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Abstract

Seminal hypotheses in ecology and evolution postulate that stronger and more

specialized biotic interactions contribute to higher species diversity at lower

elevations and latitudes. Plant-chemical defenses mediate biotic interactions

between plants and their natural enemies and provide a highly dimensional

trait space in which chemically mediated niches may facilitate plant species

coexistence. However, the role of chemically mediated biotic interactions in

shaping plant communities remains largely untested across large-scale ecologi-

cal gradients. Here, we used ecological metabolomics to quantify the chemical

dissimilarity of foliar metabolomes among 473 tree species in 16 tropical tree

communities along an elevational gradient in the Bolivian Andes. We

predicted that tree species diversity would be higher in communities and

climates where co-occurring tree species are more chemically dissimilar and

exhibit faster evolution of secondary metabolites (lower chemical phylogenetic

signal). Further, we predicted that these relationships should be especially pro-

nounced for secondary metabolites known to include antiherbivore and anti-

microbial defenses relative to primary metabolites. Using structural equation

models, we quantified the direct effects of rarefied median chemical dissimilar-

ity and chemical phylogenetic signal on tree species diversity, as well as the

indirect effects of climate. We found that chemical dissimilarity among tree

species with respect to all metabolites and secondary metabolites had positive

direct effects on tree species diversity, and that climate (higher temperature

and precipitation, and lower temperature seasonality) had positive indirect

effects on species diversity by increasing chemical dissimilarity. In contrast,
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chemical dissimilarity of primary metabolites was unrelated to species

diversity and climate. Chemical phylogenetic signal of all metabolite classes

had negative direct effects on tree species diversity, indicating faster evolution

of metabolites in more diverse communities. Climate had a direct effect on

species diversity but did not indirectly affect diversity through chemical phylo-

genetic signal. Our results support the hypothesis that chemically mediated

biotic interactions shape elevational diversity gradients by imposing stronger

selection for chemical divergence in more diverse communities and

maintaining higher chemical dissimilarity among species in warmer, wetter,

and more stable climates. Our study also illustrates the promise of ecological

metabolomics in the study of biogeography, community ecology, and complex

species interactions in high-diversity ecosystems.
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INTRODUCTION

Foundational hypotheses in ecology and evolution posit
that stronger and more specialized biotic interactions
contribute to large-scale gradients in species diversity
(Schemske et al., 2009). Wallace (1878) and Dobzhansky
(1950) proposed that biotic interactions comprise a stron-
ger selective force than the abiotic environment in the
tropics. However, the mechanisms by which tropical for-
ests may facilitate the coexistence of hundreds to thou-
sands of tree species remain unclear (Wright, 2002).
Unlike animals, which can exploit distinct resources,
nearly all plants require light, water, and nutrients, so
opportunities for resource-based niche differentiation are
few (Hubbell, 2001). In contrast to resource-based niche
axes, the nearly infinite variety of insect herbivores and
microbial pathogens provides a highly multidimensional
space within which plant species can carve out a distinct
niche defined by the enemies they support and the ene-
mies they avoid (Chesson & Kuang, 2008; Holt, 1977).
Specialized natural enemies can maintain species-rich
plant communities by attacking host plants where they
are abundant, impeding their fitness relative to competi-
tors that avoid the enemy (Bever et al., 2015; Connell,
1971; Janzen, 1970). Hence, gradients in biodiversity may
be attributed to greater pressure from specialized herbi-
vores and pathogens at lower elevations and latitudes
with warmer, wetter, and more stable climates (Levi
et al., 2019; Schemske et al., 2009; Terborgh, 2012).

