but not with absolute precision. Hence this can 
be accomplished only approximately. ) 

For this purpose, we wish to assume that 
is different from o only in a very small interval 

the coordinate r of the observer 
before the measurement is very accurately known), in addi-
tion should of course be normalized: 

The probability therefore that q lies in the 
interval , and r in the interval is 

If are to differ by more than. , then 
this is o , i.e., q, r are so very closely tied to each 
other that the difference can never be greater than 

And for this is, equal to 

if we choose , because of the assumptions on 
But since we can choose arbitrarily small 

(they must be different from zero, however), this means 
that q, r are tied to each other with arbitrary close-
ness, and the probability density has the value furnished 
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by quantum mechanics, 1 φ(q.) 12 · 

That is, the relations of the measurement, as we 

had discussed them in IV. 1., and in this section, are 

realized. 

The discussion of more complicated examples, say 

of an analog to our four-term example of IV-I., or the 

control determination of the validity of a measurement 

which II carried out on I , effected by a second ob

server III , can also be carried out in this fashion. It 

is left to the reader. 



V.3 THE ERGODIC BEHAVIOUR OF QUANTUM 
MANY-BODY SYSTEMS 

L^on van Hove 

Synopsis 

By a pertubation technique adapted to the actual properties of gases and solids 
(and possibly also of liquids) we have established in previous papers that under suit
able conditions a quantum many-body system approaches statistical equilibrium as 
far as those physical quantities are concerned which are diagonal in the unperturbed 
representation. This result is now extended to non-diagonal quantities of a type broad 
enough to include all observables of actual interest. A general discussion of the resulting 
ergodic theorem is given, and its implications for classical statistics are briefly analyzed. 
The paper ends with a discussion of a recent article by Ingraham on the application 
of our methods to the case of a very small perturbation. The main arguments of In-
graham are shown to be in error, and the inconsistencies he derives from them are 
thereby disproved. 

1. Introduction. The approach of a quantum many-body system to 
statistical equilibrium has been studied in two previous papers *), to be 
referred to hereafter as S and S', on the basis of a separation of the hamil-
tonian H' into a main term H describing non-interacting plane wave ex
citations (like phonons or Bloch electrons in solids, free particles in gases) 
and a perturbation XV representing their mutual interaction. Using as basic 
representation the eigenstates [a> of H, each of which describes a set of 
plane wave excitations, we founded our treatment on the recognition that 
the matrix elements to be calculated according to perturbation theory 
exhibit remarkable diagonal singularities, i.e. singularities of the form 
δ (a. — a'). A systematic analysis of these singularities made it possible to 
study the time evolution of certain physical quantities A under the as
sumption of incoherent phases for the amplitudes c(a) of the initial state 990 
of the system *) 

φο = J\a.~>dctc(a). ( 1 - 1 )  

Under proper conditions it could be established that in the course of time 
the expectation value of A, which is (we put % = 1) 

<A) t  = <spo\U-tATJt\<po>, U t  = exp[—i(H + XV)t], (1.2) 

*) A detailed definition of our notation is found in S'. 

Originally published in Physica, 25, 268-76 (1959). 
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tends to the equilibrium value <Ayeq  calculated on the basis of micro-

canonical ensemble theory. This was established for operators A diagonal in 
the |a>-representation, in the case of very small perturbation in S and for 

finite XV, i.e. to general order in the dimensionless parameter λ, in S'. 
Our present aim is to extend the general order treatment of S' to a wide 

class of non-diagonal operators B **). This class is composed of the non-
diagonal operators B given by a convergent series, each term of which is a 

product of creation and destruction operators for individual plane wave 
excitations. We assume the number of creation and destruction operators 
in each term of the series to be finite and independent of the large number N 

of particles in the system. In contrast to the diagonal operators A, the class 
of operators B just defined is broad enough to contain all quantities of 
practical interest. Since we will again be able to establish that the ex
pectation value 

<B> t  = <.<po\U- tB υ^φο) (1.3) 

tends to the microcanonical equilibrium value (B)eg  we will have esta
blished, for all practical purposes, the ergodic behaviour of our system, using 
only the properties of the hamiltonian postulated in S' (sections 2 and 7) and 
the incoherent phase assumption for the initial state (1.1). 

The rather broad scope of this result makes it desirable to discuss its 
significance, also in relation to classical statistics. Whereas the derivation 
of our main result 

<B> t  -» (B)ee for ί-> ± oo (1.4) 

is presented in the next section, section 3 will be devoted to this general 
discussion. Section 2 will make free use of the formal technique developed 
and applied in S'. Although the author is fully aware of the complication of 
this technique, he believes that the scope of the results may justify at least 
partially the involved nature of the mathematical methods. Section 3 gives a 
nontechnical discussion which can be largely followed without knowledge of 
the detailed formalism of section 2 and S'. Section 4 presents a refutation of a 
critical discussion of 5 recently published by Ingraham. 

2. Approach to equilibrium for non-diagonal operators. For any operator B 
of the type described above and for any set of diagonal operators A\, ...,An 

the matrix element 

KalVA1VA2V. ..AvBAv+1V...AnV\a'> (2.1) 

can have a δ(α — α')-singularity for the same reasons and with the same 
properties as was the case for the matrix elements (x\VAiV...AnV\<x') 

**) As in S and S '  the adjectives diagonal and non-diagonal will always refer to the |a>-repre-
sentation. 
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considered in S' (see S', section 2). The discussion of this singularity requires 
that (2.1) be written out as a sum over intermediate states In addition to 
having one V replaced by B this sum may differ from the sum by 
the fact that additional intermediate states may have to be introduced in 
between various factors of a single term of B. This would for example be the 
case if and V2 being individual terms in the expansion of V 
in products of creation and destruction operators. In this particular case one 
would obviously insert an additional intermediate state between V\ and V2. 
All considerations presented in S' (section 2) can be repeated for this slightly 
more general case, however, and we can define in addition the concept of 
B'irreducible diagonal part. I t is the diagonal part, i.e. the -singular 
part, of (2.1) which is obtained when in the calculation of (2.1) one leaves 
out the diagonal part of each subproduct of the following type 

(2.2) 

We denote by the diagonal operator defined 
by the /i-irrcducible diagonal part of (2.1). This concept may differ from the 
irreducible diagonal part defined in S' because of the possible occurrence of 
additional intermediate states inside B (these states are allowed to become 
equal to each other, to other intermediate states, to or to and the 
corresponding subproducts, in contrast to the subproducts (2.2), may there-
fore contribute their diagonal part). The new concept can be extended in an 
obvious way to products of the type 

(2.3) 
Its importance will appear presently. 

In analogy to our analysis in S', which made essential use of the quantity 
defined by , we must consider the quantitv defined 

by 
(2.4) 

where is the resolvent (5'.4.1). Reduction of diagonal parts, using (S'.4.4) 
and our definition of B-irreducible diagonal part, readily gives 

(2.5) 
with 

(2.6) 

(2.7) where is the eigenvalue of the diagonal operator Bw for the state 
*) This symbol refers to 
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In analogy to (S' .4.13) we have 
(2.8) 

where the contour y in the complex plane encircles an interval of the real 
axis sufficiently large to include the whole energy spectrum of the system 
and is described counterclockwise. Calculating the expectation value of (2.8) 
for the initial state and using the incoherent phase assumption for the 
amplitudes one obtains 

(2.9) 
The long time limit of this quantity is found by repeating for Yw the dis-

cussion carried our for in section 6 of S'. No new difficulty occurs in this 
discussion because the quantity . by virtue of its definition remains 
finite and has only finite discontinuities for I and I' crossing the real axis. 
According to (2.7) the pseudopoles of therefore coincide with those 
of In analogy with (S'.6.18) one finds for the limit of (2.9) as 

(2.10) 

We go back to (2.7) and remember, that Bw remains finite when I and I' 
approach the real axis. This gives 

lim (2.11) 
The limit on the righthand side has been calculated in section 7 of S', with 
the result (see (S'.7.9) and (S'.7.17) and the third equation thereafter) 

(2.12) 

We obtain by substitution 
(2.13) 

psdE, defined by (S'.7.22), is the probability that the total energy be 
included between E and for the system in its initial state under 
the incoherent phase assumption. The quantity is defined by 

(2.14) 
As will now be shown, it is equal to the microcanonical average of B on 
the energy shell E and its value is independent of the double sign 
appearing in the definition. 

The microcanonical average of B is 
(2.15) 

being the projection operator on the energy shell One has 
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But the resolvent verifies 

a relation which enables us to write 
\ 

Here we have calculated the trace in the representation. The limit 
under the integral sign has been found in (2.11) and (2.12). I t gives 

(2.16) 

If one now remembers tha t as remarked in S', one 
reaches the announced identity of (2.14) and (2.15) for either value of the 
double sign appearing in the former expression. Returning to (2.13) we see 
tha t the long time limit of agrees with the equilibrium value 

(2.17) 

of the quant i ty B as deduced from microcanonical ensemble theory. The 
ergodic behaviour of our system is thereby established for all observable 
quantities B of the type described in section 1 and for initial states with 
incoherent phases. I t may be noted tha t the main difference between the 
derivation just given and the treatment of diagonal quantities A in S and S' 
lies in the replacement of A by the diagonal operator Bu>. 

3. Discussion. We have been able to establish tha t under specified 
conditions an isolated many-body system approaches microcanonical 
equilibrium. This has been achieved in the quantum description and we 
have made essential use of very special properties of the system in this 
description. In the first place, our analysis is entirely based on the existence 
of a special orthonormal set of states composed of plane wave excitations. 
In this special representation the total hamiltonian is assumed to split into 
a diagonal par t H and an off-diagonal part , and matrix elements of the 
form (2.1) are supposed to exhibit diagonal singularities with very definite 
properties. Secondly, we establish the approach to microcanonical equi-
librium in a slightly unusual way. What we do is to study physical quantities 
represented by operators 0 with definite properties in the -representation, 
and establish that their expectation value tends in the course of time 
toward the equilibrium average value calculated from microcanonical 

theory. Finally our analysis follows the time evolution of the system for 
beginning with an initial state We show tha t 

splits into two terms, one depending on the only, and the second 
depending on the relative phases of for different . We simply leave 
out the phase-dependent term on the ground tha t it will vanish for all t imes 
of practical interest if the initial amplitudes have incoherent phases. 
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Our result (Q) t  Φ/eq is established for the phase-independent part of 
<0><. This result, being truly non-trivial and involving quite subtle properties 
of the diagonal singularities mentioned above, seems to us in itself to give 
additional support to the soundness of the incoherent phase assumption. 

Obviously the systems we study are quite special, we use a special repre
sentation in expressing their properties and we discuss the approach to 
equilibrium for special operators 0. All these special features, however, are 
realized in the most common physical examples of ergodic systems, solids, 
gases and liquids (although for the latter the large size of XV may make our 
treatment more doubtful). We feel therefore confident that despite its 
apparent lack of generality our method is quite well adapted to the difficult 
problem of establishing ergodicity for realistic systems. In fact it is only by 
complete exploitation of the special conditions assumed that we have been 
able to study our system in so much greater detail than is the case in the 
conventional investigations of the ergodic problem *) and to actually carry 
out a true proof of ergodic behaviour. 

Although quantum-mechanical in nature, our analysis applies also to the 
physical situations one usually calls classical, i.e. when the values of all 
observable quantities of interest depend on Planck's constant only through 
negligibly small corrections. For such situations it is important to translate 
our results into the language of classical theory. The main point in this 
translation is that the state of the system at any time, although a single 
quantum state rpt = Ut(po, must be described classically by an ensemble of 
points in 6iV-dimensional phase space (N being the number of particles). 
This cannot be otherwise, because the quantum-mechanical wave function 
corresponding to a single point in classical phase space is a very special type 
of wave packet and cannot possess the incoherent phases we require ft to 
have for t = 0 in our analysis **). This correspondence between single 
quantum states and classical ensembles leads to certain consequences which 
we now want to describe. 

According to our theory, for sufficiently large times t the expectation 
value <0>f of a physical quantity 0 becomes equal to the equilibrium value 
(O)eq. This holds equally well for the quantity O2, 

<02> t  = (O2)eq  for large t. 

In general, of course, <02)eq  and <Oye i l
2 are different, so that for large t the 

quantities (O2)t and (O)t
2 will be both constant in time and have different 

values, a fact which makes it quite clear that the classical analogue to the 

*) The unsatisfactory nature of Von Neumann's approach 2) to the quantum ergodic problem 
has now been clearly revealed3). It stems from the fact that Von Neumann's form of ergodic 
property actually imposes no restriction at all on the dynamical system. 

**) Starting from a different standpoint 4) Van Kampen has been led some time ago to take the 
same view concerning the relation between classical and quantum statistics 5). 
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single quantum state ft of our system has to be an ensemble. If now measure
ments of O are made on one and the same system at various times, the 
measured values qt will show a time dependence even for large t and, in 
classical situations (as defined above), the time averages of qt and {qt)2 must 
be equal to (O)t. and <02>i respectively, because the measuring process then 
cannot affect the observable properties of the system. 

In our theory, a measurement of 0 at time t must be described in the 
conventional quantum-mechanical fashion as giving rise to a reduction of 
the state vector yt to another vector <pt'. This interpretation holds always, 
even in classical situations. For the latter case we can translate it by saying 
that the measurement gives rise to a reduction of the classical ensembe 
associated with 9?t to the smaller ensemble associated with (f t • Although 
there is nothing wrong with this description, it differs in a non-trivial way 
from the picture conventionally adopted for a classical many-body system, 
in which at every instant t the system is regarded as being in one single point 
of 62V-dimensional phase space. If our theory is valid, a gas, liquid or solid 
in thermal equilibrium can never be said to be in one single point of its classical 
p h a s e  s p a c e ,  e v e n  a t  h i g h  t e m p e r a t u r e s  w h e r e  a l l  m e a s u r a b l e  q u a n t u m  e f f e c t s  
are numerically negligible. It is in a single quantum state, the classical analogue 
of which is an ensemble. 

It should be stressed that this unorthodox view cannot lead to any 
observable discrepancy with the conventional picture of a classical system. 
Let us verify for example in our quantum description that for a classical 
situation (as defined above) a measurement carried out at time t does not 
affect the result of observations at later times t' = t + τ. Let the quantity 0 
be measured at time t, and the quantity 0' at time t'. Assuming for sim
plicity 0 to have discrete eigenvalue On, all we have to establish is the 
identity 

<(pt\U-T0'UT0\<p ty = Ση 0n<.(pt\PnU-T0'UTPn\<pt> (3.1) 

where the Pns are the projection operators verifying 0 = Ση OnPn. The 
righthand side of (3.1) includes the reduction of the state vector due to the 
first measurement, the lefthand side neglects it. Since Pn

2 = Pn the differ
ence between the two is 

Ση Οη<,ψί\[Ρη, U-T0'UT]Pn\(pt>. 

The commutator being proportional to %, this difference is indeed negligible 
in a classical situation. 

4. Refutation of Ingraham's criticism. In a recent paper6) Ingraham 
has presented a severely critical discussion of our derivation in S of the 
master equation describing the approach to equilibrium in the case of a 
very small perturbation (limiting case λ0. t oo, XH finite). In fact, if 
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this discussion were correct, it would imply complete invalidity of the 
contents of S, S' and the present paper. Ingraham's analysis, however, is 

based on a few patently wrong assertions and arguments. If these assertions 
and arguments are replaced by their corrected versions, the whole criticism 
of Ingraham becomes groundless and his considerations reduce to those 
of 5 and lead to the same conclusions. We would like to devote the last 
section of the present paper to a refutation of Ingraham's criticism, to 
which end it will be sufficient to indicate which basic arguments of this 
author are incorrect. We can concentrate on section 3 of Ingraham's paper, 
which contains the actual discussion of our work. 

The first argument of Ingraham is developed on pp. 107 to 111 of his 
paper. It tends to show that our method of calculation violates the unitarity 
of the operator of motion 

U ( t )  =  exp [ —i(H +  XV) t \ .  

The essential step is that unitarity of U( t )  would imply In (3.20) *), which 
itself entails In (3.22), i.e. the vanishing of all transition rates. The central 
error is In (3.20). In deriving this equation, Ingraham tacitly assumes that 
for λ 0, t oo, XH finite, the limit of a product of operators (in the case 
at hand U<i*U<i) is equal to the product of the limits. This assumption is 
incorrect. Explicit calculation of the limit of the product gives an additional 
term in the righthand side of In (3.20), removing the inconsistency. Inci
dentally, while "deriving" In (3.20), Ingraham states that our use of a well 
known asymptotic formula, In (3.16), would result from a choice. This is 
patently wrong, because In (3.16) is a mathematical identity for /(e) continu
ously differentiable and vanishing at least as fast as je|", ν < 0 for oo. 
No other formula would be correct, and no choice can therefore be made. 

The second criticism of Ingraham is that ambiguities exist in our calcu
lations, because in products containing 3 or more factors V several pre
scriptions could be followed in replacing sub-products VAV by their 
diagonal parts: various choices could be made for these subproducts leading 
t o  d i f f e r e n t  r e s u l t s  f o r  t h e  t o t a l  e x p r e s s i o n  ( s e e  p p .  1 1 2  a n d  1 1 3  o f  I n g r a 
ham's paper). Ingraham has not understood that all choices have to be 
made, and that in the limit X 0, t -> oo, XH finite, the total expression is 
the sum of the contributions of all possible choices. Among the latter only a 
few give non-vanishing contributions in the limiting case considered; all 
these have been calculated in S, ensuring the correctness of our results in 
the weak coupling limit. 

Misled by the errors just mentioned, Ingraham concludes to the in
validity of the fundamental property on which our work is based, to know 
the occurrence of diagonal singularities, In (3.1) in his paper. His mis
understanding of this property becomes quite clear when he states it to be 

*) By this abbreviation we mean Eq. (3.20) of Ingraham's paper. 
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equivalent to the property In (3.30), where no summation is carried out 
on the intermediate state q\. The summation is absolutely essential for the 
occurrence of the diagonal singularity. Consequently the operator A in 
In (3.1) must have eigenvalues A(E"tx") = A" varying smoothly with the 
parameters Ε", ex.", and In (3.30) is incorrect. For the same reason the 
master equation established in S concerns the probability density to find 
our large system in unperturbed states, i.e. the probability averaged over 
a very large number of neighboring states. This is a coarse-grained proba
bility distribution. Therefore Ingraham's statement that we "want to 
obtain irreversible effects while retaining the maximum information 
permitted by statistical mechanics" (p. 101), according to his introduction 
the very motivation of his critical study, is incorrect. Concerning the alter
native diagonal property In (3.33) proposed by Ingraham, it will be 
sufficient to say that it does not hold for actual systems, as is easily verified 
on the example of the electron-phonon system described in the appendix 
of 5'. 

Having thus concluded to the invalidity of Ingraham's criticism, we 
may finally remark that this author seems to be quite confused concerning 
the order in which the various limiting processes oo, λ0, t —> oo 
must be considered for obtaining the region of validity of a master or tran
sport equation. The number of particles N must go to infinity first, λ and t 
being finite. When this limiting process, which is necessary e.g. to eliminate 
surface and shape-dependent effects, is completed, one can consider the 
limiting case λ 0, t oo, X2t finite. One then obtains the master equation 
as derived in 5. One can treat also, however, the case of finite λ and t, as 
was done in S' and the present paper. 

The author gratefully acknowledges a very valuable exchange of letters 
with Prof. M. Fierz on the problems discussed in this paper, especially in 
section 3. He is indebted to Dr. T. O. Woodruff for a critical reading 
of the manuscript, and to Prof. W. Opechowski for drawing his attention 
to recent papers on the quantum ergodic problem. 
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V.4 QUANTUM THEORY OF MEASUREMENT AND 
ERGODICITY CONDITIONS 

ADRIANA DANERI, A. LOINGER, AND G. M. PROSPERI 

Abstract: Some criticisms to von Neumann's treatment of the measuring process are recalled and 
discussed. 

The problem is reconsidered and reinvestigated, in the spirit of the "philosophy" of Jordan 
and Ludwig, on the basis of an ergodic theorem recently given. 

The measuring apparatus is schematized as a macroscopic system which possesses, besides the 
energy, at least another macroscopic constant of the motion. The value of this constant charac
terizes an invariant manifold ("channel"). In each manifold certain ergodicity conditions hold 
and there exists an equilibrium macro-state towards which the system evolves spontaneously. 
The apparatus is assumed to be initially in the equilibrium state belonging to a given channel 
and the interaction with the observed system determines a transition of the apparatus towards 
a state belonging to another channel, which depends on the initial state of the observed system. 
Then the apparatus evolves towards a new equilibrium state. 

The ergodicity conditions employed are sufficiently realistic, since it has been proved that 
they are in particular satisfied by that class of Hamiltonians for which Van Hove succeeded in 
deriving a master equation. 

1. Introduction 

As is well known, the measuring process plays a central role in quantum mechanics. 
Its formal mathematical theory was developed by von Neumann ') in 1932. In recent 
years von Neumann's point of view and results have been criticized under different 
aspects by many authors (Jordan 2), Bohm 3), Wigner, Araki and Yanase 4), Ludwig 5), 
Feyerabend 6), H. S. Green 7), Durand 8), Wakita 9)). Various attempts have been 
made (see refs. 4· 5· 7~10)) to obtain a more satisfactory solution of the problem than 
that of von Neumann. In our opinion, the treatment given by Ludwig 5'10) is the 
most complete and satisfactory from a physical point of view. However, its mathe
matical elaboration is still in a preliminary stage. 

Originally published in Nuclear Physics, 33, 297-319 (1962). 
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In the present article, following essentially Jordan and Ludwig's "philosophy" t, 
we give a treatment of the measuring process based on a recent formulation of the 
ergodic problem 11' 12). In the course of our exposition we shall also re-examine some 
points of Ludwig's work, which, in our opinion, deserve a more detailed analysis. 

An idea of the point of view adopted can be given in the following terms. 
Performing an observation on a microscopic system amounts to putting the system 

itself in interaction with another large system, which has the property of undergoing, 
as a result of the interaction, macroscopic modifications which are dependent on the 
state of the micro-system. 

If we assume that an objective meaning can be attributed to the macro-states of a 
large system, the aim of quantum mechanics is then essentially to make predictions 
on the trace that our microscopic body will leave in the macroscopic world, when the 
trace left at a certain time is known. In this line of thought, the measuring process 
has to be considered — rather than as an "untrennbare Kette zwischen Objekt und 
Subjekt" (Weizsacker 13)) — as an "untrennbare Kette zwischen Mikro- und Makro-
kosmos" (Ludwig). 

In order that an objective meaning may be attributed to the macro-states of the 
large bodies, it is of course necessary that — by virtue of the laws of quantum mech
anics and of the structure of the macroscopic bodies — states incompatible with the 
macroscopic observations be actually impossible. In our opinion, this impossibility 
should be a consequence of the fact that the result of the interaction of two macro-
systems must always be macroscopically determined. 

After these premisses it is clear that, in order to build up a satisfactory quantum 
theory of measurement, it is necessary to have a theory, at least schematic, of 
the large bodies, i.e. a theory which gives the connection between the macro-
properties of these bodies and their microscopic structure described by quantum 
mechanics. 

We notice that in the measuring process the energy of the apparatus is enormously 
larger than the energy of the micro-object, which should suffer, during the measuring 
process, the least possible perturbation. Therefore the apparatus must be a macro-
system in a thermodynamically metastable state, such that a very small perturbation 
makes it evolve towards a thermo-dynamically stable state, dependent on the state 
of the micro-object. 

It is therefore clear that the measuring process is closely connected with the problem 
of the evolution of a large body towards its state of thermodynamic equilibrium and, 
consequently, with the ergodic problem. 

t As will appear presently, this "philosophy" and, consequently, any technical development 
founded on it are in harmony with the ideas of Bohr. More exactly, as Prof. Rosenfeld has kindly 
pointed out to us, the situation is the following: "Bohr's epistemological analysis, which is complete 
in itself, disposes of von Neumann's infinite regress" (cf. sects. 3 and 4) "by appealing to the logical 
necessity of making a sharp distinction between object and measuring instrument. No formal treat
ment can replace Bohr's argument, for the simple reason that the physical meaning of any mathematical 
elaboration can only be expressed by means of the classical concepts to which Bohr appeals directly, 
and which are (in the last resort) not formalizable, but immediately given (as part of common ex
perience)." The significance of our treatment (and of the treatment of Ludwig) is rather to establish 
rigorously the logical consistency of the way in which the mathematical formalism is connected with 
he unanalyzed basic concepts. 
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2. Macro-States of the Measuring Apparatus 

It follows from the preceding considerations that a measuring apparatus must be 
a macroscopic system possessing many states of macroscopic equilibrium compatible 
with a given value of the macroscopic energy. A system of this kind possesses, besides 
the energy, other macroscopic constants of the motion. We characterize schematically 
the macroscopic state of this system in a way analogous to that followed in ref.12). 

We introduce a suitable basis (Qafcvi) of vectors and assume that the manifolds 
Cakv spanned by the Qakvi corresponding to given sets of values for a, k, ν represent the 
macro-states of the system. The indices a and k denote, respectively, the value of the 
macro-energy and the set of values of the other macroscopic constants of the motion 
which are relative to the macroscopic state considered. These quantities do not change 
during the free evolution of the system. The index ν denotes the value of the macro-
variables which do change during the time evolution. We denote by Cail the manifold 
("channel") spanned by the vectors Qakvi  corresponding to given values of a and k. 
We assume that within the manifold Cak ergodicity conditions are verified, analogous 
to those formulated for the whole energy shell in refs. 12); we assume further that for 
given a and k there exists a manifold Catik having a number of dimensions much 
larger than that of the other manifolds Cakv (ν Φ ek). If the system is initially in a state 
belonging to the channel Cak, it then evolves spontaneously towards the state Cakek. 
The manifolds Cakeic represent the various states of macroscopic equilibrium. 

Let the measuring apparatus be initially in the equilibrium state Ca0eo °f a given 
channel Ca0 and suppose that the interaction of the object system with the apparatus 
induces a transition of the state of the latter from the channel Ca0 to another channel 
Cak of the same energy shell, depending upon the particular state of the object system. 
At the end of the measuring process the apparatus is in a" final equilibrium macro-
state Cakek. 

3. Basic Assumptions of Quantum Theory 

We recall very briefly the assumptions on which quantum theory is founded. 
(i) The physical state of a system is represented by a vector (properly by a ray) of a 

Hilbert space. 
(ii) The time evolution of a state is governed, in the Schrodinger picture, by the 

Schrodinger equation 

ψ, = Τ(ί)ψ0, ih^ = HT, T(O) = 1. (3.1) 
df 

(iii) An observable A is represented by a Hermitian hypermaximal operator a. The 
eigenvalues ar of α give the possible t values of A. An eigenvector corres-

t We suppose here that the spectrum of α is discrete. We recall that it is physically impossible 
to measure with absolute accuracy an observable C having a continuous spectrum. However, it is 
possible to measure such an observable with an arbitrarily good accuracy. It is in fact sufficient to 
choose a step function F(x) — which approximates the function χ with the wanted accuracy — and 
measure F(C),  which is  an observable with a discrete spectrum. Notice that the introduction of  F(C) 
is not a mathematical trick but is essential for reasons of principle. 
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ponding to the eigenvalue a, represents a state in which A has the value a r. If 
the system is in the state ψ, the probability pr of finding the value ar for A, when 
a measurement is performed, is given by 

Pr = (,/,, Pv» = £|(<^>, φ)\\ (3.2) 
5 

where Pyr is the projection operator on the eigenmanifold Vr corresponding to 
ar, and the sum is taken over a complete orthonormal set {φ^} (s = 1, 2,. ..) 
of Vr. 

(iv) Let us suppose we have performed a measurement of a quantity A and that this 
measurement is a maximal one. If the result is ar, we postulate that the state of 
the system immediately after the observation is described by the (unique) eigen
vector φ,, corresponding to the eigenvalue ar. If the measurement of A is not a 
maximal one — i.e. if the spectrum of α is degenerate — it is commonly assumed 
(cf. e.g. ref. 14)) that the state after the measurement is 

(3.3) 
S 

where N2 = ]TS φ)\2  is a normalization factor. This assumption, however, 
as it could be derived from what follows, implies a hypothesis on the measuring 
apparatus which cannot always be considered to be verified. As is well known, the 
preceding assumptions may be formulated also in the language of the statistical 
(density) operators. In this way, we have in particular the advantage of obtaining 
formulae which are valid not only for the pure cases, but also for the mixtures. 
The statistical operator W of a system changes in time according to the equation 
(Schrodinger picture) 

W(t) = T(t)W(Q)T*(t). (3.4) 

The probability p r  of finding the result a r  for the observable A is 

p r  = Tr(PvrIf) (3.5) 

and the statistical operator of the system for which the eigenvalue a r  has been 
found, is 

(3.6) 
Tr(PyrW) ' 

4. Consequences of the Preceding Assumptions 

Let A and B be two observables, whose operators are respectively α and β. Let us 
suppose that the spectra of α and β are discrete and non-degenerate and that 

αφ, = αΓφΓ; /¾ = bsxs, 

where φΓ  and χΞ  are normalized eigenvectors. If the (normalized) state vector at ί = 0 is 

Φ  ο  =  Z c A .  ( 4 . 1 )  
r 

the probability of finding the value a, of A, when a measurement of A is performed at 
t = 0, is, by virtue of postulate (iii), 

Ρ[/4 = αΓ](0) = |cr|2· 
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If the value has been found, the probability of finding the v a l u e o f B at a later 
time t, is 

If we perform the measurement of A at t = 0 without "looking a t" the result, the 
probability of finding at the time t the value for B is evidently given by 

(4.2) 

If no measurement is performed at t = 0, the above probability is 

(4.3) 

The second term of the right-hand side of (4.3) is the so-called interference term; 
owing to its existence, we are not allowed to think that, when the system is in the state 
(4.1), the observable A has a value which is well determined even if it cannot be 
theoretically calculated (this assumption would furnish indeed an expression analogous 
to (4.2)). We may therefore assert that A has a given value only when it has been 
actually measured. 

Considering that even the measuring apparatus is a physical system describable 
with the quantum laws, a first consistency problem of the theory consists in trying to 
prove that the apparatus acts on the object in such a way that the results of a later 
measurement are given by formula (4.2) rather than by formula (4.3). 

5. Von Neumann's Theory of the Measuring Process 

Let us denote by I and II the system we are considering and the apparatus for the 
measurement of A, respectively. Let the Hamiltonian of the total system I + II be 

(5.1) 

In order that II can actually act as an apparatus for the measurement of A, it is 
necessary that be such that (a) I and II are coupled only during a very small 
time interval if I is in an eigenstate at the end of the interaction a change 
depending on has taken place in the apparatus, while the state of I is practically 
not changed. More precisely, if II is initially in a state belonging to a manifold , 
we assume that is such that 

(5.2) 
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where <Pr belongs to a manifold V r and is dependent on the particular 
. . are supposed mutually orthogonal in order that the results of the 

measurement be distinct t. 
The measurement of the quantity A of I is thus reduced to the measurement of a 

quantity s i of II, which has as eigenmanifolds the orthogonal manifolds 
. . . . If I is at the time t = 0 in the state (4.1), one obtains by virtue of the linearity 

of the time evolution operator 

(5.3) 

<The probability of finding II in a state belonging to the manifold V r is then equal to 
i.e. coincides with the probability given by the fundamental assumption (iii), 

when the measuring apparatus is considered as external to the studied system. 
From eq. (5.3) it follows that the probability of finding at a time the system 

in a state (where the are eigenstates of some observable of II) is 

(5.4) 

Let us now suppose that the second measurement is performed on the system I 
only. The operator considered as an operator in the Hilbert space of I + II, is 
degenerate and the eigenvectors belonging to an eigenvalue bs are of the kind 
Owing to postulate (iii) we must sum over the index h both sides of (5.4); since we 
have obviously 

t Note that from a purely mathematical point of view, it is always possible to find a unitary 
operator satisfying the relation 

In order that T be unitary it is in fact necessary (and sufficient) that it transforms the vectors forming 
with the a complete orthonormal basis of the Hilbert space of I + II, into vectors orthogonal to 
each other and to the vectors of the manifold spanned by the Now, this is possible in an infinite 
number of ways. From a physical point of view this result is not significant since the problem consists 
in ascertaining whether there actually exists in nature a measuring apparatus such that the Hamil-
tonian Hmt satisfies the above relation. 
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the probability of finding for B the value bs, when no other measurement is performed 
on II, is 

This relation coincides with (4.2); the interaction with the measuring apparatus 
explains the replacement of (4.3) by (4.2). 

The interference terms, which have been deleted from (4.3), reappear obviously in 
(5.4). In order to remove them, it would actually be necessary, according to von 
Neumann, to perform on the system II a measurement with another apparatus III. 
The system I + II would then be, with respect to'III, in the same situation in which I 
was with respect to II. In particular, we have consistency between the results given 
by the theory for the two cases in which (a) I is considered as object and II + III 
as apparatus, (b) I 4 II is considered as object and III as apparatus. According to 
von Neumann, this is sufficient to prove the adequacy of the theory because in von 
Neumann's opinion any statement on the system II makes sense only when it corres
ponds to an actual observation made by means of III, any statement concerning III 
makes sense only when a further observation is performed on it by means of another 
system IV, and so on. In this chain of instruments we must include, according to von 
Neumann, besides the apparatus stricto sensu, also the sense organs with which the 
observer observes the apparatus, the nervous system sending to the brain the data 
of the sense organs, and so on. From the preceding considerations it follows that the 
point at which one makes the separation between observed system and observer 
(Heisenberg's "Schnitt") does not matter; in other words, we can put the "boundary" 
between system and apparatus or between apparatus and sense organs or between 
sense organs and nervous system, and so on. This is the so-called principle of the 
psycho-physical parallelism. In this line of thought the transition from one state to 
another, and consequently the passage from (4.3) to (4.2) would be determined, in the 
last analysis, by the "abstract ego" becoming conscious of the result. 

6.1. SUBJECTIVISM 

It is clear that von Neumann's theory is founded on a radically subjectivistic 
(solipsistic) philosophy. From an objectivistic point of view, the difference between 
(4.3) and (5.3) ought to be explained by taking explicitly into account the fact that the 
aim of quantum mechanics is to describe the behaviour of the micro-objects only 
through their relations with the macroscopic world. But it is then necessary, for obvious 
consistency reasons, to construct a quantum theory of the large bodies, which explains 
the objective nature of their macroscopic properties and the changes induced by the 
micro-objects on the macro-properties of the measuring apparatus. 

6.2. INFINITE REGRESS 

It is commonly assumed that to any observable there corresponds a given Hermitian 
operator. However, a real physical meaning can only be given to this mathematical 

(5.5) 

6. Criticism of von Neumann's Point of View 
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symbol when the procedure by which the quantity studied is measured, is defined at 
least conceptually. According to von Neumann's theory of measurement, the meaning 
of a quantity of a given system I is given by the modifications produced by I on some 
quantity of the system II. The meaning of the latter quantity is given by the modifica
tions determined by II on some quantity of a system III, and so on. Evidently, if von 
Neumann's chain is never truncated, the physical meaning of an abstract observable 
of the system I is referred to that of some observable of the system II, Ihe meaning 
of this observable of II is referred to the meaning of some observable of III and so on 
indefinitely, the meaning in question being never attained. If, in line with the considera
tions of subsect. 6.1, we could give an objective character to the macroscopic states 
of a large system and consider its macro-observables as the quantities to which a 
meaning is given from the very beginning, a meaning could be given to any other 
abstract observable by defining the procedure with which it can be measured. This 
procedure is uniquely defined once the macro-states of a large system have been 
defined and the nature of the forces between the systems is known. 

6.3. WIGNER'S OBJECTION 

An objection of a more particular nature to von Neumann's theory was presented 
by Wigner 4). He proved that, if the state of the system object + apparatus is des
cribed at the end of the measurement by eq. (5.3), results which are in contradiction 
with conservation principlss can be obtained. A way out, however, was found by 
Wigner himself, who demonstrated that if one takes properly into account the macro
scopic nature of the measuring apparatus the difficulty can be overcome. 

Wigner considered the following example. Let I be a system describable only with 
spin variables; let σχ be the observable to be measured. We shall denote by φ„·χ and 
φσ··χ the eigenstates of σχ corresponding to the eigenvalues +1 and — 1 respectively. 
If we put ψ0 equal to φσ.χ or φσ~χ we get from eq. (5.2) 

Let us now consider a conservative observable of the total system I + II, not compatible 
with σχ : for instance the component Mz of the angular momentum of I + II. We have 

where L z  acts in the Hilbert space of II. It is well known that a representation can be 
chosen in such a way that the eigenstates of σχ be written as linear combinations of 
the eigenstates of az, in the following way: 

(6.1) 

M1 = L z+a z, 
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where φσ^ and φσ %  are normalized vectors. Adding and subtracting the equations 
obtained by substituting the above expressions into eqs. (6.1), we get 

We now observe that the expectation values of M z  corresponding to the states des
cribed by the right-hand sides of eqs. (6.2) are the same, while the expectation values 
corresponding to φσ-ζΦ0 and to φ„»Φ0 differ by 2h. Therefore in this case eq. (5.2) 
is in contradiction with the conservation theorem of angular momentum. Wigner 
however showed that the difficulty can be overcome if eqs. (6.1) are replaced by the 
following: 

where (Φ', Θ) = 0 = (Φ", 6>), and || Θ || can be supposed to be very small if the states 
Φ0,Φ', Φ" are superpositions of many states corresponding to different eigenvalues 
of Lz. This fact can be considered as actually occurring since Φ0, Φ', Φ" correspond to 
macroscopic states of the apparatus. We have a similar situation for any observable 
of the system I not compatible with a conservative observable of the total system 
I + II (Araki and Yanase 4)). 

7. Hints for an Objectivistic Interpretation of the Measuring Process 

As emphasized in the preceding section, a satisfactory theory of the measuring 
process must start from a characterization of the macroscopic properties of a large 
body. Such properties must have an objective character; it is therefore necessary that 
no interference terms appear in the relations concerning them. Such terms must be 
absent essentially by virtue of the complexity of the considered system. 

In particular, it must be allowed to truncate von Neumann's chain immediately 
after the first macroscopic system S(i). The interference terms must disappear owing 
to the nature of the macroscopic observations and to the properties of the Hamiltonian 
of the system S(1) + S(2)+ . .. +S(l). A first hint for a way out may be obtained from 
the following rough considerations. 

Let us suppose for the sake of simplicity, as it is almost always the case in practice, 
t h a t  t h e  s y s t e m  I I  i s  a l r e a d y  m a c r o s c o p i c  a n d  c o n s i d e r  t h e  m a n i f o l d s  V 0 ,  V 1 , . . .  
Vr,. . . of II as corresponding to the macroscopic properties. Observe now that in 
order that the measurement may be performed it is necessary that the changes under
gone by the system II owing to its coupling with I persist for a sufficiently long time; 

2  e x p  ( -  -h H in tZj φ„,Φ0  = φα, ζ(Φ' + Φ") + φα·, ζ{Φ·-Φ"), 

2 exp (- ~ H i n tτ) φσ„Φ0  = φ^Φ' -φ") + ̂ %(Φ' + φ"). 

(6.2) 

(6.3) 
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we shall suppose therefore that the above manifolds are invariant with respect to the 
operator exp[-(i/h)Hnt\, i.e. that for any t 

exp 
Ί,"' 

»') Φ. 6 V. 

and that transitions from one manifold to another occur only by virtue of the inter
action with I. Any macroscopic observation on the system II consists then in deter
mining the manifold Vr to which the state vector belongs. Any observation 
compatible with the macroscopic observation determines a set of manifolds which 
may be spanned by vectors Xh (h = 1, 2,...) every one of which belongs to a single 
m a n i f o l d  V r .  

In (5.4) only one of the expressions (Xh, exp[ — (i/h)Hnt]<Pr) is different from zero, 
say that containing Φ„; eq. (5.4) therefore becomes 

Xs, exp - τ  # , <  Φ^Ι (χ*,, exp (7-1) 

Eq. (7.1) is a relation of the kind (4.2) and is in accordance with the objective character 
attributed to the macroscopic properties of the system II. 

If the considered observation on II is not only compatible with a macroscopic 
observation, but is itself a macroscopic observation, we must sum in (7.1) over all 
the states Xh which belong to V„. We obtain in this way 

(x* > exp φ η ) \ l ;  (7.2) 

this expression is obviously in agreement with (4.2). 
The present schematization of the macro-observations and of the measuring 

apparatus is too rough and will be re-examined in the following; the essential elements 
to the solution of the measurement problem are, however, already contained in it. 
The success of this viewpoint rests of course on the fact that the observations which 
can be actually performed on the system II must be compatible with the macroscopic 
ones. In other words, it would be impossible to construct an instrument capable of 

measuring a quantity such that its eigenstates Xh have projections different from zero 
o n  d i s t i n c t  m a n i f o l d s  V r .  

From a mathematical point of view it is of course always possible to find a unitary 
operator εχρ[-(;/Λ)//,η1τ] corresponding to such a measurement performed on II. 
From the point of view of physics, however, Hint is not arbitrary, but depends upon 
the nature of the systems; therefore it is likely that the above possibility does not exist. 
The plausibility of the assumption will be discussed in the following (sect. 5). 

8. Analysis of the Physical Characteristics of Some Typical Measuring Apparatus 

Let us first suppose that we want to measure the energy of a charged particle with 
a proportional counter. 

The counter is assumed to be initially charged to a given potential; we may assume 
that there is thermal equilibrium within the gas of the counter, electrostatic and thermal 
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equilibrium within the electrodes. When a charged particle goes through the counter, 
a practically determined number of ions is produced, which is a function of the particle 
velocity and consequently, for a given mass, of its energy. 

Under the influence of the electric field the electrons migrate. Since the wire is at a 
positive potential, the electrons go towards it. The gas pressure and the potential 
are fixed in such a way that in a very small region around the central wire, where the 
field is stronger, the energy gained by the electron in covering a distance equal to the 
mean free path is larger than the ionization energy of the gas molecules. In this region 
secondary ions are created at a rate such that the ratio of their number to the number 
of initially produced ions is practically constant. When the electrons reach the wire, 
the electronic instruments connected to the counter record a sudden reduction of the 
potential, proportional to the number of ions originally created by our particle and 
therefore a function of its energy. In order to avoid unessential complications, we omit 
considering the electronic instruments and suppose the counter to be connected to 
the electrodes of a capacitor. (This is certainly correct for the time intervals of the 
order of the discharge time.) Then, if there was initially a given voltage between the 
electrodes of the condenser, and consequently between the electrodes of the counter, 
after the discharge this voltage decreases and the decrease is a function of the energy 
of the particle that crossed the counter. 

We may distinguish the following phases: 
(a) The apparatus is initially in a macroscopic state of metastable equilibrium in 

which it remains practically for an indefinite time, if no external perturbation 
intervenes. (Strictly speaking, it is of course possible that some ions are produced 
by thermal fluctuations inside the gas and it is consequently possible that the 
apparatus discharges spontaneously; however the interval of time needed for a 
spontaneous discharge is much larger than that during which a discharge induced 
by the passage of a particle may occur.) 

(b) The particle goes through the counter; if its energy is practically determined, the 
number of ions generated is practically determined. The passage of the particle 
removes the system from the state of metastable equilibrium and brings it into a 
state which can already be considered as macroscopic (and characterized by the 
number of the generated ions and by the voltage between the electrodes); this 
state is no longer a state of equilibrium and depends essentially on the particle 
energy. 

(c) The apparatus goes spontaneously towards a new equilibrium situation (no ions 
present, a smaller voltage between the electrodes), which depends on the state 
corresponding to phase (b) (on the number of the generated ions) and therefore 
on the energy of the particle. 

One gets easily convinced that all the processes that occur in the ordinary measuring 
apparatus are reducible to the above scheme. Examples: the formation of a trace in a 
Wilson chamber, in a bubble chamber, in a photographic emulsion. 

In order to clarify the question further, we analyze another measuring apparatus. 
Consider first a Geiger counter. As is well known, it differs from the proportional 
counter because the potential and the gas pressure are fixed in such a way that the 
ion multiplication spreads along all the wire; consequently the production even 
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of a small number of ions induces a discharge which is self-sustaining if the voltage 
does not decrease. 

In the apparatus actually employed in practice there is a resistor in series with the 
counter, or the discharge is interrupted at a given time by some suitable trick. The 
pulse-height given by the Geiger counter is independent of the number of ions primarily 
created and therefore of the energy of the incident particle. In our simplified apparatus 
the passage of a particle through the counter induces a discharge, at the end of which 
the voltage falls practically to zero. The counter is a "yes or no" apparatus: the par
ticle has passed through, the particle has not passed through. 

Let us suppose that a beam of practically monokinetic particles impinges on some 
target T and let us study the angular distribution of the scattered particles by means of 
a set of counters. If the particle is scattered within the angle (6'k, 0k) under which the 
k-th counter is viewed from T (i.e. if the particle is represented by a wave-packet with 
propagation vectors within this angle), it produces a given number of ions inside the 
&-th counter; the A>th counter then discharges while the remaining counters stay 
unaltered. Here the initial metastable state is the state in which all the counters are 
charged, the intermediate state (depending on the direction in which the particle is 
scattered) is the state in which ions are created inside the A>th counter, the final state 
(also depending on the direction of scattering) is a state in which the &-th counter has 
been triggered while the other counters undergo no change. 

9. Outline of a Theory of the Macroscopic Bodies 

It is now evident that if we want to build up a theory of the measuring apparatus, 
we must first of all construct a theory of the macroscopic bodies and give a solution 
to the problem of the time evolution of a macroscopic body towards its thermodynamic 
equilibrium state, i.e. give a solution to the ergodic problem. 

To this end, we shall recall briefly the characterization of the macroscopic states of 
large bodies given by statistical mechanics. 

Obviously the macroscopic observations performed on a large body cannot define 
completely its quantal state. In order to characterize formally the macro-observations, 
one decomposes suitably the state space of the body into a given number of orthogonal 
manifolds having a very large number of dimensions. The various possible macro-
states correspond to these manifolds. 

A first interesting quantity is the energy; it is measured macroscopically with a 
certain inaccuracy. Let us subdivide the set of the possible energy values into intervals 
(Ea, Εα+ι=Εα + ΔΕ) and denote by C0 the manifold of the eigenvectors^corresponding 
to the 0-th energy interval. Since a macroscopic body is a system spatially boundSd, its 
energy spectrum is a purely discrete one. Let us indicate by Sa the number of dimensions 
of the manifold Cfl. Let us suppose that there exists another macroscopic constant 
of the motion J, or, more generally, a set of such constants. (Consider, e.g., a system 
composed of two non-interacting parts, each of which possesses its own energy. In 
this case the constants of the motion are the total energy and the energy of one of the 
subsystems.) The spectrum of J can also be decomposed into intervals (Jk, Jk+,) and 
consequently each manifold Cfl can be decomposed into a set of orthogonal manifolds 
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which are spanned by the eigenvectors of J belonging to and to the eigenvalues of 
We call the A>th channel of and denote by its number of dimensions. 

In order to define completely the macroscopic state of the body it is necessary to 
take account also of other quantities. We represent mathematically this situation by 
decomposing the manifolds into submanifolds . Let 

be a basis adapted to the cells 
We omit a detailed discussion of the characterization of the cells since it 

would require more precise assumptions on the nature of the system considered. Byway 
of example, we recall here how the manifolds are defined for an ideal gas or solid. 

In a gas one may take as basis the set of eigenstates of the unperturbed 
energy, i.e. the states composed of direct products, suitably symmetrized, of the single 
particle states. The energy shell is the manifold spanned by the set of the unper-
turbed eigenstates corresponding to a given interval of unperturbed energy; in fact, if 
this interval is sufficiently large, the above manifold coincides practically with the 
manifold spanned by the corresponding perturbed energy states. The cells are 
defined in the following way. One subdivides the single particle energy spectrum into 
intervals where n is the number of molecules contained in the gas. The 
number of molecules whose energy lies in the r-th interval, when the system is in a 
given unperturbed eigenstate, is then denoted by nr. The energy shell C0 is the manifold 
spanned by the set of vectors corresponding to given values of the numbers 

In the case of a non-conducting solid, we may take a basis formed by the eigenstates 
of the phonon unperturbed energy and repeat for the phonon gas the above treatment, 
taking into account that now the total number of phonons is also allowed to change 
and must be considered as a dynamical variable. 

In the case of a conducting solid, one must characterize analogously, besides the 
state of the phonon gas, the state of the conducting electron gas. 

This characterization of the macro-state of a gas or of a solid suffices to account for 
several macroscopic properties of the system. For a somewhat more complete charac-
terization, it is necessary to know also the spatial distributions of the particles. To this 
end it would be sufficient to repeat the preceding arguments taking in lieu of the above 
single particle states, which correspond to a complete indeterminacy of the particle posi-
tions, a set of states corresponding to given position and momentum indeterminacies t . 