Recent advances in ecological metabolomics offer a
promising approach to understanding complex biotic inter-
actions and the chemical ecology of plant communities

across biodiversity gradients (Sedio, 2017; Sedio et al.,
2021; Volf et al., 2023). Plant-chemical defenses (second-
ary metabolites) mediate biotic interactions and host-use
relationships between plants and their natural enemies
(Becerra, 1997; Kursar et al., 2009; Salazar et al., 2016).
Secondary metabolites are organic molecules that
mediate plant responses to abiotic or biotic stress and
can function as defenses against herbivores and patho-
gens. In contrast, primary metabolites are involved in
resource-acquisitive metabolism and essential cellular
function and include compounds that are classified as
carbohydrates, fatty acids, and nucleotides. Herbivores
and pathogens can evolve counters to plant chemical
defenses, but often at the cost of generality (Ehrlich &
Raven, 1964; Schemske et al., 2009). Plant-enemy
coevolution can result in host-use patterns that track
plant secondary metabolites and thus will promote
chemical diversity and species richness in plant com-
munities (Sedio & Ostling, 2013) and mediate selection
for chemical divergence among closely related plants
(Becerra, 1997; Endara et al., 2017; Kursar et al., 2009;
Salazar et al., 2016). Plant secondary metabolites have
been shown to be more evolutionarily labile than other
traits, as even closely related species can have very dif-
ferent metabolomes (Becerra, 1997; Kursar et al.,
2009). At evolutionary timescales, this evolutionary
lability is expected to result in less phylogenetic conser-
vatism of secondary metabolites among species found
in warmer, wetter, and more stable climates, where
plant-enemy interactions are hypothesized to be stron-
ger and more specialized (Connell, 1971; Dobzhansky,
1950; Janzen, 1970; Wallace, 1878).

2 of 12 HENDERSON ET AL.



Along elevational gradients, the abundance of herbi-
vores and pathogens tends to decrease with elevation (Sam
et al., 2020), while abiotic stress tends to increase with eleva-
tion (Lomolino, 2001). This can result in a trade-off (Coley
et al., 1985) in which high-elevation plants may be expected
to invest more in chemical defenses because compensatory
regrowth of biomass lost to natural enemies is relatively
more costly under unfavorable abiotic conditions and low
nutrients (Defossez et al., 2018; Salgado et al., 2016).
Furthermore, abiotic stress itself may select for investment
in specialized secondary metabolites that mediate plant
stress response or protect against damage, such as from
ultraviolet light (Volf et al., 2020). Yet, unlike plant-enemy
interactions that may undergo reciprocal coevolution, abi-
otic stress should select for convergence on shared, optimal
traits (Bakhtiari et al., 2021). On the other hand, high-
elevation conditions may select for unique metabolites not
found in lowland plants (Defossez et al., 2021). Perhaps
because of such discordant selection, some studies have
found nonlinear, hump-shaped relationships between her-
bivory, plant secondary metabolite dissimilarity, and eleva-
tional gradients (Sam et al., 2020; Volf et al., 2020).

Despite the importance of plant chemistry in mediat-
ing community dynamics, key gaps remain in our under-
standing of the chemical ecology of plant communities
along elevational gradients. Few studies have simulta-
neously examined the roles of climate, species diversity,
and phylogeny in shaping plant chemical variation along
elevational gradients. Prior studies have examined chemi-
cal variation at the community scale in herbaceous grass-
land communities (Defossez et al., 2018, 2021), but most
have focused on single genera of woody plants (Sam
et al., 2020; Volf et al., 2020, 2023). In addition, insights
into the role of plant secondary metabolites in generating
biodiversity patterns have, until recently, been limited by
their overwhelming diversity and the lack of untargeted
approaches to study them at macroecological scales.
Here, we overcome this obstacle using recent innovations
in untargeted metabolomics based on mass spectrometry
(Dührkop et al., 2019; Wang et al., 2016) that enable the
study of chemical ecology at the scale of species-rich eco-
logical communities such as tropical forests (Sedio, 2017;
Sedio et al., 2018).

In this study, we explored the hypothesis that stronger
selection by natural enemies at lower elevations and in
warmer, wetter, and more stable climates shapes gradients
in species diversity and the evolution of plant secondary
metabolites in tropical forests. We utilized data from a net-
work of forest plots along an elevational gradient in the
Bolivian Andes (Figure 1a,b). Using large-scale untargeted
metabolomics techniques (Sedio, 2017; Sedio et al., 2021),
we compared patterns of primary and secondary foliar
metabolites in 473 tree species to tree species diversity

(Figure 1c), climate (Figure 1d), and phylogeny along the
gradient to test four predictions: (1) warmer, wetter, and
less variable climates are associated with greater species
dissimilarity in plant secondary metabolites; (2) species
dissimilarity in plant secondary metabolites is associated
with greater species diversity in communities; (3) warmer,
wetter, and less variable climates are associated with more
rapid evolution of plant secondary metabolites (lower phy-
logenetic signal); and (4) rapid evolution of plant second-
ary metabolites (lower phylogenetic signal) is associated
with greater species diversity in communities. Evidence in
favor of these predictions would support the hypothesis
that variation in the strength of selection for interspecific
divergence in secondary metabolites associated with cli-
matic gradients contributes to the widespread elevational
diversity gradient in trees (Figure 1e).

METHODS

Forest plot data were collected as part of the Madidi
Project, a large-scale survey of the flora of the
Madidi region in the central Andes Mountains of Bolivia
(Figure 1a; Tello et al., 2015). We selected a subset of
16 1-ha permanent plots in which leaves were sampled in
2010 for chemical analyses and dried in silica gel. The
16 plots span an elevational gradient from 662 to 3324 m
(elevational range: 2662 m) and include three seasonally
dry, low-elevation forest plots (elevational range: 218 m)
and 13 moist, montane forest plots (elevational range:
2270 m) (Figure 1b; Appendix S1: Table S1). Tree species
diversity exhibits the typical negative relationship with ele-
vation among the 13 moist forest plots, whereas the three
seasonally dry forest plots exhibit a unique pattern of low
species richness at low elevations (Figure 1c). In contrast,
tree species diversity increases toward warmer, wetter, and
less variable climates along the elevational gradient
(Figure 1d). By including plots that encompassed a range
of elevations and climates, our study design allowed us to
disentangle the effects of climate from elevation per se in
driving the chemical composition and species diversity of
communities (Predictions 1 & 3; Figure 1e). Within each
plot, all woody plants (hereafter trees) with a diameter at
breast height of at least 10 cm were mapped, measured,
and identified to a valid species or morphospecies.

Analytical chemistry, untargeted
metabolomics, and chemical similarity
among species

Across the 16 forest plots, we collected 3506 total leaf
samples from 473 tree species, including 906 unique

ECOLOGY 3 of 12



species-by-plot samples for metabolomics analyses. We
collected leaf samples from 62% to 90% of the tree species
in each plot (Appendix S1: Table S1) and up to five indi-
vidual trees per species in each plot. A total of 217 tree
species occurred in more than one forest plot, and 29 tree
species occurred in five or more forest plots. The total
number of leaf samples ranged from 1 to 55 per tree spe-
cies (mean ± 1 SD: 7.3 ± 6.5 samples per species).

Our goal was to quantify interspecific variation in
foliar metabolites in each forest plot using individuals
sampled in the same forest plot. Hence, for each forest
plot, we pooled up to five individuals per species per plot
to create 906 extract pools representing each unique
species-by-plot for subsequent analysis. This approach
accounts for population-level chemical variation within

species that occur in multiple plots. While our study
focused on interspecific variation in foliar metabolites,
we include figures in Appendix S1: Figures S1 and S2 to
illustrate intraspecific variation among individuals and
species for two species-rich, high-elevation genera (Ilex
[Aquifoliaceae] and Weinmannia [Cunoniaceae]) and
two species-rich, low-elevation genera (Inga [Fabaceae]
and Nectandra [Lauraceae]).

Leaf samples were extracted for chemical analyses fol-
lowing the methods detailed in Sedio et al. (2021). We
analyzed filtered extract pools using ultra-high-
performance liquid chromatography–tandem mass spec-
trometry. Raw LC–MS data were centroided using
MZmine2 (Pluskal et al., 2010). Aligned chromatograms
were used to create a “feature-based molecular network”

F I GURE 1 Overview of 1-ha forest plots used to test effects of climate and chemical dissimilarity on tree species diversity. (a) Location

of study region in northwest Bolivia. (b) Distribution of plots along the eastern slopes of the Andes Mountains (662–3324 m) in and around

the Madidi region. (c) Relationship between tree species diversity (inverse Simpson’s index) and elevation. (d) Relationship between tree

species diversity (inverse Simpson’s index) and climate (PC1: precipitation and temperature). The dashed line in (c) shows a linear

regression excluding the three seasonally dry forest plots (white circles) (df = 11, p < 0.0001, adjusted R 2 = 0.77). The solid line in (d) shows

a linear regression including all 16 forest plots (df = 14, p = 0.0019, adjusted R 2 = 0.47). Elevation data (color scale bar) from WorldClim