Going back to the general case, let us refer to a fixed energy shell, dropping accord-
ingly the index a. 

We suppose that the Hamiltonian of the macro-system and the basis are 
such that the following ergodicity conditions are satisfied 12): 

t Cf. von Neumann1), p. 404 and ff. 
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where is the spectral representation of Hn and M denotes the operation of 
time averaging 

Let us suppose that the initial state is a superposition of states belonging to 
different channels 

(9.2) 

If denotes the probability of finding the system in the macrostate at the 
time f. 

(9.3) 

we have, by virtue of eqs. (9.1), 

(9.4) 

where 
(9.5) 

In particular, if is assumed to belong to a given cell i.e. if the system is 
initially assumed to be in a given macro-state, we have 

(9.4') 

By virtue of this result, we are allowed to consider as the probability (in the 
sense of statistical mechanics) of finding the system, at any time, in the macro-
state 

Let us suppose that, as is the case in practice, there exists in every channel a 
cell with a number of dimensions enormously larger than that of the other cells, 
in such a way that 

(9.6) 

(For boson or fermion systems for which the interaction energy between the particles 
is negligible, as in the examples investigated above, the cells relative to Bose-Einstein 
or Fermi-Dirac distributions possess this property.) 

From (9.4') it follows, by virtue of the inequalities (9.6), that 

' (9-7) 
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Relations (9.7) entail that, for every initial state T 0  e C k l l,  the probability u k v(t) 
is, for the overwhelming majority of the time, very small or very near to 1 (for ν φ e k  

and for ν = ek, respectively). Consequently, whatever the value of ukv(t0), we may think 

that, after a time t sufficiently long, ukv(t) has assumed the values 0 or 1, i.e. 

M*v(0«<5veit. (9.8) 

and the system is practically in the macro-state Ck e k .  The cell C l c e k  represents precisely 
the state of macroscopic equilibrium relative to the channel Cfc. 

If T ο is given by (9.2) we obtain 

u k v(t)x p k5W k.  (9.9) 

In the statistical operator language, after a sufficiently long time the system is 

macroscopically characterized by the following respective operators: 

r-'e»· (9·8'» 
Skck 

Σ Pk Pck.k · (9.9') 
ft ki'tt 

10. Schematization of the Measuring Apparatus and Mathematical Theory of the 
Measuring Process 

We want now to consider a schematization of the measuring apparatus more 
accurate than that given in sect. 7. 

We consider the apparatus as an isolated macro-system (the energy exchanged with 
the micro-object during the measurement is certainly negligible compared with the 
internal energy), having an energy macroscopically determined, i.e. lying in a given 
interval (£, Ε+ΔΕ). All the considerations of the preceding section are assumed to 

be applicable to the apparatus; in particular, contrary to the assumptions of sect. 7, 

we do not suppose here that the channels Ck correspond to macro-observations, but 

that each Ck may be further decomposed into mutually orthogonal submanifolds 

Ctv, everyone of which corresponds to a macro-observation. 

In the previously considered example of the proportional counter, the macroscopic 

state of the system is essentially characterized by the average potential of the counter, 

by the number of ions, by the spatial and energetic distributions of the neutral 

molecules and ions, by the charge distribution over the electrodes. 

The channels are characterized by the values of the constant of the motion 

where U is the voltage between the electrodes, N is the number of ions, e, λ and C are 

the elementary charge, the ion multiplication coefficient and the electrostatic capacity 

of the global system counter + condenser respectively. If U k  is the value of U' 

characteristic of the A>th channel Ck, the equilibrium manifold Ckek corresponds to a 
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situation in which there is thermal equilibrium within the gas and within the electrodes, 
there are no ions within the gas and the voltage is . The non-equilibrium manifolds 

correspond to situations in which the voltage is still Uk and no ion is present within 
the gas, but the gas or the electrodes are not in thermal equilibrium, or to situations 
in which there is a fixed number N of electrons and the voltage has the value 

In the case of the set of Geiger counters measuring the angular distribution of the 
scattered particles studied in sect. 8, the channel corresponds to a situation in 
which the counters are all charged and no ion is present and the state corresponds 
to a situation in which gas and electrodes are in thermal equilibrium. The other 
equilibrium states of interest correspond to situations in which the A:-th counter 
has discharged and there is thermal equilibrium, and the other states of the channel 

correspond to situations in which there is no thermal equilibrium or, even if the 
A>th counter is still charged, there are ions within it. 

The macro-system is initially assumed to be in a state belonging to the manifold 
if the particle is in the state the interaction brings the apparatus, as supposed 

in sect. 7, into a state since the system is assumed to be ergodic inside 
it then goes spontaneously into (cf. sect. 9). The latter phase is a process of 
approach towards an equilibrium situation in the thermodynamical sense. 

From the considerations developed in sects. 7 and 9, we obtain immediately the 
following result: 
Initial state of the system I + II: (10.1) 

State after the end of the interaction: 

(10.2) 

Probability of finding the system I in the stateand the system II in the macrostate 
at the time t: 

. (10.3) 

Eq. (10.3) is of the type desired, the interference terms which appeared in (5.4) are 
not present in it; their elimination has been performed without the intervention of a 
system III observing II. In the statistical operator language, eqs. (10.1), (10.2) and 
(10.3) may be rewritten as follows: 
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Statistical operator before the measurement·. 

Wo = fiwA· (10-1') 

Statistical operator immediately after the end of the interaction: 

W = Pa* w (1°-2') 

The time-evolved of this operator after a large time t can be identified, as far as the 
macroscopic quantities of II are concerned, with 

= Σ |cr|2-fUp[-(i/ft)H,ow T- P1Crer · (10.3') 
' Srer 

11. Limitations on the Kind of Quantities Actually Observable; Measurements on 
Macroscopic Bodies 

It follows from the preceding considerations that a given Hermitian operator 
represents an observable only if it is actually possible to construct an experimental 
device according to the above scheme. We shall now discuss the various limitations 
imposed on such a possibility by the structure of the laws of motion. A first restriction 
is given by the so-called superselection rules 15). There exist some universal constants 
of the motion as the electric charge, the baryon number, etc. They determine a de
composition of the Hilbert space of the total system object + apparatus into super-
selection spaces, which are invariant with respect to the equations of motion. It is 
never possible therefore to satisfy conditions (5.3) for a Hermitian operator whose 
eigenstates are superpositions of states corresponding to different values of the above 
universal constants. Even for the Hermitian operators for which the superselection 
spaces are invariant, there exist further restrictions. Of this kind are for instance those 
pointed out by Wigner 4), which, however, can be overcome, as has been emphasized, 
by taking into account the fact that the apparatus is a macroscopic system. 

Other restrictions are supplied by the following considerations. 
If τ is the coupling time between system and apparatus and Stl is the time during 

which the system I remains in a given eigenstate of a, in order that the quantity A 
be actually observable, we must obviously have, according to the analysis of the 
preceding section, 

Stl > τ. (11.1) 

If we denote respectively by <5ε, the energy indeterminacy of the system I when it is 
in an eigenstate of a, and by δε the energy indeterminacy of I + II corresponding to an 
unperturbed energy eigenstate, we have 

δh » h/δε, (11.2) 
and 

τ χ h/δε. (11.3) 
From (11.1) it follows that 

<5ε( < δε (11 -4) 

This relation implies a strong restriction on the nature of the quantities actually 
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observable. In general only quantities quasi-diagonal in the energy representation 
are observable. An exception is given by the quantities having a very strong de
generacy, as the macroscopic ones. 

The indeterminacy 5ε, of the macro-observables is of the order of the width Je l  

of the energy shell; however, the relaxation time J1 relative to these observables is 
certainly very large. This is essentially due to the fact that the occupation probability 
of a macro-state can be written as a sum of a large number of terms, among which 
some cancellations occur. Consequently the frequency width in the Fourier series 
expansion of the above probability turns out to be, as a matter of fact, much smaller 
than Δ ε,/ft. 

As has been previously emphasized, an objective character can be given to the 
macroscopic quantities only if observations incompatible with these cannot actually 
be performed, i.e. if quantities whose eigenstates are superpositions of vectors belong
ing to different Cflkv are not observable. (Otherwise, it would not be possible to elim
inate the interference terms among the macro-states.) 

The above considerations circumscribe the class of the actually observable quantities 
of a large body, but are not sufficient to exclude the possibility of observations in
compatible with macro-observations. 

To this end, considerations of a different nature are needed. We notice that in this 
case the systems I and II of the preceding sections are both macroscopic systems, for 
every one of which certain ergodicity conditions are satisfied, and it is plausible that 
similar conditions are satisfied also for the whole system I + II. (Indeed the ergodicity 
conditions must be a consequence of the very large number of elementary constituents 
— atoms or molecules — of the systems I and II and of the nature of the forces 
between these constituents.) If the system I + II satisfies the above ergodicity relations, 
its final situation is macroscopically represented by a statistical operator (10.3') 
which is a mixture of the equilibrium states corresponding to the single channels, 
with weights equal to the initial occupation weights of these channels. Therefore, a 
statistical operator at the time t = 0 for the system I, which corresponds to a pure 
state, described by a superposition of vectors belonging to different Cfltv, is equivalent, 
so far as the macroscopic observations on II are concerned, to a statistical operator 
which is a mixture of the above macroscopic states. Consequently it is not possible 
to put any correspondence between final macrostates of II and initial eigenstates of I 
corresponding to an observable which is not a macroscopic quantity. 

It follows from the preceding considerations that there is a fundamental difference 
between the characteristics of an apparatus for observations on a microscopic system 
and those of an apparatus for observations on a macroscopic one. 

In the first case, the measuring apparatus has a number of degrees of freedom 
very large with respect to that of the object system; the fact that the apparatus does 
not perturb appreciably the system (at least insofar as the quantity considered is 
concerned) is due to the nature of the interaction system-apparatus and to its short 
duration. An apparatus for observations on a large body must be, on the contrary, 
a system small with respect to the body, since in this case the nature of the interaction 
is very special and the coupling times are long. Moreover it is clear that if one wishes 
to perform measurements of quantities which change during the time evolution of 
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the system, it is necessary that the relaxation time of the apparatus be small with 
respect to that of the system. 

By way of example, we consider the case of temperature measurements inside a 
body. The apparatus is given by a set of thermometers distributed inside the body, 
the thermal capacities of which are very small with respect to that of the body. In 
order that these thermometers should make it possible to study how the temperature 
distribution changes with time, one must assume that each thermometer goes towards 
the equilibrium, together with the region around it, much more rapidly than the 
temperature changes with time, i.e. in a time small with respect to the time needed in 
order that a sensible displacement of heat inside the body takes place. 

One could think that the following objection can be raised against our point of view. 
Consider an hyperapparatus composed of as many measuring apparatus as there are 
particles constituting a given macroscopic body and suppose we perform on these 
particles a very accurate measurement, for instance of the energy. We should have in 
this case an observation much more accurate than a macroscopic one, an observation 
which could even be incompatible with the macro-observations. 

Let us observe, however, that in this way the body would be dissolved into its 
constituents; the ergodicity conditions, by virtue of which we have been able to exhibit 
the impossibility of non-macroscopic measurements on a large body are, on the 
contrary, just a consequence of the interactions which exist between the particles of 
the macroscopic body and which have the effect of lumping the particles into a single 
whole. 

The meaning of our considerations is precisely the following: when the particles 
of a system do interact so strongly that a body is formed, it is no longer possible to 
think of observing them independently. 

12. Theory of the Measuring Process under "Weak" Ergodicity Conditions 

In order to reach the result (9.9) we have used rather restrictive ergodicity conditions. 
In this section we want to show how, using some plausible assumptions, the same 
result can be obtained starting from much weaker ergodicity conditions. 

We assumed that the initial configuration of the measuring apparatus corresponds 
to a state belonging to the manifold C0eo, and that after the end of the interaction 
the apparatus is in a state belonging to a channel determined by the particular 
eigenstate of the observable of the micro-object which has been measured. The 
particular state in this channel depends on the state of the manifold C0eo in which 
the apparatus was before the measurement. Obviously not all the states of the final 
channel Ck can actually be reached by the macro-system since the number of dimen
sions of the channel is different from (in general larger than) the number of dimensions 
of the manifold C0eo. We may even add that not all the macro-states of the system 
can actually be reached. For instance, in a proportional or Geiger counter the positions 
of the ions which are created when the particle goes through the apparatus are 
correlated. If we know the positions of some ions the remaining ones must be more 
or less aligned with these. 
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We shall then suppose that the state-vector of the apparatus can actually go only 
into a given manifold C, union of a given class of manifolds , such that its number of 
dimensions is equal to the number of dimensions of , The above class of 
manifolds corresponds to the macrostates in which the apparatus can actually be 
found after the end of the interaction. If is the initial state of the apparatus, and 
if the system is in the state we assume that, owing to the interaction, the apparatus 
goes into the state 

(12.1) 

(12.2) 

where denotes the sum taken over the above class of cells. The square matrix 
is unitary, i.e. satisfies the conditions 

(12.3) 

If, more generally, the initial state of the apparatus is given by 

(12.4) 

owing to the interaction with the system the apparatus will go into the state 

(12.1') 

Thus we obtain 

'(12.5) 

If we put 

(12.6) 
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we have 

(12.7) 

We denote now by an averaging operation over the initial states performed 
with the following criterion. We attribute to any set of vectors a weight propor-
tional to the area of the surface determined by them over the complex -dimensional 
spherical surface of equation 

(12.8) 

One then obtains (cf. Prosperi and Scotti12)) 

(12.9) 

By virtue of eqs. (12.3) it follows that 

(12.10) 

from which 

. (12.11) 

We now assume the following ergodicity conditions: 

(12.12) 

(where N = which are much less strong than conditions (9.1) (cf. Prosperi 
and Scotti l z)). From these relations and from (12.2) it follows that 
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(12.13) 

and in conclusion 

(12.14) 

Owing to the replacement of the ergodicity conditions (9.1) by the conditions (12.12), 
we are no longer allowed to conclude that relations (9.4') and (9.8) are verified for 
every initial micro-state of the apparatus. However, as follows from relation 
(12.14), the ergodicity conditions (12.12) allow us to assert that the set of the initial 
exceptional states for which (9.4') and (9.8) are not verified has a very small measure. 
But this is the only result needed in order to be able to draw the conclusion of sect. 10. 

We finally remark that in the case in which the energy is the only macroscopic 
constant of the motion (and hence the channels coincide with the energy shells), the 
following result can be proved (cf. Prosperi1 6)): Ergodicity conditions of the kind 
(12.12) are satisfied, under suitable restrictive conditions, by the Hamiltonians for 
which Van Hove 17) has derived a master equation. These Hamiltonians already 
represent some physically significant examples and it is very likely that most of the 
macro-systems belong to this class. Consequently relations (12.12) are much more 
representative of the physical nature of the systems studied than would appear at first 
sight. 

We cordially thank our friends P. Bocchieri, A. Scotti and G. Stabilini for helpful 
discussions. 
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V.5 TIME SYMMETRY IN THE QUANTUM PROCESS OF MEASUREMENT* 

YAKIR AHARONOV, PETER G. BERGMANN, AND JOEL L. LEBOWITZ 

We examine the assertion that the "reduction of the wave packet," implicit in the quantum theory of 
measurement introduces into the foundations of quantum physics a time-asymmetric element, which in 
turn leads to irreversibility. We argue that this time asymmetry is actually related to the manner in which 
statistical ensembles are constructed. If we construct an ensemble time symmetrically by using both initial 
and final states of the system to delimit the sample, then the resulting probability distribution turns out to 
be time symmetric as well. The conventional expressions for prediction as well as those for "retrodiction" 
may be recovered from the time-symmetric expressions formally by separating the final (or the initial) 
selection procedure from the measurements under consideration by sequences of "coherence destroying" 
manipulations. We can proceed from this situation, which resembles prediction, to true prediction (which 
does not involve any postselection) by adding to the time-symmetric theory a postulate which asserts that 
ensembles with unambiguous probability distributions may be constructed on the basis of preselection only. 
If, as we believe, the validity of this postulate and the falsity of its time reverse result from the macro
scopic irreversibility of our universe as a whole, then the basic laws of quantum physics, including those 
referring to measurements, are as completely time symmetric as the laws of classical physics. As a by-product 
of our analysis, we also find that during the time interval between two noncommuting observations, we may 
assign to a system the quantum state corresponding to the observation that follows with as much justification 
as we assign, ordinarily, the state corresponding to the preceding measurement. 

I. INTRODUCTION 

ONE of the perennially challenging problems of 
theoretical physics is that of the "arrow of time." 

Everyday experience teaches us that the future is 
qualitatively different from the past, that our practical 
powers of prediction differ vastly from those of memory, 
and that complex physical systems tend to develop in 
the course of time in patterns distinct from those of 
their antecedents. On the other hand, all the "micro
scopic" laws of physics ever seriously propounded and 
widely accepted are entirely symmetric with respect 
to the direction of time; they are form-invariant with 
respect to time reversal.1·2 

The de facto absence of time symmetry in nature 
enters the formal statement of the laws of nature 
principally in two areas. One of these is thermo
dynamics, particularly the second law of thermo
dynamics; the latter proclaims that the entropy of a 
thermally isolated system can only increase toward the 
future. The other area is that of cosmogony; our 
universe is expanding toward the future. Gold1 has 
suggested that these two asymmetric phenomena may 
well be causally related to each other. A third time-
asymmetric effect, the preponderance of outgoing 
radiation in nature over incoming radiation, may be 
considered to be a special aspect of the second law. 

In quantum theory the dynamical laws of motion, 

* This research was supported by the U. S. Air Force Office of 
Scientific Research, Aerospace Research Laboratories, the 
National Science Foundation, and the National Aeronautics and 
Space Administration. 

1 T. Gold, in Onzieme Conseil de l'lnstitut International de 
Physique Solvay, La Structure et I'Evolution ie I'Universe (Edition 
Stoops, Brussels, 1958), p. 81; Am. J. Phys. 30, 403 (1962); 
Proceedings of the Conference on the Arrow of Time, Cornell 
University, 1963 (to be published). 

2 See, however, 0. Penrose and I. C. Percival, Proc. Phys. Soc. 
(London) 79, 605 (1962). 

either the Schrodinger or the Heisenberg equations, 
are time symmetric as are their classical counterparts, 
Hamilton's equations of motion. It has been suggested, 
though, that asymmetry in the direction of time, and 
even thermodynamic irreversibility, enters into quan
tum theory through the theory of measurement.3·4 Any 
measurement performed on a quantum system changes 
its state discontinuously and in a manner not to be 
described by the Schrodinger or Heisenberg equations 
of the isolated system. The performance of a measure
ment leads to the "reduction of the wave packet." That 
is to say, if the result of the measurement is known, 
then the quantum state of the system preceding the 
measurement has been replaced by the eigenvector of 
the observable that belongs to the eigenvalue recorded. 
If the outcome of the measurement is not known, the 
original state vector must now be replaced by a density 
matrix diagonal with respect to the eigenvectors of the 
observables measured, each diagonal element equaling 
the absolute square of the corresponding component of 
the original state vector. This density matrix is in-
equivalent to the original state vector in that all phase 
relations between the components have been destroyed 
by the act of measurement, though their norms survive 
in the density matrix. 

Quite aside from entropy considerations, the conven
tional quantum theory of measurements is concerned 
exclusively with the prediction of probabilities of 
specific outcomes of future measurements on the basis 
of the results of earlier observations. Indeed the 
reduction of the wave packet has as its operational 

3J. von Neumann, Mathematical Foundations of Quantum 
Mechanics, trans!, by R. T. Beyer (Princeton University Press, 
Princeton, 1955). 

4 D .  B o h m ,  Quantum Theory (Prentice-Hall Inc., Englewood 
Cliffs,· New Jersey, 1951), cf. in particular, p. 608. 

Originally published in Physical Review, 134B, 1410-16 (1964). 
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contents nothing but this probabilistic connection 
between successive observations.5 

In this paper we propose to examine the nature of the 
time symmetry in the quantum theory of measurement. 
Rather than delve into the measurement process itself, 
which involves a specialized interaction between the 
atomic system and a macroscopic device,3-5 we shall 
simply accept the standard expressions for probabilities 
of values furnished by the conventional theory. Whereas 
the conventional theory deals with ensembles of 
quantum systems that have been "preselected" on the 
basis of some initial observation, we shall deduce from 
it probability expressions that refer to ensembles that 
have been selected from combinations of data favoring 
neither past nor future. A theory that concerns itself 
exclusively with such symmetrically selected ensembles 
(the "time-symmetric theory") will contain only time-
symmetric expressions for the probabilities of observa
tions. Logically this time-symmetric theory is contained 
in the conventional theory but lacks one of the latter's 
postulates. It will be developed in Sec. II. 

In Sec. Ill we shall consider the case that prior to the 
final selection some observations are performed that 
completely destroy coherence of any state previously 
existing; we shall find that any earlier observations 
obey probability laws that formally resemble the 
conventional prediction formula. Likewise, if the initial 
selection ("preselection") is followed by coherence 
destroying measurements to be succeeded in turn by 
some other observations, then these latter observations 
obey the precise time-reflected expression of the 
conventional prediction formula. This reflected relation
ship might be called a "retrodiction" formula. Finally, 
in Sec. IV we shall return to the true prediction and 
"retrodiction" situations, i.e., to the consideration of 
ensembles that have been either strictly preselected or 
postselected. By adding to the time-symmetric theory 
one postulate that appears to portray accurately the 
conditions of our universe (and whose time-reflected 
proposition does not hold), we are able to recover the 
conventional asymmetric theory. We present an argu
ment that this asymmetry represents the intrusion of 
the irreversibility of macroscopic processes into the 
microscopic domain, so that the totality of the basic 
(microscopic) laws of nature emerges completely time 
symmetric. 

II. SEQUENCES OF OBSERVATIONS 

We shall begin by considering systems which are 
subjected to sequences of measurements, each of which 
is individually "complete"; that is to say, that each 
observation determines a quantum state of the system. 
We make the conventional assumption about the 
selection of ensembles of such systems (and of their 
histories), which is to the effect that initially all systems 
of the ensemble have yielded a specified nondegenerate 
eigenvalue of an observable J; no other conditions are 

• E. P. Wigner, Am. J. Phys. 31, 6 (1963). 

imposed. Under these circumstances the conventional 
quantum theory of measurements states that, given 
two successive measurements, the probability of a 
particular outcome of the later observation depends on 
the outcome of the earlier observation by being the 
absolute square of the scalar product of the two state-
vectors belonging to the two respective eigenvalues. 
We shall denote the observables to be measured by sym
bols Ah A2, •••, Ak, • • •, all of whose eigenvalues are 
nondegenerate; let the eigenvalues of Ak be denoted 
by dk. Only when necessary will distinct eigenvalues of 
At  be denoted by Greek superscripts  d k

M ,  d k
i e ) ,  • • • .  

For the sake of simplicity we shall work in a Heisenberg 
representation and assume further that all the Ak are 
constants of the motion, not necessarily explicitly time-
independent. At any rate, between measurements both 
the quantum states of our systems and the matrix 
elements of our observables will be constant. If the 
observables Ak are to be measured in any particular 
sequence, which, in general, will not correspond to the 
order of the subscripts · · ·, k, · • ·, we shall indicate 
the sequence of measurements by Latin superscripts, 
thus: Akm. 

Suppose now that we perform a sequence of observa
tions, Am~M, AJ-', yielding the measurements 
dm, ···,</,; then the probability that the next measure
ment Ak' will yield the eigenvalue dh is 

p(d k /d m , •  •  • ,d t )  =\<d, ld k ) \ 2 = Tr(D t D k )  ,  (2.1) 

where the symbol D k  denotes the idempotent operator 

D k =\d k ){d k \ ,  (2.2) 

etc. If the measurement A k '  is to be followed by 
Ai'+1, An>+2, • • •, Ar

N~l, AS
N, the probability that the 

respective outcomes will be dk, di, • • - , d„ d„ is 

pi .dk , ' ' '  jd r ,ds /d m , ' '  -  , d i )  
=  TriD s D r -  ·  D k D l D k  -  •  -D r ) .  (2.3) 

Equations (2.1) and (2.3) hold irrespective of the out
come of the measurements Am~M, •··, Ah'~2, and 
irrespective of the outcome of the members of the 
ensemble subsequent to the performance of the specified 
observation (s). These expressions summarize the 
quantitative content of the conventional theory of 
measurement in quantum physics. 

In passing let us briefly comment on the need in 
quantum theory for constructing ensembles with well-
defined probability characteristics. If, in classical 
mechanics, we had to deal with a system possessing a 
phase space with a finite volume Ω, then we could define 
an a priori probability density on that phase space that 
would be invariant with respect to canonical trans
formations: the constant probability density Ω-1. One 
could then modify this density in conformity with any 
restrictions imposed on the physical system, so as to 
obtain contingency probabilities by purely deductive 
methods. In other words, in a finite phase space one 
might construct statistical mechanics employing a 
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standard ensemble as the point of departure. Because 
in every realistic physical system the phase space has 
an infinite volume, a transformation-invariant standard 
probability density does not exist, and one is led into 
constructing or conjecturing probability distributions 
to fit various conditions imposed on the ensemble. 

The situation in quantum theory is analogous. If 
Hilbert space were finite-dimensional, then there 
would be one density matrix distinguished as being 
representation-invariant, the normalized multiple of 
the unit matrix, from which all other density matrices 
could be derived in response to various contingencies. 
But again, for all realistic physical systems Hilbert 
space is infinite-dimensional; hence, there is no 
"standard ensemble" existing a priori and independ
ently of any information about our physical system. 
Thus, formally, we are forced to construct ensembles 
of systems having certain restrictive properties. 
Whether particular classes of restrictions lead to en
sembles with unambiguous probability characteristics 
cannot be decided affirmatively by formal analysis alone, 
though internal inconsistencies might rule out some 
conjectures. It is clear that the assumptions underlying 
the conventional theory of quantum measurements are 
logically admissible. 

Next we shall consider a sequence of measurements 
J, Ah~M, •··, Ar1, A,0, A1

1, Am
2, •••, An", F, in that 

order. J and F are to be nondegenerate observables 
like the others, and their eigenvalues are denoted 
respectively by a and 5. We shall now consider an 
ensemble of systems whose initial and final states are 
fixed to correspond to the part icular  eigenvalues a and b,  
respectively; we ask for the probability that the out
come of the intervening measurements are d j t  ·  ·  · ,  
dn, respectively. This probability, on the strength of 
Eq. (2.3), is found to be 

p(dj ,--- ,d„,b/a) 
Pid j t-•  - ,d«/a,b)  = —— 

pib/a) 

1 
= Tr(/1 Dy • -DnBDn-  • -D,)  ,  

Hia,b) 
(2.4) 

where 

#(«,δ) = Σ, ' ·  ·  -Σ»'  TriAD y ---D n t BD n ,--  -D j ,),  

•  A= \a){a\  , £=|4)<J|. (2.5) 

This expression is manifestly time symmetric. If 
we change the sequence of measurements to F, 
A-rN, ••·, Ak

M, J, Eqs. (2.4), (2.5) remain unchanged. 
In the exceptional case Hia,b) — 0 the probability 
Pidj- · -dn/a,b) is not defined. 

The probabilities (2.4), (2.5) refer to a sample that 
has been selected on the basis of required outcomes of 
specified initial and final observations. This procedure 
may appear artificial compared to the usual prescrip
tion : "Prepare a system so that the value of J (at the 
beginning) be a." But from a formal point of view we 
may legitimately specify any selection that could be 
performed with physical equipment, however complex. 

As a matter of fact, in experimental physics selec
tions are frequently based on combinations of initial 
and final characteristics. Consider a beam of particles 
that enters a cloud chamber or similar device controlled 
by a master pulse. For the device to select an event as 
belonging to a sample to be evaluated statistically, the 
particle must enter the chamber and, prior to the onset 
of any manipulation by magnetic fields, etc., satisfy 
certain requirements. But in order to be counted the 
particle must also activate the circuits of counters 
placed below the chamber; thus, we make the selection 
on the basis of both the initial and the final state. In 
some experiments even intermediate specifications may 
be imposed in addition to initial and final conditions. 
Thus, our formal treatment of initial and final states on 
an equivalent footing is not inconsistent with experi
mental procedures used in some investigations. 

Equations (2.4), (2.5) may be thought of as providing 
the foundation for a time-symmetric theory of measure
ment. If we assumed the existence of ensembles with 
well-defined probabilities only if selected on the basis 
of both initial and final states, we should have a logically 
closed theory, though one that would never permit 
extrapolations to time intervals lying outside the 
interstice between initial and final determination. Given 
ensembles of any kind with well-defined probability 
dispersions, we can always form subensembles obeying 
additional restrictions and hence the time-symmetric 
ensembles can be obtained from those of the conven
tional theory by means of a deductive process. The 
reverse does not hold, i.e., we cannot infer the character
istics of broadly defined ensembles from those of more 
narrowly defined ensembles. 

On the basis of Eqs. (2.4), (2.5) we may calculate 
probabilities involving only some of the measurements 
between J and F, or we may calculate contingent 
probabilities referring to partial samples in which the 
outcomes of some of these measurements are fixed. In 
particular we can calculate the contingent probability 
of the outcome di1, given the outcome d,0. To obtain 
this probability we must, of course, sum over all the 
possible outcomes of the measurements preceding A i

0  

a n d  o v e r  a l l  t h e  p o s s i b l e  o u t c o m e s  f o l l o w i n g  A f ,  
keeping, as before, the outcomes of J and F fixed. 
The result is 

Σ»'· · ·Σ»< TriD t D l D m ,-•  • Dn ,  BDn ,  • •  -Dm ,D t)  .  
pidi /d,;a,b)  = • 

Σ ι- Σ™ Σ»' TriD t DvD m ,-  •  -Dn ,BDn , · -  -Dm-D t , )  

Ση.' · · Ση' τ^D l D m -••  Dn ,BDn ,  ••  -Dm , )  
= \{d, |rf , ) |* - .  

Σι-· • -Ση- TriD i D v D m ,--  -B-•  -Dm ,D, ·)  
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As expected, the history preceding the measurement 
^l1

0 drops out of our expression, but the coefficient of the 
squared matrix element of the conventional prediction 
(2.1) is sensitive to and to dt as well as to the sub
sequent history. In other words, postselection will affect 
the transition probability from d% to dt. That this is 
unavoidable can be understood easily by the considera
tion of the extreme case in which all observables 
Am, • • •, A„, F commute with each other as well as with 
At. Depending on the selection of the eigenvalue b, the 
transition probability in that case will be either 0 or 1. 

It is obvious that the time-reflected relationship to 
(2.6) also holds. That is to say, if we calculate the 
contingent probability of d« knowing the outcome di of 
the observation immediately following, we shall obtain 
an expression that is independent of the whole history 
subsequent to the measurement A tl, but which will de
pend on the initial selection a as well as observations 
scheduled prior to ^4,0. 

Let us now consider incomplete measurements. The 
result (2.4), (2.5) can be generalized immediately if we 
drop the requirement that each intermediate measure
ment be complete. According to von Neumann,3 an 
incomplete observation projects the initial state not on 
a particular direction but on a particular (multi
dimensional) linear subspace of the Hilbert space, and 
may be represented by an idempotent  operator  D k .  
The form of Eqs. (2.4), (2.5) will remain unchanged 
under this reinterpretation of the symbols Dk. It 
should be noted, however, that Eq. (2.6) holds only if 
A i is nondegenerate. 

The replacement of the initial and final states by 
mixtures is a bit more involved. If we form an ensemble 
in which histories beginning with state | a) and ending 
with state |δ) form a fraction c„6 of the whole 

Cai>ο, Σ Σ C*. v  = l ,  (2.7) 
a '  b '  

then the probability p(d l t ·  •  •  , d n / {c } )  will be 

Pid 1 , - •  · Α/{ί}) = Σ Σ Ca<vp{d„ ·  •  - ,dn /a 'yb ' ) .  (2.8) 
a'  b '  

There exists no simple expression that would depend on 
the initial and final density matrices. The probabilities 
(2.8) depend on the fractions of systems within the 
ensemble passing from specified initial to specified final 
states, not merely on the initial distribution Σ 6' c«t>' 
and the f inal  d is t r ibut ion Σα'  ch i 

lli. ASYMPTOTIC PROCEDURES 

Whereas we have been able to obtain time-symmetric 
ensembles from those depending only on initial selec
tion, the reverse procedure is impossible without an 
additional postulate; that is to say, given a theory of 
ensembles based on time-symmetric double-selection 
procedures, we cannot obtain probabilities for ensembles 
in which the selection is based only on initial (or only 
on final) observations by deduction alone. In this sense, 

the time-symmetric theory of Sec. II is more restricted 
than the conventional theory of measurements. 

There is, however, a way to blunt the effects of either 
pre- or postselection. The method to be described in 
this section rests on the fact that in quantum theory 
the type of interference that we call an observation 
destroys the "coherence" of the state of a system, 
producing a new situation that is connected with the 
original situation only by stochastic laws. This stochastic 
connection, or the lack of a/tighter relationship, may be 
expressed either in terms of the state vector, or its 
replacement by a density matrix, or purely in terms of 
probabilistic assertions. Whatever the mode of descrip
tion, it is possible to sever different portions of the 
history of a system from each other by the interposition 
of certain types of measurements. By preceding the 
final selection in the time-symmetric theory by such 
"coherence destroying" manipulations, we may form
ally recover the prediction formula (2.1); by scheduling 
such procedures following the initial selection of a time-
symmetric ensemble, we may obtain the time-reverse 
of Eq. (2.1), a "retrodiction" formula. 

These possibilities are of considerable interest because 
they present us with a relatively large class of possible 
procedures all of which lead, asymptotically in most 
cases, to substantially similar results. Though the 
interpolation of coherence destroying manipulations, 
say before the act of final selection within the framework 
of the time-symmetric theory, does not relieve us of the 
logical necessity of performing the act of final selection, 
the particular choice of observable and of its numerical 
value used for that final selection has no effect on the 
probabilities of events preceding the coherence 
destroying acts. 

We shall first indicate particular sets of measurements 
which destroy coherence more or less completely. Such 
sets of two consecutive measurements may be con
structed in closed form if the Hilbert space of a system 
is finite dimensional, e.g., if the particles in a mono
chromatic and well-collimated beam can differ only in 
their states of polarization. Consider, in this case, two 
observables Ai and Ai whose eigenvectors are related 
to each other by a unitary matrix U and whose matrix 
elements all have the same absolute square 1/η, η being 
the number of dimensions of the Hilbert space. One 
possible unitary matrix with this property is, for 
instance, the following: 

ίΛϋ=[1/(»)1/2]β'"', θη= (2ir/n)k l .  (3.1) 

Let us denote the idempotent operators to be con
structed from the respective eigenvectors of the two 
observables by D1 and Dh respectively, each of these 
symbols representing η such different operators. Then 
the following expression constructed with any density 
matrix M whatsoever is always a multiple of the unit 
matrix  I :  

Z i  ,< Σ ί . '  D 1
r D i

l MD 2 O 1 '=  (1 /»)/. (3.2 
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As for the infinite-dimensional case, the situation is 
insofar more involved as there exists no density matrix 
which is precisely a multiple of the unit matrix. We 
shall assume that the Hilbert space admits a complete 
set of commuting operators, each having a continuous 
range of eigenvalues from — « to ». We shall call these 
operators X3 and construct by the usual methods a set 
of operators ps which satisfy standard canonical 
commutation relations with each other and with the 
In a somewhat symbolic sense the unitary operators 
leading from the improper joint eigenfunctions of the 
X1 to the improper joint eigenfunctions of the p„ i.e., 
the Fourier integral operators, possess matrix elements 
all of the same magnitude as in the previous case. In 
view of the fact that idempotent operators of the type 
x(»o), etc., are not really defined, we introduce idem
potent operators X(x,A), defined as integral operators 
whose kernel equals 1 if xeA, and vanishes otherwise. 
We cover the space of numerical values of the xs with a 
denumerable set of domains Δ without overlap. Simi
larly, we introduce idempotent operators P (p,E), where 
the domains E cover the momentum space without 
overlap. The expression constructed in complete analogy 
to (3.1) will then not equal a multiple of the unit matrix 
because of the coarseness of the cell structures estab
lished in χ space and in p space. However, we may 
establish a sensible limit if we improve the fineness of 
both cell structures and if we multiply the expression 
(3.1) on the left by a factor corresponding to the 
effective n, eventually becoming infinite, so that the 
r ight  s ide can actual ly  tend to the identi ty  operator  I  
(whose trace diverges). 

We now return to the expression (2.4) and substitute 
for a certain number of factors centered on F a multiple 
of I, both in the numerator and the denominator. The 
constant of proportionality used is immaterial, as it 
drops out in any case, and we might use I directly. We 
then see, almost by inspection, that (2.4) reduces to 
(2.3), the pure prediction formula, and, likewise, that 
(2.6) reduces to (2.1). We conclude, then, that because 
of the asymptotic properties of expressions of type (3.2) 
the prediction formulas may be recovered from the 
time-symmetric formulas. 

We may derive the corresponding "retrodiction" 
expression by time reversing the procedure that we have 
just presented. If we follow the initial selection of an 
ensemble in the time-symmetric theory by a set of 
coherence-destroying measurements, then the outcome 
of subsequent observations is related to the final 
selection as follows: 

p(d k ,di , · ·  •  ,d s /a ,b)  = Tr(D kD t ·  • D sBD s - ·  -D 1 ) .  (3.3) 

If, in particular, we are concerned with the one observa
tion preceding the final selection, then the probability of 
the outcome d is 

p(d/b)=\{b\d) \* .  (3.4) 

The coherence destroying properties of the procedure 

summarized in Eqs. (3.1), (3.2), and of the correspond
ing asymptotic procedure outlined for the infinite-
dimensional Hilbert space may be demonstrated by 
straightforward computation. It would be of consider
able interest if there were a broad range of procedures 
having the same effect. Generally, sequences of measure
ments will destroy coherence to a greater or lesser extent 
provided that they involve all directions of Hilbert 
space in noncommuting measurements. There are, of 
course, degrees of noncommutativity: The noncom-
mutavity may involve varying numbers of directions 
in Hilbert space, and the eigendirections of consecutive 
operators may differ from each other by various angles. 
Formally, the extent to which coherence is destroyed by 
a given sequence may be evaluated in terms of the 
degree to which matrices of the general form (3.2) 
approximate a multiple of the unit matrix. That there 
is some approach to the unit matrix in a sequence of 
noncommuting measurements is assured by the results 
to be found in von Neumann.3 If Dia) is a set of idem
potent operators belonging to the same measurement 
and with properties 

DMDw = S-Wm, EaD^ = I, (3.5) 

and if M is an arbitrary density matrix, then 

Μ'=Σ.« DmMDm (3.6) 

is also a density matrix and approximates a multiple of 
the unit matrix I at least as well as M in the following 
respects: (a) If we define the entropy of M as usual by 
the expression 

S=-k Tr(MlnM),  (3.7) 

then 

S'ZS.  (3.8) 

The equality holds only if the idempotent operators 
commute with M. (b) The range of eigenvalues of M' is 
not greater than the range of eigenvalues of M; that is 
to say, the upper limit of its eigenvalues is not larger 
and the lower limit not smaller. Both entropy and 
range of eigenvalue spectrum are yardsticks for the 
approach to X/. 

Thus, it appears that we can destroy coherence more 
or less completely by a wide variety of sequences of 
measurements and thereby obtain the asymptotic 
prediction and retrodiction situations within the frame
work of the time-symmetric theory of measurements. 

The existence of the retrodiction formula (3.3), (3.4) 
suggests that the customary assignment of a state vector 
to a system on the basis of the most recent preceding 
observation may be somewhat arbitrary. This assign
ment is based on the intuitive notion that the measure
ment is the "cause" and the quantum state the "effect," 
and that cause must precede effect in time. Also, 
perhaps, there is the notion that the quantum state of 
a system embodies the maximum of information avail
able to us about the system at any time; ordinarily, we 
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can know the outcome of all observations in the past 
but not of those yet in the future. 

But, as we have seen, under suitable circumstances 
the usual prediction formula (2.1) may be replaced by 
the retrodiction formula (3.4), which bases a proba
bilistic statement about the outcome of one measure
ment on the outcome of the measurement next following 
in time. If the measurement of A (whose eigenvalues 
are being denoted by d) is preceded by coherence 
destroying operations as we have assumed in deriving 
Eqs. (3.3) and (3.4), then we know essentially nothing 
about the outcome of observations preceding A ; that is 
to say, all possible outcomes of such preceding observa
tions are approximately equally likely. Hence, our 
probabilistic statement about the outcome of the 
measurement of A is based primarily on the event 
immediately following, and the information on which 
our statement is based ought to be incorporated in an 
appropriate assignment of quantum state. Thus, we 
are led into assigning the state | b) to the period of time 
preceding the observation of F yielding the eigenvalue b. 

From a purely operational point of view, one might 
eschew the assignment of quantum states to physical 
systems altogether and instead rely entirely on proba
bilistic statements referring to carefully defined en
sembles. However, as long as one does assign quantum 
states to physical systems, it appears defensible to do 
so either in reliance on the (complete) observation 
immediately preceding (as is customary) or on the one 
next following, depending on circumstances. This 
ambiguity indicates that the quantum state of a 
system, though undoubtedly containing some elements 
of "reality" independent of any observer, also has 
subjective aspects. 

We shall conclude this section by pointing out that, 
in general, the dispersion of probabilities of the outcome 
of one particular observation will be minimized (i.e., 
the "negative entropy" associated with this dispersion 
will be maximized) if we use all information about the 
system's past and future. This statement is a direct 
consequence of the properties of the entropy function 
to be found, e.g., in Khinchin.6 Hence, if both the initial 
and final state of a system are known, use of the 
prediction formulas (2.1) or (2.3) instead of (2.4) will 
lead to a loss in precision of the probabilistic statement 
concerning the intermediate observation. 

IV. DIRECT PREDICTION 

By now we have established that the conventional 
prediction formulas can be recovered from the time-
symmetric expressions (2.4) by means of a model that 
consists of shielding events close at hand from the 
terminal selection on which (2.4) is based by the inter
position of a series of "coherence destroying" experi-

s A. I. Khinchin, Mathematical Foundations of Information 
Theory, transl. by R. A. Silverman and M. D. Friedman (Dover 
Publications, Inc., New York, 1957). 

ments. Each measurement constitutes an interference 
with the physical system which destroys in a limited 
and mathematically well-described manner its dynamic 
behavior as an isolated system. 

Normally, the prediction formula (2.1) and its 
corollary (2.3) are not conceived of as depending on 
carefully managed follow-up maneuvers, but are 
assumed to be independent of the subsequent history of 
the system. That this prediction theory is indeed 
logically independent of the time-symmetric formula 
(2.4) may be deduced immediately from the circum
stance that in our universe the prediction formula is 
considered to be universally valid, whereas the time-
reflected formula, the retrodiction formula, is not. 

Consider an ensemble of similar physical systems of 
arbitrary provenance and select a sample on the 
strength of a single complete measurement. The 
conventional theory of measurement then furnishes us, 
with respect to this selected subensemble, with relative 
frequencies of outcomes of a subsequent measurement 
or of a subsequent series of measurements, regardless of 
the events that may have preceded the initial selection 
procedure, as well as of those events that follow on the 
heels of the specified series of measurements, as long as 
no further selection is involved. The reverse theory 
would have to concern itself with the probability of the 
outcome of certain measurements on an ensemble of 
similar physical systems, the ensemble to be determined 
solely on the basis of a pure-state selection immediately 
following the specified series of measurements; the 
expression for the probabilities should contain no 
reference to any events following the terminal selection, 
nor to the manner in which physically similar systems 
were collected prior to the onset of the series of measure
ments. Clearly, in our universe no such "retrodiction 
theory" would be valid: Suppose we constructed a 
monochromatic and well-collimated beam of particles 
possessing nonzero spin, performed some observation 
referring to the spin distribution of the beam, and then 
followed up with a Stern-Gerlach experiment singling 
out those particles in the beam being in a very definite 
spin state. Suppose we ask for the percentage of par
ticles, from among those passing the postselection test, 
that had specified outcomes in the antecedent experi
ment (which should refer to an observable not possess
ing the specified final state as an eigenstate); surely 
these probabilities would not be independent of the 
state of polarization of our beam prior to the per
formance of the first experiment. 

We conclude, therefore, that in order to recover the 
conventional prediction statement from the time-
symmetric formulas of Sec. II, we must adopt a 
postulate that is logically independent of the time-
symmetric theory; the postulate that in our universe 
ensembles chosen on the basis of an initial complete 
measurement alone possess unambiguous and repro
ducible probability characteristics. Once we adopt this 
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postulate the conventional prediction formulas (2.1), 
(2.3) follow from the time-symmetric formula (2.4) 
and from the considerations of Sec. III. We found in 
that section that there are "coherence destroying" 
procedures that make the "prediction" expressions (2.6) 
independent of the particular postselection we choose 
to perform. But if there are methods by which we can 
make our probabilities independent of the manner of 
postselection and if, by our new postulate, there exist 
unambiguous probabilities even in the absence of any 
postselection, then these two sets of probabilities should 
be equal. 

Logically, it is conceivable that the time reverse of 
our new postulate should also hold; this would mean 
that postselection alone results in an ensemble with 
well-defined and reproducible probability character
istics. Actually we know that in our universe this 
proposition is untrue. We are thus confronted with an 
indubitable asymmetry in time direction. It remains 
to discuss whether this asymmetry is a property of 
microphysics proper or whether it represents the 
intrusion of the macroscopic universe on the micro
scopic scene. Granting that this question does not lend 
itself to straightforward logical analysis, it appears to 
us that the construction of ensembles in the real 
physical universe is a macroscopic operation and that 
it depends on the realities of the universe as a whole. 
Let us return once more to our beam of particles 
endowed with spin. 

If we attempt to analyze the different manner in 
which past and future histories affect its present 
characteristics, we find that no matter how we gather 
our beam, its constituent particles have come from one 
or several "sources" (e.g., a laboratory device, a distant 
galaxy, etc.), which determine its properties; there 
simply is no way of avoiding preselection completely. 
On the other hand, beams are not collimated toward 
a "sink," unless we arrange it so in our laboratory. This 
asymmetry is directly associated with the fact that the 
origins of all kinds of radiations in the universe are 
spatially and temporally concentrated, and their 

destinations are not. The nature of ensembles or beams 
actually occurring in nature is, in fact, macroscopic, 
not microscopic; it is determined by the same cause as 
all macroscopic irreversibility, conceivably by the 
expansion of the universe.1 

As for the microscopically determined aspects of 
quantum measurements, we believe that they can be 
fairly summarized by the statement that in time-
symmetrically constructed ensembles the laws of proba
bility are also time symmetric; further, that to the 
extent that retrodiction situations may be said to exist, 
they obey the same laws as the corresponding prediction 
situations. 

ACKNOWLEDGMENTS 

The authors wish to acknowledge frequent valuable 
discussions with 0. Penrose and with A. Komar. One 
of us (P. G. B.) was helped considerably in clarifying 
his own thinking by the privilege of attending a con
ference on the arrow of time organized by T. Gold and 
H. Bondi, which took place in May 1963 at Cornell 
University. Our postulate as to the sufficiency of pre
selection in Sec. IV was stimulated by the paper by 
Penrose and Percival.2 Their time-asymmetric proposal 
is, however, concerned with ensembles of classical 
systems, and not directly related to their construction 
on the basis of observations. Finally, we wish to 
acknowledge with thanks receipt of a preprint by W. J. 
Cocke entitled "Statistical Time-Inversion Invariance." 
Cocke's paper is, in contrast to ours, primarily con
cerned with histories of macroscopic systems, which 
lend themselves to a description in terms of Markov 
chains. H. Margenau has pointed out that the conven
tional interpretation of quantum measurements which 
is associated with the name of von Neumann3 is 
currently no longer acceptable to a fair number of 
physicists.7 We wish to express our appreciation for his 
critical reading of our work. 

7 H. Margenau, Phil. Sci. 30, 1 (1963); Ann. Phys. (Ν. Y.) 23 
469 (1963). Further references are to be found in these two papers 



V.6 LYAPOUNOV VARIABLE: ENTROPY AND MEASUREMENT IN 
QUANTUM MECHANICS 

BAIDYANATH MISRA , ILYA PRIGOGINE , AND MAURICE COURBAGE 

ABSTRACT We discuss the question of the dynamical 
meaning of the second law of thermodynamics in the frame
work of quantum mechanics. Previous discussion of the problem 
in the framework of classical dynamics has shown that the 
second law can be given a dynamical meaning in terms of the 
existence of so-called Lyapounov variables—i.e., dynamical 
variables varying monotonically in time without becoming 
contradictory. It has been found that such variables can exist 
in an extended framework of classical dynamics, provided that 
the dynamical motion is suitably unstable. In this paper we 
begin to extend these results to quantum mechanics. It is found 
that no dynamical variable with the characteristic properties 
of nonequilibrium entropy can be defined in the standard for
mulation of quantum mechanics. However, if the Hamiltonian 
has certain well-defined spectral properties, such variables can 
be defined but only as a nonfactorizable superoperator. Nec
essary nonfactorizability of such entropy operators M has the 
consequence that they cannot preserve the class of pure states. 
Physically, this means that the distinguishability between pure 
states and corresponding mixtures must be lost in the case of a 
quantal system for which the algebra of observables can be 
extended to include a new dynamical variable representing 
nonequilibrium entropy. We discuss how this result leads to a 
solution of the quantum measurement problem. It is also found 
that the question of existence of entropy of superoperators M 
is closely linked to the problem of defining an operator of time 
in quantum mechanics. 

I. Introduction 
No other question in theoretical physics seems to have caused 
as much controversial discussions over as long a period of time 
as the question of the dynamical meaning of irreversibility 
expressed in the second law of thermodynamics With the ad
vent of quantum mechanics and the discovery of the apparently 
irreversible exponential decay of unstable particles, this question 
has gained added theoretical importance. Irreversibility is now 
an essential feature of gross macroscopic phenomena such as 
the familiar transport processes and it also seems to be intrinsic 
in such basic processes as the "wave packet reduction" caused 
by measurement and the decay of unstable particles 

The difficulties encountered by the traditional approach to 
the problem of the dynamical meaning of the second law are 
well known (1). In this paper we shall discuss this question in 
the framework of quantum dynamics from the alternative 
viewpoint that has emerged from our previous work (1-4). This 
discussion will lead to the conclusion that the second law can 
be interpreted as a dynamical principle m an extended 
framework of quantum dynamics without involving contra
dictions and that thus interpreted it implies the loss of dis
tinguishability between pure states and mixtures for systems 
to which the second law applies. 

As is well known, a fundamental distinction is made in 
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quantum mechanics between pure states (usually represented 
by unit vectors of a Hilbert space) and the mixtures represented 
by the so-called density operators. The pure states occupy a 
privileged position in the theory: the quantum superposition 
principle holds between the pure states; dynamical evolution, 
as described by the Schrodinger equation, transforms pure states 
into pure states and the observables of the theory correspond 
to self-adjoint operators that again map pure states into pure 
states The basic laws of quantum mechanics can thus be for
mulated without ever invoking the notion of mixtures and their 
representation by density operators. The use of this notion is 
generally believed to reflect incompleteness of knowledge about 
the system and it is considered to be only a matter of practical 
convenience or approximation 

The fundamental distinction between the pure states and 
mixtures and the privileged position of the pure states are, 
however, not maintained in measurement processes. As von 
Neumann's by now "classical" analysis has shown, we have, in 
addition to the deterministic and reversible evolution of the 
pure states into pure states described by the Schrodinger 
equations, the peculiar evolution, called "the reduction of the 
wave packet," which occurs during measurement processes. 
This latter evolution is irreversible and typically transforms pure 
states into mixtures. 

Obviously, one can not accept such a dualism of state-evo
lution as final, and various authors have attempted to overcome 
it (We do not intend to survey these attempts here; an excellent 
account of the subject can be found in ref. 5 ) Let us only em
phasize here that it is the presumed distinguishability between 
the pure state (which the Schrodinger equation would predict 
for the object + apparatus system) and the mixture that arises 
from the wave packet reduction that is at the root of the con
ceptual problems posed by quantum theory of measurement 
This dualism of state-evolution could be avoided if one could 
formulate a physical principle that implies the loss of dis
tinguishability between the pure states and the corresponding 
mixtures in the case of sufficiently complex systems capable of 
serving as measuring and recording apparatus (6). The main 
finding of our paper is that the second law of thermodynamics, 
when suitably interpreted as a dynamical principle, is just the 
physical principle that leads to the desired loss of distinguish
ability between the pure states and mixtures 

Before we discuss further our conclusions, it will be useful 
to consider briefly the problem of irreversibility in classical 
dynamics. Obviously, the simplest dynamical interpretation 
of the second law would be to require the existence of a dy
namical variable with the characteristic properties of en
tropy—in particular, the property of monotonic variation with 
time However, Poincare (7) has pointed out that such a dy-
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namical variable can not exist within the class of standard dy
namical variables of classical mechanics (i.e., the class of 
functions on phase space). This seemed to exclude the possibility 
of interpreting the second law as a dynamical principle. 

Our recent work (2-4), however, shows that this difficulty 
can be bypassed in an extended framework of dynamics. 
Briefly, our approach links the existence of a dynamical variable 
having the properties of nonequilibrium entropy to the presence 
of instabilities of dynamical motion. For systems presenting 
sufficiently strong instabilities of motion the notion of phase 
space trajectories loses operational meaning, and dynamics has 
to be formulated in terms of the motion of distribution functions 
on phase space. The dynamical variable can correspond now 
to more general operators (acting on the distribution functions) 
than just the multiplication operators by phase functions. In this 
extended framework the second law may be interpreted as 
requiring the existence of operators M (called Lyapounov 
variables) such that 

i p t , M p t )  [1.1] 

varies monotonously with time t  as the distribution functions 
Pt evolve according to the Liouville s equation: 

i ~  =  L p t .  [1.2] 
Ot 

Naturally, not all dynamical systems allow the existence of 
Lyapounov variables M. As expected, it turns out that a suitable 
degree of dynamical instability (for instance, "mixing insta
bility") is necessary for the existence of M (3). More impor
tantly, it is found that there is a well-defined class of dynamical 
systems (so-called X-flows) for which the Lyapounov variables 
exist. In this case one can define a (self-adjoint) operator T 
representing "internal time" of the system which is "canonically 
conjugate" to the generator L of dynamical evolution 

i [ L , T ] = I  [1.3] 

and Lyapounov variables M then can be obtained as monotone 
positive operator functions of T. The Lyapounov variables M 
may, under suitable conditions, lead further to (nonunitary) 
invertible similarity transformations Λ defined as 

A = M1/2 [1.4] 

which convert the original deterministic evolution described 
by the Liouville equation into the stochastic evolution of a 
Markov process satisfying an H theorem of the Boltzmann type. 
We have exhibited examples of this possibility (4). 

One thus begins to see how the second law can be formulated 
as a dynamical principle in terms of the existence of Lyapounov 
variables and the important implications of the existence of such 
variables. In particular, one begins to see the close links among 
intrinsic irreversibility (expressed in terms of the existence of 
M), inherent randomness (expressed in terms of the existence 
of A which converts the dynamical evolution to the evolution 
of a stochastic process), and the instabilities of dynamical mo
tion In this paper we make a start to extend these results to 
quantum mechanics. 

We show in Section 2 that, under fairly general conditions, 
no entropy operator or Lyapounov variable can be defined in 
the standard framework of quantum mechanics. This is a 
consequence of the fact that in the standard formulation the 
generator of the time evolution group is also the operator rep
resenting the energy observable and hence is required to be 
bounded from below This result is the quantum analogue of 
Poincare's conclusion that entropy cannot be defined as a phase 
function in classical mechanics. 

The limitation of Section 2 does not apply if the quantum 
mechanical Liouville equation is taken as the basic equation 

of motion because the Liouvillian operator need not be semi-
bounded. It is found (Section 3) that, if the Liouville operator 
L (or equivalently the Hamiltonian) has certain well-defined 
spectral properties, then Lyapounov variables exist as "super 
operators" (i.e., as operators acting on the space of density op
erators) They cannot exist, however, even as superoperator for 
all systems. In particular, they do not exist for quantum systems 
of finite number of particles enclosed in a finite volume In this 
respect the situation in quantum mechanics differs funda
mentally from that in classical mechanics. Lyapounov variables 
exist, for instance, for the classical system of a finite number of 
hard spheres enclosed in a finite box because this system is 
known to satisfy the K-flow condition. 

As a side remark let us add that this disparity in behavior 
(with regard to irreversibility) of the classical and quantum 
systems argues against the plausibility of "hidden variable 
theories" of quantum mechanics. This point is further devel
oped in a forthcoming publication (8). 

The essential point about the entropy superoperators M is 
that they are necessarily "nonfactorizable" and they cannot 
preserve the class of pure states. These results are proved in 
Section 4. Physically this means that, for systems whose algebra 
of observables can be extended to include a new dynamical 
variable representing nonequilibrium entropy, the distingu-
ishability between pure states and mixtures must be lost This 
opens the way to reconciling the two types of evolution distin
guished by von Neumann in his analysis of measurement pro
cesses. The measurement process involves always a dynamical 
system (namely, the measuring + recording apparatus) for 
which the requirement of the second law—in the existence of 
an entropy superoperator—is satisfied. But this implies that the 
distinction between pure states and mixture is lost in mea
surement processes. 

Let us mention that in previous work (2, 9) it has been em
phasized that kinetic theory leading to description of irrevers
ible phenomena can only be developed on the level of mixture 
and it involves nonfactorizable superoperators. We begin to see 
now the deeper justification for this 

2. Incompatibility between the existence of entropy 
operator and the semiboundness of generator of 
time-evolution 

Let us start by showing that in order to define an observable 
with the characteristic property of nonequilibrium entropy it 
is necessary to go beyond the standard formulation of quantum 
mechanics in which the Hamiltonian operator H is the gener
ator of dynamical evolution Suppose that there exists an op
erator M in the Hilbert space of pure states that represents 
nonequilibrium entropy. The requirement that M increases 
monotonically with time then translates into the condition: 

i [ H , M ]  =  D >  O [2.1] 

The operator D can now be interpreted as the entropy pro
duction operator, and it seems natural to suppose that the 
measurements of M and D are mutually compatible This 
implies 

[ M j D j  =  O .  [ 2 . 2 ]  

The basic reason why conditions 2.1 and 2.2 cannot be sat
isfied by an operator M (except in the trivial case D = 0) is that 
the Hamiltonian operator H plays a dual role in quantum 
mechanics: it is the generator of the time-evolution group and 
it also represents the energy of the system Hence, it must be 
bounded from below: H > 0. 

Before proceeding to show the incompatibility of conditions 
2.1 and 2.2 (with D τ* 0) with the semiboundedness of the 
Hamiltonian, let us remark that the operators involved in 
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conditions 2.1 and 2.2 are in general unbounded. To obtain 
reasonably meaningful results it is thus necessary to make the 
formal commutation conditions 2.1 and 2.2 more precise by 
making appropriate assumptions about the domains of defini
tion of the involved operators. We need not discuss this question 
in detail here. Let us only mention that the argument given 
below is rigorously valid if (t) M is bounded and self-adjoint, 
(U)Mfin s iDn, where jDh denotes the domain of H, and (Hi) 
condition 2.2 is interpreted to mean that the operator DM is an 
extension of MD: MD c DM. Naturally, these conditions are 
not necessary but only sufficient to establish the incompatibility 
of conditions 2.1 and 2.2 with the semiboundedness of H. 

For instance, this incompatibility follows also even for un
bounded M provided that suitable assumptions are made on 
the domain of M. But we do not discuss such generalizations 
here because they do not bring any essentially new point. 

Returning to the proof of incompatibility, let us consider the 
identity 

ν  (  e ~ t M l  φ ,  H e ~ , M t  φ )  =  φ ,  [ Η ,  Μ } β - , Μ ' φ )  
a t  

[2.3] 

which can be easily verified to hold for all φ  in the domain ' D  n  
of H To be more explicit, using the previously stated condi
tions on the domain of H and condition 2.2, one can verify the 
following, (i) for all φ E DH, Ε~'Μ,φ also belongs to DH, (ii) 
for φε 'DH, (β~'Μ'φ, He~'Mt φ) isdifferentiable with respect 
to T with its derivative given by identity 2.3. 

Because the bounded self-adjoint operator M commutes with 
the self-adjoint operator D, by assumption it follows that 
e'M,De~'Mt = D. Thus, identity 2.3 reduces to the equality: 

Ή. Η β ~ ' Μ ί φ )  = — (Φ, Ό φ ) .  [2.4] 
a t  

Integration of both sides of equality 2.4 from 0 to ( > 0 
yields 

( ε ~ Μ ' φ ,  Η ε ~ ι Μ ' φ )  -  ( φ ,  Η φ )  =  - ί ( φ ,  Ό φ )  

or, 

( φ ,  Η φ )  =  ί ( φ , ΰ φ )  +  φ ,  Η β - ' Μ ' φ )  
for φ  e  DH-

Because H > 0, we have for all ψ 6 S η and all t > 0, 

( φ , Ή φ )  > <<ψ,Οψ> [2.5] 

or 1/ί ( φ ,  Η φ )  >  ( φ ,  Ο φ )  for all φ  e  'DH and all t >  0. Letting 
( • α, we then obtain (φ, Όφ) < 0 for a dense set of vectors; 
or D < 0. 

At this point we may use the assumption that D  >  0  and 
reach the desired conclusion D = 0. However, it is important 
to note that this conclusion does not depend on the positivity 
of D but follows only from condition 2.2 and the semi
boundedness of H. To see this, we now integrate equality 2.4 
from —f to 0 and obtain, as before, the inequality· 

( φ ,  Η φ )  >  - Κ φ , Ό φ )  (2.6] 

for all φ  €  'DH and all t  >  0. 
The inequality 2.6 together with the previously reached 

conclusion that D < 0 now proves that D = 0. This shows that, 
in order to be able to define a new dynamical variable M rep
resenting nonequilibrium entropy, it is necessary to go beyond 
the standard formulation of quantum mechanics Although the 
property of monotonic increase of entropy (i e., the condition 
D > 0) does not play any role in reaching this conclusion, we 
shall see that it plays an essential role in establishing the im
portant conclusion that the existence of an entropy "superop

erator" implies the loss of distinction between pure and mixed 
states 

From a purely mathematical point of view, the result just 
obtained generalizes a result of Putnam (10) In fact, Putnam 
has shown that condition 2.2 together with the assumption that 
H is bounded implies that D = 0. .Here we have generalized this 
result to semibounded H. Moreover, this generalization is 
"maximal" in the sense that the theorem fails to hold if the 
condition of semiboundedness of H is dropped. As discussed 
below, this fact allows the possibility of constructing Lyapounov 
variables or entropy operators in the Liouvillian formulation 
of dynamics. 

There is an interesting connection between the nonexistence 
of entropy operator M in Ή and the impossibility [noted by 
Pauli (11)] of defining an operator of time in the usual formu
lation of quantum mechanics. Such an operator of time would 
be, by definition, a self-adjoint operator T which is canonically 
conjugated to the generator H of the time-evolution group, 
or 

\H ,  T]  =  i l  [2.7] 

However, as shown in ref. 3, if such a T exists then one can 
obtain an entropy operator M satisfying conditions 2.1 and 2.2 
by simply taking M to be a monotonic operator function of T: 
M = /(T) One thus obtains yet another proof of Pauli's remark 
that there can be no operator T in the standard formulation of 
quantum mechanics. Let us also mention that more recent at
tempts to define a more general concept of operator T that need 
not be self-adjoint or satisfy condition 2.7 still conflict with the 
fact that the generator of motion is the Hamiltonian operator 
and hence is bounded from below (cf. ref 12). 

The impossibility of defining the entropy operator M, the 
nonexistence of time operator in the standard formulation of 
quantum mechanics, and the problem of interpreting and 
justifying the time-energy uncertainty relationship are thus all 
linked. Their common origin is the fact that in the usual for
mulation of quantum mechanics the generator H of the time-
translation group is identical with the energy operator of the 
system. To be able to define the entropy operator M it is thus 
necessary to overcome this degeneracy The simplest way of 
achieving this is to go to the so-called Liouvilhan formulation 
of (quantum) dynamics The basic object in this formulation 
is the group describing the time evolution of the density oper
ators. Under dynamical evolution, an initial density operator 
ρ is transformed in time t to the density operator 
Therefore the generator of the time-translation group is now 
the Liouvilhan operator L defined by the equation: 

L p  =  \ H , p ]  [2.8] 

In the following section we investigate the existence and 
properties of entropy operator M in the Liouvillian formulation 
of quantum dynamics. 

3. The entropy superoperator 

The important advantage gained in going to the Liouvillian 
formulation of quantum dynamics is that the generator L of 
the time-translation group is no longer physically required to 
be bounded from below In fact if the spectrum of H extends 
from 0 to +°° the spectrum of L is the entire real line The 
possibility of defining M as a superoperator (i.e , an operator 
acting on the space spanned by density operators) satisfying the 
relationships 

t [ L , M \  =  D > 0  [3.1] 

and 

IM, D] = 0 [3.2] 
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is thus not excluded by the argument given in the preceding 
section. 

Naturally, one does not expect M to exist, even as a super-
operator, for all dynamical systems. Let us recall that in classical 
mechanics the existence of M is always associated with certain 
strong instability properties of dynamical motion, which is re
lated to certain well-defined spectral properties of the Liou-
villian. 

One expects similar conclusions in quantum mechanics. Let 
us first note that an entropy superoperator (or, equivalently, 
a Lyapounov variable) cannot exist in either of the following 
cases· (i) the Hamiltonian H has purely discrete spectrum; and 
(it) H has bounded spectrum. 

The first of these statements follows from the fact that, if H 
has purely discrete spectrum, then so does L (considered as a 
self-adjoint operator acting on the Hilbert space of the Hil-
bert-Schmidt operators. On the other hand, it has been shown 
that, if a pair of self-adjoint operators M and L satisfy rela
tionship 3.1, then the eigenvectors of L belong to the null space 
D (3). Thus, if L has a purely discrete spectrum its eigenvectors 
will span the entire space and D will vanish identically. Simi
larly, the second statement follows from the fact that, if H is 
bounded, then so is L The argument of the preceding sections 
[or the earlier result of Putnam (10)] now shows that, for 
bounded L, condition 3.2 can not be satisfied unless D = O. 

The physical meaning of the statements just proved is that 
an entropy superoperator can not exist for quantum systems 
consisting of finite numbers of particles enclosed in a finite 
volume (because the Hamiltonian has a discrete spectrum in 
this case) or in theories relying on finite cutoff energy. In 
quantum mechanics, it is only in the limit of infinite systems 
that irreversibility expressed in the second law of thermody
namics may become manifest. This is in marked contrast to the 
situation in classical mechanics. As shown (3), entropy operators 
can be constructed in classical mechanics for a class of systems 
which includes, for instance, the system of a finite number of 
hard spheres enclosed within a finite box. This shows that 
conceptually the problem of irreversibility in quantum me
chanics is more involved than in classical mechanics. 

A sufficient condition for the existence of M as a superop
erator is that the Hamiltonian H has an absolutely continuous 
spectrum extending from O to +». To see this, it may be ob
served that this condition on H implies that the corresponding 
Liouvillian has an absolutely continuous spectrum of uniform 
(actually infinite) multiplicity extending over the entire real 
line (M. Courbage and B. Misra, unpublished). Under this 
condition there always exists a self-adjoint operator T which 
is "canonically conjugate" to L. In fact, in the spectral repre
sentation (or direct integral representation) that "diagonalizes" 
L to make it correspond to the multiplication operator by the 
real variable λ this operator T can be taken to be the differ
entiation operator id/d\. As mentioned before, monotonically 
increasing operator functions of T then satisfy defining con
ditions 3.1 and 3.2 for M. 

A consequence of this remark is that the system of a single 
free particle in infinite volume admits an entropy superoper
ator, because the Hamiltonian H = F2/2m obviously has an 
absolutely continuous spectrum extending over the entire in
terval (0, +<»]. But one does not expect any physical irrevers
ibility for this system The spurious "irreversibility" associated 
with the evolution of the free particle in infinite volume is just 
a reflection of the fact that initially localized wave packets 
spread out and get rarified with the particle, eventually "es
caping to infinity " 

Naturally, one would like to distinguish such spurious cases 
from more physical irreversibility by requiring M to satisfy 
supplementary physically motivated conditions. We shall not 

discuss this question in detail here. However, let us mention that 
we have studied (4) the requirement that the square root M1/2 

of the Lyapounov variables of classical systems, as well as the 
semigroup Ae~iLt A"1, (t > 0), preserve the positivity of 
distribution functions on phase space The physical meaning 
of this is as follows. Dynamical evolutions admitting the exis
tence of such Lyapounov variables are intrinsically random in 
the sense that a change of representation effected by this (in-
vertible) transformation A converts the original dynamical 
evolution into the evolution of the stochastic Markov process. 
In quantum mechanics, one may formulate a corresponding 
requirement on the entropy operator M or, more accurately, 
on the Lyapounov variable M-1 = M'. In other words, one 
would require of the Lyapounov variable M' that its square root 
Λ' as well as the semigroup K?e~*tL(for t > 0) map 
density operators (positive operator with trace 1) to density 
operators. The physical meaning of the existence of such a 
Lyapounov variable is the same as in classical mechanics· it 
means that the quantum Liouvillian evolution in question is 
equivalent, through an invertible similarity transformation, to 
the evolution of a quantum stochastic Markov process. 

A detailed discussion of how the measurement process can 
be adequately described in terms of the quantum stochastic 
processes obtained, through similarity transformation, from the 
Liouvillian evolution of the object 4- apparatus system will be 
presented elsewhere Here we shall only show that the supposed 
distinguishability between the pure states and mixtures and the 
privileged position of the pure states in the usual formulation 
of quantum mechanics—the two facts that are at the root of the 
conceptual difficulties posed by the phenomena of wave packet 
reduction—must necessarily be given up in the case of physical 
systems, for which entropy superoperators exist To this end, 
let us show that the entropy superoperators are necessarily 
nonfactorizable. 

4. Nonfactorizability of entropy superoperators 

Nonfactorizability of an entropy superoperator means, by 
definition, that M ρ cannot be written in the form 

Mp = AipA2 [4.1] 

where Ai and A 2 are two ordinary Hilbert space operators 
acting on the same Hilbert space on which ρ acts. We shall show 
that if a positive and hermiticity-preserving superoperator M 
satisfies conditions 3.1 and 3.2 and is factorizable (i e, satisfies 
Eq. 4.1), then D = O. Let us recall that the positivity- and her
miticity-preserving conditions on superoperator M mean, re
spectively, that 

Tr(p*Mp)>0 [4.2] 

and 

p-p*  implies Mp - (Mp)* .  

These are natural requirements to impose on the entropy su
peroperator M. They lead to the simplification that, if a fac
torizable superoperator M satisfies them, then Mp can be 
written in the form 

Mp = ApA [4.3] 

where A is a positive operator. It will thus suffice to show that 
conditions 3.1,3.2, and 4.3 together imply that D = O 

Now it follows from the positivity of D (condition 3.1) and 
the assumed form 4.3 for M that 

i [H,A\  = B  >0 .  [4.4] 

To see this, let us compute the action of D on density operators 
of the form 

ρ  φ -  \Φ><Φ\ 
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with φ in the domain 'Dh of H Using definition 2.8 of L and 
form 4.3 for M, one easily verifies that 

Dp l j l  = i\LM — ΜΙ^\\φΧφ\ 

= \ΒφΧΑφ\ + \ΑφΧΒφ\ [4.5] 

Positivity of D then implies that 

Ττ(ρ φ Ορφ) = &(φ,  Βφ)  (φ,  Αφ)  >  0.  

Because A > O it follows that B >0.  
In the same way, computing [D, Μ]\φ Xy \  and setting it 

equal to O (condition 3.2), one finds that 

H,A\,A φΧΑ 2 φ\ = I Α 2 φ>< [Η,  A] ,  A  Φ\ [4.6] 

for all φ,  \p  in the dense set cDh But this means 

( H f A ) f A  φ = CA 2 φ 

with 

c =  { [ H f A J i A  φ , φ ) / ( Α 2 ψ , Φ ) ,  

a real number independent of φ.  Thus 

(H,A],A = CA2 

with C a real number; or 

i [B,  A] = -CA2. [4.7] 

Since B > O (relationship 3.4) and -CA2 obviously commutes 
with A, the argument of Section 2 applies with B taking the role 
of H, A that of M, and -CA2 that of D Thus, we conclude that 
-CA 2 = 0. Now, there are two cases: (i) if C ^ 0, we conclude 
that A2 = O and hence A=O with the result that M given by 
form 4.3  and,  a for t ior i ,  D  vanish;  (U)  i f  C  = 0,  then B = i \H,  
AI  and A commutes  and again  the  argument  of  Sect ion  2  
applies, leading to the conclusion that B==O. This then implies 
(relationship 4.5) that D- 0 Let us remark that, unlike the 
argument of Section 2, the proof of the nonfactorizability of 
the entropy operator makes essential use of the positivity, or 
rather  def ini teness  in  s ign,  of  entropy product ion operator  D 

The nonfactorizability of M has the important consequence 
that M can not preserve the purity of states. In fact, if M were 
to map pure states \φΧφ\ into operators of the same form it 
would follow that M would also map positive operator to pos
itive operators Such a purity- and positivity-preserving map 
M is, however, one of the following three forms (13) (i) M is 
factorizable, (it) Mp = A'p*A'* with A' an antilinear operation 
of'//; (Hi) Mp = Tr(pB). |ψ><ψ| when β is a fixed positive 
operator and φ is a fixed vector But the entropy superoperator 
cannot be any of these forms. Case ι is already ruled out To rule 
out case it, let us consider the operator M2 which, as it can be 
verified easily, is factorizable. On the other hand, as the entropy 
superoperator M satisfies conditions 3.1 and 3.2, M2 satisfies 
i\L, M21 = D'= 2DM = 2M1Z2DM1/2 > 0 and [M2

t D'] = 0. 
Thus, M2 is also an entropy superoperator and hence it can not 
be factorizable Finally, this entropy superoperator can not be 
of the form tit because in this case M, being an operator of rank 
1, will have a purely discrete spectrum. This, however, con
tradicts the easily verified fact that entropy superoperators can 
not have a purely discrete spectrum. 

5. Concluding remarks 

The preceding considerations lead up to the following con
clusions For an infinite quantal system, there exists the possi
bility of enlarging the algebra of observables to include an op

erator M representing nonequilibrium entropy The operator 
M can be defined, however, only as a nonfactorizable super-
operator The inclusion of a (necessarily nonfactorizable) en
tropy operator among the observables thus entails that the pure 
states lose their privileged position in theory and that the pure 
and mixed states be treated on equal basis. Physically, this 
means that, for systems having entropy as an observable, the 
distinction between the pure and mixed states must cease to be 
operationally meaningful and there would be limitations on the 
possibility of realizing coherent superposition of quantum 
states. 

Evidently this conclusion, which is reached here as a logical 
consequence of our theory of entropy operator, should be fur
ther elucidated by an analysis of the physical reason for the loss 
of the distinction between pure and mixed states 

The corresponding situation for classical systems has been 
discussed elsewhere (1, 3, 4) In those papers, the existence of 
an entropy superoperator implies that the phase space trajec
tories cease to be physically observable. The physical reason for 
this is linked to the instability of dynamical motion, which is 
a necessary condition for the existence of an entropy superop
erator or a Lyapounov variable. 

One would expect a suitable quantum analogue of the in
stability mechanism to operate for quantal systems (admitting 
the existence of Lyapounov variables) which is responsible for 
the loss of physical distinction between pure states and mix
tures. 

A detailed formulation of the instability mechanism in 
quantum mechanics is work for the future It remains, never
theless, a remarkable fact that, when interpreted as a dynamical 
principle in terms of the existence of Lyapounov variables or 
entropy operator M, the second law of thermodynamics implies 
the loss of distinction between pure states and mixtures. This 
provides the way to a resolution of the duality of state evolution 
considered in the "orthodox" theory of measurement by von 
Neumann 

Finally, the approach to the measurement problem which 
emerges from this paper is in accord with the often repeated 
observation by Bohr that any correct account of a measurement 
process must take into consideration two important facts: ir
reversibility of measurement processes and the classical nature 
of measuring apparatus Our approach links these two features. 
We show that irreversibility (expressed by the existence of 
entropy superoperator M for the measuring apparatus) implies 
the classical nature of apparatus in that the distinction between 
pure and mixed states is lost. 
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V.7 CAN WE UNDO QUANTUM MEASUREMENTS? 

ASHER PERES 

The Schrodinger equation cannot convert a pure state into a mixture (just as Newton's equations cannot display 
irreversibility). However, to observe phase relationships between macroscopically distinguishable states, one has to 
measure very peculiar operators. An example, constructed explicitly, shows that the classical analog of such an 
operator cannot be measured, because to do so would violate classical irreversibility. This result justifies von 
Neumann's measurement theory, without any hypothesis on the role of the observer. 

The measurement process in quantum physics 
was analyzed long ago by von Neumann1 who showed 
that it could formally be described as the trans
formation of a pure state Φ =Σε„φπ into a mixture 
ρ =ZD Ic11I2Pn. Here, the φ„ are eigenstates of the 
d y n a m i c a l  v a r i a b l e  b e i n g  m e a s u r e d ,  a n d  t h e  P n  

are the corresponding projection operators. 
This irreversible transformation, commonly 

called the "collapse of the wave packet, " cannot 
follow from the SchrSdinger equation, since the 
latter generates a unitary mapping of the Hilbert 
space of states. In fact, the coupling of the eigen
states of the measured system to those of the mea
suring apparatus is a perfectly reversible pro
cess2"4 as long as we are willing to measure cor
relations between the two. For these reasons, 
von Neumann's theory has been considered un
satisfactory, or at least incomplete. 

There have been several attempts5"7 to prove 
von Neumann's conjecture by supplementing quan
tum theory with superselection rules forbidding 
the measurement of operators of a certain type 
(those which connect macroscopically different 
states of the apparatus). The purpose of this paper 
is to show that systems with many degrees of 
freedom are indeed subject to such superselection 
rules. A general proof of this assertion would 
be very difficult, but the following model is typical 
enough to convey belief in the result. 

Consider a macroscopic apparatus designed to 
measure the ζ component of the spin of an elec
tron. This apparatus has a pointer (center-of-
mass coordinate q, conjugate momentum p) ini
tially localized around q = 0. The pointer is to 
move through a macroscopic distance L to the 
right or the left depending on whether s, = \ or 
-5. This can be achieved by the coupling H 
= 2V(t)s„p, where V(t) is a large velocity, so 
large indeed that we can neglect all the other terms 
in the Hamiltonian during the brief duration of the 
coupling.3 

Before the measurement, the state of the elec

tron is (£) and that of the apparatus is ^/(q,q2,q3, 
.. . ,qs) where q2,qs,· • • ,qK are the other, "ir
relevant, " degrees of freedom. Naturally, N is 
a very large number, say IO23. (It would be more 
realistic to assume a density matrix instead of 
the pure state φ, but this refinement is not needed 
at the present stage.) 

After completion of the coupling, the combined 

state is 

+(0Yt*, (i) 

where L = !  V d t .  Since φ  is peaked around q  =  0, 
is peaked around q  =TL. Thus, the sign of 

q is correlated to that of Sz and 

(s,) = (I signfe)) = i( I α 12 - 1012). (2) 

We have performed what von Neumann calls a 
measurement. (As we shall soon see, a better 
word would be "premeasurement.") 

The question is whether this process is revers
ible and, in particular, whether the relative phase 
α/β is still observable. At the present stage, it 
is, as can be seen by measuring the expectation 
values of the operators, 

A l = S x  cos2 L p  +s j, sin2 L p  (3a) 

and 

A2 =S1  sin2L p  - S y  cos2L p . (3b) 

[To measure A 1  and A2' we divide the electrons in 
two identical but disjoint ensembles. After each 
electron passage through the apparatus, we first 
measure p (modulo n/L) then the component of 
S in the direction of tan_1(2L/)) or cot"1(-2L/>). 
Note that the eigenvalues OfA1 and A2 are ±|.] 

These operators can conveniently be combined 
as 

A=A l +iA 2 =( Q  0 \ e 2 i L " .  (4) 
U 0/ 

A straightforward calculation yields (A) =α β *  

Originally published in Physical Review, D22, 879-83 (1980). 
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which, together with Eq. (2), gives a and β sep
arately, up to a common phase. 

However, if we wait some time, the state (1) 
will evolve into 

where H is the Hamiltonian of the electron and 
apparatus. Assuming for simplicity that the two 
spin states have the same energy, we obtain 

(A)=a/3* J"(e~ i t He i L ,'ip)*e2 i L ,'e~ i t He~ i L ,tydNq . (β) 

But e i L>e~ i t , re~ i L p  is simply e~ l t H  { ,*L >  (i.e., H with 
the q coordinate shifted by L) and (6) can be writ
ten as 

(A) =αβ*(β' 'HU-O e-HH <«•£>> _ (7) 

The coefficient of αβ* would still be one if H did 
not depend on q, but there is no reason to expect 
that. As the pointer moves with respect to some 
fixed scale on the apparatus, its energy may vary 
somewhat from place to place and the coefficient 
of αβ* may be less than one in absolute value. 
For small t we get 

I <e«»<«-*>«-«'"<«•£>) I2 =1 _ t26lP + · ··, (8a) 

where 

δ H 2  -L) —H(q +L)-Qi(q-L)-H(q +L)>]2>. 

(8b) 

Moreover, if the other degrees of freedom of 
the apparatus are in a mixed state, this coefficient 
will quickly fall to zero,9 because of the random
ness of the phases. The time needed to erase 
(A) is of the order of 1/5H. It is therefore in
versely proportional to the strength of the coupling 
of the macroscopic degree of freedom q, used 
for the measurement, with the other degrees of 
freedom of the apparatus. In the present model, 
this time could be of the order of the size of the 
pointer divided by the speed of sound (a few micro
seconds). 

This neat distinction between the reversible 
premeasurement—Eq. (1)—and the ensuing ir
reversible process is admittedly unrealistic in 
most instances. In practice, a macroscopic ap
paratus has almost always an amplification mech
anism based on a metastable initial state10 and 
irreversibility appears at the very outset of the 
process. However, the amplification requirement 
is not essential and it obscures the true nature 
of the irreversibility of quantum measurements, 
which is explained below. (The reversal of an 
idealized premeasurement is illustrated in Fig. 

1.) 
The above discussion of Eq. (7)-or some simi

lar argument10·11—is usually considered as a proof 
that the relative phase of the two branches of Eq. 
(5) is "lost" after some finite time. However, 
such arguments are not convincing, because Eq. 
(5) represents a pure state (what else could it 
be?) and this can be shown by measuring the ex
pectation value of another operator, namely, 

A' =e' , t HAe i , t t .  (9) 

Indeed, we trivially have (A')=al3*, since the 
e4"* factors in A' cancel those of the wave func
tions. 

However, the operator A' has very peculiar 
properties. (It is not of course the Heisenberg 
picture of A, the latter being e*iMAe~iiH. In fact, 
we are always working in the Schrodinger picture.) 
ThisA' operator is explicitly time dependent and 
is also a constant of the motion. 

To verify that it is a constant of the motion, it 
is enough to observe that its matrix elements be
tween any two Schrodinger states are constant, or 
simply to go to the Heisenberg picture, where 
A'„ looks IikeAs, without any time dependence. 

Now, these explicitly time-dependent constants 
of the motion are very familiar in classical me
chanics. For example, for a free particle, q 
-tp/m is such a constant. Its meaning simply is 
the initial value of q. For an harmonic oscillator, 
such a constant would be tan"1 {muq/p) -wt, the 
meaning of which is the initial value of the phase. 
In general, for a system with N degrees of free
dom, there are 2N constants of the motion, a few 
of which may be explicitly time independent (the 
total energy, momentum, etc.), but almost all 

> 

FIG. 1. Idealized premeasurement, using the recoil 
of a rigid double mirror. If a particle is reflected from 
the first mirror, a correlation is established between 
the momentum of the particle and that of the instrument 
(this is the premeasurement). That correlation is then 
reversibly destroyed when the particle is reflected from 
the second mirror. (Note that if we wish to complete 
the measurement and to observe the recoil of the double 
mirror between the two reflections, the latter must be 
prepared with Ap «h/λ. If this device is part of a dou
ble-slit experiment, it allows to determine through 
which slit the particle passed only at the expense of 
destroying the interference pattern, because Aq » K. 
But if we forego observing the recoil, the interference 
pattern is restored because the same Aq is added and 
subtracted at both reflections.) 
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of which include the time explicitly. Their phys
ical meaning is to give the 2N initial positions and 
momenta as explicit functions of the positions and 
momenta at some future time t. The structure 
of these constants of the motion is of course hope
lessly complicated for large N and finite t. It 
leaves us no choice but to replace Newtonian me
chanics by statistical mechanics. It is our in
ability to make use of these constants of the mo
tion which is the cause of irreversibility. 

In the present case, we must measure, instead 
ofA given by Eq. (4), 

A ' = ( °  0W'*, 

Vl 0/ 
where p '  =e~ i i H pe" H  is the value of ρ immediately 
after the premeasurement, expressed as a function 
of  ρ  and 2 N  -1  other  var iab les  a t  a  la ter  t ime  t .  

In classical physics, we would say that this is so 
complicated that only a "Maxwell demon" can mea
sure all these variables and then compute p' (as
suming H is known). In quantum physics, the task 
is even more difficult because the 2N variables 
do not commute. Therefore, the Maxwell demon 
must contrive a single measurement12 for ρ', 
which is an incredibly complicated function of 2N 
noncommuting variables  and of  t .  

In other words, we see that not every self-
adjoint operator corresponds to an observable, 
simply because not every classical dynamical 
variable is observable. It is the inobservability 
of these operators which makes pure states appear 
as mixtures and causes the irreversibility of quan
tum measurements. 

In conclusion, let us summarize the assumptions 
used in the derivation of this result. First, we 
note that the macroscopic degree of freedom used 
for the measurement—here, the center of mass 
of the pointer—is not completely isolated from 
the other degrees of freedom of the apparatus.13 

(We could, of course, have treated these other 
degrees of freedom as an external reservoir, but 
then our result would have been trivial. It is es
sential that our system be a closed one.) 

The second assumption is the impossibility of 
measur ing  the  c lass ica l  ana log  of  the  opera tor  p ' .  
(There is also a tacit assumption that if a classical 
measurement is impossible, the same is true for 
the corresponding quantum measurement.) Here, 
it may be objected that as long as the number of 
degrees of freedom is finite, it is not impossible 
to measure p', only very difficult. In principle, 
a measurement of p' should always be possible 
at the cost of a great increase of entropy of the 
rest of the world.14 From this point of view, as 
long as we are able to pay the price,15 we definitely 
can undo quantum measurements,4 except in the 

unattainable mathematical limit of an infinite 
apparatus.16 However, if we admit that a finite 
system may appear irreversible (if the time needed 
for a Poincare' recurrence is longer than the 
Universe lifetime), the present paper shows how 
the irreversibility of quantum measurements is 
rooted in the familiar classical irreversibility. 

I am very grateful to J. A. Wheeler for the 
warm hospitality of the University of Texas and 
to E. C. G. Sudarshan for many stimulating dis
cussions. The final version of this paper has 
benefited from comments by J. S. Bell (GERN) 
and A. Ron (Technion). This work was supported 
in part by the Center for Theoretical Physics, 
The University of Texas at Austin, Austin, Texas 
78712, and also by NSF Grant No. PHY78-26592. 

APPENDIX: A MORE REALISTIC MODEL 

The simple model discussed above involves an 
explicitly time-dependent coupling V(t), supposedly 
switched on and off by an external agent. This may 
give the impression that we are dealing with an 
open (i.e., incompletely described) system, for 
which the transformation of a pure state into a 
mixture would be trivial. 

In a real-life Stern-Gerlach experiment, this 
time dependence is of course due to the trans-
lational degree of freedom of the electron, which 
was arbitrarily ignored in our model. A more 
realistic description of what happens follows. 

We write the complete Hamiltonian as 

H =H a+H e+2VsJ>u{x 2 - x )u (x -X 1 ) ,  (Al) 

where H a  refers to the apparatus, H e  to the free 
electron (mass m,  momentum k,  posi t ion*) ,  V 
is a coupling constant, u is the unit step function, 
and X1 and x2 are the entrance and exit points of 
the electron as it passes through the apparatus. 
The pointer is assumed massive enough so that 
its velocity p/M is negligible when the electron 
is outside the apparatus. When it is inside, the 
pointer  veloci ty  i s  ± V. 

The measurement process can be described as 
a scattering of the electron and the apparatus. 
Before the "collision," the electron has momen
tum k. When it reaches the apparatus, it meets 
an energy barrier of height ± Vp and thickness 
X 2  -X 1 .  Ins ide  the  bar r ie r ,  i t s  momentum i s  k '  
= (k2 ±2mVpYk ±mVp/k, where we have as
sumed that k2 » 2mVp, so that most electrons are 
transmitted (a reflected electron would mean an 
unsuccessful experiment). The outgoing electron 
still has momentum k, but has been subject to a 
phase shif t  (k '  -k)(x 2  -X1) =±rVp where T  = m(x 2  

-x^/k is the classical time of passage through 
the apparatus. We now identify L=rV and the 
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linal state of the combined system is 

(A2) 

whence the discussion proceeds as before. 
However, several remarks are in order. First, 

we have treated p as a constant during the colli-
sion, i.e., we assumed that This 
is of course incompatible with a nontrivial 6H 
[see Eq. (8b)]. However, we can make the change 
in p arbitrarily small by increasing V and k 
(keeping their ratio constant, so that L remains 
unchanged). This does not affect , but makes 
t arbitrarily small. The condition is easily seen 
to be , i .e. , the premeasurement must 
be very brief, compared to the time required to 
make the measurement irreversible. 

To avoid a possible misunderstanding, it must 
be emphasized that 6H i s muck smaller than the 
energy uncertainty Indeed 
there must be many different energy eigenstates 
involved to make the measurement possible.17,18 

In particular, the incoming electron must have 
because the two branches of the outgoing 

electron will not interfere if (that is, we 
would need an operator much more complicated 
than A to display their interference19). 

The above remark is closely related to overall 
energy conservation. We have assumed hitherto 
that the outgoing electron had the same energy as 
the incoming one. This cannot, of course, be 
rigorously exact if A more 
correct treatment follows. 

First, assume that initially the apparatus is in 
an eigenstate of energy and that the electron 
too is monochromatic with energy 
Then obviously there is no irreversibility since 
the operator in becomes a phase 
factor is constant. The 
energy picked up or released by the electron ex-
actly compensates the energy difference in the 
final state of the apparatus. It is thus important 
to understand why may decrease if we have 
a superposition (or mixture), rather than an ener-
gy eigenstate. 

Even if ^ is an eigenstate of the states 
usually are not. We can write 

where the coefficients ct depend also on K, because 
By virtue of energy conservation, 

the scattering process can therefore be written 
as 

where the ± subscripts refer to 
Now let the electron be initially in a superposi-

tion (the apparatus may still be ini-
tially in an energy eigenstate10). The outgoing 
states become 

In order to compute (A), we first note that 

so that 

We now make two essential physical assump-
tions. One is that (otherwise, L i s i l l -
defined) sothat in c t we can replace K b y i t s aver-
age value The second one is that 

is very small unless 
(as explained above, I must be 

much smaller than to allow the two "branches" 
of the electron to interfere). We can therefore 
replace Integration over 
K and K' gives 

We see that the electron energy no longer appears 
in the formula (except as an average). The result 
looks as if the final state of the apparatus were 

. Therefore,the energy shift 
of the electron cannot prevent < from having a 
nontrivial time dependence, due to the factor 

*On sabbatical leave from Technion-Israel Institute of 
Technology, Haifa, 
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dent coupling is discussed in the Appendix. 
sIt is not necessary that (A) be "rigorously" zero be
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VI.l THE UNMEASURABILITY OF THE SPIN 
OF A FREE ELECTRON 

COMMENTARY OF CASIMIR (1967) 

Bohr gave much thought to the spin 

of the electron and to Dirac's theory. 

I never felt quite at ease about his argu
ment that the spin cannot be observed 

by classical means although he always 

succeeded in showing the fallacies in 

any proposed experimental setup. 

COMMENTARY OF ROSENFELD (1971B) 

Bohr as a lecturer is a different matter. 

It is much glossed, but very little written 
about. Perhaps the only one who has 
put his view of it in print so far is 
Larmor; in a speech (later published)* 

at the Maxwell celebrations in Cam
bridge in 1931, he commented upon 
Maxwell's reputation of being 'a poor 
lecturer' and roundly added: "So per
haps with our friend Bohr: he might 

want to instruct us about the corre

lations of too many things at once . ..." 
I was sitting near Bohr when the speech 
was delivered; as this judgment was 
expressed, Bohr whispered to me: 
"Imagine, he thinks I am a poor 

lecturer!" Bohr's lectures, composed 
with tremendous labour, were indeed 

masterpieces of allusive evocation of 
a subtle dialectic; the trouble was that 

the audience was usually unprepared 
to catch subtle allusions to conceptions 

and arguments which were anyhow 
unfamiliar and hard to grasp. 

* James Clerk Maxwell: Λ Commemoration 

Volume 1831-1931, p. 78, Cambridge University 

Press, Cambridge (1931). 

I am not sure whether Bohr's intro
ductory talk at the conference was 

really worse than the average; perhaps 

he had not prepared it so thoroughly, 
since the idea was to have quite informal 

discussions: no programme had been 

set up in advance—Bohr took in turn 
each of the participants aside and asked 

him what topic he wished to bring up. 

At any rate, here is the impression this 

talk has left in my memory, as I des
cribed it (with some hindsight) in 

1945: "He had begun with a few general 
considerations calculated, no doubt, to 
convey to the audience that peculiar 

sensation of having the ground suddenly 
removed from under their feet, which is 
so effective in promoting receptiveness 

for complementary thinking. This pre
liminary result being readily achieved, 
he had eagerly hastened to his main 
subject and stunned us all (except 

Pauli) with the non-observability of 
the electron spin. I spent the afternoon 
with Heitler pondering on the scanty 

fragments of the hidden wisdom which 
we had been able to jot down in our 

notebooks." 
It was comforting to hear from Klein, 

when I told him some time ago of our 

failure to understand what Bohr meant 
by the impossibility of measuring the 

spin of the electron, that he had had the 
the same difficulty when Bohr first dis

cussed the matter with him in the 
autumn of 1928. Guided by the general 
correspondence idea, Bohr argued that 
such a purely quantal concept as the 
electron spin, vanishing from the theory 
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in the classical limit, could not possibly 

be brought in direct relation with 
classical quantities like angular mo
mentum or magnetic moment. It was 
not immediately clear to Klein, how
ever, how this correspondence argu
ment could be reconciled with the 
Stern-Gerlach effect, which clearly 
exhibited a contribution to the magnetic 

moment of an atom from an electron 
bound in a 2S state; but what Bohr 
demonstrated was precisely that with 
a free electron a Stern-Gerlach experi
ment could not succeed, because the 
effect of the Lorentz force would in
evitably blur any Stern-Gerlach pattern. 

* N. F. Mott, Proc. Roy. Soc. A124, 440 (1929). 

This is the point he ineffectually tried 

to make in his talk. Fortunately, Mott, 
during his stay at the Institute, had been 
engaged in the problem of electron 

polarization, and in the paper* in 
which he brilliantly showed how this 
property could in principle be ascer
tained by a double scattering experi
ment, he gave a very clear account of 
the whole situation. He finished writing 

this paper shortly after the conference 
(it was sent off by Bohr on the 25th of 

April) and we were thus soon able to 
appreciate at leisure the full force of 

Bohr's famous argument. 



VI. 1 MAGNETIC MOMENT OF THE ELECTRON 

NEVILL F. MOTT AND HARRIE S.W. MASSEY 

2. Magnetic moment of the electron 
We have discussed so far only the magnetic moment of the atom. We 

shall not review here the evidence, derived from the anomalous Zeeman 

effect, from the gyromagnetic effect, etc., that the electron has a fourth 
degree of freedom, a magnetic moment — ehj2mc, and a mechanical 
moment \h. We shall content ourselves with remarking that accord
ing to the Schrodinger theory the ground state of the hydrogen atom 
is not degenerate, and therefore, in order to account for the splitting 
in a magnetic field revealed by the Stern-Gerlach experiment, it is 
necessary to assume that the electron has a fourth degree of freedom. 

The first evidence that electrons have a magnetic moment was derived 
from their behaviour when bound in stationary states in atoms. For 
the study of collision problems it is necessary to inquire what meaning 
can be attached to the magnetic moment of a free electron. In the first 
place, just as in the case of the atom, it is impossible to determine the 
moment by means of a magnetometer experiment. This can be shown 
by the following argument, due to Bohr.f Let us suppose that the 
position of the electron is known with an accuracy Ar and that we wish 
to determine the magnetic moment at a point distant r from it. It will 
not be possible to deduce from our measurement anything about the 
magnetic moment of the electron unless 

Ar r. (5) 

The field H that we wish to observe will be of order of magnitude 

H ~ Mjr3. 

If, however, the electron is in motion with velocity v, there will be 
a magnetic field due to its motion, of amount evjcr2; since we do not 
know υ exactly we cannot allow for this field exactly. From our measure
ments, therefore, of the magnetic field, it will not be possible to find out 
anything about the magnetic moment of the electron, unless 

Mjrz eAvjcr2, 

where Av is the uncertainty in our knowledge of v. Since by the 

t Cf. Mott, Proc. Boy. Soc. A, 124 (1929), 440. 

Originally published as section 2, chapter IX of The Theory of Atomic Collisions by N. F. Mott and 
H.S.W. Massey, pp. 214-19 of the third edition, Clarendon Press, Oxford (1965). 



702 MOTT, MASSEY 

uncertainty principle ArAv > hjm, this leads to 

Ar r, 

which contradicts the inequality (5). We conclude therefore that it is not 

possible to measure the magnetic moment of an electron in this manner. 
We shall now show that it is im

possible, by means of a Stern-Gerlach 
experiment, to determine the mag
netic moment of a free electron, or to 
prepare a beam of electrons with the 
magnetic moments all pointing in the 
same direction. The argument is also 
due to Bohr. 

In Fig. 35 a beam of electrons is 
supposed to travel parallel to the 
2-axis (i.e. perpendicular to the plane 
of the paper). The pole pieces of the 
magnet are shown, as are also the 
lines of force. The purpose of the ex
periment is to observe a splitting in the ^-direction. The force on an 
electron tending to split the beam will be 

FIG. 35 

±αψ. 
8y 

(6) 

Now all electrons will experience a force due to their motion through 
the field. Those moving in the plane Oyz will experience a force in the 
direction Ox. This force is perpendicular to the direction of the splitting, 
and its only effect will be to displace the beams to the right or to the 

left. However, electrons which do not move in the plane Oyz will 
experience a force in the direction Oy, because the lines of force in an 
inhomogeneous magnetic field cannot be straight, and there must be 
a component Hx of H along Ox. This force will have magnitude 

evIIJc. (?) 

We can compare (7) with the force (6) tending to produce the splitting. 
H x  at a point distant Ax from the plane Oyz will be equal to (dH x jdx)Ax, 

and since diνH vanishes, this is equal to -(SHJdy)Ax. The quantities 
(6) and (7) therefore stand in the ratio 

eh 811,. €V SHu  .  
—2 • υ - Ax. 

4 nmc cy c cy 
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- Δ λ -

( α )  

Dividing through by common factors this becomes 

I-AyrAxjX, (7.1) 

where λ is the wavelength Tijmv of the waves that represent the electrons. 

Suppose now that is the distance from the plane Oyz of the two 

extremities of the beam. Since Δχ must be greater than A, it is clear 

that the two extremities of the beam will be deflected in opposite direc
tions through angles greater than the angle of splitting, which we hope 
to observe. 

To see now that it is impossible to observe any splitting, let us con
sider the trace that the beam would make on a photographic plate. 

Suppose that it were possible to use 
finer beams than is allowed by the un
certainty principle, so that the thick
ness Ay of the beam in the «/-direction 
would be infinitely small. Before 
passing through the magnetic field, 
the cross-section of the beam would 
be as in Fig. 36(a). Afterwards, it 
would be as in Fig. 36(6), which 
shows the trace produced on a photo
graphic plate. The tilting of the 
traces is produced by the Lorentz 
forces discussed above. If ABC, A'B' 
are two lines parallel to Oy and 
distant λ apart, then by (7.1) we see 

that the tilting is so great that 
AB > BC. If Αβγ is drawn perpen-

l6) dicular to the traces, it follows that 
t l G· 36 A β > βγ. But Αβ < A, and hence 

βγ, the distance between the traces, is less than A. Thus the maximum 
separation that can be produced is A. But actually we cannot obtain a 
trace of breadth comparable with A. Therefore it is impossible to 
observe any splitting. 

From these arguments we must conclude that it is meaningless to 

assign to the free electron a magnetic moment. It is a property of the 
electron that when it is bound in an S state in an atom, the atom has 
a magnetic moment. When we consider the relativistic treatment of 

the electron due to Dirac, we shall see that this magnetic moment is 
not in general equal to —eft/2mc, unless the velocities of the electron 
within the atom are small compared with that of light (§ 3.3). A single 
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electron bound in its lowest state in the field of a nucleus of charge Ze 
gives, according to Dirac 's theory, a magnetic moment")" 

-|-[l + 2V(l-y2)M/2mc (Y=ZeiIhe). (8) 

The statement that a free electron has four degrees of freedom is on 
a different footing, for it is hardly conceivable that an electron in an 
atom should have four degrees of freedom, and a free electron three. 
It is interesting to inquire, therefore, whether there is any conceivable 
experiment by which this fourth degree of freedom can be detected. 
We wish to know whether it is possible to prepare a beam of electrons 
that is in some sense 'polarized', and whether it would be possible to 
detect this polarization. 

Although it is now well known that polarization in this sense can 
be detected (see §§ 4.5, 4.6) it is instructive to consider the following 
experiment.! A beam of atoms is prepared, by means of a Stern-
Gerlach experiment, with their axes all pointing in the same direction, 
say along the z-axis. Electrons are ejected from these atoms by illumi
nating them with ultra-violet light. The beam of electrons obtained 
may be said to be polarized, for the following reasons: Assuming for the 
moment that the electron behaves like a small magnet , let us ask whether 
forces sufficient to eject the electron would be sufficient to alter appre
ciably the direction of the magnetic moment. The following purely 
classical considerations of the order of magnitude of the forces involved 
show that they are not, and so we may consider that the magnetic 
moments in the beam of ejected electrons all point in the same direc
tion^ 

If an electric field of intensity E acts on an electron for time t, the 
kinetic energy acquired is ^(Ee)H2/m. The energy that must be given 
to an electron to remove it from an atom is of order of magnitude 
IneiIh2. Thus to remove an electron from an atom the product of E and 
t must be of order of magnitude Et -—- emjh. The average velocity of 
an electron in an atom is e2/A. The average couple acting on the electron 
magnet, due to its motion through the electric field E, will be of order 

E—L — -
mc h c' 

f This formula is due to Breit, Nature, 122 (1928), 649. Cf. § 3.3 of this chapter. 
J This method of preparing a polarized beam of electrons was first suggested by Fues 

and Hellmann, Phys. Zeits. 31 (1930), 465. 
§ There is, of course, a small probability that the direction of the spin-axis is reversed, 

and the following discussions show this to be of order of magnitude (1/137)2. There is 
no known method by means of which a completely polarized beam can be produced. 
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which is equal to Ee z
lImc2. To change the orientation of the electron 

by an angle comparable with π, this couple must produce a change of 

angular momentum comparable with h. The time T necessary for this 

to occur is given by 
T — t ~ h ,  

mc* 

which gives ET ~ hrnc^/e3. 

We deduce that 
ET IhcV 
~m ~ (?) · 

Thus T > t. 

It would, however, be meaningless to speak of a polarized beam, 
unless the fact that the beam is polarized could be detected in some 
way. This could be done if the beam were passed through a gas of 
ionized atoms, so that some of the electrons were captured. If the 

neutral atoms formed were shown by means of a Stern-Gerlach experi
ment to be polarized, then we should have a method of detecting the' 
polarization. The argument used above about the order of magnitude 
of the forces involved indicates that this should be the case; a proper 
proof can, however, be given on the basis of Dirac's theory of the 
electron. 

An account of more practical methods of preparing and of detecting 
a polarized beam is given in §§ 4.2 and 4.6. 

We see, then, that the spin of a free electron may be described by 
the same wave function x,(s) that was used before to describe the 
magnetic moment of an atom. The function 

I x i W I 2  ( e = ± i )  

gives the probability that, if the electron is prepared with its magnetic 
moment in the direction 1, then, if the electron be captured by an atom, 
and if that atom be passed into an inhomogeneous magnetic field, the 
energy of that atom will be either ±MH. It is necessary to give to the 
square of the amplitude of the wave function this rather complicated 
interpretation, because it is not possible to measure the energy of an 
electron in a magnetic field, unless the electron is captured in an atom. 
It is further to be noted that, by the statement that an electron is pre
pared with its magnetic moment in a given direction, it is meant that 
the electron has been knocked off an atom that has been so prepared. 

As in the case of the bound electron, an electron is completely 
described by a wave function 

φ( r, β). 
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If the forces acting on the electron are so small that the direction of 
the .^pin remains constant throughout the experiment considered, then 
a- before this function may be split up into the product 

where solution of Schrodinger's equation. The form of 
when this is not the ca.-e can be found from DiracS theory. 



VI.2 MEASUREMENT OF QUANTUM MECHANICAL OPERATORS 

HUZIHIRO ARAKI AND MICHAEL YANASE 

The limitation on the measurement of an operator imposed by the presence of a conservation law is 
studied. It is shown that an operator which does not commute with a conserved (additive) quantity cannot 
be measured exactly (in the sense of von Neumann). It is also shown for a simple case that an approximate 
measurement of such an operator is possible to any desired accuracy. 

1. INTRODUCTION 

IT was pointed out by Wigner1 that the presence of a 
conservation law puts a limitation on the measure

ment of an operator which does not commute with the 
conserved quantity. The limitation is such that the 
measurement of such an operator is only approximately 
possible. An approximate measurement can be done by a 
measuring apparatus which is large enough in the sense 
that the apparatus should be a superposition of suffi
ciently many states with different quantum numbers of 
the conserved quantity. He has proved these statements 
for a simple case where the χ component of the spin of a 
spin one-half particle is measured, the ζ component of 
the angular momentum being the conserved quantity. 
The aim of this paper is to present a proof of the above 
statement for the general case. 

In Sec. 2, we will prove that an exact measurement of 
an operator M which does not commute with a con
served operator L1 is impossible. In Sec. 3, we will prove 
that an approximate measurement of the operator M is 
possible if L1 has discrete eigenvalues and is bounded in 
the Hilbert space of the measured object. 

2. IMPOSSIBILITY OF AN EXACT MEASUREMENT OF 
AN OPERATOR WHICH DOES NOT COMMUTE 

WITH A CONSERVED QUANTITY 

Suppose we measure a self-adjoint operator M for a 
system represented by a Hilbert space ξ>ι. Assume that 
M has discrete eigenvalues μ and corresponding eigen
vectors φμρ which are orthonormal and complete in ^J1, 

Μφμρ = μφμρ, (2.1) 

{φμρ,φμ'ρ') =  δμμ'δρρ'. (2*2) 

The measuring apparatus is represented by a Hilbert 
space ·ξ>2· Then a state of the combined system of the 

measured object and the measuring apparatus is repre
sented by a unit vector in ^0¾. 

According to von Neumann,2 the measurement of the 

* Present address: Department of Nuclear Engineering, Kyoto 
University, Kyoto, Japan. 

t On leave of absence from Sophia University, Tokyo, Japan. 
1 E. P. Wigner, Z, Physik 131, 101 (1952). 
2J. von Neumann, Mathematische Grundlagen der Quantenme-

chanik (Verlag Julius Springer, Berlin, 1932; English ed.: Prince
ton University Press, Princeton, 1955). 

Originally published in Physical Review, 120, 622-26 (1960). 

operator If in a state φ is accomplished by choosing an 
apparatus in a state ξ (fixed normalized state inde
pendent of φ) in such that the combined system, if it 
is in the state φμρ0 ξ before the measurement, goes over 
after a finite time I into 

U(t) (0„® ξ) = Σρ' Ψ,Ρ'®Χ,ρρ', (2.3) 

where U it) is a unitary operator describing the time-
development of the combined system. In order to be 
able to distinguish the different measured values of the 
operator M in terms of states of measuring apparatus 
after the measurement, we require 

(Χρρρ",Χμ'ρ'ρ'") = 0| if (2.4) 

We note that, because we are not measuring the de
generacy parameter p, we have to allow the possibility 
that the measuring object remains in any linear combi
nation of φ„ι, with fixed μ but with arbitrary p.3 

We now assume the existence of a universal con
servation law for a self-adjoint operator L which is 
additive in the sense that 

£=^01+10-¾ (2.5) 

where Li and Z2 are self-adjoint operators in Ap1 and §2, 
respectively. Actually this additivity will be used only 
before and after the measurement, when the two sys
tems are separated. By Universal, we mean that, what
ever measuring apparatus we take, U (I) commutes 
with L, 

[t/(0,Z]=0. (2.6) 

Our claim is that (2.3) is impossible unless 

[ZllIG=O. (2.7) 

For the proof, we first note that, because of the 
unitarity of Uit) and the conservation law (2.6), we 

3 For any state of the measured object, we can write 

U (/) (ψ®ξ) = 2μρ ψμρ®Χμρ(ψ), 

where Χ»,(ψ) depends on φ. The Eqs. (2.3) and (2.4) give the most 
general form of the above equation satisfying (1) the distinguish-
ability of the measured result, 

(Χμ(,(φ),Χμν(φ))=0, if μ^μ, 

and (2) the requirement that the probability of an eigenvalue μ in 
the state Φ, as measured by the state of the measuring apparatus 
after the measurement, should give the conventionally postulated 
value, 

2, ||X„ WIi2 = SJ(^)I'. 
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have 

(2.8a) 

Hence, as the necessary condition for the conserva-
tion law for the operator L, we can write 

(2.8b) 

Using the addit ivi ty of L, (2.5), we obtain 

(2.8c) 

Because of the orthogonalities.. (2.2) and (2.4), we 
finally obtain 

(2.9a) 
or 

(2.9b) 

We are now ready to prove t ha t commutes with M. 
For this purpose we decompose M into projection 
operators 

(2.10) 

To prove the commutat iv i ty of L\ and it is 
sufficient to prove the commutat iv i ty of L\ and 

(2.11) 

From the self-adjoint na ture o f ( 2 . 9 b ) and (2.10), 
we see tha t 

which manifestly demonstrate (2.11). Thus we have 
succeeded in proving tha t (2.3)-(2.6) imply (2.7).4 

4 If L% is unbounded, the above proof does not exclude the 
possibility that one can measure M, even if M does not commute 
with Li, by a measuring apparatus (( or in a state which is 
outside the domain of L, because (2.8) would then be meaningless. 

However, even if Li is unbounded, as long as Li is bounded, we 
can modify the above argument in the following way. We introduce 
unitary operators 

(i) 
Because of the additivity, (2.5), 

(ii) 
Then, by the conservation law (2.6), we have 

(iii) 

Although we have assumed in the above proof t h a t M 
has a discrete spectrum, the conclusion holds for any 
self-adjoint operator M . Namely, suppose 

is a spectral decomposition of M. If M can be measured 
exactly, for each n can obviously b e m e a s u r e d 
exactly. Since the projection operator has a 
discrete eigenvalue 1 or 0, the above proof tells us t ha t 

for each commutes w i t h w h i c h in tu rn im-
plies (2.7). 

3. POSSIBILITY OF AN APPROXIMATE 
MEASUREMENT 

In this section we will discuss the problem of whether 
the operator M, which does not commute with the con-
served operator of the preceding section, can be 
measured approximately. We will prove t ha t this is 
possible if L has a discrete spectrum and Li has only a 
finite number of eigenvalues. 

W e m a v assume tha t the eigenvalues of. are6 0, 
We decompose L's into projection operators 

(3.1a) 

(3.1b) 

T h e additivity, (2.5), implies 

(3-2) 

As a first step of our proof, we state the following 
Lemma which will be proved a t the end of this section. 

Lemma. Given two sets of vectors in a 
Hilbert space satisfying 

(3.3) 

for every X, then there exists a Hilbert space con-

By the orthogonality, (2.2), 

(iv) 

Combining the two equations above and using the additivity, (ii), 
we obtain for 

(v) 
where 

(vO 
Since we obtain 

(vii) 

Because of the orthogonality, (2.4), we finally obtain (2.9a) from 
which we conclude (2.11) as before. 

6 The proof holds without this specification but notations be-
come complicated, especially in dividing various regions of values 
of X. 
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taining and a uni ta ry operator U on 
such t ha t (1) a self-adjoint operator (representing 
the conserved quant i ty in is defined on 
coinciding with (2) U commutes with the 
conserved quant i ty L' on . and 

(3-4) 

If the set of the indices is finite, can be taken to 
be _ 

This Lemma is used in the following way. We will 
construct states satisfying 

(3.5) 

(3.6) 

(3.7) 

in such a way tha t the two sets of vectors 

(3.8) 

fulfill (3.3). If we succeed in constructing such states, 
then b y the Lemma, there exists a uni tary operator U 
in which conserves L' and for which (,3.4) holds. 
This implies, for any normalized state 

(3-9) 

(3.10) 

and, due to (3.7), 
(3.11) 

Thus if we choose the setup of a measurement in such a 
way tha t the Hilbert space of the measuring ins t rument 
is the initial s ta te of the ins t rument is and the 
t ime development of the combined system of the 
measured object and the measuring appara tus in a 
certain t ime interval t is described by then 
we can measure the operator M in terms of the states 

of the measuring appara tus af ter the measurement 
within the inaccuracy representing by . This inaccu-
racy can be made as small as one desires by making e 
small enough. Because we are only concerned with the 
effect of the conservation law of L, we have assumed in 
the above argument tha t , if U is a uni tary operator 
commuting with the conserved quant i ty , then there 
always exists an experimental setup whose t ime de-
velopment in a certain time period is described by U. 
There may be many other conditions on U in addition to 
tha t it commutes with L. Hence, our argument does not 
assure tha t a system exists whose Hamil tonian leads 
to U. 

We now give an explicit construction of states 
and For this purpose we denote by the 

subspace of which is spanned by eigenvectors of L i 

with an eigenvalue is taken to be a normalized 
eigenstate of with the eigenvalue 0, 

(3.12) 

are given by 

(3.13) 

where are vectors in to be specified 
below. 

is any s ta te in with the norm given b y 

(3.14a) 

(3.14b) 

N is any integer satisfying 

(3.15) 

T h e are any states in orthogonal to each other 
and with the norm given by 

(3.16a) 

(3.16b) 

T h e orthogonal complement of the set vary-
ing} in will be denoted by 

are taken f rom and defined in the following 
way 

(3.17a) 

(3.17b) 

( I I I ) For are any states in 
orthogonal to each other and with the norm 

given by 

(3.17c) 

where is a projection operator given by 

(3.18) 

Note t ha t is non-negative (between 0 and 1). 
We now show tha t thus constructed 

have the desired properties. £ is normalized due to 
(3.14). (3.5) and (3.6) are trivially satisfied by our 

6 This means that is defined by 

where we have made an isometric linear mapping of intp 
and and thus mapped are called and 
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choice. T o prove (3.3), we rewrite (3.3) using (3.2): 

(3.19) 

where we have also used (3.12). By (3.13), this is 
equivalent to 

We divide the range of into 4 par ts and prove (3.20) 
separately for in each of these 4 regions. 

(I) If then and (3.20) is 
trivially satisfied because all terms vanish. 

( II) If then and 
hence the term containing X still vanishes. Due to 
(3.14b), the left-hand side of (3.20) becomes 

which is equal to the r ight-hand side of (3.20) calculated 
by (3.17b). 

( I I I ) If then and 
hence is always By the orthogo-
nality, (2.2), the definition (3.16b) and the equation 

(3.21) 

the left-hand side of (3.20) becomes 

Because of (3.16b), the inside of the square bracket of 
(3.22) vanishes for and is uni ty for 

Thus, due to (3.17c) and (3.18), (3.22) 
is equal to the right-hand side of (3.20). 

, then and the 
left-hand side of (3.20) becomes 

Because of (3.21) and the orthogonality, (2.2), this 
expression vanishes and hence is equal to the right-hand 
side of (3.20) which also vanishes due to (3.17a). This 
completes the proof of (3.4). 

By (3.14) and (3.16) 

Combining these, and using (3.15), we obtain 

In the above construction, ' should 
have a t least the dimension of We need higher di-
mension for with 

Finally we will give a proof of our Lemma. For this 
purpose, we denote the subspace o f . spanned by 

eigenvectors of L with eigenvalue X by the subspace 
spanned by with varying the sub-
space spanned by with varying a by the 
orthogonal complement of in , and the 
orthogonal complement of Obviously (3.23) 
We will first show tha t 

(3.24) 

defines a uni ta ry mapping onto where 
is a set of arbi t rary complex numbers. To see 

this, we note tha t , due to (3.3), and 

7 In the above construction, the measuring apparatus is a 
superposition of eigenstates of _ with different eigenvalues X 
varying over the range of the order However, if one counts the 
number of equations to be satisfied, one finds a possibility of 
constructing a similar measuring apparatus which is a superposi-
tion of eigenstatesof £2 with eigenvalues, near a certain large 
value of the order but varying only over the range of the order 
of the dimension of ©1, provided that the latter is finite. Here we 
will not pursue the problem of such minimization, but we will only 
note that, if we do minimize the number of eigenvalues of to be 
used in the measuring apparatus, then will be nearly strictly 
determined and if that is the case, there is a fair chance that 
cannot be made macroscopically distinguishable any better 
than 

(3.20) By (3.21) and (2.2), 
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converge, diverge, or vanish simul-
taneously. Hence, is a one-to-one mapping of 
onto Since this mapping is linear and, due to (3.3), 
isometric, is a unitary mapping of onto as 
was to be proved. This also proves that the dimensions 
of and are the same. 

If this dimension is finite, the dimensions of and 
are the same. Then there always exists a unitary 

mapping Now we define an 
operator U in 

(3.25) 

Because of the unitarity of U\ and U\i and the de-
composition, (3.23), U is obviously unitary. For any 

(3.26) 
where 

(3.27) 
is a unique decomposition of according to the first 
equation of (3.23). Since the subspace spanned 
by eigenvectors of with the eigen-
value is mapped onto itself by U, U commutes with L. 
This completes the proof for the case where the di-
mension of and is finite. 

If this dimension is infinite, then the dimensions of 
and can be different. In such a case we in-

troduce a new Hilbert space (on which the con-
served quantity is defined) in such a way that the 
dimension of is at least the number of indices a 
where is the subspace of spanned by 
the eigenstates of with eigenvalues 

Then since the dimension of does not 

exceed the cardinal number of the set of the indices a, 
have the same 

dimension. Hence, there always exists a unitary 
mapping 

We are now in the position to construct the Hilbert 
space and the unitary operator U for this case. is 
taken to be is taken to be 

can be decomposed as 

(3.28) 

U is defined as unitary mapping 

(3.29) 

Instead of (3.26), (3.27), we have, for any 

(3.30) 

(3.31) 

Then by the same argument as in the previous case, 
we can show the unitarity of U, and commutativity 
with where L' is defined as 

We note that in our application of the Lemma, the 
number of the indices is the same as the dimension 
of 
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VI.3 OPTIMAL MEASURING APPARATUS 

MICHAEL YANASE 

An upper limit for the accuracy of the measurement of a simple quantity which does not commute with 
a conserved quantity is obtained in terms of the "size" of the apparatus. The "size" of the apparatus is 
defined as the mean square value H2M2 of the conserved quantity for the apparatus which is, in the example 
chosen, the ζ component of the angular momentum. The measured quantity is the projection of a spin in a 
perpendicular direction. It is found that the probability of an unsuccessful measurement is at least 1/8.1/2. 

1. INTRODUCTION 

IT was shown recently that a quantum mechanical 
operator which does not commute with the operator 

of a conserved quantity can be measured only approxi
mately. There is a finite probability that the meas
urement is unsuccessful, but this probability can be 
very small if the measuring apparatus contains a large 
amount of the conserved quantity.1 It was shown, in 
particular, that if the product of the probability of an 
unsuccessful measurement and of the maximum value 
of the conserved quantity which is present in the meas
uring apparatus exceeds a certain value, no contradic
tion with the conservation law occurs. The objective 
of the present article is to find the "best" measuring 
apparatus for a given "size." The conserved quantity 
will not have an upper limit in the initial state of this; 
rather, we specify the mean-square value of the con
served quantity and ask for the minimum probability 
for an unsuccessful measurement, consistent with the 
prescribed mean square of the conserved quantity and, 
of course, the validity of the conservation law. 

We require that the operator of the conserved 
quantity for the apparatus commute with the operator, 
by which the final state of the apparatus is measured. 
This condition is necessary because otherwise—as a 

* On leave of absence from Sophia University, Tokyo, Japan. 
1 E. P. Wigner, Z. Physik 1¾, 101 (1952); H. Araki and Μ. M. 

Yanase, Phys. Rev. 120, 622 (1960). 

consequence of the result of our previous work—we 
cannot ascertain the result of the measurement exactly. 

The condition to be obtained will be only a necessary 
one. In other words, for the given mean square of the 
conserved quantity, the probability of a malfunctioning 
of the apparatus cannot be smaller than the value 
to be calculated. Whether an apparatus with the speci
fied properties is actually possible will not be decided. 
All that can be claimed is that the existence of such*an 
apparatus is not in conflict with the conservation law 
considered. 

The quantity to be measured and the conservation 
law to be considered will be the same as in the first 
publication on this subject: The quantity is the com
ponent of the spin of a particle in a given direction; the 
conserved quantity, the angular momentum about a 
direction perpendicular to the aforementioned direction. 
It will be shown in Sec. 2 that the minimum probability 
for the malfunctioning of the apparatus is inversely 
proportional to the mean square of the conserved quan
tity, and the proportionality constant will be deter
mined. Section 3 will contain a discussion of the results. 

2. MINIMIZATION OF THE MALFUNCTIONING 
PROBABILITY 

We measure the χ component of the spin of a particle 
with spin J; the ζ component of the spin of this particle 
is the additive conserved quantity. To make the compu-

Originally published in Physical Review, 123, 666-68 (1961). 
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tation simpler, we choose the eigenvalues of the z com-
ponent as 0 and 1 and denote the corresponding eigen-
states and , respectively. Then eigenstates of the 
x component are .The state 
of the measuring apparatus before the measurement 
will be denoted by The measurement will result in a 
unitary transformation U in the Hilbert space of the 
combined system of the object and the measuring 
apparatus: 

(2.1) 

, (2.2) 

where X, X', y, i\ are the states of the measuring 
apparatus after the measurement. 

From (2.1) and (2.2) we have 

(2.3) 

(2.4) 
where 

(2.4a) 

I t follows from the conservation law for the z component 
of the angular momentum that 

(2.5) 

(2.6) 

where we decomposed 
the index JJ being 

the eigenvalues of the z component o f t h e angular 
momentum of the apparatus', and the etc., cor-
responding eigenstates. We normalize 

(2.7) 

After the measurement, the apparatus is separated 
from the object, and subject to the second measure-
ment to distinguish the states corresponding to the 
states of the measured object. For this second measure-
ment we require the following conditions. First, the 
two states X and X' should be the two orthogonal 
eigenstates of the operator N of the second measure-
ment, i.e., 

(2.8) 

Secondly, N should commute with the operator Lz of 
the conserved quantity for the apparatus, otherwise 
we cannot measure N exactly,1 i.e., 

[ t f , L J = 0 . (2.9) 

This leads to the relation 

(2.10) 

the being eigenfunctions of both N and Because 

of (2.4a) this can be written also as 

. (2.10a) 

In an ideal measurement, both i) and would be zero. 
I t is not possible to accomplish this, but we shall t ry 
to find the minimum of the probability that the 
measurement was unsuccessful, i.e., the minimum of 

(2 .11) 

consistent with a definite "size" of the measuring ap-
paratus, to be defined below. 

The conservation law, together with (2.5), (2.6), 
(2.7), and the unitary nature of U gives 

(2.12) 

(2.13) 
ana 

(2.14) 

We define the "size" of the measuring apparatus as 
the mean square of the additive conserved quantity 
which we denote by M2 

(2.15) 

The problem is, therefore, to obtain the smallest value 
of e consistent with Eqs. (2.12) to (2.15), the 

being otherwise arbitrary eigenstates of to 
the eigenvalue The can be eliminated from (2.13) 
by means of (2.10) and one obtains 

(2.16) 

We note that (2.14) can be always satisfied because no 
equation depends on the angles between the w,, and w 
or the and except (2.14). I t is easy to see tha t , in 
order to obtain the smallest possible at given 

, the Hilbert vectors and must be 
parallel for all and the same applies for the vectors 

and 
To solve the preceding equations, we note that, be-

cause of (2.10a) and (2.12), 

(2.17) 

(2.18) 

where the are now the lengths of the corresponding 
vectors (which are parallel), and the same applies to 

and 
We introduce new variables such that 

(2.19) 

(2.20) 

If is small, M is large and the can be considered 
to be continuous functions of I t can be verified from 



714 YANASE 

t he solutions to be obtained t ha t 

, etc. ; (2.21) 

, etc. (2.22) 

Using these estimates, we obtain f rom (2.18), (2.19), 
(2.20) 

(2.23) 

whereas (2.11) becomes 

(2.24) 

The J and / are still subject to the conditions (2.13) 
a n d w h i c h now read 

(2.25) 

(2.26) 

Since the t do not occur in these equations, the deriva-
tive of (2.24) with respect to will be zero a t the mini-
m u m for 

(2.27) 

Hence e becomes 

(2.28) 

Using and as the Lagrange multipliers for 
(2.25) and (2.26), we obtain the Euler equation for 

(2.29) 

where terms of lower order of magni tude have been 
omitted. The solution of (2.29) is 

(2.30) 

This already satisfies the normalization condition (2.25). 
The condition (2.26) gives 

(2.31) 

and this gives, finally, for the probability (2.28) of 
an unsuccessful measurement 

(2.32) 

for a given M. Tracing through the omitted low-order 
terms, one finds t ha t (2.32) is accurate u p to terms of 
the order 

3. CONCLUSIONS AND DISCUSSIONS 

(1) The relation (2.32) tells us t h a t t h e probabili ty 
of an unsuccessful measurement is , if one uses 
the "bes t possible" appara tus with given Therefore, 

neglecting terms of the order the inequality 

(3.1) 

holds. In other words, with given M2 , we cannot make 
the probabili ty of unsuccessful measurement smaller 
than (in dimensionless units). This limitation of 
the measurement is not the consequence of an uncer-
ta in ty relation for the simultaneous measurement of two 
noncommuting operators, bu t the consequence of the 
existence of the additive conserved quant i ty whose 
operator does not commute with the single operator to 
be measured. 

(2) We required the condition (2.10), 
so tha t the conservation law does not interfere with the 
possibility of distinguishing X and X'. However, if we 
loosen this condition and require only ( X , X ' ) = 0, we 
obtain the same value for e except for terms of order 

or lower. However, in this case the second meas-
urement (which distinguishes X and X') can be carried 
out only approximately, and the total probability for 
an unsuccessful measurement becomes larger. 

(3) The theory of measurement, as described b y von 
Neumann, 2 contains no limitation for the size of the 
measuring apparatus . As we have seen, there always 
are such limitations unless the operator to be measured 
commutes with all the operators of additive conserved 
quantities.3 Recently the macroscopic character of the 
measuring appara tus has been studied in detail by 
several authors,4 bu t no quant i ta t ive conditions have 
been established before. 
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VI.4 TIME IN THE QUANTUM THEORY AND 
THE UNCERTAINTY RELATION FOR TIME AND ENERGY 

YAKIR AHARONOV AND DAVID BOHM 

Because time does not appear in Schrodinger's equation as an operator but only as a parameter, the time-
energy uncertainty relation must be formulated in a special way. This problem has in fact been studied by 
many authors and we give a summary of their treatments. We then criticize the main conclusion of these 
treatments; viz., that in a measurement of energy carried out in a time interval, Δί, there must be a minimum 
uncertainty in the transfer of energy to the observed system, given by A(Er-E) ̂ h/At. We show that this 
conclusion is erroneous in two respects. First, it is not consistent with the general principles of the quantum 
theory, which require that all uncertainty relations be expressible in terms of the mathematical formalism, 
i.e., by means of operators, wave functions, etc. Secondly, the examples of measurement processes that were 
used to derive the above uncertainty relation are not general enough. We then develop a systematic presenta
tion of our own point of view, with regard to the role of time in the quantum theory, and give a concrete 
example of a measurement process not satisfying the above uncertainty relation. 

1. HISTORICAL SUMMARY OF THE STATE OF THE 
PROBLEM OF TIME MEASUREMENT IN 

THE QUANTUM THEORY 

AS is well known, the uncertainty relations in 
quantum mechanics can be regarded in two closely 

related ways. First of all, they are a direct mathematical 
consequence of the replacement of classical numbers by 
operators, and of adding the basic principle that the 
statistical distributions of the corresponding observables 
can be obtained by means of the usual formulas from 
the wave function and its probability interpretation.' 
Secondly, however, it can be shown by analyses such 
as that of the Heisenberg microscope experiment that 
they are also limitations on the possible accuracy of 
measurements.2 

These considerations apply to observables such as 
x, p, and H. With regard to the measurement of time, 
however, a further problem appears, because time 
enters into Schrodinger's equation, not as an operator 
(i.e., and "observable") but rather, as a parameter, 
which is a "c" number that has a well defined value. 
Nevertheless, the uncertainty principle, AE Al^ h, is 
generally accepted as valid, even though it is not 
deduced directly from commutation relations in the 
way described above. 

The justification of the time-energy uncertainty 
relationship has been attempted in several ways. (We 
shall restrict ourselves here entirely to a discussion of 
the nonrelativistic case, since the theory of relativity 
has no essential relationship to the measurement 
problems that we are going to treat in this paper.) 

First, one can begin with the wave function 

= (1) 

* Now at Brandeis University, Waltham, Massachusetts. 
1 The uncertainty relations are obtained in this way using 

Schwarz's inequality with the expressions for 

< (Λ -A)>),v((B -S)»).v= (Δν4)2 (&B)\ 

See, for example, D. Bohm, Quantum Theory (Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1951), pp. 205-206. 

2 W. Heisenberg, The Physical Principles of the Quantum Theory 
(Dover Publications, New York, 1930), Chap. 2. 

where Ψ Ε ( % )  is the eigenfunction of the Hamiltonian H  

of the system belonging to the eigenvalue E, and CE is 
an arbitrary coefficient. If we consider a wave packet of 
width AE in energy space (i.e., AE is the range in which 

I Ce I is appreciable), it immediately follows from the 
properties of Fourier analysis that (AE) r^h, where τ 
is the time during which the wave packet does not 
change significantly (τ may be regarded as the mean life 
of the state in question3)· 

The above is a discussion in terms of the Schrodinger 
representation. Mandelstamm and Tamm4 have formu
lated what is, in essence, the same point of view but it is 
expressed in the Heisenberg representation. They con
sider a dynamical variable A, which is a function of the 
time (e.g., the location of the needle on a clock dial or 
the position of a free particle in motion) and which can 
therefore be used to indicate time. If AA is the un
certainty in A, then the uncertainty in time is 

At= AA/1  (A) a v | ,  

provided that A does not change significantly during 
the time, Αϊ, and that AA/1 (A ),T | is negligible. From 
the relation 

A A  A H > \ ( ( A , H ) ) a v \ = - h \ ( A ) ^ \ ,  

we obtain 
A A  A H Z ( A ) i l v = A t A H ^ h .  (2) 

Since H represents the Hamiltonian of the isolated 
system, AH is also equal to AE, the uncertainty in 
energy of that system. 

It should be noted that the method proposed by 
Mandelstamm and Tamm can actually lead to a deter
mination of time, only when the system is not in a 
stationary state; i.e., only when the wave function takes 
the form of a packet, consisting of a linear superposition 
of stationary states. In other words, the AH appearing 
in equation (2) is determined by the range of energies 

»V. Fock and N. Krylov, J. Phys. (U S.S.R.) 11, 112 (1947), 
present a more detailed account of the lifetime of a state. 

4 L. Mandelstamm and I. Tamm, J Phys. (U.S.S R ) 9, 249 
(1945). 

Originally published in Physical Review, 122, 1649-58 (1961). 
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in the wave packet. In this way, the relation of the 
Mandelstamm and Tamm treatment to the Schrodinger 
representation is made clear. 

The above is then a discussion of the relation 
AE Ai>, h insofar as this has been obtained from the 
mathematical formalism of the quantum theory (i.e., 
the wave function, operators, and probability inter
pretation). Naturally, as is necessary in the case of 
observables such as * and p, this uncertainty relation 
must also be analyzed in terms of the interaction of the 
measuring apparatus with the observed system. Landau 
and Peierls,5·6 for example, do this by considering a 
special example, in which the momentum of a free 
particle is measured by means of a collision with a heavy 
test particle (also free). To simplify the problem they 
consider a case in which the measuring particle is a 
perfectly reflecting mirror, and discuss only the move
ment in one dimension (perpendicular to the mirror). 
They then apply the laws of conservation of energy and 
momentum, which are 

p'+P'-(p+P) =0, (3a) 

£'+«'— (£+¢) = 0, (3b) 

where lower case letters refer to the observed particle, 
capitals to the test particle, unprimed quantities to 
values before collision, and primed quantities to values 
after collision. Because E=FiIlM, t=j?/2m, one can 
solve for the momentum of the observed particle before 
and after collision, in terms of the corresponding 
momenta of the test particle. 

In order to define the time of measurement, Landau 
and Peierls5 (and also Landau and Lifshitz)6 consider 
the case of a time-dependent interaction between the 
particle and the mirror, which lasts for some known 
period of time, At. This period Al, which is the un
certainty in the time of measurement, then implies 
(e.g., according to perturbation theory) an uncertainty 
in the energy of the combined system consisting of 
observed particle and mirror, of magnitude h/Al, 
resulting from the time-dependent interaction. Instead 
of Eq. (3b) for the exact conservation of energy, we must 
therefore write 

\e'+E'-(e+E)\}h/Al. (3c) 

Evidently the momentum of the test particle before 
and after collision can be measured with arbitrary 
accuracy, so that AP = AP' = 0. As a result, we obtain 
from Eq. (3a), Ap = Ap'-, and from (3c), we have 

A{t'-t)^h/At. (4) 

Since t = ̂ /2m, we can also write the above result as 

(v'—v)Ap^h/ At. (S) 

(Note that although Ap itself may be very small, there 

5 L. Landau and R Peierls, Z. Physik 69, 56 (1931). 
6See also L. Landau and E. Lifschitz, Quantum Mechanics 

(Pergamon Press, New York, 1958), pp. 150-153. 

is still a minimum uncertainty in energy transfer, be
cause the change of velocity will then become very 
large, if At is finite.) 

Landau and Peierls therefore conclude that there is an 
uncertainty relation between the energy transferred to 
the system and the time at which the energy is 
measured. This means that the energy of the observed 
system cannot be measured in a short time, without 
changing it in an unpredictable and uncontrollable way. 
In other words, energy measurements carried out in short 
periods of time are not reproducible. 

Fock and Krylov3 criticize the derivation of the above 
results, but come to essentially the same conclusion. In 
effect, they do not accept the definition of the time of 
measurement by means of a time-dependent potential 
of interaction between the two particles. This is because 
in a real collision, there is no such time-dependent 
potential. Rather, the time of collision is determined by 
the movement of the particles themselves, in such a way 
that one of them serves as a clock. Let us suppose that 
it is the test particle which fulfills this function. This 
particle defines the time, t, as that at which it passes a 
definite point, X, by the equation, I= X/V. The 
time, as defined in this way, has an uncertainty 
At=AX/V (provided, as will actually be the case in our 
example, that AF/F«1). 

In order to define the time of collision, we must have 
some information about the initial location of the ob
served particle, as well as that of the test particle. For 
simplicity, let us suppose that the initial velocity of the 
test particle is so much higher than that of the observed 
particle that the latter can be regarded as essentially at 
rest until the collision. The mean initial position χ of the 
observed particle will be taken to be at the origin, while 
the uncertainty in this position is represented by Δ*. 
Evidently we must choose Ax^ AX, if the location of the 
test particle is to serve as a definition of the time of 

collision. Therefore 

At=AX/V>h/{AP)V=fi/AE. 

(This is just the well-known uncertainty relation be
tween the energy of the test particle and the time that is 
defined by the movement of its coordinate.) 

Fock and Krylov then point out that in this case, the 
laws of conservation of energy and momentum are both 
satisfied exactly, so that Eqs. (3a) and (3b) can be used 
directly, while the approximate form (3c) for the con
servation of energy is not to be applied here (since 
perturbation theory no longer has any relevance to the 
problem.) From (3a), we obtain 

A(p-p') = A(P-P'). 

If V is chosen large enough, we can for a given 
Al^fi/VAP make AP and AP' arbitrarily small, and, 
as a result, we can likewise make A(p—p') as small as 
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we please. From Eq. (3b), it then follows that 

i p ' - p )  H P ' + P )  h  
A ( e  — t )  =  =  ( v  —  v ) A p = A ( t  —  e ) ^ — ,  

m l  A t  

where we have used the result that A ( p ' — p )  is negli
gible. The above is exactly the same Eq. (5) as that 
obtained by Landau and Peierls, but the uncertainty in 
energy transfer to the observed system is now deduced 
on the basis of the fact that the (time-dependent) posi
tion of one of the particles is used to define the time of 
collision. 

Fock and Krylov then go on to criticize the approach 
of Mandelstamm and Tamm, suggesting that it is in
complete. They assert that by means of the wave func
tion and the operators of the observed system, one can 
discuss only the statistical features of any measure
ment. In order to discuss an individual measurement 
process, they refer to what they call "Bohr's uncertainty 
relation," A(e' — e)Al^h, where e and e are the actual 
values of the energy of an individual observed system 
before and after measurement. 

To clarify this distinction between the statistical 
uncertainty relations discussed by Mandelstamm and 
Tamm, and the Bohr relation, they point out that, for 
example, in observation of a state with lifetime τ (as 
described by its wave function), one can make measure
ments in times much shorter than r. Therefore, it is 
necessary to distinguish between the time intervals 
defined by the wave function of the observed system, 
and the time interval representing the actual duration 
of an individual measurement. The time interval defined 
by the wave function has in measurements generally 
only a statistical significance. 

Even if one treated the measurement process by 
means of a many-body Schrodinger equation, including 
the apparatus coordinates, the same distinction would 
arise. For it would the necessary to observe the com
bined system by means of additional apparatus; and 
here too, there will be a "Bohr uncertainty principle" 
for the individual observation and a statistical un
certainty principle following from the wave function, 
which applies to an ensemble of cases. To treat the 
apparatus by quantum theory is, in effect, to push back 
the well known "cut" between classical and quantum 
sides another stage. While it is always permissible and 
sometimes convenient to do this, it cannot change the 
content of the theory. 

Let us now sum up the problem. Mandelstamm and 
Tamm propose a mathematical operator uncertainty 
relation between energy and time, as determined by 
the wave function. Fock and Krylov regard such a treat
ment as incomplete, because it applies only statistically 
to a large number of measurements, and because within 
it one cannot even consider the question of the interval 
of time needed to carry out an individual measurement. 
To complete the treatment, they call attention to the 
"Bohr uncertainty relation" (discussed also by Landau 

and Peierls,5 as well as by Landau and Lifshitz6) which 
applies to individual measurements, and which refers to 
the relation between the error in the measurement of 
energy and the duration of the measurement process. 
While criticizing some of the methods of Landau and 
Peierls, they agree with the essential conclusion that 
energy cannot be measured in arbitrarily short periods 
of time, without introducing uncertainties, according to 
the  re l a t ion  A ( t ' — t ) ^ - h / A t .  

2 .  CRITICISM OF COMMONLY ACCEPTED 
INTERPRETATIONS OF THE TIME-ENERGY 

UNCERTAINTY RELATION 

The main conclusion of Landau and Peierls,5 Landau 
and Lifschitz,6 and Fock and Krylov3 (given in Sec. 1), 
viz., that energy cannot be measured in a short time 
without introducing an uncertainty in its value, 
represents a very widely accepted interpretation of the 
time-energy uncertainty relation. This conclusion is, as 
we shall show, erroneous, the error being based in part 
on an inadequate formulation of Bohr's point of view 
concerning measurement, and in part on the use of an 
illustrative example of a measurement process, that was 
not sufficiently typical of the general case of such a 
measurement. (In fact, in Sec. 4 we shall give a counter
example, in which the energy of a particle is measured to 
arbitrary accuracy in as short a time as we please). 

With regard to Bohr's point of view concerning 
measurements, it is important to stress here his con
tinual insistence that the minimum ambiguities in the 
results of any individual measurement process (in the 
sense of what Fock and Krylov called the "Bohr un
certainty relations") are always exactly the same as the 
minimum ambiguities in the possibility of definition in 
the mathematical theory of the observables that are 
being measured.7 (These latter ambiguities are, of course, 
the "statistical" uncertainty relations referred to by 
Fock and Krylov.) 

The ambiguities in the results of individual measure
ments are regarded as originating in the indivisible 
quantum connections of the object under investigation 
to the apparatus (and indeed to the whole universe), 
which give rise to a minimum ambiguity in the degree to 
which well-defined classical properties (e.g., position 
and momentum) can be assigned to the object as a 
result of any such measurement.8 In addition, however, 
the result of each measurement defines a "quantum 
state" of the observed system, specified by its wave 
function. This wave function is, of course, not a repre
sentation of an individual system, but it implies, in 
general, only a set of statistical predictions concerning 
the results of possible measurements. Nevertheless, if 
these predictions were such that the minimum ambi
guity in the definition of the results of an individual 
measurement were less than the minimum statistical 

7N. Bohr, Die Naturwissenschaften, 251 (1928). 
8 W. Heisenberg, P h y s i c s  a n d  P h i l o s o p h y  (Alien and Unwin, 

London, 1959), Chap. 3. 
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fluctuation implied by the mathematical theory, then 
there would be a contradiction. Vice versa, if they were 
such that the minimum ambiguity in the result of an 
individual measurement were greater than the minimum 
statistical fluctuation as described above, then this 
would lead to an arbitrary restriction, not related in any 
general way to the mathematical formalism, a restric
tion that evidently has no place in a coherent over-all 
framework of theory. Moreover, one could, in general, 
expect that with sufficient effort, it would be possible to 
find an example of an individual measurement process 
with the same minimum ambiguity as that implied by 
the formalism; and if such a process is found, then the 
supposedly greater minimum ambiguity in the results of 
an individual measurement will be contradicted. For 
these reasons, it is necessary to consider the statistical 
and individual uncertainty relations as two equally 
essential sides of what is basically the same limitation 
on the precise definability and measurability of the 
state of any system. In other words, as Bohr9 has 
stressed, there can be no limitation on individual measure
ments that cannot also be obtained from the mathematical 
formalism and the statistical interpretation. 

There is no question that all the above considerations 
apply for common examples of the uncertainty principle 
(e.g., * and p). However, as we pointed out in Sec. 1, 
time enters into Schrodinger's equation only -as a 
parameter, so that there is no straightforward way to 
apply these ideas to the time-energy uncertainty rela
tion. Of course, we can, with Mandelstamm and Tamm, 
obtain an uncertainty relation between the lifetime of 
a state of the observed system and its energy. But let us 
recall here that (as pointed out by Fock and Krylov), 
the operators of the observed system have no connection 
whatsoever with the duration of the measurement 
process (which is evidently determined, in general, by 
the apparatus). Keeping this fact in mind, let us now 
raise the question of whether there can be a genuine un
certainty relation between the energy transferred to the 
observed system and the time at which the measure
ment took place (as has been suggested by Landau and 
Peierls, Fock and Krylov, and other authors). 

In accordance with Bohr's point of view on the sub
ject, as we have described it above, we are led to point 
out that one cannot safely regard any given uncertainty 
relations as representing a real limitation on the 
accuracy of all possible measurements of the quantities 
under discussion unless the relationship has been shown 
to follow from the mathematical formalism. On the 
other hand, all of the authors referred to above seem to 
be satisfied to establish the time-energy uncertainty 
relations as applying to individual measurements by 
what Fock and Krylov called "illustrative examples." 
Such a point of view would imply, of course, that the 
uncertainty relations applying to individual measure
ments could in principle, have a basis that is independ

9 N. Bohr (private communication). 

ent of the statistical relations obtainable from the 
mathematical formalism. As we have already pointed 
out, however, such a procedure is arbitrary and there
fore subject to the continual danger of being contradicted 
by the development of new examples of measurement 
processes, which reduce the ambiguity down to the 
minimum allowed by the formalism. (For, as is quite 
evident, there is no way to be sure that conclusions 
obtained from an illustrative example have universal 
validity). 

It follows from the above discussion that to complete 
the treatment of the time-energy uncertainty relation, it 
is necessary to develop a method of showing how the 
time of measurement and the energy transferred in this 
measurement are to be expressed in terms of suitable 
operators. The method that we shall use in this paper 
starts from our discussion of the example first treated by 
Landau and Peierls, and then by Fock and Krylov; 
viz., the one in which the energy of a free particle is 
measured by collision with another particle. As we saw 
in Sec. 1, in such an interaction, the time of collision is 
determined physically by the state of some system 
which serves as a clock. In the example of Fock and 
Krylov, it is determined by the position of the test 
particle (which was taken to be free). Now, for any 
system, one can define a Hermitian operator represent
ing such a time. In the case of a free particle, this is 

t c  = — = \ M ( y - ~ I — y \ ,  ( 7 )  
V l f  P u  P u  '  

where y and py are respectively position and momentum 
of the particle in question.10 

The commutation relations between the above opera
tor and the Hamiltonian, Hc, of the "clock" in question 
are (as can easily be verified for the case of a free 
p a r t i c l e ,  f o r  w h i c h  H c = p y

2 / 2 M ) ,  

f.Hc,tJ = iii. (8) 

This procedure is evidently very similar to that of 
Mandelstamm and Tamm. However, they discussed 
only the operators of the observed system, and obtained 
an uncertainty relation (2) between the energy of this 
system and the "inner" time as defined by dynamical 
variables in this system (e.g., the lifetime of a state). 
On the other hand, we are applying the relations (8) to 
the energy, Ec, of the "clock" in the apparatus, and to 
the time, tc, of measurement as determined by this clock. 

Since the time of measurement can be represented by 
an operator, lc, belonging only to the observing appara
tus, it follows that this time must commute with every 
operator of the observed system and, in pa-ticular, with its 
Hamiltonian. There is therefore no reason inherent in-the 
principles of the quantum theory why the energy of a 
system cannot be measured in as short a time as we 

10 There is a singularity for Py = O, but it is easily shown that this 
will be unimportant if Pu is large enough, as will be the case in 
our applications. 
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please. (Recall, however, that in accordance with the 
treatment of Mandelstamm and Tamm, any such a 
measurement of the energy of the observed system to an 
accuracy ΔΕ must leave the "inner" time undefined to 
At^f i/AE).  

In view of the above discussion, it is evident that the 
usual treatment of the energy-time uncertainty relation 
(e.g., as discussed by Fock and Krylov) must be in some 
way erroneous. Since the particular illustrative example 
chosen by all the authors cited here (which is, in fact, 
the one usually given) has in fact been treated correctly, 
it follows that the mistake must be that this example is 
not sufficiently typical of the general case. And, indeed, 
as we shall see in Sec. 4, one can suggest more general 
methods of measurement of energy, which do not lead 
to the above limitation. In this way, we confirm our 
conclusion, based on general considerations regarding 
the principles of the quantum theory, that it is always 
possible to obtain true limitations on the measurability 
of any observable from the mathematical formalism, 
and that any other limitations that are added to these 
are arbitrary restrictions, which can eventually be 
contradicted, if further examples of measurement 
processes are sought.11 

Finally, it is instructive to point out that problems 
similar to those connected with the time-energy un
certainty relations arise in the more familiar example 
of the position momentum relationship, ApxAx^fi. To 
bring out the analogy, we can ask ourselves whether the 
momentum of a particle can be measured to arbitrary 
accuracy by means of an apparatus, which is localized in 
space. (Here, px takes the place of E, while the region of 
space in which the apparatus is located takes the place 
of the duration, At, of the measurement.) At first sight, 
it may seem that if the apparatus is localized in a very 
small region of size AX, the momentum of a particle 
cannot be measured to an accuracy greater than 
Apx= h/AX. This, however, is not the case, because, 
what is defined here is the coordinate, X, of the appara
tus ,  and not  tha t  of  the  measured par t ic le ,  x .  Since  p x  

commutes with X, there is no inherent limitation on 
how accurately it can be measured, if X is defined. 

To illustrate such a possibility, consider the measure
ment of the momentum of a photon, by measuring its 
energy and using the relation p=E/c. (This is analogous 
to the measurement of energy of a particle by measuring 
its momentum and using the relation E=p2/2M.) We 
can do this by means of an atom which is very highly 
localized, provided that this atom has a sharp level, 
exci ted  above the  ground s ta te  by  the  amount  E= pc.  
If the photon has the appropriate energy, it will be 
absorbed and eventually reemitted (being delayed and 
perhaps scattered). It is observable whether this 
happens or not. If it does happen, then this provides a 
measurement of the energy, and through this, of the 

11 This conclusion, the validity of which is fairly evident, will 
be obtained again in Sec. 3 from a more detailed discussion of the 
mathematical formalism. 

momentum. It is evident that the uncertainty in this 
momentum has no essential relation to the size of the 
atom, but only to the lifetime of the excited state. The 
momentum has therefore been measured by an appara
tus, which is as localized in space as we please. (Of 
course, the position of the photon after the measure
ment is over is indeterminate, just as happens with 
"inner" time variables in the analogous case of time 
measurement.) 

3. TREATMENT OF TIME OF MEASUREMENT IN 
TERMS OF THE MATHEMATICAL FORMALISM 

OF THE QUANTUM THEORY 

We saw in Sec. 1 that (as pointed out by Fock and 
Krylov') there is a need to make a careful distinction 
between the time at which a measurement takes place 
and the time as defined by the wave function and 
operators of the observed system (e.g., the lifetime of an 
excited state). In Sec. 2, we showed how such a dis
tinction can be represented within the mathematical 
formalism of the quantum theory by considering as 
operators certain variables that have hitherto usually 
been associated with the observing apparatus; viz., 
those variables determining the time at which inter
action between the apparatus and the observed system 
takes place. This implies, of course, that the wave func
tion must now be extended, so as to depend on these 
latter variables, It is equivalent to placing the "cut" 
between observing apparatus and observed system at 
a different point. 

It is well known that while there is a certain kind of 
arbitrariness in the location of this cut, it is not com
pletely arbitrary. For example, in the treatment of the 
energy levels of a hydrogen atom, one can, in a certain 
approximation, regard the nucleus as a classical particle 
in a well-defined position. If, however, the treatment 
aims at being accurate enough to take the reduced mass 
into account, both electron and nucleus must be treated 
quantum-mechanically, and the cut is introduced 
instead between the atom as a whole and its environment. 
The place of the cut therefore depends, in general, on 
how accurate a treatment is required for the problem 
under discussion. Of course, it follows that once a given 
place of the cut is justified, then it can always be moved 
further toward the classical side without changing the 
results significantly. 

If we are interested only in discussing what Fock and 
Krylov called the "Bohr uncertainty relation" (the one 
referring to an individual measurement of energy and 
time), then we are justified in placing the physical 
variables that determine the time of the measurement 
on the classical side of the cut. For, as is quite evident, 
in this aspect of the uncertainty relations, these varia
bles are by definition regarded as classical, in the sense 
that their uncertainty represents only an inherent 
ambiguity in the possibility of defining the state of an 
individual system. We have seen in Sec. 2, however, that 
according to the Bohr point of view, every uncertainty 
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relation that appears in this way must also be able to 
appear as a statistical fluctuation in a corresponding 
operator, which must, of course, be calculated from an 
appropriate wave function. To discuss this side of the 
uncertainty relations, it is clear that we must change 
the position of the cut, so that the corresponding 
variables now fall on the quantum-mechanical side. 

In the subsequent discussion of how the uncertainty 
relations appear in the mathematical formalism, we shall 
begin with the case in which the time determining 
variables are placed on the classical side of the cut. In 
this case, the time variables can be reflected in the 
Schrodinger equation only in the time parameter t which 
can, of course, have an arbitrarily well-defined value. 
This time parameter is related to measurement in 
several ways. 

First of all such a relation comes about in the prepara
tion of a system in a definite quantum state, and in 
observations carried out later on that system. Consider, 
for example, a quantum state prepared at a time deter
mined by means of a shutter (which we are, of course, 
now regarding as being on the classical side of the cut). 
There must be some relationship between the time, 
at which the shutter functions and the time parameter, 
t appearing the Schrodinger's equation. Indeed, if the 
Hamiltonian of the observed system does not depend on 
time, then it is easily seen that the wave function takes 
the form 

φ=φ{χ,1-1.), (9) 

where φ is a solution of Schrodinger's equation for the 
system in question. The form of ψ is determined by 
choosing that solution which at t=t, becomes equal to 
the function, (x), representing the quantum state in 
which the "preparing" measurement leaves the system. 
Then, when an observation is made, the time tm, of the 
measurement is likewise determined by suitable varia
bles on the classical side of the cut. The probability of 
any given result is, of course, computed in the well-
known way from the wave function, ψ=ψ(χ, 

It is clear that as far as this one-body treatment is 
concerned, there is certainly nothing in the formalism 
which would prevent the system under discussion from 
being either prepared or observed in a state of definite 
energy, when tm and Is are as well defined as we please. 
Thus, if the system is in a state of definite energy, E 
(so that the uncertainty, AE, in its energy is zero, while 
the lifetime r^fi/AE of the state is infinite), its wave 
function, ι/'=^Β(χ)«_,£ί,ί [where Φε(χ) is the eigen-
function of the Hamiltonian operator belonging to the 
eigenvalue, Λ J is evidently able to represent such a 
state, no matter what value is given to t. A wave func
tion of this kind is therefore evidently compatible with 
the statement that at some time, t=ts, the system was 
prepared in the eigenstate of the energy represented by 
Ψε(χ). Thus, in the one-body treatment alone, no reason 
for an uncertainty relation between the energy of the 
system and the time of measurement can be found. And 

this is indeed basically the reason why Fock and Krylov 
were led to postulate such an uncertainty relation 
independently, and to try to justify this relationship by 
means of illustrative examples of measurement processes 
(see Sec. 1). 

Let us now go on to consider the time-energy un
certainty relation from the other aspect, in which the 
variables determining the time of measurement are 
placed on the quantum-mechanical side of the cut. In 
this case, we must introduce these variables into the 
wave function, so that we are in this way led to a many-
body Schrodinger equation. Let us recall, however, that 
the "cut" has not been abolished, but merely pushed 
back another stage. Thus, as was pointed out in the 
discussion of the treatment of Fock and Krylov given 
in Sec. 1, there is implied an additional observing 
apparatus on the classical side of the cut, with the aid 
of which the many-body system under discussion can 
be observed. The probabilities for the results of such 
observations are determined by the wave functions, 
which take the form 

Φ=Φ(χ,3ΐί,ί), (10) 

where y t, represents the apparatus variables on the 
quantum-mechanical side of the cut (which include 
those that describe the time of measurement). The 
time parameter t here plays a role similar to that which 
it had in the one-body problem; viz., through it the time 
frame on the large-scale classical side of the cut is 
brought into relationship with the quantum-mechanical 
formalism by means of suitable observations. 

We shall now consider as an example of the approach 
described above, the measurement of energy and time 
by means of a collision of two particles, as treated in 
Sec. 1. The initial wave function of the combined 
system is, for this case, a product of two packet func
tions, one representing the test particle coming in with 
a very high velocity, V, and the other representing the 
observed particle, essentially at rest (with a velocity 
that is negligible in comparison to V) and with its 
center at the origin. After the collision, it is well 
known12·13 that the wave function becomes a sum of 
products of such packets, correlated in such a way that 
an observation of the properties of the test particle can 
yield information about the particle under discussion. 

As far as this particular example is concerned, it will 
not be relevant here to go into a more detailed discussion 
of the problem of solving Schrodinger's equation. All 
that is important here is that as we saw in Sec. 2, the 
time of collision is given essentially by the operator, 

tc=hM(y—I—y\ 
ν  P y  p y  /  

(where y and p y  refer to the position and momentum of 

12 See reference 1, Chap. 22. 
13J. von Neumann, Mathematical Foundations of Quantum 

Mechanics (Princeton University Press, Princeton, New Jersey, 
1955), Chap. 6. 



VI.4 TIME-ENERGY COMPLEMENTARITY 721 

the test particle, respectively), so that the operator, t c ,  
commutes with the Hamiltonian, //,, of the observed 
system. As a result, there is, as we have already stated 
in Sec. 2, no uncertainty relation between the time of 
measurement and the energy of the observed system. 
But in the treatment that we are now using, we have 
obtained this result by allowing the variables deter
mining the time of measurement to fall on the quantum-
mechanical side of the cut. (As was to be expected, of 
course, the actual physical consequences of the theory 
do not depend on which side of the cut these variables 
are placed.) 

In the example given above, the same apparatus was 
used to determine both the time of measurement and 
the momentum of the particle. However, it is possible, 
and in fact frequently advantageous, to consider a more 
general situation, in which the time determining 
variables are separated from those which are used to 
measure other quantities (such as momentum). This, in 
fact, would be the correct way of completing the treat
ment of the example given by Landau and Peierls5 ,6 (see 
Sec. 1), in which the time of measurement was deter
mined by an interaction between the test particle and 
the observed particle which was assumed to last for 
some interval  At.  

If there is a time-dependent interaction between 
apparatus and observed system which lasts for an 
interval At, then the Schrodinger equation will have to 
have a corresponding potential, which represents this 
interaction. The form of this potential will depend on 
where we place the cut. 

If the apparatus determining the time of interaction 
is taken to be on the classical side, then the potential 
will be a certain well defined function of time, which is 
nonzero only in the specified interval of length At. We 
may write this potential as 

V=V(x,y, t) ,  (11) 

where χ represents the coordinate of the observed 
particle, and y that of the test particle. This is indeed 
the usual way by which measurements are represented 
in the mathematical formalism.12·13 

In the next section we shall apply this method in 
order to treat a specific example, in which it will be 
shown in detail that the energy of a system can be 
measured in an arbitrarily short time. 

If, on the other hand, the variables determining the 
time of interaction are placed on the quantum mechani
cal side of the cut, then we cannot regard the potential 
as a well-defined function of time. Instead, we must 
write 

V=V(x,y,z) ,  (12) 

where ζ is the variable that determines the time of 
interaction. 

If the particles determining the time of interaction 
are heavy enough, then they will move in an essentially 
classical way, very nearly following a definite orbit, 

Z=Z(I).  To the extent that this happens, we obtain, as 
a good approximation, 

V(x,y,z)=V(x,y,z(t)).  (13) 

To treat this problem mathematically, we begin with 
the Schrodinger equation for the whole system. 

θΨ 
ih—(x,y,z , t )  = [_HP+H y+H z+V(x,y,z) ']^(x,y,z , t ) ,  (14) 

dt 

where Hp  represents the Hamiltonian of the observed 
particle, Hy that of the apparatus, Hz that of the time-
determining variable, z. We must then show the equiva
lence of this treatment with that obtained by placing 
the time-determining variable on the classical side of the 
cut. To do this, it is sufficient to demonstrate that in a 
suitable approximation, equation (14) leads to the time-
dependent Schrodinger equation for the χ and y 

variables alone, viz., 

θψ 
ih—(x,y, t)  = [Hp+H„-\-  V (x,y,z(/))]i^(x,y,/). (15) 

dt 

We shall simplify the problem14 by letting the time 
determining variable be represented by a heavy free 
particle mass M, for which we have Hz=pz

2/2M. We 
suppose that the initial state of the time-determining 
variable can be represented by a wave packet narrow 
enough in ζ space, so that Δ/=Δζ/|ζ| can be made as 
small as is necessary. This packet is 

= (16) 

Because M is very large, the wave packet will spread 
very slowly, and to a good approximation, we shall have 

Φ0(ζ,/)=Φ(ζ—n2/) expl-fp2z—-—/11, (17) 
\m_ IM Jl 

where v z=p z /M is the mean velocity, and Φ (z—v,t)  is 
just a form factor for the wave packet which is, in 
general, a fairly regular function which varies slowly in 
comparison with the wavelength,  \=h/p z .  

If the interaction, V(x,y,z)  is neglected, a solution 
for the whole problem will be 

*(x,y,z,0=*o(z,/¥o(x,y,Z), (18) 

where ψ 0 (χ,γ, ί)  is a solution of the equation 

ihdtf/(,(x,y,t)/dt= (H p +Hy)ip<,(x,y,t) ·  (19) 

When this interaction is taken into account, the 
solution will, in general, take the form 

Ψ (x,y,z, t)  = ΣηΦ.(ζ, '¥» (x,y,t)C„, 

14 Our procedure is along lines similar to those developed by 
H. L. Armstrong, Am. J. Phys. 22, 195 (1957). 
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where the sum is taken over the respective eigenfunc-
tions, of and If such 
a sum is necessary, there will be correlations between 
the time-determining variable and the other variables, 
with the result tha t there will be no valid approximation 
in which an equation such as (15) involving only x and y 
can be separated out. However, if the mass, M, of the 
time determining particle is great enough, so tha t the 
potential does not vary significantly in a wave-
length, then, as is well known, the adiabatic 
approximation will apply. I n this case, one can obtain 
a simple solution, consisting of a single product, even 
when interaction is taken into account. T o show in more 
detail how this comes about , we first write the solution 
in the form 

When this function is substi tuted into Schrodinger's 
equation (IS), the result is 

(20) 

If M is large, and if the potential does not vary too 
rapidly as a function of z, the last term on the right-hand 
side of (20) can be neglected.16 Moreover, 

Because does not vary significantly in a wave-
length, this term too can be neglected in the above 
equation, and we obtain 

We then make the substitution, and 

With the relation 

we have 
(21) 

Note tha t this equation does not contain derivatives of 
u, so tha t u can be given a definite value in it. 

T h e complete wave func t ion i s , of course, obtained 
by multiplying Now, 
this was assumed to be a narrow packet centering a t 
m=0 , such t ha t the spread of u can be neglected. As a 
result, we can write u = 0 in the above equation. The 

result is 

(22) 

I n this way, we have obtained the Schrodinger equa-
tion for y, with the appropriate t ime-dependent 
potential "" * the relationship between the time 
parameter I a n d t h e time determining variable z being, 
in this case, We have therefore completed the 
demonstrat ion of the equivalence of the two treatments , 
in which the time-determining variables are placed on 
different sides of the cut. 

4. EXAMPLE OF A REPRODUCIBLE MEASUREMENT 
OF ENERGY IN A WELL-DEFINED TIME 

W e saw in Sees. 2 and 3 t ha t there is no reason 
inherent in the principles of the quan tum theory why a 
reproducible and exact measurement of energy cannot 
be made in an arbitrarily short period of time. Since 
Landau and Peierls,5 Fock and Krylov,6 and many 
others have considered examples leading to a contrary 
conclusion, i t is necessary to complete the discussion by 
giving a specific example of a method of measuring 
energy precisely in as short a t ime as we please. This we 
shall do in the present section. Following the develop-
men t of our example, i t will become clear in wha t 
way the previous t reatments of this problem were 
inadequate. 

As a preliminary step, we discuss the t reatment of the 
measurement of energy by means of the Schrodinger 
equation for the appara tus and the observed system 
together. T h e Hamil tonian of the combined system is 

(23) 

where is the Hamil tonian of the observed 
system, tha t of the apparatus , and 

is the interaction, which is zero except during a 
certain interval of time between and . (Here we 
are adopting the point of view described in Sec. 3, in 
which we regard the time determining variables as 
being on the classical side of the cut, so tha t they do not 
appear explicitly in Schrodinger's equation.) I t will be 
adequate for our purposes to assume tha t bo th the 
observed system and the appara tus are free particles, 
with respective Hamil tonians 

(24) 

To simplify the problem, we consider the ideal case of 
a measurement of which does not change px• This 
will happen if Hj is not a function of (The satisfaction 
of this condition will evidently guarantee tha t repro-
ducible measurements of and therefore . 
will be possible). T h e Hamil tonian of the whole system 
will then be taken as 

15 If varies too rapidly, then i : will not be 
negligible, even when M is large. 
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where g(t) is everywhere zero, except between to and 
to+Δί, where it is constant. (The interaction Hamil-
tonian is similar to a vector potential in its effects). 

With the Hamiltonian (25), px  is, of course, a constant 
of the motion. The equations of motion for the remain
ing variables are then 

x=(px/m)+yg(t), P= ~pxg(t), (26) 

V= P v f M .  

On solving for py, we obtain (using px= constant) 

py-py= -pxg(t)At. (27) 

This equation implies a correlation between p y — p y  

and px, such that if py—py" is observed, we can 
calcula te  p x .  

It is important also to consider the behavior of x. 

Although px is constant, χ shifts suddenly at t= to from 
px/m to px/m-\-g(t)y, and remains at this value until 
t=ti, after which it returns to its initial value. (In a 
similar way, the velocity and momentum differ in the 
case of a vector potential.) 

The above behavior of the velocity is, as a simple 
calculation shows, just what is needed to produce the 
uncertainty in position, which is required by the im
proved definition of the momentum resulting from the 
measurement. 

It is easily seen that if g(t) is large enough, the meas
urement described above can be carried out in as short a 
time as we please. In order that a given accuracy, Ap1, 
be possible, the change of deflection of the apparatus, 
A(py—py") due to the shift Apx, must be greater than 
the uncertainty, A(py") in the initial state of the 
apparatus. This means that we must have 

Apxg(I)A^Apy", 

and if g(i) is large enough, both At and Apx can be made 
arbitrarily small for a given Apy

0. 

This hypothetical example confirms our conclusion 
once again that accurate energy measurements can be 
reproduced in an arbitrarily short time. We shall now 
show how to carry out such a measurement by means of 
a concrete experiment. To guide us in the choice of this 
experiment, we note that the essential feature of the 
interaction described in Eq. (25) is that it implies a 
force that is independent of the χ coordinate of the 
particle, and which alters the velocity suddenly at 
/= h to bring it back to its original value at <= <i·16 This 
force is therefore equivalent in its effect to a pair of 
equal and opposite pulses in a uniform electric field, the 
first at to and the second at ti. In order to approximate 
such pulses, we shall consider two condensers, the fields 
of which cross the observed particle at the times to and 
t\. The condensers are assumed to have a length, I1 in the 

lb In the hypothetical example of Eq. (25), this force resulted 
from the time-dependent interaction, which was equivalent to a 
corresponding vector potential, which would produce a field, 
£= — (l/c)5A/cM, that is nonzero only when A(i) changes; i.e., at 
the beginning and the end of the interval. 

F direction which is much greater than their thickness, 
d, in the X direction. Therefore, they will produce a 
uniform electric field in the X direction, except for edge 
effects which can be neglected when /»J. Each con
denser will go by the particle at a velocity, Vy in the F 
direction, which is assumed to be so great that the 
electric field acts for a very short time, I/Vy, with the 
result that the field approximates the one cited in our 
mathematical example, where the period of action was 
infinitesimal. If the two condensers follow each other, 
one at t=t0, the other at t=h, then we shall approach 
the case treated in Eq. (25). 

As in the case of the collision treated in Sees. 1 and 3, 
the time of measurement is defined as the time at which 
the condenser passes the observed particle. (This means 
that we are now shifting to the point of view in which 
the time-determining variables are on the quantum-
mechanical side of the cut, but as we saw in Sec. 3, both 
both points of view are equivalent and can be used 
interchangeably). As in the case of collision, the un
certainty At in this time will be given by Ay/ V1„ pro
vided that the observed particle is initially localized in 
the F direction, with a velocity »„ much smaller than 
Vy. This will imply an uncertainty in the energy of the 
condenser, AEc=VyAPy^fifAt. 

In the interaction between particle and condenser, the 
transfer of X component of the momentum (neglecting 

: effects) is 

Ap x— p x = F τ = eSr = eSlf V y  (28) 

where τ is the time taken by the condenser to pass the 
particle. (Note that r and At are different quantities). 
This transfer is independent of initial conditions, and is 
calculable to arbitrary accuracy. (Since Vy is as large as 
you please, the F component of the velocity of the par
ticle can be neglected in the above calculation.) The 
above transfer of momentum implies a transfer of 
energy to the particle, 

(pxo+ApxY pi px° (Apx)1 

¢-to = ——-Ap x-\ . 
2m 2m m 2m 

(29) 

By conservation, this transfer must be equal to the 
energy loss E0-Ei of the condenser. Since the initial 
momentum Px of the condenser in the X direction is 
zero, and since the mass M of the condenser is large, the 
term (Apx)2/2M which represents the energy of the 
condenser due to momentum transfer in the X direction, 
will be negligible. The energy change must therefore be 
the result of alteration in the F component of the 
condenser momentum, so that it will be equal to 
Ei1- E1-V,,AP,j. 

Equation (29) can now be used to permit px to be 
measured if E0-E=e—eo is known. For since ¢-¢0 de
pends on pj> and since Apx can be obtained from 
Eq. (28), px° can be calculated in terms of E0-Eh 

There is, however, a limitation on how accurately 
E0-Ex can be measured because we require that the 
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Y coordinate of the condenser shall serve as a clock to 

an accuracy, St, with the result that the uncertainty 

relation, SE^fi/St will hold for the energy of the con
denser. By conservation, the same uncertainty relation 
must hold for the energy e—e0 transferred to the particle. 

By evaluating S(e— ¢0) from Eq. (29), we obtain 

Apz 

S («ο- e) U= Sp x
0  Sl = Sp x

u Av x S/= Sp x '  (v j  -v x )Sfeh.  
m 

This is exactly the same relation as was obtained in 

the collision example given in Sec. 1. In other words, 

the measurement on the first condenser alone, must 

satisfy the condition that if it is carried out in a time 

defined as St, there will be an uncertain energy transfer, 

SE^ h/St. It is at this point, however, that the second 

condenser plays an essential role. For immediately 

after the interaction with the first condenser is over, it 

will bring about a transfer of X component of the 

momentum, which is equal and opposite to that trans
ferred to the first condenser. As a result, the velocity of 
the observed particle will return to its initial value, just 
as happened in the mathematical example discussed in 
the beginning of this section. Thus, the momentum and 
the energy have been measured without their being 
changed. There is, therefore, no limitation on the 
accuracy with which the energy of the particle can be 
measured, regardless of the value of St, which can be 
made as small as we please by making Vy very large. 

A similar two-stage interaction can be carried out in 
the collision example described in Sec. 1. To do this, we 
recall  that  the uncertainty in energy transfer ,  S(t '—e) 
= \ v—v'\Sp is large because |®—v'\ is large. Neverthe
less it—5)' can be determined with arbitrary accuracy 
from the results of the measurement. After this is done, 
one can then send in a second test particle, with initial 
momentum calculated to be such as to change v' back 
to v. After the two collisions, there will be, as in the 
case of the condensers, no uncertainty in energy of the 
observed particle. In the collision experiment, the 
change of velocity depends on the value of the momen
tum of the observed particle, so that the initial condi
tions in the second collision must be arranged, in 
accordance with this value, which is learned from the 
first collision. On the other hand, in the condenser 
experiment, vx'—vx is independent of initial conditions 
so that the second condenser can be prearranged to 
cancel out this shift of velocity without any information 
from the results of the first interaction. 

At first sight, one might raise the question as to 
whether our conclusions could be invalidated by effects 
of radiation, or by currents which might be induced in 
the condenser. Since we are discussing only the problem 
of nonrelativistic quantum mechanics, we can assume 
that the velocity of light is infinite. In this case, radia
tion and relativistic effects, in general, can be made 
negligible, no matter how sudden the shift of potential 
is. As for currents induced in the condenser, these can 

be avoided by charging an insulator instead of a metal 
plate. The field will still be uniform, but the charges will 
not be mobile, so that no currents will be induced in the 

condenser. 
The error in the treatments of Landau and Peierls, 

Fock, and Krylov, and others, as discussed in Sec. 1, is 
now evident. For in all of these treatments, the example 
used was that of a single collision of a pair of particles. 
For this case, our own treatment also gave the result 
that energy transfer in a short time must be uncertain. 
But as shown in our general canonical treatment of the 
problem [see Eqs. (25)-(28)], it is clear that this is not 
the correct way to measure momentum and energy 
without changing them. To accomplish this purpose we 
need an interaction of the kind described in the above 
equations, which changes the velocity only while 
interaction is taking place, but which brings it back to 
the initial value after interaction is over. And, as we 
have seen, it is possible to realize such a measurement 

in a concrete example. 

5. SUMMARY AND CONCLUSIONS 

There has been an erroneous interpretation of un
certainty relations of energy and time. It is commonly 
realized, of course, that the "inner" times of the 
observed system (defined as, for example, by Mandel-
stamm and Tamm4) do obey an uncertainty relation 
AE Afe h, where AE is the uncertainty of the energy of 
the system, and At is, in effect, a lifetime of states in that 
system. It goes without saying that whenever the energy 
of any system is measured, these "inner" times must 
become uncertain in accordance with the above relation, 
and that this uncertainty will follow in any treatment of 
the measurement process. In addition, however, there 
has been a widespread impression that there is a further 
uncertainty relation between the duration of measure
ment and the energy transfer to the observed system. 
Since this cannot be deduced directly from the operators 
of the observed system and their statistical fluctuation, 
it was regarded as an additional principle that had to 
be postulated independently and justified by suitable 
illustrative examples. As was shown by us, however, 
this procedure is not consistent with the general 
principles of the quantum theory, and its justification 
was based on examples that are not general enough. 

Our conclusion is then that there are no limitations 
on measurability which are not obtainable from the 
mathematical formalism by considering the appropriate 
operators and their statistical fluctuation; and as a 
special case we see that energy can be measured 
reproducibly in an arbitrarily short time. 
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VI.5 THE FUNDAMENTAL NOISE LIMIT OF 

LINEAR AMPLIFIERS 

H. HEFFNER 

Summary—If the uncertainty principle of quantum mechanics 
is applied to the process of signal measurement, two theorems relat
ing to amplifier noise performance can be deduced. First, it can be 
shown that it is impossible to construct a linear noiseless amplifier. 
Second, if the amplifier is characterized as having additive white 
Gaussian noise, it can be shown that the minimum possible noise 
temperature of any linear amplifier is 

Γ 2 - 1/G"| -» hv 
r„ = [TA———J 

In the limit of high gain G this expression reduces to that previously 
derived for the ideal maser and parametric amplifier. It is shown that 
the minimum noise amplifier does not degrade the signal but rather 
allows the use of an inaccurate detector to make measurements 
on an incoming signal to the greatest accuracy consistent with the 
uncertainty principle. 

INTRODUCTION 

SINCE THE advent of the maser, there have been 
a number of treatments of the noise figure or noise 
temperature of this and other potentially low 

noise devices such as the parametric amplifier.1-4 Most 
of these have treated each specific device as a quantum 
system and have determined a limiting noise tempera
ture arising because of amplified spontaneous emission. 
Although the details of the calculations differ, investiga
tions of the minimum noise temperature due to this 
effect yield values of the order of hv/k for both the 
maser and the parametric amplifier. 

The maser and the parametric amplifiers are phase 
preserving amplifiers, or, in the terminology employed 
here, linear amplifiers. They have been characterized 

* Received January 8, 1962; revised manuscript received, April 
30, 1962. 

t Stanford Electronics Laboratories, Stanford University, Calif. 
1 K. Shimoda, H. Takehashi, and C. H. Townes, "Fluctuations in 

amplification of quanta with application to maser amplifiers," J. 
Phys. Soc. Japan, vol. 12, pp. 686-700; June, 1957. 

* J. Weber, "Maser noise considerations," Phys. Rev., vol. 108, 
pp. 537-541; November, 1957. 

3 M. W. Muller, "Noise in a molecular amplifier," Phys. Rev., 
vol. 106, pp. 8-12; April, 1957. 

4 W. H. Louisell, A. Yariv, and A. E. Siegman, "Quantum fluctua
tions and noise in parametric processes," Phys. Rev., vol. 124, pp. 
1646-1654; December, 1961. 

Originally published in Proceedings of the IRE, 50, 1604-08 (1962). 
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broadly as voltage amplifiers. There is another type of 
amplifier which does not preserve the signal phase 
which can be classed as a quantum counter. Weber2·5 

has proposed two forms of such amplifiers and has 
pointed out that they have no spontaneous emission 
noise. Thus these phase-insensitive counters have a 
zero-limiting noise temperature. This result opens the 
question of whether there are possible forms of linear 
amplifiers—linear in the sense of phase preserving— 
which also have a limiting noise temperature approach
ing zero. 

In order to settle this question one needs to look for a 
general physical principle which will apply to all ampli
fiers regardless of the details of the specific amplifica
tion process. An appropriate one is the uncertainty 
principle of quantum mechanics which forms one of the 
basic postulates of quantum theory. Although it has re
sulted in important limitations on the accuracy of 
measurements possible in atomic systems, its corre
sponding limitations on the accuracy of signal measure
ments have until recently gone unnoticed. At the 1959 
Quantum Electronics Conference, Serber and Townes6 

investigated the role of the uncertainty principle in 
maser noise and Friedburg7 considered its implication 
on the noise figure of a general amplifier. Each of these 
papers is open to some criticism. First, the uncertainty 
principle as generally interpreted is a statement about 
the results obtained in a physical measurement. As such 
it can be applied to a signal detector but not to an ampli
fier. An amplifier is not a measuring instrument which 
produces a set of data. Amplification is rather a process, 
a transformation of the signal. The uncertainty principle 
can be applied to the measurement of the results of that 
processing but not directly to the processing itself. A 
second objection to both papers concerns their lack of 
rigor in problems of statistical averaging, particularly in 
regard to the phase of a signal. Finally, in the case of 
Friedburg, the wrong constant was used in the statement 

6 J .  W e b e r ,  " M a s e r s , "  Rev. Mod. Phys., vol. 31, pp. 681-710; 
July, 1959. See also N. Bloembergen, "Solid-state infrared quantum 
counter," Phys. Rev. Lett., vol. 2, pp. 84-85; February, 1959. 

6 R. Serber and C. H. Townes, "Amplification and Complemen
tarity," in "Quantum Electronics," C. H. Townes, Ed.; Columbia 
University Press, New York, N. Y., pp. 233-255; 1960. 

7 H. Friedburg, "General amplifier noise limit," in "Quantum 
Electronics," C. H. Townes, Ed.; Columbia University Press, New 
York, N. Y., pp. 228-232; 1960. 
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of the uncertainty principle. As implied before, Fried-
burg's conclusions strictly speaking apply only to a de
tector, not to an amplifier, and as such do not indicate 
what class of amplifier falls under the uncertainty 
limitation, nor how this limitation is affected by the 
gain. 

This purpose of this paper is to develop in a simple 
but rigorous fashion the limitations on the noise per
formance of linear amplifiers which are implied by the 
uncertainty principle. First it will be shown that there 
is no such thing as a noiseless linear amplifier. Next, by 
characterizing the amplifier as adding white noise, the 
minimum possible noise temperature is derived. The 
resulting expression when the gain is large is exactly 
that derived for the limiting noise performance of the 
maser and the parametric amplifier. 

THE UNCERTAINTY PRINCIPLE 

The uncertainty principle, first formulated by Heisen-
berg in 1927, claims that complete accuracy is impossi
ble to obtain in the simultaneous measurements of cer
tain physical quantities. In its most familiar form, it 
asserts the fundamental inaccuracy which must result 
in the simultaneous measurement of a particle's mo
mentum ρ and position x. If we define the uncertainty 
in measurement to be the rms deviation from the mean 
in the distribution obtained from an ensemble of meas
urements, then the uncertainty in the measurement of 
momentum Ap and the uncertainty in the measurement 
of position Ax are related by 

ApAx > h/<±ir. (1) 

This relation can be interpreted in the following way. 
The process of measuring cannot be divorced from the 
physical process being measured. Not only does the act 
of observing affect the system being observed, but it 
does this in a way which cannot be precisely predicted. 
It is this quality of unpredictability which formed the 
new content of the uncertainty principle. 

In its most general form, the uncertainty principle 
applies to measurements of any two canonically con
jugate quantities8 such as, for example, the energy of 

8 In mathematical form, the uncertainty principle states that if 
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a system and the precise time at which the system 
possesses this energy, 

AEAt > k/4w. (2) 

Still another form of the principle applies to the meas
urement of the number of quanta in an oscillation and 
its phase 

ΑηΑφ > (3) 

This latter statement of the principle may be made 
plausible by substituting the relations E = nhv and 
φ = 2irvt into the preceding equation. We shall use this 
last formulation of the uncertainty principle to derive 
two basic theorems on amplifier noise performance. 

THE UNAVOIDABLE NOISINESS OF LINEAR AMPLIFIERS 

The first conclusion which emerges from the uncer
tainty principle is: It is impossible to construct a noiseless 
linear amplifier. We can prove this statement by postu
lating the existence of a noiseless linear amplifier and 
then showing that it violates the uncertainty principle. 

Suppose we have a perfect linear amplifier by which 
we mean the following. If during any given interval we 
measure the number of photons W2 produced at the out
put, we find that it is related to the number of input 
photons «ι by a constant G, the gain of the amplifier. 

«2 = Gtii. (4) 

Secondly, if we measure the phase Φ2 of the output, we 
find that it is equivalent to the input phase φι with 
perhaps the inclusion of an additive phase shift Θ.9 

Φϊ — Φι + θ. (5) 

the operators A and B which represent physical observables a and b 
satisfy the commutation relation 

AB - BA = iC, 

then the uncertainties in the measurement of a and b satisfy the rela
tion 

AaAb = J (C), 

where the term uncertainty stands for the root mean square devia
tion from expectation value, e.g., 

ΔΑ = [<Λ2> - (Λ)2]»*. 

• These are operationally valid constructs since we can prepare 
two signal sources, one of which has an accurately known photon 
output and the other of which has an accurately known phase. If 
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Such an amplifier is linear in the sense that the phase 
is preserved and the output quanta are linearly related 
to the input quanta. It is perfect in that no noise is 
added. Note that frequency converters which derive 
their gain solely by the frequency conversion factor do 
not fall under this definition of a linear amplifier in that 
the photon gain G is unity. 

Let us now attach to the perfect linear amplifier an 
ideal detector, ideal in the sense that it is capable of de
tecting the number W2 of output photons and the output 
phase φ·> within an uncertainty, 

Δη2Δφ2 = i, (6) 

the minimum value allowed by the uncertainty princi
ple. (See Fig. 1.) Thus we imagine that we make a 
measurement of the output photons and phase which 
together with the uncertainties introduced by the de
tector we write symbolically as (μ2+Δ«2) and (ψ2+Δψ2). 

IDEAL DETECTOR 

IDEAL DETECTOR 

Δη2ΔΛ=£ 

PERFECT AMPLIFIER 

PERFECT AMPLIFIER 

n2 =GnljAn2=GAnl 

νΦ,+β,ΔΦ2*Δή 

NEW MEASURING INSTRUMENT 
INFERS INPUT Δη, Αφ, = (1/6)¾ 

IMPOSSIBLE 

Fig. 1—Thought experiment to show the nonexistence 
of a perfect amplifier. 

We now change our point of view and look upon the 
combination of perfect amplifier and ideal detector as a 

each of these is applied in succession to the amplifier input and if in 
succession two detectors are applied to the amplifier output, one of 
which measures number of photons without giving phase information 
and another which measures phase without giving photon number 
information, we can determine the constants of the amplifier to arbi
trary precision. Such a determination can, in fact, be made with a 
single signal source and a single detector if a sufficiently large signal 
level is used since the accuracy in the determination of phase and the 
relative accuracy in the simultaneous determination of photon num
ber are each proportional to 1 /n'12. 
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single measuring instrument. The measurement of 
and when referred to the input of 

the amplifier implies an input number of photons 
and an input phase 

Thus the uncertainty in the measure-
ment of input photons and phase is such that 

(7) 

This conclusion is clearly impossible since it violates 
the uncertainty principle. Therefore our postulated per-
fect linear amplifier cannot exist. It must add some un-
certainty, tha t is, noise. 

M I N I M U M N O I S E T E M P E R A T U R E OF A 

L I N E A R A M P L I F I E R 

We can pursue this argument even further to prove 
the following result. The minimum noise temperature of a 
linear amplifier characterized by additive white Gaussian 
noise is 

(8) 

and the minimum mean square phase fluctuation is 

(9) 

Here h is Planck's constant, v is the frequency, k is 
Boltzmann's constant, B is the bandwidth and P is the 
signal power. 

The proof of this assertion employs the same con-
ceptual scheme used previously, a linear amplifier (no 
longer considered noiseless) followed by an ideal de-
tector. Again a measurement is made by the detector of 
the output phase and photon number »2. This meas-
urement will include as before the same uncertainties 
introduced by the detection process but will also include 
the uncertainties which we have seen must be added 
by the amplifier. Let us label the uncertainties intro-
duced by the detector and and those added by 
the amplifier and If we assume the processes 
which give rise to these two sets of uncertainties are 
uncorrelated, then the total uncertainties as actually 
measured, and can be obtained from 
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An/ = Atia + And2 

Αφ/ = Δψ0
2 + Αφ/. 

These equations merely assert that the variances of 
two uncorrelated random processes add. 

Let us again shift our point of view and look upon the 
combination of amplifier and detector as a single meas
uring instrument. The measured uncertainties An2, 
Αφΐ now imply an uncertainty in the measurement of 
the input phase and photon number given by 

Our proof proceeds by first demanding that the in
ferred input uncertainties be the least allowed by the 
uncertainty principle, i.e., Αη\Αφι = \. This condition 
insures that the amplifier uncertainty is the smallest 
possible. We then characterize this amplifier uncer
tainty by white Gaussian noise and determine the noise 
temperature corresponding to this minimum uncer
tainty. 

First, however, we must make sure that the detector 
is matched to the amplifier, for although the product 
of the uncertainties ΑηάΑφα is set, their ratio is not. We 
can assure the best detection performance by minimiz
ing the product ΑηχΑφι given by (11) with respect to the 
ratio (Αη&/Αφα) while still demanding that 

which simply states that the minimum over-all uncer
tainty conies about when the detector-measures number 
and phase with the same relative uncertainties as those 
introduced by the amplifier. 

We must make sure that the detector is matched to 
the amplifier in another sense. Let us assume that the 
amplifier has a bandwidth B. This characteristic implies 
that the detector should sample the output at intervals 
of τ = \B. If the interval is made longer, the full informa
tion transmission capabilities of the amplifier are not 
being used, while if it is shorter, not only are some of the 

1 
An/ = — (An/ + An/) 

G2 

Αφ/ = Αφ/ + Αφ/. (H) 

ΑηάΑφα = §. 

This process results in the relation 

(12) 

And Ana 

Αφ,ι Αφα 
(13) 
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data redundant, but also, because of the fluctuations in 
the output, the uncertainties are greater than necessary. 
Thus the matching of the detector to the amplifier im
plies two things, first that the ratios of the uncertainties 
are made equal and second that the time interval over 
which the number of output photons and the phase are 
detected is one half of the reciprocal bandwidth. 

Let us now multiply (11) together, introduce the con
ditions of (12) and (13), and demand that the uncer
tainty in the measurements referred to the input be the 
minimum allowed by the uncertainty principle, that is 

ΔηιΑφι = 5. (14) 

The resulting equation is 

G2 - 1 
= ΔΐΙα2Δφα2 + Δη,,Αφα. (15) 

4 

If we put this equation in the form 

(—Yin.· + (—) Ati.' - (^—^) - 0 (16, 
\Δ»α/ \Δηα/ \ 4 / 

we can solve for Δ«ά2 in terms of the ratio (Δη„/Δφα) to 
give 

G  —  1 / Δ « Λ  
Δ«0

2 = ( )· (17) 
2 \Δφα/ 

Little more can be done unless we specify the nature 
of the amplifier uncertainty. Let us characterize the un
certainty as additive white noise. The statistical prop
erties of a signal contaminated by white Gaussian noise 
have been extensively studied.10 One result is that the 
probability density function for the output phase ap
proaches a Gaussian distribution for large SNR's and 
has a variance given by 

ΔΡ 
Δφα

2 = (18) 
IP 

Here ΔΡ is the noise power and P is the signal power. 
For large SNR's the variance in the power distribution 
is given by 

10 S. 0. Rice, "Mathematical analysis of random noise," Bell Sys. 
Tech. J., vol. 23, pp. 282-332, January, 1944; vol. 24, pp. 46-156, 
January, 1945; "Statistical properties of a sine-wave plus random 
noise," Bell Sys. Tech. J., vol. 27, pp. 109-157, January, 1948. 
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(19) 

so tha t (18) becomes 

(20) 

Since the integration time of the amplifier is 
(20) can be put in terms of the variance of the number 
of photons detected during this interval 

(21) 

This result inserted in (17) together with the relation 

(22) 

gives for the minimum noise power introduced in the 
output of the amplifier 

(23) 

The effective noise temperature T„ is obtained by di-
viding by the amplifier gain to refer the noise power to 
the input and then determining what temperature is re-
quired for a black body to radiate the same power. Tha t 
is, we must find the value Tn for which 

(24) 

The result is 

(8) 

According to (19) and (23), the minimum mean square 
phase fluctuations are 

(9) 

These last two equations give relations for the best 
possible noise performance of any linear amplifier whose 
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uncertainty is characterized by white Gaussian noise. 
It is interesting to note that in the limit of high gain, 
the minimum noise temperature becomes 

1 hv 
Tn  = , (25) 

In 2 k 

which is precisely the value obtained for the minimum 
noise temperature of the maser and the parametric ampli
fier derived from detailed consideration of the amplifi
cation mechanisms in the two cases. Thus we can say 
that both the maser and the parametric amplifier repre
sent ideal amplifiers in so far as their ultimate noise per
formance is concerned. 

We should also remark in passing, (8) and (9) indi
cate that the parametric up-converter which has power 
gain by virtue of the change in frequency but has unity 
photon gain (G = I), possesses a limiting noise tempera
ture and phase uncertainty of zero. This result is in 
agreement with the detailed calculations of Louisell, 
Yariv and Siegman.4 This sort of amplifier which does 
not multiply the number of photons, however, does not 
improve the capability of detecting a signal. The ac
curacy of the detection process at the output of the up-
converter is no better than if it were performed at the 
input. The change in photon frequency and hence en
ergy is immaterial since the limiting detector uncer
tainty is dependent solely on the number of photons ar
riving, not upon their energy. 

THE IMPLICATIONS OF THE MINIMUM NOISE LIMIT 

At conventional communications frequencies, the 
minimum noise temperature given by (8) is entirely 
negligible. At optical frequencies though, it can amount 
to several tens of thousands of degrees. Such a number 
is misleading, however, for it implies that the insertion 
of even the best amplifier has seriously degraded our 
ability to detect a signal. We can show that such is not 
the case by recasting the results of the previous section 
in slightly different form. Eqs. (22) and (23) can be 
combined to give the uncertainty produced by the 
amplifier in the number of photons as 

Δ»α
2 = (G - IK, (26) 
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and (9) can be rewritten in the form 

CG - 1) 
Αφα

2 = (27) 
4 na 

to give the uncertainty in phase produced by the ampli
fier. If we refer these quantities to the input we have 

1 
Anai2 = — Ana

2 = (1 — 1/G)«i (28) 
G2 

and 

( 1  -  1  / G )  
Αφα

2 = — · (29) 
4«i 

From (26) and (27) we see that if the amplifier gain is 
high, the output uncertainties introduced by the ampli
fier are considerably larger than those of even a poor 
matched detector. In this case, the total uncertainty 
Ani in the inferred measurement of the input photon 
number and Αφι in the inferred measurement of input 
phase are closely given by (28) and (29), which relate 
to the amplifier alone. In the limit of high gain, the 
product of these uncertainties is 

ΑηιΑφι = ΑηαιΑφα ^ (30) 

This is, of course, the minimum value allowed by the 
uncertainty principle. Thus the minimum noise ampli
fier allows us to use a poor detector, one which intro
duces uncertainties considerably larger than the mini
mum necessary, and still measure an incoming signal 
with an accuracy approaching the best allowed by the 
uncertainty principle. There still remains a question of 
what limitation is put on the rate of information trans
mission by this maximum allowable accuracy of detec
tion. The answer to this question, however, must await 
the development of a quantum theory of communica
tion. 



VI.6 QUANTUM NOISE IN LINEAR AMPLIFIERS 

H. A. HAUS AND JAMES A. MULLEN 

The classical definition of noise figure, based on signal-to-noise ratio, is adapted to the case when quantum 
noise is predominant. The noise figure is normalized to "uncertainty noise." General quantum mechanical 
equations for linear amplifiers are set up using the condition of linearity and the requirement that the com
mutator brackets of the pertinent operators are conserved in the amplification. These equations include as 
special cases the maser, the parametric amplifier, and the parametric up-converter. Using these equations 
the noise figure of a general amplifier is derived. The minimum value of this noise figure is equal to 2. The 
significance of the result with regard to a simultaneous phase and amplitude measurement is explored. 

INTRODUCTION 

THE availability of coherent signals at optical 
frequencies has stimulated research in their use 

for communication purposes. Ways of processing optical 
frequencies are considered that are similar to those of 
the low end of the coherent frequency spectrum. With 
the use of classical communication techniques, classical 
performance criteria will be applied. One purpose of 
this paper is to extend classical noise performance 
criteria to linear quantum amplifiers in which the pre
dominant noise is quantum mechanical in nature. These 
criteria will be applied to a wide class of linear quantum 
mechanical amplifiers. 

The purpose of a sensitive linear amplifier is to in
crease the power, or photon flux, of an incoming signal 
with as small a noise contamination as possible so that 
the signal may be conveniently detected at high power 
levels. The incoming signal, if used for communication 
purposes, carries amplitude modulation, phase modula
tion, frequency modulation, or some other type of 
modulation. Here we shall discuss noise problems mainly 
in the context of amplifiers processing sinusoidal car
riers with narrow band amplitude and/or phase modu
lation. In this connection it must be noted that the 
presence of a modulation of bandwidth B calls for a 
minimum rate of detection. The received signal must 
be detected within a succession of observation times 
each of duration r, where τ=\Β, in order to utilize 
the information contained in the modulation. 

Noise in masers, including sponteneous emission 
noise, has been analyzed in many papers including the 
classical papers by Shimoda, Takahasi, and Townes,1 

and Serber and Townes.2 A quantum mechanical treat
ment of the parametric amplifier and up-converter has 

1K .  Shimoda, H. Takahasi, and C. H. Townes, J .  Phys. Soc. 
Japan 12, 686 (1957). 

2 R. Serber and C. H. Townes, in Quantum Electronics, edited by 
C. H. Townes (Columbia University Press, New York, 1960) 
pp. 233-255. 

been presented in a paper by Louisell et al? We shall 
develop a unified set of equations for all "linear" 
amplifiers, special cases of which are the maser, the 
parametric amplifier, and the parametric up-converter. 
On the basis of these equations and the criteria of noise 
performance, it will be possible to present a proof on 
the limiting noise performance achievable by any one 
of these amplifiers used singly or in combination with 
other linear amplifiers. The connection of the funda
mental noise of these amplifiers with the uncertainty 
principle will be studied. 

I. NOISE FIGURE 

In the noise theory of classical amplifiers (i.e., 
amplifiers operating with a very large number of 
quanta) the deterioration of the signal-to-noise ratio 
as the signal passes the amplifier is used as a measure 
of amplifier noise performance. The signal-to-noise 
ratio (SNR) is defined in the classical limit as the 
ratio of signal power to noise power. Mathematically 
one may describe a phase and amplitude modulated 
signal in the presence of noise by 

A { t )  =  A a { t )  cosfW-l-iMOD+^j, cos[W-i-<£o(0] 

+M 5 sin[[a)oH-0o(OD· (1-1) 

The first term in this equation represents the signal in 
the absence of noise. The remaining two terms are the 
inphase and quadrature perturbations of the amplitude 
due to the noise. These are slowly varying with time if 
the noise is narrowband. We envisage an ensemble of 
identical signal waveforms with accompanying noise. 
The signal part may be extracted from the waveform 
by taking an ensemble average indicated by the 
brackets { ) 

{ A  (0)-( t )  cos[|a)oi+<i>o(ί)]· (1.2) 

3 W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124, 
1646 (1961). 

Originally published in Physical Review, 128, 2407-13 (1962). 
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The noise part is extracted as follows: 

( A m - ( A ( i ) Y  

= (5.4 p2) cos2[Uo<+0o(O]+{^52) sin2[cooi+$o(/)] 

+{δΛρδ/Ί,} sin2^oi+>i>oWl· (1-3) 

Additive stationary noise is characterized by 

( S A J ) = ( S A f )  and ( S A p S A , ) = 0 .  ( I A )  

The noise as defined here measures the mean square 
deviation from the signal of the measured ensemble of 
waveforms all containing the same signal. If the noise 
is stationary, this mean square deviation becomes 

(.4 (Z)2Mzl (O)2=(δ/V). (1.5) 

A signal-to-noise ratio may be defined, based on a time 
average, over an observation time T, long compared to 
the inverse bandwidth of signal and noise. The signal 
power is 

1  rT  
• S — — I  A a ~ ( t )  cos5(&)oi-|-<j>o)flV— (1.6) 

T j  ο  

where the square bracket indicates a time average. 
The noise is defined correspondingly as 

N = j j  { ( A \ t ) ) - ( A ( m d l  

= -Η<δΛρ2)+(Μ,2>Κν=<δΛ/>. (u) 

The last equality holds for stationary noise. The noise 
figure of an amplifier is defined as the signal-to-noise 
ratio at the input of the amplifier divided by the 
signal-to-noise ratio at the output4 

F =  ( S J N t ) / ( S o / N o ) .  (1.8) 

In defining S , / N i  one envisages measurements of the 
signal and noise at the amplifier input and output by a 
noise-free measurement apparatus. The noise figure is 
usually defined by choosing a standard input noise cor
responding to thermal noise of the input source of 
290°K. If the amplifier is linear, 

S 0 = G S , ,  (1.9) 

and the amplifier noise is additive, 

N 0 = G N , + N a ,  (1.10) 

then, one has for the "excess noise figure," F —  1, 

F - I  =  N J G N , .  (1.11) 

The excess noise figure measures the increase of the 
mean square deviation of the normalized signal as 
caused by the amplifier noise. 

When adapting the noise figure of linear amplifiers 
for the quantum case, one faces two problems. First of 
all, one must establish that linear quantum mechanical 

amplifiers, like linear classical amplifiers, introduce 
additive noise. Secondly, in the limit when quantum 
effects are of importance, physical measurements, in 
general, introduce uncertainties, i.e., noise, and it is 
not clear that the concept of a noise-free measurement 
as envisaged in the classical noise figure definition can 
be applied. Thus, for example, simultaneous measure
ments of amplitude and phase of an electric field cannot 
be carried out with arbitrarily high precision but must 
obey the principle of complementarity. It is clear, 
therefore, that special measures have to be taken if the 
uncertainty introduced by the measurement is to be 
negligible compared to the noise in the system. 

In quantum theory, a physical quantity is described 
by an operator. The expectation value of the operator 
represents the result of a set of measurements on an 
ensemble of identically prepared systems. In the evalua
tion of quantum noise we shall consider field amplitude 
measurements on an ensemble of amplifiers all of which 
are fed by a transmitter signal that is nonthermally 
attenuated (such as the attenuation of a radiation field 
by the inverse square law). At the transmitter the 
signal has a classical power level and, thus, can be 
accurately phase and amplitude controlled. If a meas
urement of the electric field E(t) at the receiver inputs 
is  performed a t  the t ime / ,  the  s ignal  is  def ined by (E( t ) ) ,  
and the noise by5 (E(t)2)—(E(t))2. By performing many 
such measurements at random time instants delayed 
with respect to each other by times long compared to 
the inverse bandwidth of the receivers, one finds the 
signal power 

5=[<£(0)2]»v, (1.12) 

and the noise power 

AT= C(£(Z)2>—(-E(O)2IV- (1.13) 

Such measurements do not mutually intefere, and, 
therefore, are not accompanied by a fundamental un
certainty. These measurements are analogous to the 
"noise-free" measurements implied in the classical 
signal-to-noise ratio definition. The signal-to-noise 
ratio is thus 

S f N =  [(£ (O)2WK-E (02> - <£ (O)2Iv- (1.14) 

With the aid of definition (1.14), Eq. (1.8) may be 
used as the definition for the quantum noise figure. In 
the case of linear quantum amplifiers, as discussed in 
this paper, Eqs. (1.9), (1.10), and (1.11) are also made 
valid. It is not expedient to normalize the quantum 
noise figure to thermal noise. It is more appropriate to 
normalize it to the minimum noise within the observa
tion time τ of hv/2 that is associated with attenuated 
signals that before attenuation were classically phase 
and amplitude controlled (see Appendix). Then, if we 
express the amplifier noise power multiplied by the 
observation time τ in terms of a photon number na at 

4 H. T. Friis, Proc. Inst. Radio Engrs. 33, 458 (1945). 6 R. Senitzky, Phys. Rev. Ill, 3 (1958). 
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the amplifier output, 

Na=hma, (1-15) 
one has 

F-l = 2nJG. (1.16) 

Since the basic noise energy to which we compare the 
amplifier noise corresponds to half a photon within the 
observation time, it is natural to measure the output 
noise content, referred to the input by division through 
G, in terms of the energy of half a photon at the output 
frequency. In this sense, Eq. (1.16) can be applied to 
the general case for different input and output fre
quencies if G is interpreted as the photon number gain. 

II. THE EQUATIONS OF LINEAR AMPLIFIERS 

Consider a system of weakly interacting particles 
that, in the absence of radiation, has N available energy 
levels. If the particles obey Bose-Einstein statistics, the 
entry of a particle into a particular level (i) and its 
exit from this level may be described by creation and 
annihilation operators, 6,f and bt that obey commutator 
relations. 

PiAtI=Slj, (2.1) 

[MJ=0. (2.2) 

The operation of bt on a wave function of the system 
with η, particles in level i produces a wave function 
with ?i,— l particles in that level, the operation of bS 
produces one with «,+ 1 particles in the level i. The 
number of particles in level i is given by 

)/,= 6,1¾,. (2.3) 

If the particles obey Fermi-Dirac statistics, a Bose-
Einstein description is possible,2 provided that the 
number of available states in a particular level is much 
greater than the number of particles occupying it. If 
the states within a particular energy level are all equiva
lent for the physical processes envisaged, wave func
tions may be constructed that correspond to a discrete 
number of particles in a particular energy level with 
no distinction made between different states within that 
level.6 Creation operators 5,+ and annihilation operators 
bt that increase or decrease the number of particles in a 
particular energy level upon operation on a wave func
tion can be shown to obey the commutation relations 
(2.1) and (2.2), provided the number of particles in the 
energy level is much less than the number of states of 
the level.7 Linear quantum amplifiers must of necessity 
operate by means of transitions from and to weakly 
occupied levels since nonlinear effects occur as soon as 
the deviation from Bose-Einstein behavior of these 
levels becomes appreciable. 

* For example, if one is interested only in the interaction with 
an electromagnetic field of the spin of weakly interacting particles, 
•ill states of the particles that have the same spin are equivalent. 

7 H. A. Haus, Internal Memorandum, Massachusetts Institute 
of Technology Research Laboratory of Electronics, 1962 
(unpublished). 

The electromagnetic field is represented by the 
creation and annihilation operators Ojt and a, for 
photons in the modes i, j, etc., of the electromagnetic 
system. These obey the usual commutation relations 

a,a/—a/ai=5ij, (2.4) 

α,α,—α,α,=0. (2.5) 

When the fields are made to interact with matter, 
coupling results among the various operators of the 
system. In the interaction representation, differential 
equations in time are obtained relating the time rate 
of change of every operator to all the other operators of 
energy levels and electromagnetic modes partaking in 
the interaction. These equations are, in general, non
linear. However, under proper "biasing" or "pumping" 
conditions linear interactions may result among some 
of the energy-level and photon operators of the system. 
Thus, consider a system like the three-level maser in 
which a pumping excitation establishes a steady state 
in the occupation of two energy levels. If a small signal 
is applied with a frequency corresponding to the energy 
difference between one of the pumped levels and an 
intermediate level, the small perturbations produced in 
the steady state of the strongly excited levels may be 
disregarded, and linear equations are obtained for the 
operators of the weakly excited level and the photons 
of the small applied signal. In more complicated devices, 
more level and photon operators may be particpating 
in the interaction initiated by the applied small signal. 
In any case, if the device is to act as a linear amplifier 
for some photons it is a necessary requirement that the 
equations of motion permit a linearization of the equa
tions for the signal photon operators and the operators 
directly involved in the small signal interaction. If the 
amplifier is to be time independent, a further require
ment is that the coefficients of the differential equations 
be time independent. These two requirements strongly 
restrict the form of the equations. Integration of the 
differential equations in time leads to linear relations 
among the operators at an initial time to, and final 
time h. 

Taking as an example a system within which a 
photon operator interacts with an energy level operator, 
one has two possible cases: 

a(ti) = Maaa(t0)+Mabb^ik), ^ 

b ( t \ )  =  Mbad  ( t o )  +  M b b t f  ( t o ) ,  

or 
a ( t i )  =  M aila( t o ) -hMabb( to ) ,  ^  

b( t i )  =  M b a a  ( t o )+M bbb  ( t o ) .  

The first system of equations is of the type obtained by 
Serber and Townes2 for the ideal maser. In this system, 
the creation operator Jt of the energy level couples to 
the annihilation operator a of the photons. In the second 
system the annihilation operators of the energy level 
b couples to a. We shall later see the significance of this 
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latter type of coupling. An analysis of the parametric 
amplifier leads to equations of the form (2.6) where Jt 

is replaced by a creation operator representing the 
photons at the idler frequency.® 

The general form of the linear equations is immedi
ately apparent for a linear system of arbitrary degree of 
complexity. If one comprises all operators representing 
''output" quantities at t=tx in a column matrix v, 
those representing "input" quantities at t = h in a 
column matrix u, one may write the general linear 
relations in matrix form as 

= Mu. (2.8) 

In the example of Eq. (2.6) 

-a(to) " 
U  =  , and V =  

-b*(h)-

-a(h) 

bKh) 

The requirements of linearity and time independence 
have led to an equation of the form of (2.8). There is 
another important condition that has to be met by Eq. 
(2.8) which restricts the matrix M: The commutator 
brackets of the operators must be conserved. Indeed, 
considering a system with photons and Bose-Einstein 
particles, the commutator brackets are invariants of the 
complete (nonlinear) equations of motion. The linear
ized equations that describe the small signal inter
actions, must conserve commutator brackets insofar as 
they are good approximations to the behavior of the 
same set of operators in the complete equations. Con
sider next a system with photons and Fermi-Dirac 
particles. One notes that the complete equations of 
motion preserve the commutator brackets of the photon 
operators and anticommutator brackets of the particle 
operators. As mentioned before, one may construct 
effectively Bose-Einstein operators from the input 
Fermi-Dirac operators. Corresponding operators may 
be constructed for the output. These will also be 
effectively Bose-Einstein provided the number of par
ticles in the level of interest has remained small com
pared to the number of states in the level (as needs be 
if the amplification is to be linear). Therefore, the com
mutator brackets of the constructed operators are also 
conserved in the amplification. Let us study the matrix 
C consisting of the commutator brackets of the opera
tors contained in the input matrix u. It is easily seen 
that this matrix is constructed by 

C=i lit — ( U f
t U l ) i .  

where for the ith diagonal element, the plus sign is 
chosen when an annihilation operator appears in the 
ith row of the matrix u, and the minus sign if a creation 
operator appears. Using this definition for P, one has 
from Eq. (2.9) 

C= U U t - ( U i
t U i) f=P 

at <=<o· Because 
C(<,)=C(<0), 

one has from Eqs. (2.8) and (2.12) 

W t -  ( V i
t V i) i=P=Muu tM t-[(u fM t)((Mu) i]( 

(2.11) 

(2.12) 

It follows that 

= M(uu f— U ( t U i)M t= MPM t .  

MPM t=P. (2.13) 

One may easily check that in the special cases of an 
ideal maser and parametric amplifier mentioned previ
ously, the expressions as derived in references 2 and 3 
obey the relation (2.13). Here this relation has been 
derived in general as a consequence of the requirement 
of conservation of commutator brackets. It is this 
relation that imposes a fundamental limit on the noise 
performance of all linear amplifiers. It is of interest to 
show that in an amplifier with photon gain greater 
than unity the signal creation (annihilation) operator 
must couple to at least one annihilation (creation) 
operator of a molecular state or of a photon of frequency 
different from the signal frequency. Suppose the output 
photons pertain to the operator a„ the input photons 
to ot .  Let  these,  in turn,  correspond to v m  or i>m

f  and U n  

or u J. If the signal level is sufficiently large, one may 
disregard the uncertainty contained in the commutator 
relations, i.e., one may set 

(vnhMy- • Itm =(TiAt), 

where Ii l l l  is the number of output photons, 

(Mn
tMn)= Hn-(UnUr^)1 

(2.14) 

(2.15) 

with the number of input photons. All the other 
input quantities are assumed unexcited 

(M1
tM,) = 0, (MiMjt)= 1, i^1l.  (2.16) 

We thus have from Eqs. (2.8), (2.14)-(2.16), 

Mm= 1 Mm nn .  (2.17) 

(2.9) 

Here the subscripts t  indicate the transpose. The 
operators obey initially the commutation relations 
(2.1), (2.2), (2.4), and (2.5). Photon operators and 
level operators commute. The commutator relations 
can be conveniently summarized by defining a matrix 
P of the same order as u by 

I Mmn 12 is the photon gain of the amplifier. But, from 
Eq. (2.13) 

E.-P»|Mml|2 = Pmm. (2.18) 

We recall that P11 = ±1, depending upon whether u t  

stands for an annihilation operator or creation operator. 
Thus, this equation shows that | Mmn J2 is necessarily 
less than unity, unless at least one of the P„'s is of 
opposite sign to Pm m .  A simple situation exists when um  

interacts with only one other operator uh  

P=diag(=fcl, rfcl,=fcl, · · · ±1), (2.10) IMmmI2-I-(PiiZPmm)IMmiI2=I. (2.19) 
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The ideal maser, Eq. (2.6), uses the same input and 
output frequency, the photons of which couple to a 
single level operator The gain is 
greater than unity, because . , is equal to —1. 

The parametric amplifier using the same input and 
output frequency couples the signal photon operator 

to the idler photon operator Again 
and the gain 

The ideal parametric up-converter couples the input 
signal frequency operator to the output fre-
quency operator and the gain 

A system within which a photon operator 
couples to a level operator exhibits gain less than, 
or at most equal to, unity since [[Compare 
Eq. (2.7).] 

An interesting special case is the "lossless scatterer," 
with the Pti's all of the same sign. The coupling between 
a transmitting antenna and a receiver may be repre-
sented in this way. Here all w's represent annihilation 
operators a,- pertaining to the same frequency, but 
different spatial modes. The relation (2.13) assures 
conservation of the total photon number, but only a 
fraction of the input (transmitter) photons 
represented by, say reach the receiver as output 
photons 

HI. AMPLIFIER NOISE 

It should be recalled that the u's contain the o's and 
b's, or their Hermitian conjugates. In the study of 
signal and noise we are interested in averages of ex-
pectation values of electric field components, whose 
operators are given by 

(3.1) 

where h} is some real constant dependent upon the 
geometry of the system. 

Let the photon operator be represented by 
Uj, so that 

(3.2) 
and 

(3.3) 

because the average indicated by the square bracket is 
equivalent to a time average. Similarly, 

(3.4) 

Since the final expressions are symmetric in u and «t 
and do not depend on time, both cases 
l e a d t o the same final expressions for and 

. Thus one may use the u's directly to obtain 
the required averages. 

Suppose the matrix M of Eq. (2.8) represents an 
amplifier with its input described by the operator u n 

and its output by Then the output signal-to-noise 

ratio is given by [compare Eqs. (1.14) and (3.2)-(3.4)] 

(3.5) 

Now, from Eq. (2.8) 

(3.6) 

Because all inputs but the signal input m are fed by 
incoherent noise, we have for 

(3.7) 

if u, stands for an annihilation operator, 
if w, stands for a creation operator, (3.8) 

if stands for a creation operator, 
if u, stands for an annihilation operator. 

Thus 
(3.9) 

and 

(3.10) 

But the input noise is taken as the noise accompanying 
a signal after a large radiative attenuation. This noise 
expressed in terms of a photon number is equal to the 
uncertainty noise of § photon as shown in the Appendix. 
The input signal-to-noise ratio to which the noise figure 
will be normalized has the same form as Eq. (3.5) 
except that w„ replaces and is equal to 

(3.11) 

where is the average number of input photons. 
Introducing Eqs. (3.9)-(3.11) into Eq. (3.5) and using 
the noise figure definition (1.8), we have 

(3.12) 

The input signal has dropped out as is characteristic 
of a linear amplifier. The noise figure F of (3.12) can 
be made unity. It is found, however, that the gain 

of the "amplifier" is then also necessarily 
equal to unity. If one wants gain, F must be optimized 
for fixed gain. Another way of accomplishing this is to 
use the definition of "noise measure"8 M, 

(3.13) 

Here G is the photon number gain, in the present case 
. The noise measure M has a nontrivial mini-

mum as we now proceed to show. We obtain 

(3.14) 

8 H . A. Haus and R. B. Adler, Circuit Theory of Linear Noisy 
Networks (Technology Press, Cambridge, Massachusetts, 1959). 
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According to Eq. (2.13) 

T.iPu\Mm i\2=Pm m. 
Thus 

IMronI2-I= -ΣίΜΡϋ/Ρηη) IMmiI2 

+ (Prom/P„„)-1. (3.15) 

Since we are, in general, interested in photon gain, 
I Mmn|2> 1, it follows that the right-hand side of (3.15) 
must be positive. In such a case, since P,jPnu=± 1, 
it follows immediately that 

E.Vn I Mml I ^2 > - Σ.>.(Ρ.</Ρ-«) I Mm t  I 2 

+ CfW-Pn*)-1. (3.16) 

Thus, from (3.14)-(3.16) we find 

M> 1. (3.17) 

At high gain M=F-1. It follows that in that case 

F >2. (3.18) 

The quantum noise introduced in an amplifier leads to 
a noise-to-signal ratio at its output double of that at 
its input, if the input signal-to-noise ratio is assumed to 
be that of uncertainty noise. Considering specific de
vices, we note that the ideal maser characterized by 
Eq. (2.6) has a noise measure of unity, because the 
equality sign in Eq. (3.18) applies, as one can easily see. 
The same is true for the parametric amplifier. In general, 
one can see that coupling of the signal photon annihila
tion operator to other annihilation operators tends to 
increase the noise figure by virtue of the fact that 
negative terms appear in the sum on the right-hand 
side of Eq. (3.16). 

We have introduced the concept of noise measure 
because it possessed a nontrivial minimum, whereas the 
noise figure could be made equal to unity at a complete 
sacrifice of gain. There are other advantages in the use 
of "noise measure" that have been successfully em
ployed in the analysis of noise in classical linear ampli
fiers.8 Using the concept of noise measure one may 
state in simple terms the limit on the optimum noise 
performance of a passive interconnection of linear 
two-port amplifiers (amplifiers with one input terminal 
pair and one output terminal pair). In the classical 
circuit-theoretical application for which this theorem 
was originally derived it states8 that any passive inter
connection of two-port amplifiers resulting in an over
all two-port amplifier (amplifier with one input ter
minal pair and one output terminal pair) leads to an 
optimum (minimum) noise measure that cannot be 
lower than that of the best amplifier, namely, the 
amplifier with the lowest value of optimum noise 
measure. This proof can now be easily extended to the 
case of an interconnection of linear quantum amplifiers. 
In the quantum case, two-port amplifiers are those that 
are described by one input signal photon operator and 
one output signal photon operator as discussed in this 

section A passive interconnection is one with a net 
positive (or zero) internal loss of photons. Systems with 
linear frequency transformations are not ruled out. 
Thus the proof in the present section, extended along 
the lines of reference 8, in effect shows that the optimum 
noise measure of a linear quantum mechanical system 
with one input and one output cannot be better than 
unity (F= 2 at high gain). 

IV. SIMULTANEOUS PHASE AND AMPLITUDE 
MEASUREMENTS 

The technical purpose of amplifiers is to raise signal 
levels so that signal processing may be effected at 
conveniently high power levels. In the process, ampli
fiers must introduce as little noise as possible. Since we 
have found that all linear quantum amplifiers introduce 
noise, one may ask the question whether, in those cases 
in which ultimate sensitivity is desired, one should not 
dispense with linear amplification. We shall discuss this 
question as one of principle, although it is clear that 
technical requirements may call for linear amplifica
tion for reasons other than those considered here. 

We have defined the quantum noise figure on the 
basis of a noise-free measurement. In this context it is 
immediately apparent that the use of an amplifier is 
not desired in those cases in which a "noise-free" 
measurement can be administered to the incoming 
signal, namely, an instantaneous amplitude measure
ment alone. 

If one envisages simultaneous amplitude and phase 
measurement the situation is not that simple and de
serves further study.2,9 Suppose we intend to measure 
with an ideal measuring apparatus the phase φα and 
amplitude A ο of an incoming wave. The measurement 
introduces an rms uncertainty in phase Αφ and in 
photon number An such that at best 

An Αφ= I-. (4.1) 

But if A o2 is measured in units of power, An is related to 
the inphase uncertainty of amplitude AAp by (cf. Eq. 
(1-1)] 

T A „«&4 /))1 '2= τΑ ΟAA v= hvAn, (4.2) 

where AAp is defined as ({6A/))W. Further 

Αφ=AAq/A o. (4.3) 

We thus have 
TAApAAq=^hu (4.4) 

for an ideal measurement apparatus. If the measure
ment apparatus is preceded by an ideal linear amplifier 
of high gain then the measurement does not have to 
introduce an uncertainty beyond that introduced by 
the amplifier noise. The minimum amplifier noise at 
high gain referred to the input is equal to that caused 
by quantum attenuation and, when measured in terms 
of energy, is according to Eq. (3.18) equal to half a 

9 H. Heffner, Proc. Inst. Radio Engrs. 50, 1604 (1962). 
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photon within an observation time. Further, the noise 
is stationary. It follows from (1.4) 

(4.5) 

Using Eq. (1.7), 

(4.6) 

Using (4.5) and (4.6) we find that the uncertainty 
introduced into the final measurement by the amplifier 
noise is just equal to that introduced by an ideal de-
tector not preceded by an amplifier, Eq. (4.4). It is 
characteristic of linear amplifiers that the final measure-
ment results in equal inphase and quadrature uncer-
tainties whereas a measurement performed without the 
use of a preamplifier may choose the relative magni-
tudes of each, subject only to Eq. (4.1). 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge helpful discus-
sions with Professor F. M. H. Villars of MIT and 
Dr. F. Horrigan, presently of Saclay. 

APPENDIX 

Radiative Attenuation Noise 

Using Eq. (2.8) to represent radiative attenuation, 
we interpret ui as the annihilation operator of the input 
photons at the transmitter, as the annihilation opera-
tor of the output photons at the receiver. All the other 
operators in u represent spatial modes not used for the 
transmission process and are unexcited, 

We have for the signal-to noise 

ratio at the receiver, as inEq. (3.5), 

(Al) 

Introducing Eq. (2.8), where according to Eq. (2.13), 
with P = 1, 

(A2) 
one has 

The first term in the denominator represents the at-
tenuated noise of the transmitted signal. The additive 
noise introduced in the transmission process is repre-
sented by and is stationary. If the attenua-
tion is very large, and if the noise accom-
panying the signal at the input is not inordinately 
larger than that imposed by the uncertainty relation, 
then this term is negligible compared to the second one. 
Then the noise at the receiver is entirely determined by 
the zero-point fluctuations of the modes other than the 
one used for transmission regardless of the input noise. 
Further, using Eq. (A2) (A4) 
Finally, 

the average number of received photons as long as this 
number is much larger than unity. We find 



VI.7 OPTICAL CHANNELS: 
PRACTICAL LIMITS WITH PHOTON COUNTING 

JOHN R. PIERCE 

Abstract-In optical communication, ideal amplification of the 

received signal leads to a limiting signaling rate of 1 nat per photon. 

This is much inferior to the optimum limit of kT joules/nat, which 
we can theoretically approach by counting photons. Practically, the 

rates we can attain by photon counting will be limited by how elabo
rate codes we can instrument rather than by thermal photons. 

Consider a free-space path such as we might have between 
space vehicles. For a wavelength X, a distance L and trans
mitting antennas of effective areas AT and AR the ratio of 

received power PR to transmitted power PT is1 

Pr/PT ~ ArA r IX2 L2 . ( i )  

This suggests the use of a short wavelength. 

Going to optical wavelengths requires very smooth antenna 
surfaces and very precise pointing. Further, at optical frequen

cies we encounter quantum effects. Here we disregard antenna 

and pointing problems and consider how quantum effects will 

limit a communication system. 

In receiving a signal mixed with Johnson noise, we have the 

option of amplifying the signal with an ideal amplifier of 

power  gain  G and bandwidth  B.  The Gauss ian  noise  power  P N  

in the output of the amplifier will be2·3·6 

hf 
P N  = B + (G - 1 )hfB. (2) 

ehf/hT- ι 

When hf ^ kT, the noise power density at the input of the 

amplifier is nearly kT. According to Shannon4·5 when noise 
of this power density is added to a signal, the limiting infor
mation rate R in nats per joule of transmitted power, which 

is attained as B approaches infinity, is 

R = 1 /kT nats/joule. (3) 

Paper approved by the Editor for Communication Theory of the 
IEEE Communications Society for publication without oral piesenta-
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When h f  >  kT  the second term on the right of (2) domi
nates. We see that this second term is not amplified noise 
because hfB is multiplied by (G - 1), not G. However, when 
the gain G is very large, the second term is very nearly equal to 
a Gaussian noise density hf multiplied by the gain G. Thus, 
following Shannon the limiting information rate in nats per 
joule of transmitted power will be 

R =  1 / h f  nats/joule. (4) 

The energy per photon is h f .  Thus, the limiting rate given 
by (4) is 1 nat per photon. This limit holds only if we amplify 

Figure 1. A Photon Channel. A light source transmits photons during 
intervals when the shutter is open. Received signal and thermal 
photons pass through an optical filter intended to eliminate out-of-
band thermal photons. Each photon that passes the optical filter is 
counted by a photon counter. In a real system, the light source and 
shutter could be replaced by a pulsed laser. 

the received signal with an ideal amplifier. It does  no t  hold 
for simple photon counting or for various other forms of 
transmission and reception.6-"9 

Indeed, if no noise is added to the signal, the number of 
nats we can transmit per photon is unbounded.6-9 We can 
see this by a very simple argument. 

Consider the signaling system shown in Figure 1. The 
transmitter consists of a light source and a shutter.* The 
receiver consists of an optical filter and a photon counter, 
which we will assume to emit a pulse when one or more 
photons strike it. The purpose of the optical filter is to exclude 
thermal photons. Initially, we will assume that there are no 
thermal photons and we will dispense with the optical filter. 

In signaling, we assume a code word whose length is N time 
intervals, each of duration t. Each of these code words has a 
"pulse" in one time interval only, so that the form of signaling 
is quantized pulse position modulation. 

In signaling, we open the shutter during only one time 
interval out of the N in the code word. If we impose no band
width limitation in the transmission path, so that classically 
the path has a constant loss and delay, we can never receive a 

* In a "practical" system we could send a pulse by pulsing a semi
conductor laser rather than by opening a shutter. 

LIGHT 
SOURCE SHUTTER 

-PHOTON 
COUNTER 

OPTICAL-
FILTER 
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photon during any time interval except the one corresponding 

to the time interval during which the shutter was open**. 

Let us assume that the average number of photons received 

in the time interval corresponding to the opening of the 

shutter is M. If M is fairly large, we will almost always receive 

at least one photon, and thus we will almost always receive 

a proper code word. The information per code word will 
then be 

In N nats. 

The average number of photons per code word is 

M photons. 

Hence, the number of nats per photon is 

(In N ) / M  nats/photon. ( 5 )  

By making N large, we can make the information rate 
in nats/photon as large as we wish. But growth is only as 

the logarithm of N, and is impractical to make In N very 

large. 
What about the effects of thermal photons in limiting 

the rate of signaling? Oddly enough, the theoretical limit 

for very small signal strength and unlimited bandwidth is 
the classical limit given by (3), that is, kT joules/nat.6·7 I 

have included in Appendix A a simple demonstration that 

for a coherent signal source, kT joules/nat can be approached 
w h e n  h f ^ > k T .  

Let us now ask, how many nats per photon do we need 

in order to attain the limiting kT joules/nat? 

A photon has an energy h f .  If we require k T  joules/nat, 
the number Q of nats per photon must be 

Q  =  h f / k T  =  4.80 X 10"1 l ( f l T )  nats/photon. (6) 

How big will Q  be for optical frequencies and low temper
atures? Let us assume a wavelength of 5,000 A, corresponding 

to a frequency of 6 X IO14 Hz, and a temperature of 6K. 
For these values, 

Q  =  4,800 nats/photon. 

** One can quibble here or later that PRIPT in (1) changes with 
frequency or that propagation near the source may be slightly disper
sive, or that the actual energy of the emitted photon cannot be known. 
But, for a signaling rate far less than the frequency of the light used, 
transmission is practically the same for all frequency components of 
the signal, and the fractional range in photon energies is extremely 
small. 
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If we tried to attain this by means of quantized pulse position 
modulation, length N of our code words would have to be 
at least 

jV = ¢4,800 

This, of course, is ridiculous. 
The practical conclusion is that in optical signaling at 

low temperatures we encounter insuperable problems of 
encoding long before we approach the theoretical Mmit of 
kT joules/nat. 

This seems plausible from another point of view. At what 
rate do we receive thermal photons? Pn of (2) gives the ther
mal photon power in one mode of propagation if we set G = 1. 
The rate ρ at which we receive thermal photons in a coherent 

(one-mode) system is thus 

ρ = (e h f l k T— 1)_15 photons/second. (7) 

Let us set B = 1, which allows time intervals t  of around 
1  s .  F o r B  =  1 , / = 6  X  I O 1 4  a n d r = 6 ,  

ρ = e-4,800 

This is almost no noise photons per time interval. 

With codes of any reasonable length and elaborateness, we 
will fall far short of kT joules/nat, so far short that we can 

afford to ignore thermal photons. For optical frequencies and 
low temperatures, the rate at which we can signal, measured 
in nats per photon, will be limited by our ability to implement 
codes, not by thermal photons. 

APPENDIX 

Here we will consider a single-mode photon communication 
system in which there is a noise source of photons with an 
average of n0 photons per time interval, and a signal source of 
photons with an average of η photons per time interval when 
the transmitter is on (when the shutter is open). 

AccordingtoShannon,4 the rate of transmission R measured 
in nats per symbol (that is, per time interval) is 

R = H(Y) -  H(Y \ X).  (A-I) 

Here X represents shutter position (0 = closed; 1 = open) and 
Y represents photons received (0 = none; 1 = 1 or more). R is a 

function of n, n0 and the probability a that the shutter will be 
open. 
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In order to compute H(Y) we need to know the probabili
ties p{0) (that will receive no photons in an interval) and p(l) 
(that will receive some photons in an interval), assuming that 
we have no knowledge of X. We see that 

p(0) = αρ(0 | 1) + (1 — α)ρ(0 | 0) (A-2) 

P(I)=I-P(O). (A-3) 

It turns out that the number of nats per photon is greatest 

when the number η of signal photons and the number n0 of 

noise photons are much smaller than unity. When this is so, we 

can use the following approximate expressions for the case in 

which the shutter is closed, so that there are thermal photons 
only, and no signal photons 

p(0 I 0) = 1 - n0 

(A-4) 
p(l I 0) = n 0 .  

We have no expression for the case in which the shutter is 

open and we receive both coherent signal photons and noise 
photons. However, if we assume that we will receive more 

photons than the number of signal photons alone, we will 
underestimate R by disregarding the effect of noise photons 
when the shutter is open and taking 

p(0 I 1) = 1 — η 

(A-5) 
P(1 I Ο = n-

Making these assumptions, and assuming that n0 η and 
a ·€ 1, we find 

R 
— = — In n0. (A-6) 
an 

This is the number of nats per photon transmitted. Equation 
(A-6) leads to the classical limit of kT joules/nat when the 
frequency is high enough so that quantum effects are very 
strong. 

From (2) we see that for a single-mode transmission system, 
when A/> kT the number «ο of thermal photons in a time t  
can be taken as 

n 0  = B t e - K f I k r .  (A-7) 

From (A-6) and (A-7) 

R hf 
— = In Bt. (A-8) 
an kT 
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Because we have assumed that kT, the first term on the. 
right is much larger than unity. What about In Btl 

B is really a sort of mean bandwidth of the optical filter in 
Fig. 1. This must be made wide enough so as not to lose many 
signal photons when the shutter is open, but narrow enough 
not to let in too many noise photons. This means that Bt 
should be around unity, but probably somewhat larger. 

Thus, when quantum effects are most pronounced, we can 
disregard the second term in (A-9). Then 

R hf 
— = — nats/photon. (A-9) 
an kT 

This corresponds to 

1 
— nats/joule. (A-IO) 
kT 

Gordon6 makes a somewhat similar calculation of channel 
capacity but does not carry the argument to (A-IO) above. 
Equation (A-IO) appears to be implicit in Helstrom et af 
but is not stated explicitly. 
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VI. 8 QUANTUM NONDEMOLITION MEASUREMENTS 

VLADIMIR B. BRAGINSKY, YURI I. VORONTSOV, AND KIP S. THORNE 

Scientists have understood since the 
1920's that the physical laws which gov
ern atoms, molecules, and elementary 
particles are very different from the laws 
of everyday experience. The special 
laws of the atomic and molecular "mi-
croworld" are called quantum mechan-

As an example, if a person measures 
the position of an electron in space with 
complete accuracy, his measurement in
evitably will kick the electron with a to
tally unpredictable force. A second mea
surement of the electron's position, im
mediately after the first one, will give the 

Summary. Some future gravitational-wave antennas will be cylinders of mass -100 

kilograms, whose end-to-end vibrations must be measured so accurately (10~19 cen
timeter) that they behave quantum mechanically. Moreover, the vibration amplitude 

must be measured over and over again without perturbing it (quantum nondemolition 
measurement). This contrasts with quantum chemistry, quantum optics, or atomic, 

nuclear, and elementary particle physics, where one usually makes measurements 

on an ensemble of identical objects and does not care whether any single object is 

perturbed or destroyed by the measurement. This article describes the new electronic 

techniques required for quantum nondemolition measurements and the theory under

lying them. Quantum nondemolition measurements may find application elsewhere in 

science and technology. 

ics; those of everyday experience are 
classical mechanics. The laws of quan
tum mechanics were forced on physicists 
and chemists in the 1920's as the only 
possible way to understand the spectral 
properties of the light emitted by atoms 
and molecules. 

Quantum mechanics tells us that, 
whenever a person measures some prop
erty of an electron (or of any other object 
in the microworld), his measurement in
evitably will disturb the electron in a 
somewhat unpredictable way. The more 
accurate the measurement, the bigger 
and more unpredictable the disturbance. 
The disturbance is not due to the per
son's incompetence; rather, it is an in
trinsic and inevitable feature of the laws 
of quantum mechanics. 

same position as the first one did; but a 
measurement of the electron's momen
tum will give a completely unexpected 
result. 

If, nevertheless, the momentum is 
measured very carefully and some defi
nite result is obtained, that momentum 
measurement inevitably will disturb the 
electron's position by an unpredictable 
amount. If a second momentum mea
surement is made, the result is known in 
advance: it will be the same as just ob
tained. But if the next measurement is of 

Vladimir B. Braginsky is professor of physics and 
Yuri I. Vorontsov is associate professor of physics 
at the Physics Faculty, Moscow University, Mos
cow, U.S.S.R. 117234. Kip S. Thome is professor of 
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Originally published in Science, 209, 547-57 (1980). 
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position, nobody can know the result in 
advance. 

It matters not at all how the person 
makes his measurements—with the best 
technology of the 1920's, or the best of 
the 1980's, or the best of the 23rd cen
tury: an accurate position measurement 
must completely disturb the momentum; 
an accurate momentum measurement 
must completely disturb the position. 

As bizarre as this situation may seem, 
it is even more bizarre when studied in 
greater depth—as was done theoretically 
by Niels Bohr, Werner Heisenberg, John 
von Neumann, Wolfgang Pauli, and oth
ers in the 1920's and 1930's. [See the 
textbook of Bohm (I) for details; see (2) 
for a detailed illustrative example.] It 
turns out that the unpredictable distur
bance is a direct result of the extraction 
of information about the particle's posi
tion or momentum. It matters not how 
the information is extracted, nor where it 
is stored—in a person's brain, on mag
netic tape, or in some minute change of 
the state of some other particle. So long 
as the information exists somewhere in 
the universe outside the original particle 
(more precisely, "outside the particle's 
wave function"), future measurements 
of the particle will reveal that the distur
bance has occurred. The only way to un
do the disturbance is to "run the measur
ing apparatus perfectly backward" and 
thereby reinsert all the information back 
into the particle. Only if no trace of the 
information remains anywhere, not even 
in the experimenter's brain, can the par
ticle return to its original undisturbed 
state. 

The quantum theory of measurement 
(/), which tells us these things and more, 
is very widely but not universally accept
ed by physicists. Einstein never fully ac
cepted it (5); Lamb, a Nobel Prize win
ner for his experimental work in quan
tum physics, does not fully accept it (4). 
The authors of this article do accept it, 
and will presume it to be correct 
throughout this article. 

The quantum theory of measurement 
tells us that, if a measurement is some
what imprecise, then the magnitude of its 
disturbance is somewhat but not entirely 
predictable. For example, a very careful 
measurement of the east-west position of 
an electron, with an imprecision Δ*, can 
be guaranteed to disturb its east-west 

momentum by not much more than 
Δρ = h/(2Ax), where ft (= 1.054 x IO-27 

cm g cm/sec) is Planck's constant. How
ever, no matter how careful the measure
ment may be, the momentum uncer
tainty afterward will be at least ft/(2Δτ). 
Similarly, a momentum measurement of 

precision Δρ will leave the position un
certain by at least Δχ = h/(2Ap)—but if 
the measurement is very careful, the po
sition disturbance need not be much 
larger than this. The limit Δ,νΔ/? > ft/2, 

which holds for either type of measure
ment, is called the Heisenberg uncer
tainty principle. 

The ultimate limits imposed by the un
certainty principle have been explored in 
great detail during the past decade by C. 
W. Helstrom, R. L. Stratanovich, J. P. 
Gordon, and others. They have devel
oped a beautiful, mathematical theory of 
optimum quantum mechanical measure
ments (quantum detection and estima
tion theory) (5). Unfortunately, this the
ory assumes one can make a precise 
measurement of one observable or an
other, or of some combination of observ-
ables; but it does not spell out how such 
precise measurements can be realized 
technically—even in principle. 

This gap in the theory is being con
fronted today in the effort to detect cos
mic gravitational waves (6). Gravity-
wave detectors consist of aluminum (or 
sapphire or silicon or niobium) bars, 
weighing between 10 kilograms and 10 
tons, which are driven into motion by 
passing waves of gravity. The motions 
are very tiny: for the gravity waves that 
theorists predict are bathing the earth, 
a displacement & = 10~19 centimeter 
might be typical (6). And this displace-
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ment may oscillate, due to oscillations of 

the gravity wave, with a period P ~ IO-3 

second. To see the details of the gravity 

wave, one must thus make repeated 

measurements of the bar's position with 

precision Δχ s 10 19 cm, and with time 

intervals between measurements of 

τ s 10~3 second. 

For all measurements ever made in the 

past on a heavy bar, the effects of quan

tum mechanics were totally negligible; 

the classical mechanics of everyday ex

perience gave a perfectly adequate de

scription of the bar's behavior. But one 

never before tried to make measure

ments of such enormous precision as 

IO"19 cm. If the bar is suspended freely 

like a pendulum, as it is in some detec
tors (6), then over time intervals 

τ ~ 10~3 second it will behave as though 

it were not suspended at all. It will be as 

free to move horizontally as the electron 

described above—and like the electron it 
will be subject to the laws of quantum 

mechanics: an "initial" measurement of 

the bar's east-west position with preci

sion Δχ, = 10~19 cm will inevitably dis

turb the bar's east-west momentum by 
Ap a (h/2Axt), and correspondingly will 
d i s t u rb  i t s  ve loc i t y  by  Δ ν  =  A p l m  a  ( h /  

2mAx t), where m is the bar's mass. Dur
ing the time interval τ ~ 10~3 second be

tween measurements, the mass will 
move away from its initial position by 
an  amoun t ,  Ax m  =  A v  τ  >  ( h r / l m A x , ) ,  

which is unpredictable because Δν is un
predictable. Putting in numbers (f = 10~3 

second, m = 10 tons, Δχ, = IO-19 cm), 

we find Δχ„ > 5 XlO"19 cm—which is 

somewhat larger than the desired preci

sion of our sequence of measurements. If 
the next measurement reveals a position 
changed by as much as 5 x IO"19 cm, we 

have no way of knowing whether the 
change was due to a passing gravity 

wave or to the unpredictable, quantum 

mechanical disturbance made by our 

first measurement. In effect, our first 

measurement plus subsequent free mo

tion of the bar has "demolished" all pos

sibility of making a second measurement 
of the same precision, Δχ ~ IO"19 cm, as 

the first, and of thereby monitoring the 

bar and detecting the expected gravity 

waves. 

In principle one can circumvent this 

problem by making the bar much heavier 

than 10 tons (recall that Axm is inversely 

proportional to the mass). However, this 

is impractical. In principle another solu
tion is to shorten the time between mea

surements (recall that Axm is directly 

proportional to τ). However, this will 

weaken the gravitational-wave signal 

(6xgw oc T2 for Τ s IO'3 second) even 

more than it reduces the unpredictable 

movement of the bar (Δχ,η « τ). 

The best solution is cleverness: find 

some way to make the gravity-wave ef

fect stronger; this is being done in laser-

interferometer gravity-wave detectors 
(6), but only at the price of having to 

make IO"16 cm measurements of the rela

tive displacement of two bars as far apart 

as several kilometers. Alternatively, find 

some way to circumvent the effects of 

the Heisenberg uncertainty principle— 

that is, some way to prevent the inevi

table disturbance due to the first mea
surement, plus subsequent free motion, 

from demolishing the possibility of a sec

ond accurate measurement: a quantum 

nondemolition (QND) method. 

One QND method which could work 

in principle is this: instead of measuring 

the position of the 10-ton bar, measure 

its momentum with a small enough initial 
error, Apx ~ 10~9 g cm/sec, to detect the 

expected gravity waves. Thereby inevi
tably disturb the bar's position by an un
known amount Δχ a HflAp i  ~ 5 x IO"19 

cm. Wait a time f~ IO"3 second and 

then make another momentum measure
ment. As the bar moves freely between 

the measurements, its momentum re

mains fixed. The uncertainty Δχ in the 

bar's position does not by free evolution 

produce a new uncertainty Apm in the 

momentum. Consequently the second 

measurement can have as good accura-
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cy, 10" g cm/sec, as the initial measure
ment; and a momentum change of (a 
few) x 10 9 g cm/sec due to a passing 
gravity wave can be seen. 

Momentum measurements can be 
quantum nondemolition, but position 
measurements cannot be, for this simple 
reason: in its free motion between mea
surements the bar keeps its momentum 
constant, but it changes its position by 
an amount δχ = (p/m)τ that depends on 

the momentum, and that therefore is un
certain because of measurement-induced 
uncertainties of the momentum. We say 
that momentum is a QND variable, but 
position is not. 

Unfortunately, however, it is far eas
ier to measure position than momentum. 
Nobody has yet invented a technically 
realizable way of making momentum 
measurements with the required preci
sion. 

The problem of inventing a technically 
realizable QND measurement scheme 
was first posed in 1974 (8). This refer
ence also formalized the concept of 
QND measurements. Subsequent devel
opments in the theory of QND are due 
largely to Unruh (9, 10)·, Braginsky, Vo-
rontsov, and Khalili (//, /2); Caves, 
Thorne, Drever, Zimmermann, and 
Sandberg (13-15); and Hollenhorst (16). 
All of this work has been theoretical: it 
has shown that in principle QND mea
surement schemes can completely cir
cumvent the disturbing back-action ef
fects of one's measurements, and it has 
led to several tentative designs for prac
tical QND measurements in gravity-
wave detectors—designs which do not 
involve measuring momentum. 

Actual laboratory work on QND mea
surement schemes is only now beginning 
to get under way, and the levels of sensi
tivity required are so great that we can
not hope for any laboratory results until 
several years from now. Nevertheless, it 
is reasonable to expect QND measure
ments to be a routine part of gravity-
wave technology by the late 1980's. 

The purpose of this article is to make 
as wide an audience as possible aware of 
these developments, so that people can 
begin to ask whether the QND idea 
might be useful in other areas of science 
and technology. To achieve this purpose 
effectively, we feel it necessary to write 
the rest of this article at a somewhat 
technical level. We hope thereby to con
vey to physicists, engineers, chemists, 
and others familiar with elementary 
quantum mechanics and elementary 
electronics, a deep enough understand
ing of the QND idea that they can begin 
to think creatively about it themselves. 

Resonant-Bar Gravitational-Wave 

Antennas 

Although the QND idea is explained 
most easily, as we have done, in terms of 
bars which move freely (free masses), 
QND measurements are most needed for 
a different type of gravity-wave antenna: 
one made of a bar which oscillates me
chanically in its fundamental mode (bar 
mass, m — 10 to 10,000 kg; oscillation 
frequency, ωΙ2π — 500 to 10,000 hertz) 
(6). The expected gravity waves should 
produce changes of oscillation amplitude 
δχ ~ 10~'8 to IO-19 cm, which are less 

than or of order the width of the quantum 
mechanical wave packet of the oscillator 

&XQM = (Μ2ιηω)112, if the oscillator is in its 

ground state or in a coherent (minimal-
wave-packet) state. Here, by contrast 

with nuclear, atomic, and elementary-
particle physics, there is only one quan
tum mechanical system being measured 
(the oscillator), rather than an ensemble 
of systems; and we must make a continu
ous sequence of measurements on this 
one system. 

Such an oscillator will actually behave 
quantum mechanically even in the pres
ence of thermal Brownian motion and at 
bar temperatures kT » Λω, so long as 

its quality factor Q is sufficiently high— 
that is, so long as the fundamental mode 
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of the bar is coupled sufficiently weakly 

to the other, thermalized modes (7). In 

particular, when one is making energy 

measurements which put the oscillator in 

an energy eigenstate, Brownian motion 

during one cycle will change the number 

of quanta η in the oscillator by less than 
unity if (7) 

(n + i)kTIQ < ήωΙ4π (la) 

and if one is making amplitude measure
ments, Brownian motion during the mea
surement time τ will change the ampli
tude by less than the coherent-state 
wave-packet width (ήΙΙιηω)112 if (7) 

IkTHQ < h ( lb)  

(see Eqs. 40 and 41 below). 

In order to monitor the effects of a 

weak gravity-wave force on such an os
cillator, one must use a measurement 
technique whose back action on the os
cillator, together with subsequent free 
evolution, does not substantially disturb 
the probability distributions of the ob-
servables being measured—a QND tech
nique. In the following sections we shall 
describe the theory of such QND mea
surement techniques as applied to oscil
lators, to free masses, and more general
ly to any quantum mechanical system. 
Throughout our description we shall try 
to give short, elementary proofs of most 
of the results quoted. More elegant and 
rigorous proofs will be found in the pri
mary literature. To understand our dis
cussion, the reader must be familiar with 
elementary quantum mechanics and ele
mentary electronic circuit theory, but 
little other specialized knowledge should 
be needed. 

General Theory of Quantum 

Nondemolition Measurements 

Consider a system, such as an oscilla
tor, that has some observable A which 
an experimenter wishes to monitor. For 
the moment, assume that the system's 

only coupling to the external world is 
through the experimenter's measuring 
apparatus. We define a QND measure
ment of Λ as a sequence of precise mea
surements of A such that the result of 
each measurement is completely predict
able from the result of the first measure
ment—plus, perhaps, other information 
about the initial state of the system. This 
definition, and the ramifications which 
follow, are a refinement by Caves [in 
(15)]  of  Braginsky and Vorontsov 's  (8)  
original concept of quantum nondemoli-
tion. A similar refinement has been de
veloped independent ly  by Unruh (10) .  

Quantum nondemolition measure
ments are ideal tools for use in the detec
tion of weak external forces (such as 
gravity waves) that act on the system. 
One need only perform a QND mon
itoring of the evolution of A and watch 
for deviations from the predicted evolu
tion. 

Most observables cannot, even in 
principle, be monitored in a QND way. 
In any precise measurement of an ob
servable A, the back action of the mea
suring apparatus uncontrollably and un
predictably kicks al l  observables  C 
which fail to commute with A; and then, 
in the subsequent free evolution of the 
system, the contamination in C may be 
fed into A, making the results of future 
measurements of A unpredictable. Only 
very special observables can be immune 
to such feedback contamination; they 
are called QND observables [or some
times generalized QND observables 
(/5)]. Mathematically, A is a QND ob
servable if and only if, when the system 
is evolving freely in the Heisenberg pic
ture, A commutes with itself at the dif
ferent moments of time t3, tk when one 
makes one 's  measurements  (10,  15)  

[A(Zj), A ( t k ) ]  =  O (2) 

If this condition is satisfied at all times t }  

and tk, then A is called a continuous 
QND observable; if it is satisfied only at 
special times, then A is a stroboscopic 
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Q N D observable. If A is conserved dur-
ing free evolution , then it is 
guaranteed to satisfy Eq. 2 for all t}, tk 

and therefore to be a continuous Q N D 
observable. 

In the case of a free particle, the ener-
gy and momentum are conserved and are 
continuous Q N D observables, but the 
position is not: 
so 

(3) 

Precise measurements o f i perturbp un-
controllably, and the contamination in p 
subsequently feeds back into as the 
particle moves freely. 

For a harmonic oscillator the position 
and momentum satisfy the commutation 
relations 

(4a) 

(4b) 

These imply that x and p are not continu-
ous Q N D observables. However , if one 
makes one's measurements stroboscopi-
cally at times separated by an integral 
number of half-periods sin 

, then the commutators in Eqs. 
4a and 4b vanish. This means that x and 

are stroboscopic Q N D observables 
(12, 13). Stroboscopic Q N D measure-
ments (12, 13) of or ' drive the oscilla-

tor into a state where x is known precise-
ly—for example, at moments 
and p is known precisely at 
a>; but at other times x and p are highly 
uncertain. For an oscillator the con-
served quantities, which are guaranteed 
to be Q N D observables at any and all 
times, include the energy (8) and the real 
and imaginary parts of the complex am-
plitude (13) 

(5a) 

(5b) 

High-precision measurements of or 
(whether fully Q N D or not) are called 

back-action-evading measurements (14, 
15) because they enable the measured 
component of the amplitude (for ex-
ample, to avoid back-action con-
tamination by the measuring device, at 
the price of strongly contaminating the 
other component . (The uncertainty 
relation 

(5c) 

is enforced by the commutation relations 
= ih/mu), which follow from 

Let A be a Q N D observable which is 
to be monitored by a sequence of perfect 
Q N D measurements at times 
. . . . Since and commute 
(QND assumption; Heisenberg picture), 
one can perform a perfect "state-prepa-
ration measurement" at time tn, which 
puts the system into a simultaneous ei-
genstate of the observables 

. . . with some (not pre-
viously predictable) eigenvalues A(ta), 

. . . . From the results of this 
first measurement one can compute the 
eigenvalues . . . . Lat-
er, as the system evolves freely, its state 

remains fixed in time, while its ob-
servable A evolves through the values 

. . . . Subsequent perfect 
measurements of A at times . . . 
must give the known eigenvalues 
A(t2) and must leave the state of the sys-
tem unchanged. If A is a continuous 
Q N D observable, then the Q N D mea-
surements can be made continuously, 
and each measurement can last as long 
or as short a time as one wishes. If A is a 
stroboscopic Q N D observable, then 
each measurement must be made very 
quickly (stroboscopically) to avoid con-
tamination. Examples will be given be-
low, and further detail will be found in 
section IV of (15). 

The apparatus used in any measure-
ment consists of a sequence of stages, 
through which information flows toward 
the experimenter's eyes and brain. Mea-
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surement theory asserts that, although 
the early stages of the apparatus may be
have quantum mechanically, the late 
stages must be classical. There is no uni
versally accepted definition of classical. 
We shall regard a stage as classical if the 
quantum mechanical uncertainties of it 
and of subsequent stages have no signifi
cant influence on the overall accuracy of 
the measurement. If the system being 
studied interacts directly with a classical 
stage, the measurement is called direct. 
When, between the system and the first 
classical stage, there is a quantum stage 
(quantum mechanical readout system, 
QRS), the measurement is called indirect 
(/7). For example, the measurement of 
the position of a particle by its black
ening of a photographic plate is direct. 
The measurement of position by the par
ticle's scattering of light or of an electron 
is indirect. The vast majority of measure
ments are indirect. In electronic measur
ing systems the first classical stage is of
ten the first amplifier. 

In deducing quantum limitations on 
the sensitivity of a specific measuring 
scheme, one must analyze quantum me
chanically everything that precedes the 
first classical stage. The overall accuracy 
of the measurement is governed not only 
by quantum fluctuations in the quantum 
stages, but also by the details of the cou
plings between those stages and between 
them and the measured system. These all 
influence the signal which enters the first 
classical stage, and that signal ultimately 
determines the quantum errors of mea
surement. 

In practice, if not in principle, the re
duction of the wave function occurs 
when the signal enters the first classical 
stage. If that signal carries information 
not only about the observable A which 
interests us, but also about observables 
C that fail to commute with A, an exact 
measurement is impossible. This is be
cause  any f low of  informat ion about  C 
into the first classical stage will, accord

ing to the uncertainty principle, be ac
companied by unpredictable back-action 
forces into the quantum stages—back-
action forces which must ultimately con
taminate all observables that fail to com
mute with C, including A. 

Because of this back action, the mea
surement error must always exceed an 
ultimate quantum limit. We shall derive 
that limit under the special assumption 
that  in  the  Heisenberg  p ic ture  A and C 
are time-independent—either because 
they are constants of the motion such as 
Xi and X2, or because they are time-
evolving observables [such as x{t) and 
p(t)] evaluated at some fixed moment of 
time [such as A = i(0), C = p(0)]. We 
assume that the "readout observable" of 
the last quantum stage, Qn, which 
couples into the first classical stage, is 
expressible as 

Q F I = A A A + ! 3 C )  (6a) 

where 

[A ,C] = Iiyh  so AAAC a yh (6b) 

with y a real number. The time evolution 
of the readout observable QR is embod
ied in the function/and/or in the real pa
rameters a and β. Typically, a and β will 

be sinusoidal functions of time, which 
are used to code and separate the A and 
C signals. We assume that the first clas
sical stage (usually an amplifier) is equal
ly sensitive to signals at the A and C fre
quencies. Then no matter how accurate
ly the first classical stage monitors QR, it 
must give errors in A and C related by 
ΔΑ = (β/ά)Δϋ, where ά and β are the 

root-mean-square (r.m.s.) values of a 

and β. These relative errors, combined 

with the uncertainty relation (Eq. 6b), 
imply the ultimate quantum limit 

ΔΑ a [(β/ά)γδ]1/2 (6c) 

Return now to the general situation 
where A and C might be time-dependent. 
In order that the instantaneous signal at 

time t not contain any contaminant infor-
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mation about observables C ( t )  which fail 

to commute with A(t), it is necessary and 

sufficient that A(t) commute with that 
part of the Hamiltonian //,(?) which de
scribes the interaction of the system with 
the measuring apparatus (/) 

[A( I )M 1  (0] = O (7) 

In order that information about A enter 
the measuring apparatus, fl, must de
pend upon A. Usually one achieves 
these conditions by direct coupling of Λ 

to some observable M of the measuring 

apparatus 

H 1  =  K A M  (8) 

In summary, the condition in Eq. 7 
guarantees no direct, instantaneous back 
action of the measuring apparatus on the 
quantity A being measured; and the con
dition in Eq. 2 guarantees that variables 
C which have been contaminated by 
back action will not subsequently, by 
free evolution (with H1 turned off), feed 
their contamination into A. Often, how
ever, H1 is turned on for a long time-
even for all time. Then there is danger 
that AT, may catalyze an evolutionary 
feeding of C into A. One can be sure this 
does not happen if an analysis of the sys
tem plus measuring apparatus, including 
all couplings, reveals that [A(Z1), 
Ait2)] = O for all times Z1 and Z2 at which 
signals enter the classical stage. How
ever, such a full analysis may be prohibi
tively difficult. 

Fortunately, in one common situation 
a full analysis is not necessary: Caves 
[in (/5)] has shown that, if A is a 
continuous QND observable and Hi con
tains no system observables except A, 
then the Heisenberg picture evolution 
of A with couplings turned on is identical 
to its free evolution, and consequently A 
is fully isolated from back action—both 
direct and indirect. Caves (/5) has also 
proved "full isolation of A with //, 
turned on" under more general circum
stances. 

Just as H 1  might catalyze an indirect 
feeding of contaminated variables C into 
A, so also such feeding might be cata
lyzed by the coupling of the system to a 
classical external force F(Z) (for ex
ample, to a gravitational wave). This 

coupling is embodied in a piece of the 
Hamiltonian 

H y  = μ  F χ  (9) 

where μ is a coupling constant and χ is a 

dynamical variable of the system (χ is 
position in the case of a gravitational-

wave antenna). If A satisfies the self-
commutation condition (Eq. 2) even in 

the presence of Hr, then A can remain 

free from contamination. If, in addition, 
free evolution with Hr  turned on causes 
an eigenvalue A(Z) of A(Z) to evolve in 

such a way that, from a precise knowl
edge of A(Z), one can deduce F(t), then A 
is called a QNDF observable [(/5); see 
also Unruh (10), where this is denoted 
QNDD]. QNDF observables are ideal 
tools for monitoring weak, classical 
forces. 

If, on the other hand, the term flr in 
the Hamiltonian catalyzes an evolution
ary feeding of contaminated observables 
C into A (that is, if [A(Zj), A(Zfc)] Φ O in 

the presence of Hr), then although A 

may be highly sensitive to the presence 
of an external force, one cannot hope to 

monitor the details of the force by mea
surements of A. 

In the case of an oscillator with posi
tion χ coupled to the force (for example, 
a  g r a v i t a t i o n a l - w a v e  d e t e c t o r ) ,  X 1  a n d  X 2  

(Eqs. 5) are QNDF observables and thus 
can be used for perfect monitoring of the 
forces (13, 15). By contrast, the oscilla
tor's energy, although a QND observ
able, is not QNDF. As a result, precise 
measurements of the energy can reveal 
the presence of an arbitrarily weak force; 
but they cannot determine the strength 
of the force with a precision better than a 
factor of 3 (13, 10, /5)—unless the force 
is so strong that it increases the energy 
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by an amount large compared to the ini
tial energy. Examples and proofs will be 
sketched later. 

When one is using a quantum system 
to monitor a classical force F, one can 
increase one's sensitivity by increasing 
the response of the measured quantity A 
to  F.  In  (8 )  and  (18)  i t  i s  shown tha t ,  i f  A 
is the energy of an oscillator, Fproduces 
a change of A which is larger, the larger 
the oscillator's initial energy. Formally, 
such a measuring scheme satisfies Un-
ruh's (IO) general condition for the de
pendence of A's response on the initial 
state of the detector (detector-dependent 
response, or DDR) 

[A ,  x]  ^  a C-number (10) 

In the case of (8 )  and (18)  A  is the detec
tor's (oscillator's) Hamiltonian, χ is its 
position, and [A,χ] = —(ih/m)p. The 
larger the initial energy of oscillation, the 
larger will be (p2), and the larger will be 

dA/dt. Further details will be given lat
er. 

This completes our sketch of the gen
eral theory of QND measurements. This 
theory will now be applied to various 
types of measurements of harmonic os
cillators, with emphasis on issues rele
vant to gravitational-wave detection. 

Position Measurements 

A resonant-bar gravity-wave antenna 
is an oscillator with mass m, frequency 
ω, position x, and momentum p, which 

couples to a gravitational wave (classical 

external force F) with a coupling energy 

HF= -xF(t). In most experiments the 

antenna's position χ is coupled by a 
transducer (H\ = Kxq\ K = coupling 

constant) to an electromagnetic circuit 
(quantum readout system), which we 
shall describe as an oscillator with ca
pacitance C, inductance L, generalized 
coordinate (equal to charge on the ca
pacitor) q, and generalized momentum 

(equal to flux in the inductor) π. More 

complicated QRS's can be used; but this 

is the typical case. The voltage on the ca
pacitor, which is proportional to q, is 
monitored by an amplifier—the first clas
sical stage of the measuring system. 
Thus q is the readout observable (¾ (see 
Eqs. 6). 

The coupled antenna, force, and QRS 
are governed by the Hamiltonian 

ρ 2 1 
H = - H — muP-x1 

2m 2 

H v  = -x  Fi t )  H l  = Kxq  (11)  

for which the Heisenberg evolution 
equations are 

dx /d t  = ρ / m  

d p / d t  =  -  m o / x  +  F ( t )  — Kq  

dq /d t  = 7t /L 

drr /d t  =  -q /C-  Kx  (12) 

Because these equations ignore the first 
classical stage (amplifier) and its detailed 
back action on the QRS, they cannot tell 
us the actual sensitivity of the measuring 
system. On the other hand, they can tell 
us the ultimate quantum mechanical limit 
on the sensitivity. 

Suppose, as a first case, that the signal 
Qr = q is fed continuously into the am
plifier for a time much longer than a 
quarter-cycle of the antenna, and that 
one's goal is to measure i0, the initial 
value of the oscillator's position. During 
the measurement x(t), which feeds π and 

thence Qr = q, oscillates between Jc0 and 
pn. [x(t) = X0 cos Wt + (p„/mw) sin ωί, 

aside from minor modifications due to 
the couplings. Note that X0 = ATi, 
P0Imw =X2; Eqs. 5.] Consequently, the 
signal 0R entering the amplifier contains 
not only x0 but also, unavoidably, p(l. 

Since their relative strengths in the signal 
are P0Ix0 = w&>, the measurement deter-
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mines them with relative precisions 
Taking account of the un-

certainty relation we find 
(19, 18, 12, 15) 

(13) 

(This is a specific example of the general 
quantum limit of Eqs. 6.) Such a mea-
surement is called an amplitude-and-
phase measurement because it gives in-
formation about both the amplitude 

and the phase 
of the antenna's mo-

tions. An ideal amplitude-and-phase 
measurement with the limiting sensitivi-
ty in Eq. 13 drives the antenna into a co-
herent (minimal-wave-packet) state. If 
such a measurement (state preparation) 
has put the antenna into a coherent state 
with sin u>t, 

then a classical force 
acting for a time will leave 
the state coherent but change its am-
plitudes by 

A sub-
sequent ideal amplitude-and-phase mea-
surement can reveal this change if the 
force F„ exceeds the quantum limit (18) 

(14) 

N o amplitude-and-phase measurement 
can do better than this. 

An alternative derivation of the quan-
tum limits in Eqs. 13 and 14, due to Gif-
fard (19), takes detailed account of quan-
tum fluctuations in the amplifier and their 
back action on the QRS. 

The quantum limits in Eqs. 13 and 14 
are traceable to the fact that x is not a 
continuous Q N D observable; a continu-
ous measurement of x produces direct 
back action on which then con-
taminates x through free evolution. On 
the other hand, x is a stroboscopic Q N D 
observable (see Eq. 4a). Consequently, 
by stroboscopic measurements (12, 13) 
at times . one can 
monitor x with perfect precision, in prin-
ciple (except for the ridiculous limit from 
relativistic quantum theory, 

cm for m = 10 kg). Stroboscopic 
measurements can be achieved with the 
system of Eq. 11 by pulsing on and off 
the transducer's coupling constant K. By 
a sequence of perfect stroboscopic mea-
surements one can monitor an arbitrarily 
weak force 

Perfect stroboscopic measurements 
require that x be coupled to the QRS for 
arbitrarily short time intervals r at t = 0, 

. . . (and also that the QRS transfer 
its information to the first classical stage 
in a time less than . If r is finite then 
the momentum spread pro-
duced by a measurement of precision 
causes a mean position spread 

during the 
next measurement. The resulting r.m.s. 
error is (18, 12, 13) 

(15) 

The shorter the measurement time r, the 
more accurate the measurement can be. 

Unfortunately, short measurements 

Fig. 1. S c h e m e f o r 
c o u p l i n g a m e c h a n i -
cal o s c i l l a t o r ' s (pos i -
t ion) 2 = x'z t o an e l ec -
t r o m a g n e t i c Q R S . 
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require very strong coupling of the an-
tenna to the QRS in order to surmount 
the quantum mechanical zero-point ener-
gy that accompanies the signal through 
the QRS and into the amplifier. This is 
quantified in (20, 15, 14) for the case of a 
mechanical oscillator with transducer 
and QRS that feed the amplifier a sinus-
oidal voltage signal 

(16a) 

Here (assumed is the signal 
frequency, K is the transducer's cou-
pling constant, and is the transfer 
function of the QRS. This signal carries 
an r.m.s. power 
where Re is the real part of the out-
put impedance of the QRS. Accom-
panying this signal in the experimental 
bandwidth is a fluctuating quantum 
mechanical zero-point power 

half of it at the known phase of 
the signal, the other half at the other 
phase. This zero-point noise leads to 

, where 

(16b) 

is a dimensionless coupling constant (21, 
20). If one averages over N successive 
stroboscopic measurements (total band-
width then the accuracy im-
proves as 

(17) 

Optimization of the measurement time 
r in Eqs. 15 and 17 leads to an ultimate 
quantum limit for stroboscopic measure-
ments with finite coupling (14, 15, 20): 

(18a) 

(18b) 

A coupling as large as 1 is dif-
ficult to achieve. Therefore, to beat 
the amplitude-and-phase quantum limit 
I one will probably have to av-
erage over a large number N of measure-
ments. 

By a sequence of stroboscopic mea-
surements at the quantum limit of Eq. 
18b, one can monitor a classical force 

. If the phase is 
near then the optimal times 
for the stroboscopic measurements are 

. . .; the force pro-
duces during N half-cycles 

and the force is mea-
surable if 

(19) 

If the phase is near 0 or then the 
precision of Eq. 19 is achieved by stro-
boscopic measurements at 

. . . . Since the phase of a gravi-
tational wave is not predictable in ad-
vance, two antennas are needed; one to 
be monitored at . . . , the 
other at . • (12, 13). 

The stroboscopic limits of Eqs. 15, 17, 
18, and 19 strictly speaking refer to a har-
monic oscillator with only one degree of 
freedom. Unfortunately, a resonant-bar 
gravitational-wave antenna has many 
normal modes which can all be simulta-
neously perturbed by the back action of 
each measurement. However, if the 
strongly perturbed modes have commen-
surate eigenfrequencies, then strobo-
scopic Q N D measurements on the fun-
damental mode are also Q N D for the 
other modes (12), and results near the 
limits of Eqs. 15 to 18 may be achiev-
able. 

Stroboscopic measurements can be 
carried out on electromagnetic oscilla-
tors [such as inductance-capacitance 
(LC) circuits] as well as on mechanical 
oscillators. For example, one could send 
a collimated pulse of electrons through 
the capacitor so quickly that it spends a 
time between the capacitor 
plates. The electrons will be deflected by 
the electric field of the capacitor, which 
is proportional to the oscillator's gener-
alized coordinate q ( = charge on plates); 
and by measuring the deflection one can 
infer q. A stroboscopic sequence of such 
measurements can reveal q, in principle, 
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to an accuracy 
(see Eq. 15) and can reveal the corre-
sponding voltage in the capacitor to 

which is a factor 
better than the standard ampli-

tude-and-phase quantum limit. 

Energy Measurements 

Suppose that one has developed a 
method for making accurate measure-
ments of a harmonic oscillator (antenna), 
and that an initial "state-preparation" 
measurement has put the oscillator into 
an eigenstate with energy A force . 

acting for time f will change 
the oscillator's state. Because the phase 
of the initial state is completely in-
determinate, no interference terms show 
up in the new state's energy expectation 
value (22) 

(20a) 

However , interference is a dominant ef-
fect in the variance of the new state's en-
ergy (22) 

(20b) 

The next measurement is likely to reveal 
a changed energy, and thereby tell us 
that a force has acted, if 
(Here we assume the force to be weak, 

Rewritten in terms of , this 
detection criterion is 

(21) 

where is the number 
of quanta in the initial state. This force-
detection method can be arbitrarily sen-
sitive if is made arbitrarily large (8, 
18). However , because there is no 
unique relationship between the mea-
sured energy and , 
this method cannot tell us the precise 
magnitude of In other words, the en-
ergy is not a Q N D F observable (13, 10, 
15); see the discussion fol lowing Eq. 9. 

A perfect energy measurement (per-
fect up to one quantum) is poss ib l eon ly 
if (i) the interaction Hamiltonian for 
the oscillator and QRS involves the os-
cillator energy , and (ii) H, commutes 
with see Eq. 7 and associated dis-
cussion. 

If instead as occurs in most 
measuring systems, then the directly 
measured quantity is or the ampli-
tudes and and the measurement is 
of the amplitude-and-phase type with 
quantum limits 

(Eq. 13). From the measured 
and one can compute the oscilla-

tor's energy 

up to an accuracy, for 

(22) 

The effect of the force will be discern-
ible if this error is less than a(E) (Eqs. 
20), which implies the same force-
detection criterion (Eq. 14) as we de-
rived from our original amplitude-and-
phase discussion. 

One way to achieve an Hi which in-
volves rather than x—and to there-
by beat the amplitude-and-phase limit 
(Eq. 14)—is to make the oscillator's 
mass m and spring constant depend 
weakly on a variable q of the QRS: 

(10). Then the total Hamiltonian be-
c o m e s 

(23) 

where is the Hamiltonian of the 
free quantum readout system. Unruh 
(10) has given a pedagogical example of 
this for an electromagnetic oscillator: the 
" m a s s " m is an inductance; the "spring 
constant" is 1/(a capacitance); and 
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the inductor coil and capacitor plates are 

attached to a mechanical pivot with an
gular position q, which varies the induc
tance and capacitance in the required 
manner. One can also vary the induc
tance and capacitance by letting the me
chanical QRS move appropriate materi
als in and out of the inductor and capaci
tor (//, 13). 

For a mechanical oscillator with elec
tromagnetic QRS there are also several 
ways to make the mass and spring con
stant depend on a QRS variable. In Fig. 1 
the oscillator's mass is attached to a 
movable capacitor plate of the QRS; the 
energy in the capacitor's electric field is 

Ec = [1 - (x/d)2]q2/2C (24) 

where C is the capacitance when χ = 0; 

and consequently the charge q on the 
central plate of the QRS renormalizes 
the spring constant to ma>2  = ηι0ω0

2  -

q2 /ICd1. The spring constant can also be 
renormalized by the QRS "momentum" 

π (= flux in inductor) by attaching the 

oscillator's mass to a current-carrying 
coil that resides between two oppositely 

wound coils of the QRS inductor. To re-

normalize the oscillator's mass m one 

might attach to it a conducting plate that 

resides in the inductor's magnetic field. 

The velocity of the plate through the 
magnetic field would induce an electric 

dipole moment on the plate, which in 

turn would couple by its velocity to the 

magnetic field, giving an interaction en
ergy proportional to ρ2π2 and thence a 
mass renormalization. 

Unfortunately, these various ideas 

have not yet produced a viable design for 

clean coupling of a mechanical oscilla
tor's energy H0 to a QRS. On the other 
hand, designs without clean coupling can 
still yield measurements of H0 more ac
curate than the amplitude-and-phase 
quantum limit («„ + 1/2)1,2Λω. An ex
ample is a QRS that couples only to Jc2, 
but that averages x2 over a number of cy

cles before sending it into the first classi
cal stage (amplifier) (9, //). The mea
surement scheme of Fig. 1 will do this if 
the period of the circuit's (QRS) oscilla
tions is much longer than the period of 
the mechanical oscillations. Then the cir
cuit's capacitance (Eq. 24) and resonant 
frequency will be sensitive to the time 
average of χ2 and thence to H0, with only 

small admixtures of sensitivity to the 

time-varying part of x2 and thence to the 
oscillator's phase φ. This is equivalent to 

the statement in Eq. 6 that QR = 

f(fl0 + α(Ηο)Ψ) with a << 1, which in 

turn permits accuracies much better than 

AE = («ο + l/2)1,2ftw. A detailed analy
sis of this type of scheme is given in (II), 
but for an electromagnetic oscillator with 
a mechanical QRS and with H1 = Kx2q 

rather than Kx2q2 as in Fig. 1 and Eq. 24. 
That analysis reveals a limiting sensitivi
ty 

/  I i " 2  

AE a in0 + - (Ω/ω)1,2Λω (25a) 

where E = (n0  + \/2)ήω is the oscilla
tor's energy, ω is its frequency, Ω is the 

frequency of the QRS, and Ω << ω. The 

corresponding limit on the detection of a 

classical force F0 cos(coi + φ), which 

drives changes in the oscillator's energy, 

is 

if ω/Ω < «ο + 1/2. If ω/Ω > n0 + 1/2, 

then the limit on AE in Eq. 25a is re
placed by hhi, the ultimate precision with 

which one can ever measure energy 
changes; correspondingly, the force limit 
in Eq. 25b is replaced by Eq. 21. 

In measurements of the time average 
of χ2 and thence H0, it is not essential 

that the interaction HamiItonian H1 in
volve Jc2. Instead can be proportional 
to x, and then the internal workings of 
the QRS can produce the average of x2 at 
the entrance to the first classical stage. 
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Back-Action-Evading 

Measurements of X, 

The QNDF observable X 1  = χ cos ωί 

- (plmoi) sin ωί (real part of complex 

amplitude; Eq. 5), like the position x, has 

a continuous spectrum of eigenvalues; 
and in principle it can be measured arbi
trarily quickly and accurately (13, 15). 
Suppose that an initial state-preparation 
measurement at t = O has put the oscilla
tor into an eigenstate l£0> of Z1(O) with 
eigenvalue ξ». A classical force F(I) [to
tal Hamiltonian H=H0- xF(l)] will 
change X1 as seen in the Heisenberg pic
ture 

*.(/) = I1(O) — f [F{t')/m<ii\ sin wt'dt' 
Jo 

(26) 

In the Heisenberg picture the oscillator's 
state remains fixed in time at Ιξ0), but 

this is an eigenstate of X1(I) with eigen
value 

ξ(ή = ξ 0  ~ J \_F(t')/moi\ sin wt'dt'  

(27a) 

Subsequent perfect measurements of X 1  

must yield this eigenvalue and will reveal 

the full details of its evolution. It evolves 

in exactly the same manner as X1 would 

evolve for a classical oscillator (13, 15). 

One pays the price, in these measure
ments, of not knowing anything about 
the imaginary part of the complex ampli

tude (Eq. 5c). However, if one has a 
second oscillator coupled to the same 
force F(t), one can measure the imagi
nary part V2 of its complex amplitude, 
giving up all information about the real 
part K One's measurements must give 
the eigenvalue 

V(0 = Vo + I I_F(t')/mo)] cos ωί'άί'  

(27b) 

which evolves in exactly the same man
ner as the X2 or Y2 of a classical oscilla
tor. From the output of either oscillator, 
or better from the two outputs, one can 
deduce all details of the evolution of F(t), 
no matter how weak Fit) may be (13, 15). 
Thus X1 and Ϋ2 are QNDF observables. 

A perfect measurement of X 1  (or Ϋ 2) 
requires (i) that the interaction Hamil-
tonian H i  depend on X t  and (ii) that 11 1  

commute with X1 (Eq. 7 and associated 
discussion). The simplest example is 

H 1  = KX 1Cj 
= Kxq cos ωί 

- (K/mm)p q sin ωί (28) 

A coupling of this type can be 
achieved, for a mechanical oscillator, by 
using a capacitive position transducer 

with sinusoidally modulated coupling 
constant (H1 = Kxq cos ωί), followed by 

an inductive momentum transducer with 
modulated coupling constant [//, = 
- (ΚΙιηωϊρή sin ω/]. The two transducers 

together produce a voltage output 

Fig. 2. Scheme for 
stroboscopic or con
tinuous back-action-
evading measure
ments of a mechani
cal oscillator. This 
scheme was devised 
independently in 1978 
by V. B. Braginsky 
and by R. W. P. Dre-
ver, but has not pre
viously been pub
lished. 

WV 

1+x/d 

VW 
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V = DHI/DQ 

= Kx cos ojt  — (Klmu)p sin ωί 

= KX1 (29) 

which drives an electromagnetic circuit, 

the QRS, in which the charge q flows 

(/5). While capacitive position trans
ducers and inductive velocity trans
ducers are easy to construct, inductive 
momentum transducers are not. The mo
mentum and velocity of the oscillator are 
related by 

χ = d(H 0  + H 1 )/dp 

= p/m - (K/mw)q sin ωί (30a) 

which means that the classical Lagrangi-

an L = px — (H0 + H,) for oscillator 
plus transducers is 

L = y mx2  — i  mo)¥ -  Kxq cos ωί + 

(K^)xq sin ωί + γ  m(K sin  l /m )2q2  

(30b) 

The first two terms represent the oscilla
tor, the third is the capacitive position 
transducer, the fourth is an inductive ve
locity transducer (wire, physically at
tached to oscillator, moves through ex
ternal magnetic field), and,the last is a 
negative capacitor in the QRS circuit. 
Thus, an inductive momentum trans
ducer is equivalent to an inductive veloc
ity transducer (easy to construct) plus a 
negative capacitor (hard) (/5). Although 
negative capacitors are not standard 
electronic components, they can be con
structed in principle, and in principle 
they can be noise-free (/5). 

For an electromagnetic oscillator with 
mechanical QRS, one can achieve the 
desired fi, = K^tq using a capacitive 
transducer for the oscillator's position χ 
(= charge in oscillator's capacitor) and 

an inductive transducer for its momen
tum ρ (= flux in oscillator's inductor). 

The momentum transducer turns out to 

involve a standard mechanical current 
transducer (current = x) plus a negative 

spring in the QRS (/5). In principle nega
tive springs can be noise-free (/5). 

The sinusoidal modulations required 
in the transducers must be .regulated by 
an external, classical clock, which has 
the same frequency ω as one's oscillator. 

One cannot use the oscillator itself as the 

clock because in extracting the required 

oscillatory information from the oscilla
tor one will produce an unacceptably 
large back action on X1. However, be
fore the experiment begins one can 
check the frequency of the clock against 
that of the oscillator. In principle they 
can be made to agree perfectly, and in 
principle the clock can be made fully 
classical so its outputs are real numbers, 
cos ωί and sin ωί, rather than operators 

(/0, 15). In practice, frequency drifts and 

quantum features of the clock need not 
cause serious experimental problems 

(/5, 20). 

A perfect measurement of ku which 

lasts a finite time f, requires infinitely 

strong coupling' in the transducers 
(K —* oo) in order to give a signal that 
overwhelms zero-point noise in the 
QRS. If one has only finite coupling, 
then the zero-point noise accompanying 
the signal gives rise to a limit (Eqs. 16 
and 17 with Χ —* X1 and NT —* F) (13-15) 

AX1 S (ή/2ηιω) ί Ι 2(βωτ)-1 1 2  (31) 

Here β is the dimensionless coupling 
constant (Eqs. 16). Thus, whereas stro-

boscopic measurements with limited 

coupling can beat the amplitude-and-
phase limit by a factor of only (/3ωτ) 1,4 

(Eq. 18b with N = ωτ/ir), continuous 

back-action-evading measurements of X1  

can beat it by (βωτ)~>12. Stroboscopic 
measurements are worse because of 

their smaller duty cycle. 
In the realistic case of weak coupling, 

β < 1, one must average over many cy
cles (ωτ >> 1//3) in order to sub
stantially beat the amplitude-and-phase 
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limit. In this case one can make use of a 
trick analogous to measuring the energy 
by coupling to x2 and averaging: one can 
perform a "single-transducer, back-ac-
tion-evading measurement" (13-15) by 
coupling to 

X COS dit c o s 

(32) 

(that is, cos oit cos and 
then sending the signal through a filter 
(the QRS) with band pass at frequency 

and bandwidth 
. The filter will "average the. 

signal away" until its amplitude has fall-
en by relative to that of the X t 

signal. Since the initial r.m.s. X> signal 
strength is that of the , this cor-
responds to 
in Eq. 6a, which together with the uncer-
tainty relation in Eq. 5c and the argu-
ment of Eqs. 6 tells us that (20) 

(33) 

This is the error in X, due to back action 
from measurement of X2. The additional 
error due to zero-point noise accom-
panying the X, signal into the amplifier is 
(Eqs. 16 and 17 with and 

This type of single-transducer, time-
averaged, back-action-evading measure-
ment of X, appears today to be the most 
viable technique for beating the ampli-
tude-and-phase limit (Eq. 14) in gravita-
tional-wave detection. In place of Eq. 14 
one will face the limiting measurable 
force 

(35) 

Thermal Noise in the Oscillator 

and Amplifier 

The quantum limits derived above are 
not achievable in the laboratory today 
because thermal noise exceeds quantum 
mechanical noise. 

Ignore for the moment thermal 
(Nyquist) noise in the oscillator. Then if 
the resistors in the QRS are cooled suffi-
ciently, the dominant nonquantum noise 
will be that in the amplifier (first classical 
stage). The amplifier, which we assume 
to be linear, can be characterized by its 
power gain G and its noise temperature 

The QRS feeds the amplifier a signal 
at frequency , to which the am-
plifier adds a noise power per unit band-
width 

(34) 

Here is the bandwidth of the experi-
ment (f is the larger of the QRS averag-
ing time and the averaging time in 
subsequent electronics). The ultimate 
quantum limit on the sensitivity is Eq. 33 
if and Eq. 34 if 

" Note that Eq. 34 is the 
same limit (to within factors of order 
unitv) as in the case of exact coupling to 

cos _ sin ait. Thus, 
when , one 
can abandon the momentum transducer 
without any serious loss of accuracy. 

(36) 

Here k is Boltzmann's constant. If the in-
coming signal has power Ps, then the am-
plified signal and noise have power (23) 

Here is the bandwidth, and the Ml/2 
is a zero-point energy that accompanies 
the signal throughout its trek through the 
amplifier and other electronics, but does 
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not get amplified (23).  The quantum lim
its of previous sections of this article are 
attributable to this zero-point energy. In 
the presence of a real linear amplifier, 
with nonnegligible noise temperature 
Tn » Ml/k and large gain G » 1, the 
signal power P s  must fight not (Ml/2)Δ/, 

but rather 

ι hO. 1 Ml \ 

(exp(Ml/kT n ) -T +  G Ύ )  S  

— kTn  Af (38) 

(see Eq. 37). Consequently, it is reason
able to expect that the amplifier noise 
will modify our quantum limits (Eqs. 6c, 
13-15, 17-19, 21, 22, 25, 31, and 33-35) 
by replacing h with (/2) 

These modified quantum limits are some
times called amplifier limits. It will never 
be possible, even in principle, to reduce 
these amplifier limits below the corre
sponding quantum limits (19, 24, 25).  

The best linear amplifiers that have 
been built are parametric amplifiers and 
maser amplifiers, which operate at mi
crowave frequencies and have (kTn / i l)  
as small as ~ 10¾. With such amplifiers 
one can only hope to get within a factor 
20 or V20 of our quantum limits 
(h —>· 20ft). And even to achieve this one 
must design a QRS which upconverts the 
oscillator's signal frequency (kilohertz in 
the gravitational-wave case) to the mi
crowave (gigahertz) region. 

Any physical oscillator (such as the 
fundamental mode of a gravitational-
wave bar antenna) is weakly coupled to a 
thermal bath of dynamical systems 
(sound waves in the bar). This coupling 
produces a frictional damping of large-
amplitude motions, and it also produces 
a thermal-buffeting random walk of the 
oscillator's amplitude (Nyquist noise). 
The r.m.s. random-walk change of the 
oscillator's amplitude during time τ is 

(Δ·Ϊ0)Νϊ(1 = (Ap0/ww)Nyq 

= (ΔΑ*,) Nj,q = (AA^)Nyq 

== (^7/m 2),/2( f/ )1,2 (40) 

Here T is the temperature of the thermal 
bath (the bar's temperature), and Q is the 
oscillator's quality factor (number of 
radians of oscillation required for fric
tional damping of large-amplitude oscil
lations by a factor e in energy). The cor
responding r.m.s. energy change is 

(Δ£)Νϊβ = (2£„*7)Ι/2(ωί/ρ)"2 (41) 

These Nyquist noises must not exceed 
the amplifier limits (quantum limits with 

h —* IkTJQ.) if one is to achieve the am
plifier limits in real experiments. Some 
numbers will be given below. 

Prospects for Stroboscopic Measurements 

One possible scheme for stroboscopic 
measurements of a mechanical oscillator 
(gravitational-wave antenna with mass 
m— 10 kg and frequency ω = 3 x IO4 

sec-1) is shown schematically in Fig. 2. 
The mass of the oscillator is physically 

attached to the central, movable plate of 

a capacitor (capacitance between outer 
plates = Q, which plays the role of 

transducer. The capacitor resides in the 
QRS-a high-frequency LC circuit 
[frequency Ω = (LC)~in — IO10 sec-1], 
which has small losses [amplitude damp
ing time τ = 2(RCill)~' << 0.1/ω] and 

which is driven at its resonant frequency 
Ω by an external generator. In practice 
this circuit would be a microwave cavity 

(26). At the measurement times ωί = 0, 
π, 2ττ, . . . the generator is turned on for 
a time τ/2 and then turned ofif, and in an 
additional time τ/2 the excitations in the 

circuit die out. During the brief on-time 
τ, the amplifier sees a voltage signal 
K = (Vo/d) Ωτχ cos Ωί, where V0/d is 

the amplitude of the oscillating electric 
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field between the capacitor plates. The 
experimenter averages the amplitude of 
this signal (with alternating sign) over N 
measurements to determine the position 
x of the oscillator. 

It is straightforward to analyze the 
noise performance of this system by 
standard circuit theory. Alternatively, 
one can invoke the general formulas of 
Eqs. 15 to 19 for stroboscopic measure-
ment schemes. Assuming that the resis-
tor's physical temperature is less than 
the amplifier's noise temperature .. 
K, the amplifier noise dominates and in 
Eq. 18b we must replace 
Assuming that the amplifier is properly 
impedance-matched to the circuit, the 
measurement will achieve the limiting 
precision (Eq. 18b) 

(42) 

Comparison of the voltage signal with 
Eq. 16a reveals that 

scrutiny of Fig. 2 reveals 
that the QRS output impedance, as seen 
by the amplifier, is con-
sequently the dimensionless coupling 
constant of Eq. 16b is 

Combining this 
with the required pulse time 

we find 

(43) 

To avoid voltage breakdown in the ca-
pacitor, its electric field amplitude 
-should not exceed volt/cm. 
Assuming other reasonable parameters 

pf, 1000, 

Thus this system can achieve a sensitivi-
ty that is a factor (20)1'4 = 2.1 below the 
amplitude-and-phase amplifier limit; but 
this is still an order of magnitude worse 

than the amplitude-and-phase quantum 
limit cm. 

Nyquist noise in the antenna (Eq. 40 
with ' will be less than the mea-
surement precision cm if 
the antenna is cooled to 4 K and has a 
quality factor This is com-
parable to the best mechanical Q that has 
been achieved (27) for a sapphire crystal 
at 4 K. 

Prospects for Single-Transducer 

Back-Action-Evading Measurements 

The configuration of Fig. 2 can also be 
used in a single-transducer, back-action-
evading measurement of k x . In this case 
the circuit's amplitude damping time 

becomes the averaging time 
of the QRS filter (previously it was the 

stroboscopic pulse length), and we re-
quire (previously it was 

Instead of being pulsed, the 
generator's modulating voltage has the 
steady-state form sin sin ait, 
which produces an electric field 
cos n cos (at in the capacitors 

That electric field, interacting 
with the motions sin 
a>t of the mechanical oscillator, produces 
a signal voltage 

(45) 

at the output of the QRS. Amplification 
of this signal produces information about 

and with relative accuracies 

Assuming that the resistor noise is 
negligible compared to amplifier noise 
(which it will be if the physical temper-
ature of the resistors is somewhat less 
than the noise temperature of 
the amplifier), we can compute the noise 
performance of this system from Eqs. 
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16, 33, and 34 with h —* IkTJQ.. The best 
quali ty factor that  has been achieved (26) 
for a superconducting microwave reso
nator (our QRS circuit) with a narrow ca-
pacitive gap is Qe = Ωτ*/2 = IO7, corre
sponding to τ* — 10~3 second. Conse
quently back-action forces (Eq. 33) limit 
the sensitivity to 

\ mo> I (2\/2OiTifYn 

= 2 x IO"18 cm (46) 

a factor 9 below the amplitude-and-phase 
amplifier limit and approximately twice 
the amplitude-and-phase quantum limit. 
(Here we use Ta = 10 Κ, Ω - IO10 sec-1, 

w = 10 kg, and ω = 3 x IO4 sec"1 as be
fore.) In order that Nyquist noise in the 
mechanical oscillator (Eq. 40) not ex
ceed this sensitivity, the averaging time 
must not exceed f = 0.01 sec. (Here we 
use the same oscillator temperature and 
Q as before, T= 4 K and Q = 4 χ 109.) 

To achieve the limit in Eq. 46 we also 
require a coupling constant β — Is/ItJt 
~ 0.3 (Eq. 34). To compute β, first de
rive K\g2,\ = (V0Id)(ClTjlVl) from Eqs. 
16a and 45 with χ —» X1; then evaluate 
the impedance seen by the amplifier in 
Fig. 2 at the X1 signal frequency 
Ω = (LC)"1'2, £22 = 2τ JC; then eval
uate Eq.16b 

β = (V 0/d)2CClTj(\6mw 2) (47) 

The required β of 0.3 can be achieved 

with the same electric field in the capaci-
tive gap as we used before: V0/d = 1 x 

IO6 V/cm. 

This example and that of the last sec
tion confirm that it is easier to achieve a 
given level of sensitivity by continuous, 
single-sensor, back-action evasion than 
by stroboscopic techniques. However, 
along the route toward realization of 
such experiments there remain a series 
of difficult experimental problems—not 
least of which is the frequency stability 

of the clock that regulates the voltage 

generator. 

On the Limiting Frequency Stability 

of a Generator 

Although current technology can 
achieve the frequency stability required 
by the above examples, it is of longer 
term interest to know ultimate quantum 
mechanical limits on the stabilities of 
clocks. 

At present the world's most stable 
clocks are the superconducting cavity 
stabilized oscillator (SCSO) (28) and the 
hydrogen maser (29). Both involve self-
excited electromagnetic oscillations in
side a cavity. In the SCSO the clock fre
quency Ω is regulated by the cavity's 

normal mode, and a change Δ/ of a typi
cal dimension / of the cavity will produce 
a frequency change 

ΔΩ/Ω = Al/1 (48) 

In the maser, if the electromagnetic qual
ity factory Qe of the cavity (Teflon 
bubble) exceeds £Ω x (mean time hy
drogen atoms spend in cavity) = Ω3, 

then Eq. 48 will be true. Otherwise, 
ΔΩ/Ω = (AlfI)(QeZQa), and the limit de
rived below is correspondingly modified. 

A quantum limit on the frequency sta
bility of any electromagnetic oscillator 
satisfying Eq. 48 is derived in (JO). The 
source of the limit is quantum fluctua
tions in the deformation of the cavity 
walls by electromagnetic stresses. Since 
the stresses in the electromagnetic field 
are equal to its energy density HeIl3  

(with tie the Hamiltonian of the electro
magnetic oscillator), the force on the 

walls is fle/l, and this deforms the walls 
by δ/ = fie/lk, where k is the mechanical 

spring constant of the walls. The electro
magnetic field is in a thermalized coher
ent state with n0 quanta, which possesses 
quantum fluctuations AHe > η0"2ΛΩ; 
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consequently, Δ/ a n0
mhil/kl, which 

leads to frequency fluctuations (Eq. 48) 

ΔΩ/Ω > n0
mhil/kP (49) 

This electromagnetic back-action limit 
must be contrasted with the limiting pre
cision for measurements of Ω during an 
averaging time f: ΔΩ a Δψ/τ, where 
Αφ a M0

-1'2 is the quantum uncertainty in 
the phase of the oscillator's coherent 
state 

ΔΩ/Ω > «,Γ 1/2(ΩτΓ' (50) 

(Townes-Schawlow limit). These two 
limits lead to an optimal number of quan
ta n0 and an ultimate quantum limit 

ΔΩ ^ ζ h 

~ n ~ [ k P f  
(51) 

For a cavity with wall thickness com
parable to cavity dimensions I, or for a 
"cavity" made by coating the outside of 
a dielectric crystal with superconducting 
material (31), the spring constant k is re
lated to the Young's modulus EU of the 
cavity walls by k ~ EMVII2, where V is 
the cavity volume. Then 

ΔΩ/Ω a ( h / E M V f ) m  (51') 

In practice Em s IO13 dyne/cm2, V — 1 

cm3, so ΔΩ/Ω> IO"20 (τ/1 sec)-1'2. This 
limit is achievable in principle, but cur
rent technology is far from it. 
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GUIDE TO SOME FURTHER LITERATURE 

The following papers are cited, not 

with any thought of providing a com

prehensive bibliography, but rather 

with the aim of providing a few points 

of entry to an enormous literature. The 

traditional detective novel is loaded 

with clues, most of them irrelevant, 

distractive or downright deceptive. The 

few truly decisive items have no star to 

distinguish them. That is how the au

thor conceals his plot. If we have dis

tinguished no items with a star in our 

bibliography, it is because we do not 

know the plot! 

I. QUESTIONS OF PRINCIPLE 

Consciousness: Wigner reasons that an 

observation is only then an observation 

when it becomes part of "the conscious

ness of the observer" (Wigner, 1969) 

and points to "the impressions which 

the observer receives as the basic entities 

between which quantum mechanics 

postulates correlations" (Wigner, 1971). 

For Bohr, the central point is not "con

sciousness" (Kalckar, 1967), not even 

an "observer," but an experimental 

device—grain of silver bromide, Geiger 

counter—capable of an "irreversible 

act of amplification" (Bohr, 1958, p. 88) 

that brings the measuring process to a 

"close" (Bohr, 1958, p. 73). Only then, 

he emphasized, is one person able to 

describe the result of the measurement 

to the other "in plain language" (Bohr, 

1963, p. 3). For more on consciousness, 

see Fuller and Putnam (1966), Popper 

and Eccles (1977), Pugh (1976), and 

Wheeler (1981a,c) as a few items in an 

enormous literature. Moreover, "con

sciousness" may not be the unique 

faculty that thinkers of the past as

sumed, feature as it is of the brain. Thus, 

the eye, the "window of the mind" has 

evolved independently in at least forty 

different places and times, according 

to Salvini-Plawen and Mayr (1978). In 

addition, the very mechanism of that 

evolution, beautiful as it is, would ap

pear (see, for example, Cooper, 1973, 

Nass and Cooper, 1975, and Cooper, 

1975) a natural spelling out of the 

principles of computers and automata 

sketched out in a preliminary way by 

von Neumann (1958). 

Is meaning—a term appropriate for 

a community—more relevant than the 

individual consciousness for under

standing where the "individual quan

tum phenomenon" links up with human 

perception ?Is this why it is so important 

that the result of a quantum phenom

enon, being "closed by irreversible 

amplification" (Bohr, 1958, p. 73), is 

"unambiguously communicable" from 

one to another in "plain language"? 

(Bohr, 1963, pp. 5, 6, and 3). If so, a 

direct link would seem to be established 

with a central theme of American and 

British philosophical investigations in 

recent decades, work most briefly sum

marized in the phrase of Follesdal 

(1975), "Meaning is the joint product 

of all the evidence that is available to 

those who communicate." It reflects the 

spread of views on a topic so elusive 

as this to recall the words of David 
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Hume (1779): "What peculiar privilege 
has this little agitation of the brain that 
we call thought that we must make it 
a model for the entire universe?" 

Bohr's phenomenon and philosophers' 

phenomenalism are to be distinguished. 
Phenomenon is an individual quantum 

process brought to a close by an ir
reversible act of amplification. Phenom
enalism is "the view that the existence 
of a physical object is dependent upon 
its being perceived by some percipient, 
that a physical object is nothing but a 
construct made up of the percepts that 
are the immediate objects of perception. 
It follows directly from this that the 
physical world is completely dependent 
on some perceiver(s) for its existence 
and that if all perceivers were anni
hilated, the physical world would ac
cordingly cease to exist" (Halverson, 
1967). This view of physics has ancient 
antecedents. Parmenides of Elea argued 
that "what is ... is identical with the 
thought that recognizes it" (Parmenides, 
~550 B.C.). Bishop George Berkeley 
advocated the position "Esse est per-

cipere aut percipi," "to be is to perceive 
or to be perceived." (Berkeley in 
Calkins, ed., 1929). 

Ε. E. Thomas (1921), analyzing R. H. 

Lotze's philosophical system of tele-

ological idealism (1874-1879), distin
guishes it from Berkeley's and similar 
ideas with these words: "Many indeed 
have maintained that we create the 
world of being—that out of our minds, 
or out of some universal mind in whom 
we exist and have our being, we intro
duce into sense the individualising ele
ment and so exercise a creative activity 
in relation to the things which we per
ceive around us. Lotze tells us, however, 

that we do no such thing, but that the 
sense qualities themselves are the cre
ators of their own individuality; that 
indeed sense qualities are the con
stitutive elements in a continuously 
creative activity, and that the individual 
whole which lives in and through such 
activity is what we understand by a real 
thing ... that a 'real thing is nothing 
but the realised individual law of its 
procedure.'" Husserl (1913) provides 
a still more widely read and widely 
influential account of phenomenology. 

Ernst Mach, patron saint of posi

tivism, and inspiration in Einstein's 
early thinking about relativity, special 
and general, opposes any "dualism of 
feeling and motion" as arising "from 
an improper formulation of the ques
tions involved." He goes on, "I maintain 
that every physical concept is nothing 
but a certain definite connexion of the 
sensory elements which I denote by 
ABC ..., and that every physical fact 
rests therefore on such a connexion. 
These elements—elements in the sense 
that no further resolution has as yet 
been made of them—are the simplest 
building stones of the physical world 
that we have yet been able to reach" 
(Mach, 1897). 

For an up-to-date account of the 
many steps by which the eye processes 
entering photons into visual perception, 
reference may be made to Hubel and 
Wiesel (1977) and Hubel (1978). 

How concepts are formed from sensory 

experience has been elucidated in part 
by the famous and extensive studies of 
learning in children by Jean Piaget and 
his school, summarized by Richmond 
(1971). How decisive the difference is 
between Berkeley's iHree that falls in 
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the forest"—a many quantum pro
cess—and the individual quantum phe
nomenon is stressed in Wheeler 
(1981a,c). He notes that in the tran
sition from individual quantum effects 
to classical concepts, "Many a chance 
'yes, no' gives rise to the substantiality 
'how much.'" 

Popper (1982a,b; 1983) argues for 
an almost classical interpretation of 

Heisenberg's indeterminacy relations; 
he hopes for a "way in which the inter
ference of the subject with the object 
may be visualized as something of 

no fundamental importance—a conse

quence of the prevailing laws of inter
action, and therefore in no way capable 
of explaining these laws, or their 
indeterminist character" (1982b, p. 191). 

The vastness of the literature on 
"reality" is very inadequately indicated 
by the foregoing sampling; and as to 
the great scope of that literature, it 
may be enough to give one tiny taste 
by citing the article of Heath (1972) 
on "nothing." 

From these links between quantum 
theory and epistemology, we turn in 
the following five sections of this bib
liography to issues that lie more clearly 
in the traditional purview of physics. For 
surveys of quantum theory additional to 
those cited in the Preface, the following, 
among others, may be mentioned: d'Abro 
(1939, 1951), DeWitt and Graham (1971), 
Dirac (1971), Eisenbud (1971), Feyera-
bend (1962), Flato (1976), Gamow (1966), 
Heisenberg (1930), Hermann (1979), 
Hoffmann (1959), Hund (1974), Jammer 
(1966), Jauch (1973), Klein (1959,1970), 
Kramers (1956), Lande (1955, 1960, 
1965), Mehra (1974), Pais (1979), Piron 
(1976), Price and Chissick (1976). Puli-

gandla (1966), Ruark and Urey (1930), 
Whittaker (1953), Yourgrau and van der 
Merwe (1971), and Bohr's Collected Works 

(Rosenfeld and Nielsen, 1972-1976); 
Nielsen, 1977). 

II. INTERPRETATIONS OF THE 

ACT OF MEASUREMENT 

As early as 1909, G. I. Taylor showed 
that one obtains interference fringes 

even with feeble light; and other experi
ments with similar findings have been 
reported by Dempster and Batho (1927), 
Janossy and Naray (1957), Frisch (1965), 
Donstov and Baz' (1967), and Reynolds, 
Spartalian, and Scarl (1969). 

An irreversible act of amplification is 
an essential feature of the elementary 
quantum phenomenon as conceived by 
Bohr; but not one mention of that 
term occurs in the formulation of the 
act of measurement as presented by 
von Neumann (1932), London and 
Bauer (1939; printed here in translation 
as II.l), and Wigner (1976). This dif
ference in outlook is far from having 
been resolved today, central though 
it is. Many issues have been and 
continue to be explored in the attempt 
to clarify the situation. One of them is 
irreversibility, on which we cite, for 
example, Davydov (1947), the discus
sions by Frisch, von Weizacker, Bohm, 
Aharonov and Petersen, Prosperi, and 
others in Bastin (1971) and Belinfante 
(1975). 

Consider amplification as we know 
it from Bohr's discussion, as an "ir
reversible process" that brings the ele
mentary quantum phenomenon to a 
close, and redundancy as that term is 
understood in information theory 
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(Pierce, 1961): What do they have in 
common? Can we construct a macro
scopic redundant record of a certain 
observable by making sufficiently many 
microscopic copies of the same obser
vable? Several papers pursue this line 
of investigation (Green, 1958; Bell, 
1975; Machida and Namiki, 1980a,b; 
Araki, 1980; Zurek, 1982a,b). In par
ticular, Whitten-Wolf and Emch (1976), 
updating Hepp (1972) and Emch (1972), 
propose a model of an amplification 
device (two infinite non-interacting 
chains of |-spin), which, though rather 
idealized and unrealistic, nevertheless 
provides, they propose, an exactly solv
able model in which one can see both 
the "reduction of the wavepacket" and 
the transfer of information from a 
microscopic to a macroscopic level. 

Relativity of quantum observables is 
ignored in the usual treatments of the 
process of measurement. There obser-
ables are assumed to be absolute. 
A preferred direction—z-axis—in the 
measurement of the spin is assumed to 
be "God-given." Zurek (1981, 1982a,b) 
points out that in fact physical obser-
ables are always defined in a relative 
manner, with respect to other physical 
systems. This observation alone may be 
significant for reconciling distinct and 
definite outcomes of measurements as 
perceived by the individual observer 
with the indefinite superpositions of 
outcomes which follow from Schro-
dinger evolution of the combined ap
paratus-system wave function. In 
particular he shows that only the "open" 
apparatus interacting with the environ
ment will "know" what observable of 
the measured system it is supposed to 
record. The very interaction which will 

define the preferred "pointer observ
able" of the apparatus will also remove 
spurious correlation elements from the 
apparatus-system density matrix, thus 
accomplishing von Neumann's "second 
stage of the measurement," reduction 
of the wavepacket. In the absence of 
the environment, on Zurek's view, the 
observable measured by the quantum 
apparatus will be uncertain, but the 
outcome of the measurement may ap
pear definite (Zurek, 1982a,b). This at 
first sight preposterous statement may 
be illustrated by an EPR-correlated 
pair of spin-^ particles, with their wave 
function given by 

k> =  { | i>i®| l>2- | l> i®| t>2}/2 1 / 2 ·  

Zurek notes that "Nothing can keep 
one from thinking of the first spin as of 
the measured system and of the second 
spin as of a quantum apparatus. After 
the first stage of measurement, which 
has resulted in the wave function |σ), 
the state of the spin-system with respect 
to the spin-apparatus is quite definite: 
The (no. 1) spin-system always points 
in the direction which is opposite to 
the orientation of the (no. 2) spin-
apparatus. This is a definite, 'coordi
nate-independent' statement. Thus, 
from the point of view of the spin-
apparatus, the measurement has al
ready yielded a definite result. However, 
from the point of view of an external 
observer the measurement has not 
been completed: the state of the spin 
remains indefinite with respect to the 
state of the coordinate system in which 
this observer describes physics." 

The non-linear Schrodinger equation 

foreshadowed in Wigner's lecture notes 
(1976, printed here as section II.2) 
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appears in a concrete form in Wigner 
(in Meystre and Scully, 1983). This is 
different from the non-linear wave 
equation proposed by Bialynicki-Birula 
and Mycielski (1976), and discussed by 
Shimony (1979), an upper limit to the 
critical parameter in which has been 
set by the observations of Shull, 
Atwood, Arthur, and Horne (1980). 

Irreversible increase of entropy and 
the problem of measurement in quan
tum physics are intimately connected, 
as pointed out by von Neumann (1929, 
1932): Irreversible evolution could get 
rid of spurious correlations represented 
by off-diagonal elements in the 
apparatus-system density matrix. As
suming that irreversible evolutions are 
possible, one can accomplish reduction 
of the wavepacket. This conclusion 
stimulated many to seek the resolution 
of the measurement problem by 
invoking irreversibility and the second 
law of thermodynamics, among them 
Green (1958); Daneri, Loinger, and 
Prosperi (1962); Prigogine, George, 
Henin, and Rosenfeld (1973); and Pen
rose (1981). The unitary and reversible 
evolution given and demanded by quan
tum theory cannot, however, dissipate 
any information. This circumstance 
leads to the fundamental difficulty dis
cussed by Zeh (1971) among others. 
However, it may be possible to transfer 
the information rather than dissipate 
it (Davies, 1974, p. 168; Zeh, 1971; 
Zurek, 1982a). Then the forgetting of 
the off-diagonal correlation terms 
would not be due to the irreversible 
decay of information, but rather due to 
its transfer. This scenario ties in with 
the process of amplification, where the 
information about the chosen observ

able of the measured system is recorded 
in many separate copies at the expense 

of the information about complemen
tary observables. 

The relative state or "many-worlds" 

approach to measurement described 
by Everett (1957; reprinted here as 
II.3) and independently put forward by 
Cooper and Van Vechten (1969) and 
other early papers on this line of 
thought are brought together in the 
book of Dewitt and Graham (1973); 
and Cooper (1976) has written a further 
paper. This outlook, originally defended 
by Wheeler (1957) has subsequently 
been judged wanting by him (1977), 
Bell (1971b), Zeh (1975), and Wigner 
(1976, printed here as II.2). 

Interpretation basis is the term used 
by Deutsch (1981) to describe a pre
ferred basis system in which the splitting 
of the universes in Everett's many-
world interpretation takes place. His 
work aims to solve the problem of the 
non-uniqueness of the relative states as 
defined by Everett and exemplified by 
the many options open (Zurek, 1981) 
for the polarizations of the two photons 
produced in the annihilation of posi-
tronium. On the view of Deutsch, "At 
the instant of completion of a measure
ment, the interpretation basis is deter
mined by the requirement that a mea
surement has indeed taken place"; 
and he provides a system of equations 
designed actually to calculate this inter
pretation basis. 

Does GddeVs undecidability have any 

connection with quantum indeterminisml 

A few items of literature bearing on 
this issue will be found in Section V, 
below. 

In connection with the theme of 
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"law without law" (Wheeler, 1979-1981, 
reprinted here as 1.13), special reference 
should be made to the philosophical 
arguments already put forward for 
indeterminacy before the advent of 

quantum theory by Fritz Exner, de
scribed in recent papers of Forman 
(1971) and Hanle (1979). No guide 
would seem more valuable in the further 
exploration of the thesis of "law without 
law" than the well-known motto, "More 
is different" (P. W. Anderson, 1972). 
Charles S. Peirce (1897) asks, "May 
these forces of nature not be somehow 
amenable to reason? May they not 
have naturally grown up?" In contrast, 
James Clerk Maxwell (in Campbell 
and Garnett, 1969) argues that "No 
theory of evolution can be formed to 
account for this similarity of molecules, 
for evolution necessarily implies con
tinual change, and the molecule is 
incapable of growth, or decay, or 
generation, or destruction." 

"Quantum logic" is a term occa
sionally used for one of the several 
mathematically equivalent ways avail
able to state, the content of quantum 
theory. It differs as much from wave 
mechanics in the mathematical ma
chinery that it uses for this purpose, 
as wave mechanics differs from matrix 
mechanics or both from Dirac's abstract 
operator algebra. Its focus of attention 
is propositions, such as the proposition 
that the spin of this silver atom points 
in the + z direction. The totality of all 
conceivable propositions forms a "lat
tice." There are subsets of this lattice 
which are "Boolean"; and if classical 
theory is applied, the lattice as a whole 
would be Boolean. In quantum theory 
one asks questions such as (1) Given a 

certain proposition, tell what Boolean 
sub-lattices of the total lattice are com
patible with that proposition; (2) Derive 
the existence of the Hilbert space of 
quantum theory from the structure of 
the lattice of propositions; and con
versely, derive the structure of the lat
tice of propositions from quantum 
mechanics in its Hilbert space for
mulation. There was a time when a few 
thought that "quantum logic" meant a 
new kind of logic. That mistaken 
illusion being by now demolished, one 
translates the phrase "quantum logic" 
today as the logic of the relations 
between each proposition and all the 
others. Thus, if the proposition is true 
that the spin of the silver atom is in 
the +z direction, then the proposition 
is false that the spin of the silver atom 
is in the — ζ direction; and the prop
osition that the spin of the silver atom 
is in the +x direction is neither true 
nor false—from which one goes on to 
discuss probabilities. Jammer (1974) 
gives, in chapter VIII of his book, an 
extensive account of the history and 
literature of the subject, from the path-
breaking paper of Birkhoff and von 
Neumann (1936) to the extended devel
opment in such books as Mackey (1963, 
pp. 61-85), Jauch (1968, chapters 5 and 
8), Ludwig (1970), Hooker (1975), Mit-
telstaedt (1978, 1979), and Suppes (1976). 
It is a fortunate circumstance for the his
tory and further development of this sub
ject that the hitherto unpublished lecture 
notes of von Neumann have recently been 
edited and published in book form (von 
Neumann, 1981). Related to this outlook 
is a theorem of Gleason (1957) which sim
plified the axiomatics of quantum me
chanics. In a separable real or complex 
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Hilbert space H of more than two dimen
sions, every measure μ(Α) on the sub-

spaces of H has the form μ(Α) = trace 

(TPA), where PA denotes the orthogonal 

projection on the subspace A and Γ is a 
fixed operator of trace class. 

When is a "measurement of nothing" 

a measurement? This question, con
sidered by Epstein (1945) and Renninger 
(1960), has been illuminated by a 
recent paper of Dicke (1982). 

It may give a final impression of the 
scope of the topic of "Interpretations 
of the Act of Measurement" to list a 
sampling of other items: a book of 
Audi (1973) on the interpretation of 
quantum mechanics, a review by 
Ballentine (1970) on the statistical in
terpretation of quantum mechanics, a 
book of Whyte (1974) on the "universe 
of experience," a paper of DeWitt (1970) 
on "quantum mechanics and reality," 
a discussion by Aharonov and Vardi 
(1980) on the meaning of an individual 
Feynman history, and papers of 
Aharonov and Albert (1980, 1981) on 
measurement in relativistic quantum 
mechanics. 

Other general references include 
Bohm (1953), Ludwig (1953), Korner 
and Pryce (1957), d'Espagnat (1971a,b), 
Belinfante (1978), de Broglie (1941, 1953, 
1962), Feynman (1951), Furry (1936), 
Moyal (1949), and Wigner (1961, 1963). 

III. "HIDDEN VARIABLES" VERSUS 

"PHENOMENON" AND 
COMPLEMENTARITY 

BelFs inequality (1966; III.4 in this 
book) was extended by Clauser, Home, 
Shimony, and Holt (1969) to cover 
actual systems (see also Fehrs and 
Shimony, 1974, and Shimony, 1974), 

providing an experimental test for all 
"local hidden-variable theories"; it has 
been shown also to apply to "objective 
local theories" (Clauser and Home, 1974) 
and to "realistic local theories" (Clauser 
and Shimony, 1978). The latter paper con
tains an extensive review of the subject of 
Bell's inequality and hidden variables. 

The polarizations of the two annihila

tion photons given out when positro-
nium disappears have a correlation in 
angle that can be measured as suggested 
by Wheeler (1946; III.l here) and that 
has been calculated by Pryce and 
Ward (1947) and by Snyder, Pasternack, 
and Hornbostel (1948). 

Maximum and minimum rates of 

coincidence between counters detecting 
annihilation quanta were measured for 
perpendicular and parallel orientations 
of the two polarizations by Bleuler and 
Bradt (1948), Hanna (1948), Vlasov and 
Dzeljepov (1949), Wu and Shakhov 
(1950), Hereford (1951), and by Berto-
lino, Beltoni, and Lazarini (1955). All 
of these investigators found qualitative 
agreement with the predictions of quan
tum theory, though less than perfect 
angular resolution made quantitative 
comparisons difficult. 

The correlation in polarization of 

annihilation photons was measured 
anew by Langhoff (1960) with improved 
angular resolution, using both 22Na 
and 64Cu as radioactive sources of the 
positrons to be slowed down and 
annihilated in the sample. The depen
dence of coincidence rate upon angle 
between the two polarizations agreed 
well with quantum theory. 

Still more precise measurements of 

coincidence rate in its dependence on 
angle between the two polarizations 
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(Kasday, Ullman, and Wu, 1970; Kas-
day, 1971; Kasday, Ullman, and Wu, 

1975; Bruno, d'Agostino, and Maconi, 
1977; Mesenheimer, 1979), supple
mented by reasonable additional sym
metry assumptions, appear to indicate 
disagreement with Bell's inequality, 
agreement with quantum theory; they 
also to rule out the Bohm-Aharonov 

theory (1957, 1960) in which the state 
vector is assumed to change at random 
into one of the members of an ensemble 
of product states. 

Agreement with BelTs inequality and 
therefore disagreement with quantum 
theory was reported in measurements 
of the correlation of the polarizations 
of annihilation quanta by Faraci, 
Gutkowski, Nottarigo, and Penisi 
(1974). Moreover, their measurements 
made on annihilation photons, some 
of which had a coherence length of 7 
cm, others 47 cm," suggest that there is 
a decrease of correlation with increase 
in the difference between the flight paths 
of the two photons. 

Disagreement with the results of 

Faraci et ai, agreement with the pre
dictions of quantum theory, was found 
by Wilson, Lowe, and Butt (1976). 
They used a 64Cu source and were able 
to vary the separation between photon 
source and polarizers by as much as 
2.5 m, and the difference in separation 
by as much as 1 m, as compared to a 
12 cm coherence length for the annihi
lation photons. They found no depen
dence of polarization correlation upon 
either separation. 

Correlation of spins in low-energy 

(ρ, p) scattering has been observed by 
Lamehi-Rachti and Mittig (1976). De
partures from Rutherford scattering 

arise at low energies almost exclusively 
from the interaction of protons in a 
state of zero orbital angular momen
tum. That state is symmetric in proton 
coordinates. In order to satisfy the 
Pauli exclusion principle, it must be 
antisymmetric in proton spins; that is, 
it must possess total spin zero. Such a 
state gives rise to a maximal anticorre-
lation of the spin directions of the two 
particles. The measurements, as dis
cussed by the observers and by Pipkin 
(1978), indicate that the hypothesis of 
agreement with quantum theory, dis
agreement with the Bell inequality, has 
only 7 chances in IO4 to be wrong. The 
experiment was not unambiguous be
cause the efficiency of the analyzers of 
polarization was low. 

Correlation of the polarization of the 
photons emitted in a 2-photon atomic 

cascade was investigated—to discrimi
nate between quantum theory and Bell's 
inequality—by Kocher and Commins, 
1967; Freedman and Clauser, 1972; 
Holt, 1973 (still unpublished; the only 
such experiment to disagree with quan
tum theory); Freedman and Holt, 1975; 
Clauser, 1976; Fry and Thompson, 
1976 (III.8 in this book); and Aspect, 
Grangier, and Roger (1981). An exten
sive review has been given by Pipkin 
(1978). In the experiment of Aspect, 
Grangier, and Roger, the relevant 
quantity <5, 

( coincidence rate for \ 
polarizers separated by 22.5° I 

(same, for\ 

S= . " V 67-5° ) , _ 

/ coincidence rate with \ 

\both polarizers removed) 



FURTHER LITERATURE 777 

is found to be (5.72 ± 0.43) χ IO"2, 

violating by more than 13 standard 

deviations the condition δ < Orequired 

by Freedman's transcription of the Bell 

inequality, but agreeing with the pre
diction of quantum theory, δ = (5.8 + 

0.2) χ 10~2. Moreover, these investi
gators report, "moving each polarizer 
up to 6.5 m from the source, that is, to 
four coherence lengths of the wave 
packet associated with the lifetime of 
the intermediate state of the cascade 
(5 ns), we observed no change in the 
results." These experiments provide the 
clearest evidence to date for that viola
tion of the Bell inequality that is 
predicted by quantum theory. 

A "pilot-wave theory" or "theory of 

the double solution," proposed by de 
Broglie (1928), can be regarded as a 
first attempt to cast quantum theory 
in a deterministic mold, and thus 
achieve the goal of the modern-day 
"hidden variable" theories. According 
to de Broglie, the usual wave function 
φ is to play a twofold role: apart from 
being a "probability wave" it is also to 
represent and determine the trajectory 

of the particle as a singular solution of 
the wave equation. Pauli (1928a) 
objected to de Broglie's ideas. He 

showed in a specific example that the 
motion of the singularity-particle will 

take place in a many-dimensional, and 
hence fictitious, configuration space. 

Exploration of any hidden-variable 

approach to quantum theory was aban

doned for many years after von 
Neumann (1932) published his much-
discussed proof, later reformulated by 
Jauch and Piron (1963), that hidden 
variables of a rather restricted class 
directly contradict the experimentally 

confirmed predictions of quantum 
theory. 

Theories of hidden variables were 

resuscitated by Bohm (1952a,b), first 
to point out that von Neumann's 
theorem did not have the generality 
commonly attributed to it. Bell (1966) 
identified the specific assumption of 
von Neumann that was not satisfied 
by so-called "realistic hidden variable 
theories." 

The history and status of theories of 

hidden variables are reviewed by Bel-
infante (1973), Jammer (1974), and 
Pipkin (1978). Apart from the papers of 
Bohm and Bell included in the present 
collection there is a wide-ranging liter
ature, not all of it free from speculation, 
on hidden variables. A few points of 
entry are provided by the papers of 
Bohm and Aharonov, 1957, 1960; Bub, 
1969; Bohm and Bub, 1966a,b; Bohm 

andVigier, 1954; Vigier, 1951, 1956; and 
Rietdijk, 1971. 

An inequality, an upper bound on the 

strength of correlations of polarization 

which can be allowed by a deterministic 
and local theory of hidden variables, 
was derived by Bell (1964) in the course 
of reexamining the arguments of Ein
stein, Podolsky, and Rosen (1935). 
Extensions of Bell's inequality have 
been given by Bell, 1971a; Clauser and 
Home, 1974; McGuire and Fry, 1973; 
and Garuci and Selleri, 1976. 

The so-called "non-locality" of quan
tum theory as it shows in the Einstein-
Podolsky-Rosen and other experiments 
is discussed in some detail by d'Es-
pagnat, 1976, part 3, and 1979; Bohm 
and Hiley, 1975, 1976; and Hiley, 
1977; and in other papers too numer
ous to cite. Several interesting papers 
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of John S. Bell consider the bearing of 

so-called "non-locality" on what shall 

be understood by the term "reality." 
Bell (1976) is "particularly concerned 
with local "beables," those which (un
like, for example, the total energy) can 
be assigned to some bounded space-
time region." He formulates one con

cept of "local causality," and shows 
that "ordinary relativistic quantum 
field theory is not locally causal in this 

sense." Bell (1980a), on "Bertlmann's 
socks and the nature of reality," presents 
the EPR experiment in a particularly 
vivid form, and outlines four alterna

tive ways to come to terms with its 
implications for "reality." In particular 

he discusses the idea that the settings 
of the polarization analyzers (in Bohm's 
version of the EPR experiment) might 
not be independent in the sense assumed 
by apparently free-willed experimental 
physicists, and adds, "But this way of 
arranging quantum mechanical corre
lations would be even more mind-
boggling than one in which causal 

chains go faster than light. Apparently 
separate parts of the world would be 

deeply and conspiratorially entangled, 
and our apparent free will would be 
entangled with them." Bell (1980b) 
defends the de Broglie-Bohm version of 
quantum theory "as sharp where the 
usual one is fuzzy, and general where 

the usual one is special" and illustrates 
this view by analyzing the delayed-
choice double-slit experiment. Henry 
P. Stapp (1972, 1981) advocates a 
"psychophysical theory" in which "the 
physical world described by the laws of 
physics is a structure of tendencies in 
the world of mind." 

"Delayed choice experiments" were 

prefigured by Einstein, Tolman, and 

Podolsky (1931, reprinted here as 1.7), 

as well as by Bohr's solitary and preg
n a n t  s e n t e n c e  ( 1 9 4 9 ,  p .  2 3 0 ) ,  " . . .  i t . . .  
can make no difference, as regards 

observable effects obtainable by a defi
nite experimental arrangement, whether 
our plans for constructing or handling 

the instruments are fixed beforehand or 
whether we prefer to postpone the 
completion of our planning until a 

later moment when the particle is 
already on its way from one instrument 
to another." They were foreshadowed 
in an analysis of the uncertainty prin
ciple, as it shows up in the operation of 
an electron microscope, done by 

eighteen-year-old Karl Friedrich von 
Weizsacker (1931) at the instance of 
Heisenberg. On page 128 of this paper 

appears this sentence (in our transla
tion), "Physically one would reason in 
this case [atom not in the image plane 
but at the focal distance] that a photon 
absorbed at the focal distance must, 
already before it went through the lens, 
have become equivalent to a plane 
wave whose direction of propagation 

can be calculated from the position of 
the absorbing atom." The general con

cept of delayed-choice experiments was 

formulated, and seven types of such 
experiments were spelled out, in 
Wheeler (1978). Scully and Druhl (1982) 
"propose and analyze an experiment 
designed to probe the extent to which 
information accessible to an observer— 
and the 'eraser' of this information— 
affect measured results." They point 
out that their new experiment, too, lets 
itself be operated in the delayed-choice 
mode. 

Would a world be conceivable in 
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which there is no quantum indetermin-

ism? Peres and Zurek (1982) investigate 
conceivable alternatives and conclude 
that "Theories where the observed 
world is deterministic but the observer 
is not (whatever the reason for that) 
lead to Bell's nonseparability theorem. 
If, on the other hand, the observer too 
is deterministic, the theory is not 
verifiable. It follows that quantum 
theory must be the logically preferred 
option. Its inability to completely de
scribe the measurement process is not 
a flaw of the theory but a logical 

necessity and is analogous to Godel's 
undecidability theorem." 

"Stochastic quantum mechanics" is a 
name often given to the view that (1) 
the Schrodinger equation is essentially 
a diffusion equation, though an equa
tion for the diffusion of probability 
amplitude rather than probability den
sity itself; and (2) that this diffusion is 
driven by a force arising from other 
dynamical entities, that is, from a special 
class of hidden variables: random im
pacts of particles postulated ad hoc, 

fluctuating fields, electromagnetic or 
otherwise, etc. 

This outlook was first introduced by 
Furth (1933) and is expounded at length 
in Fenyes (1952). In their work quan
tum mechanics is described as a "time-
symmetric stochastic process," with 
little said about the origin of the ran
dom external force. In contrast, Kalit-
sin (1953), inspired by Einstein and 
Hopf (1910) and by Einstein and Stern 
(1913), likewise takes the mechanics of 
the electron to be classical at bottom, 
but views the fluctuating force on it that 
makes it behave "quantum mechani

cally" as originating from the fluctuat

ing electromagnetic field of the vacuum. 
Well though this treatment reproduces 
the ground state of the harmonic 
oscillator, it fails for other systems. (1) 
It predicts that the electron of the 
hydrogen atom, originally in its ground 
state, will gain energy from the vacuum 
fluctuations. (2) When a system breaks 
into two parts, as in the Einstein-
Podolsky-Rosen experiment, the fluc
tuations at the location of the one 
system and the other would have to 
have a quite artificial correlation to 
reproduce the well-tested predictions 
of standard quantum mechanics. Boyer 
(1980b) surveys "stochastic electro
dynamics." 

A bibliography of over 200 papers on 

"stochastic quantum mechanics'" has 
been prepared by Robert Hobart of 
Middle Georgia College, Cochran, 
Georgia. We are most indebted to him 
for making it available to us. Space 
limitations have made it impossible for 
us to include more than an arbitrary 
but representative sampling of the 
literature: Bergia, Lugli, and Zamboni, 
1980; Boyer, 1968, 1974, 1975, 1980a,b; 
Claverie and Diner, 1977; Comisar, 
1965; Davidson, 1979; De La Pefia, 1969, 
1977; Einstein and Hopf, 1910; Einstein 
and Stern, 1913; Fenyes, 1952; Fiirth, 
1933; Kalitsin, 1953; Kracklauer, 1974; 
Marshall, 1965; Nelson, 1966; Santos, 
1979; Vigier, 1979. The subject of each 
paper is sufficiently indicated in most cases 
by its title as listed in the bibliography at 
the end of this book. 

IV. FIELD MEASUREMENTS 

The paper of Landau and Peierls (1931, 
reprinted here as IV. 1) stimulated Bohr 
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and Rosenfeld (1933, reprinted here as 

IV.2; and 1950, reprinted here as IV.3) 

to do a thoroughgoing analysis of the 
measurability of electromagnetic field 

quantities. Stages in the evolution of 
Bohr's thinking on this topic are de
scribed by Rosenfeld (1955, 1967). 

Corinaldesi (1951), pursuing a line of 
development opened up by Heisenberg 

twenty years earlier, analyzes, charge 

fluctuations in quantum electrodynamics. 
Bryce DeWitt (1962,1965) extends to 

the dynamics of geometry consider
ations on measurability analogous to 
those worked out by Bohr and Rosen-
feld for the electromagnetic field. 
Salecker and Wigner (1958) show that 
there is one way of measuring geometry 
by use of light rays and test particles 
which falls far short of the accuracy 

expected from the considerations of 
DeWitt. Bohr and Rosenfeld had ini
tially encountered a similar difficulty 
when they were trying to find an appa
ratus that would measure with the 
accuracy allowed by theory. In the end, 
however, they found that it was more 
reasonable to improve the apparatus 
than to question the theory. 

Y. IRREVERSIBILITY AND 

QUANTUM THEORY 

Maxwell's demon "was conceived in 
discussions among Maxwell, Tate, and 
Thomson; he was first described in a 
letter from Maxwell to Tate in 1867, 
and publicly introduced in Maxwell's 
Theory of Heat (1871)," according to 
Brush (1966), who also reprints papers 
of Thomson (1874) and Poincare (1893) 

analyzing implications of the Maxwell 
demon. Szilard's pathbreaking paper 
(1929, here Y.l) has led to an extensive 

literature, one of the more significant 
treatises in which is Brillouin (1962). 

An attempt to define thermodynamic 
entropy in terms of information content 

has been made by Jaynes (1957a,b, 
1979). Whether his work can serve as 
a foundation for statistical mechanics 
remains a subject of controversy (Fried
man and Shimony, 1971; Dias and 
Shimony, 1981). Szilard's paper has 
been criticized by Jauch and Baron 
(1972) for suggesting that the connec
tion between entropy and information 
is straightforward. They have also 

criticized Szilard's discussion of the 
"one-particle-gas" model on physical 
grounds. 

John von Neumann's 1932 formula
tion of the quantum theory of measure

ment has been critically discussed by 
Feyerabend (1957), Margenau (1963), 
Sneed (1966), and Furry (1966) as both 
too idealized and too restrictive. 

Ergodicity was a central topic of 
classical mechanics from early days. It 
was the subject of a paper by twenty-
two-year-old Enrico Fermi (1901-1954; 
Fermi, 1923). It is the focus of nume
rous treatises: Hopf (1937), Khinchin 
(1957), Jacobs (1962-1963), Billingsley 
(1965), Rohlin (1967), Arnold and Avez 
(1968), Moser (1973), Ornstein (1974), 
Sinai (1976), and Cornfeld, Fomin, and 
Sinai (1981). It took time to see how to 
extend these considerations to the new 
framework of quantum theory. Ein
stein (1917b) discussed the rule of Bohr 
and Sommerfeld for quantization in 
the case when the Hamilton-Jacobi 
equation is not separable, and showed 
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that if tori exist in phase space, it is 
possible to define action and angle 
variables. Percival (1973) reviews the 
literature of classical mechanics which 
shows that "bound systems which have 
an analytic Hamiltonian, and which are 
sufficiently close to being separable, 
have a significant fraction of their phase 
space full of trajectories which behave 
very much like those of separable sys
tems." Associated with such "regular" 
regions of phase space, Percival shows 
by semiclassical methods, is a quantum 
energy spectrum with "regular" prop
erties; but he shows that there is an
other part of the spectrum, an "irregular 
part," with strongly contrasting prop
erties. McDonald and Kaufmann (1979) 
and Casati, Valz-Gris, and Guarnieri 
(1980) present numerical work on ir
regular spectra. Korsch and Berry 
(1981) use the Wigner phase-space 
density function to analyze what 
happens in the course of time to a dis
tribution initially confined to a well-
circumscribed region of phase space. 
In the beginning it spreads out much as 
expected from classical mechanics. 
Classically, however, the distribution, 
for the case of a non-integrable Hamil
tonian, develops an intricate structure 
of whorls and tendrils. Other workers 
had already pointed out that these 
tendrils can no longer evolve according 
to classical expectations when their 
dimensions grow so small as not even 
to include a single quantum cell in 
phase space. Korsch and Berry illustrate 
this result by numerical computations. 

General ergodic properties of quan

tum systems, discussed by van Hove 
(1959, reprinted here as V.3) have also 
been investigated by, among others, 

von Neumann (1929), Pauli and Fierz 
(1937), Krylov (1979), and van Hove 
(1955, 1957). For a penetrating discus
sion of these problems and many 
additional references see Davies (1976). 

The relationship between "quantum 

ergodicity" and so-called "collapse of 

the wavepacket" proposed by Daneri, 
Loinger, and Prosperi (1962, reprinted 
here as V.4; also 1966 and Prosperi, 
1967) has been endorsed by Rosenfeld 
(1965, 1968b), criticized by Jauch, 
Wigner, and Yanase (1967) and Bub 
(1968), and defended by Loinger (1968). 
Additional considerations on ergodicity 

fluctuations and entropy as they relate 
to quantum theory will be found in 
Pauli (1928b); Kemble (1939a,b); Von-
sovsky (1946); Stueckelberg (1952); 
Groenewold (1952); Klein (1952, 1956); 
Van Kampen (1954,1958); Fierz(1955); 
Jancel (1955); Gamba (1955); Farinelli 
and Gamba (1956); Farquhar and 
Landsberg (1957); Ludwig (1958a,b); 
Prosperi and Scotti (1959, 1960); 
Wannier (1965). 

Further discussion of time reversal 

(Aharonov, Bergmann, and Lebowitz, 
1964, reprinted here as V.5) and its 
relevance to the quantum theory of 
measurement can be found in Belinfante 
(1975). See also Rankin (1965). 

The Lyapounov superoperator for

malism mentioned by Misra, Prigogine, 
and Courbage (1979a, reprinted here 
as Y.6) has been described in much 
greater detail by Prigogine, George, 
Henin, and Rosenfeld (1973), and by 
Misra, Prigogine, and Courbage (1979b) 
and applied to problems of the quan
tum theory of measurement by George, 
Prigogine, and Rosenfeld (1972). 

The relation between irreversibility, 
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amplification and "reduction of the wave-

packet" has been a subject of many 
papers. For example, Green (1958) has 

stressed metastability of the initial 
state of the measuring apparatus. In 
his model the detector consists of two 
sets of oscillators kept at different 
temperatures, coupled by a quantum 
system, the wave function of which is 

to be "collapsed." A critical assessment 

of Green's paper has been given by 
Furry (1966). Hepp (1972) has argued 
that the generation of probabilities 
from probability amplitudes can take 

place if the apparatus is an infinite 
system. Though Hepp thus concludes 

that in a certain mathematical limit 
"rigorous reduction of the wavepacket" 
can be obtained, Bell (1975) has shown 
that at least in one of the models in
vestigated by Hepp, such reduction 

does not take place. The non-reduction 
of the wavepacket becomes particularly 
apparent in the Heisenberg picture. 

Haake and Weidlich (1968) have argued 
that the reduction of the wavepacket 
can be achieved if the apparatus 
possesses "channel structure." They 
have investigated in detail a particular 
model, one where the "apparatus" is a 
field mode. More on this topic will be 
found in Weidlich (1967) and Weidlich 
and Haake (1969). Machida and Namiki 
(1980a,b) stress that any reasonable 
model of a macroscopic apparatus 
must subsume a large number of dis
tinct Hilbert spaces. Their reasoning 
has been given a detailed mathematical 
development by Araki (1980) in terms of 
continuous superselection rules. Zurek 
(1981, 1982b) has argued that it is the 

coupling between the Hilbert space of 

the apparatus pointer and the rest of 
the apparatus which is responsible 
for the effective superselection rules. 
According to this reasoning, the pointer 
of the apparatus cannot be regarded 

as an isolated system. 
The thermodynamics of black holes 

(Bekenstein, 1973,1974,1975; Hawking, 
1974, 1975) has suggested to some that 
irreversibility and noncausality may be 

inherent in the laws of nature (Hawking, 
1976). Penrose (1973) proposes that 
such a finding might allow one to 
understand evolution from pure states 
to mixtures and, consequently, the 

process of measurement itself, in a 

completely new way. 
For a long time it was thought that 

one could make a simple-minded appli

cation of the considerations of Szilard 

in the theory of computers, and that 
each stage in the computation would 
require the dissipation of an energy of 

the order of magnitude of kT. By 1961, 

however, this doctrine was no longer 
beyond question (Landauer, 1961); and 
twelve years later, Bennett (1973) in an 
epoch-making paper, proved that a 
computation can, in principle, be 
operated as close to reversibility as 
desired. In the words of Landauer, the 
process is not "lossless, but only as 
reversible as automobiles or locomo
tives which can back up along their 
path. We also assume that the frictional 
forces are proportional to velocity and 
thus, the accompanying energy losses, 
per logic step, can be made as small as 
desired, by sufficiently slow computa
tion." Landauer (1981a) comments on 
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the implications of Szilard's work: 

"It taught us that measurement requires 

energy expenditure. But it does not 

seem to be adequately recognized that 

coupling a meter to an object to be 

measured, and letting the object thus 
influence the meter, does not require 

dissipation. The dissipation arises from 
the need to reset the meter after sub

sequent decoupling, in order to prepare 

the meter for further use. Again it is the 

destruction of information which is 
associated with the real need for energy 
dissipation. This relationship to infor

mation destruction has been em
phasized only in our own field of 
computation, and not equally in the 
related analyses of the measurement 
process and of channel capacity re
quirements." 

Distinguishability is the first require

ment for measurement. Measurements 
in general, and measurements at the 
quantum level in particular, deal with 

information, often information of the 
"yes, no" type rather than the "how 
much" type. How much information 

of the "yes, no" type does one need to 
distinguish two nearby values of the 
angle of polarization of a beam of 
photons? And how should the prob
ability of a yes or no count depend upon 

the angle of polarization to give—if 
nature were in the mood to give—the 
maximum number of distinguishable 

directions of polarization? Just the way 
nature says it does, according to con
tributions of Wootters (1980, 1981), 
who also goes on to show that "distance 
in Hilbert space measures distinguish-
ability." This result raises the still un

answered question whether all of 

quantum theory can be derived out of 

appropriate information-theoretic con

siderations. 

That probability amplitudes are com

plex numbers, not reals or quaternions, 

has been connected by Stueckelberg 

(1960) with the principle of comple
mentarity or indeterminism; and some 
of the extensive subsequent discussion 

of these issues is summarized in Jammer 

(1974, pp. 358-359). 
This question about the ties between 

quantum theory and information the

ory leads to interest in two other intel
lectual partners of information theory, 
memory theory and undecidability 
theory. Out of the vast literature on 
memory theory, it may be appropriate to 
cite as representative contributions 
Ovenden and Roy (1973) and Pearl and 
Crolotte (1980). As regards undecid

ability, Chaitin (1975, 1981) notes that 
"Godel's theorem (1931; see also Nagel 
and Newman, 1958; and Hofstadter, 
1979) may be demonstrated using argu

ments having an information-theoretic 
flavor. In such an approach it is possible 
to argue that if a theorem contains more 
information than a given set of axioms, 
then it is impossible for the theorem to 

be derived from the axioms. In con
trast with the traditional proof based 
on the paradox of the liar, this new 
viewpoint suggests that the incom
pleteness phenomenon discovered by 

Godel is natural and widespread rather 

than pathological and unusual." 
Even further from any immediately 

obvious tie to quantum theory, but also 
an incentive to think about the deeper 
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meaning of quantum theory, is the 

Austrian theory of capital (von Hayek, 

1948, 1975; von Mises, 1966) as dis

cussed in this connection by Tipler 

(1981). Tipler considers Friedrich von 

Hayek's definition of capital (an exten

sion of that originally given by Eugen 

von Bohm-Bawerk) as analogous to 

the Feynman sum over histories, but 

more complex in depending in general 

on all the other histories. 

VI. ACCURACY OF MEASUREMENTS : 

QUANTUM LIMITATIONS 

To measure the direction of the spin 

of a free electron is impossible, as 

Niels Bohr explained, Mott and Massey 

(1965, VI.l) demonstrate, and Pauli 

(1932) illustrates by numerous exam

ples; but for a bound electron the 

direction of the spin can be measured. 

Experiments of the Stern-Gerlach type 

measure, for example, the direction of 

the spin of the valence electron of a 

neutral silver atom. More recently, the 

direction of the spin has been measured 

for an otherwise free electron trapped 

in a manmade mixture of electric and 

magnetic fields (Van Dyck, Ekstrom, 

and Dehmelt, 1976; Dehmelt, 1981; Van 

Dyck, Schwinberg, and Dehmelt, 1981). 

Uncertainties of quantum origin arise 

in the typical Stern-Gerlach experi

ment when the measuring apparatus 

has a finite size, as elucidated in an 

extensive literature summarized by 

Wigner (1976, II.2), Araki and Yanase 

(1960, VI.2), and Yanase (1961, VI.3). 

The principle of indeterminism as 

applied to time and energy, analyzed 

by Aharonov and Bohm (1961, VI.4), 

has been discussed in additional con

texts by Allcock (1969a,b,c), who also 

gives extensive citations of the literature 

(1969a). Wigner (1972) works out the 

wave function that minimizes the prod

uct of the uncertainties in time and 

in energy. 

All kinds of observing devices and 

amplifiers are affected by Brownian 

motion, as spelled out in a charming 

review article by Barnes and Silverman 

(1934). See Wax, ed. (1954) for a col

lection of papers on the theory of 

Brownian motion. A brief and ele

mentary review of the subject of 

amplifiers will be found in Halkias 

and Alley (1977). A more advanced 

discussion can be found in Caves 

(1982b). 

More on the uncertainty principle 

as it affects the operation of the ideal 

amplifier, the subject of two contri

butions reprinted here (Heffner, 1962, 

VI.5, and Haus and Mullen, 1962, 

VI.6), will be found in the book of 

Pierce and Posner (1980, pp. 285-292), 

the book edited by Townes (1960), and in 

articles of Helstrom (1976) and Serber and 

Townes (1960). 
The capacity of a communication 

channel (Shannon and Weaver, 1949; 

Pierce, 1981a) is analyzed as it depends 

on quantum limitations in the paper 

of Pierce (1978, VI.7) reprinted here. 

A computer has some similarity in 

principle to an information channel. 

The process of computation, far from 

requiring a minimum energy of the 

order of kT per logic step, is in principle 

a reversible process, a fascinating con

clusion proved by Bennett (1973,1982). 
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On the basis of this result, Pierce 

(198-lb), in an unpublished letter, draws 

up the following assessment: 

(1) "Need it take energy to compute? 

Not in the following sense: A revers

ible finite state machine can act as a 

computer. In principle it can go from 

the initial condition to the final condi

tion and back again without any net 

loss of energy. 

(2) "What about (1) and information 

theory? As (1) is stated, nothing. If we 

know the data, program and machine, 

in principle we know the 'answer'. There 

is no uncertainty and hence there is no 

information involved in the operation 

of the reversible computer. 

(3) "What about getting output from 

the computer of (1)? If we don't know 

the state of the computer output device, 

which is a part of the reversible finite-

state computer, we can find the state of 

this output device only through an ex

penditure of ItT joules per nat. 

(4) "What about inputting to the revers

ible computer? If we know the state, 

this costs us nothing. See (5) below. 

(5) "What about 'writing on a tape'? 

Ideally, if we know the initial state of 

the tape, this costs us nothing. Think of 

the tape as a lot of frictionlessly hinged 

bars that can lie left or right on a flat 

surface. If we know that a bar lies left, 

in principle we can raise it to vertical 

and lower it to right without loss of 

energy.* 

* "But we might need a different special-

purpose machine for each initial and/or output 
state." 

(6) "If we don't know the state, what 

will writing cost? If we know nothing 

at all about the state it will cost kT 

joules per nat to find the state and 

nothing to write thereafter* 

(7) "What about 'duplicating a tape'? 

It costs nothing if we know the states 

of both tapes. If we don't know any

thing about the state of one tape it costs 

kT joules per nat to find it.* 

(8) "What about writing into our ideal

ized computer? Ideally, it costs nothing 

if we know the state. If we don't know 

the state we can learn the state before we 

can write in for nothing at a cost of kT 

joules per nat. How much is this in 

total? That depends both on the com

plexity of the computer and on how 

little or how much we do know about 

its state." 

Landauer (1981a,b) notes that "the 

energies required by channel capacity 

considerations represent energy dis

sipation only if the message is destroyed 

at the receiving end and a computer 

need not do that. Consider, for example, 

a high density reel of storage tape sent 

physically through space, at high veloc

ity ... [constituting] transmission of 

information [with a] required dis

sipation [of] at most a few kT." 

Further discussion will be found in 

Louisell (1964). 

How much mass-energy does it take 

to dispose of a bit of information? How 

much is the minimum mass increment 

experienced by a black hole in the 

process? This question is considered 

in the framework of quantum theory 

by Bekenstein (1981) and—with non-



786 FURTHER LITERATURE 

identical conclusions—by Unruh and 
Wald (1982) and by Deutsch (1982). 

One acquires information with high 
effectiveness, without violating the un
certainty principle that connects fre
quency and time, by use of "chirp 

radar," a scheme of great consequence 
for bats and men (Griffin, 1950, 1958; 
Klauder, Price, Darlington, and Alber-
sheim, 1960; Farnett et al., 1970; 
Casasent, 1978; Leith, 1978). See also 
Cutrona (1970) and Jensen et al. (1977) 

for radar in a broader context. 

To count individual atoms is to ap
proach one quantum limit to the 
measuring process. This feat has been 
accomplished by Hurst, Payne, Kramer, 

and Young (1979) and their Oak Ridge 

colleagues, surely with great conse
quences for the future of detecting and 

measuring devices of many kinds. 
The idea of quantum nondemolition 

measurements, also pregnant with in
calculable consequences for the future 
of measuring devices, reviewed here in 
Braginsky, Vorontsov, and Thorne 

(1980, VI.8), is also the subject of a 
rapidly increasing and instructive lit
erature (Braginsky and Manukin, 1977; 
Caves, Thorne, Drever, Sandberg, and 

Zimmermann, 1980; Braginsky and 
Viatchanin, 1981; and Caves, 1982). 

A superfluid helium interferometer is 

proposed by Chiao (1982) as a detector 

of the Lense-Thirring effect and of 

gravitational radiation. 
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