(www.worldclim.org). (e) Overview of the hypothesis linking climate and chemical dissimilarity to tree species diversity, illustrated with the

meta model for the piecewise structural equation model (SEM) used to test Prediction 1 (bottom arrow: indirect effect of climate on species

diversity through chemical dissimilarity) and Prediction 2 (top arrow: direct effect of chemical dissimilarity on species diversity). (e) created

by J. Myers. PC, principal component.
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(FBMN; Nothias et al., 2020) using GNPS (Wang et al.,
2016). The resulting network was used to create a den-
drogram in which the structural similarities of all metab-
olites were reflected in one phylogeny-like dendrogram
using Qemistree (Tripathi et al., 2021; Appendix S1:
Figure S3). Metabolites were annotated by predicting
molecular formulae using Sirius (Dührkop et al., 2019),
predicting molecular structures using CSI:FingerID
(Dührkop et al., 2015), and classifying compounds chemi-
cally using NPClassifier (Kim et al., 2021). We used the
“pathway”-level classifications of NPClassifier to group
metabolites into primary and secondary metabolite cate-
gories (Appendix S1: Table S2). Our classification scheme
was based on the broad likelihood of a metabolite being
associated with antiherbivore or antimicrobial defense.

Sedio et al. (2017) developed a metric that quantifies
chemical structural-compositional similarity (CSCS) over
all compounds among species pairs. Conventional distance
or similarity indices such as Bray–Curtis incorporate
shared compounds but ignore the structural similarity of
unique compounds, and hence underestimate the similar-
ity of species with distinct but very structurally similar,
and perhaps functionally redundant, metabolites (Sedio
et al., 2017). For each pair of the 906 species-by-plot sam-
ples, we calculated CSCS for three chemical classes:
(1) the whole metabolome (all metabolites); (2) secondary
metabolites; and (3) primary metabolites. We transformed
CSCS matrices into dissimilarity matrices by calculating
1-CSCS. Lastly, we calculated the abundance-weighted
median 1-CSCS for each of the 16 forest plots.

To disentangle chemical dissimilarity from the effect
of species richness per se, we carried out rarefaction
based on 12 species, the number of tree species sampled
for chemical analyses in the most species-poor plot
(Appendix S1: Table S1). For each forest plot, we calcu-
lated rarefied 1-CSCS by taking a random sample of
12 species and calculating their median chemical dissimi-
larity. We repeated this procedure 1000 times for each
plot and used the mean of the distribution to represent
the rarefied median chemical dissimilarity of species in
each forest plot. Observed and rarefied median CSCS
values were highly correlated among forest plots
(Pearson r = 0.96 and 0.98 for secondary and primary
metabolites, respectively) and we obtained qualitatively
similar results using both metrics. For simplicity, we pre-
sent results for rarefied 1-CSCS (hereafter rarefied chemi-
cal dissimilarity).

Climate data

We selected four variables to represent variation in cli-
mate along the elevational gradient. Temperature

variables included annual mean temperature and temper-
ature annual range obtained from WorldClim Version 2.1
(Fick & Hijmans, 2017). Precipitation variables included
annual precipitation and precipitation seasonality, which
is calculated as the ratio between the SD and the mean
precipitation of each month. Precipitation data were
obtained from the Tropical Rainfall Measuring Mission
(TRMM; Huffman et al., 2023), a regional database that
provides greater accuracy compared with WorldClim
data in the Madidi region. To reduce the dimensionality
of the climate data, we performed a principal compo-
nents analysis (PCA) on standardized (centered and
scaled) values of the four climate variables and used the
first principal component of climatic variation (Climate
PC1) in the following analyses. Climate PC1 explained
71.2% of the variation among the 16 forest plots and pri-
marily represents annual temperature, precipitation, and
temperature range (Appendix S1: Figure S4).

Chemical phylogenetic signal

To quantify the phylogenetic signal of metabolites, we
constructed a phylogenetic tree using the R V.Phylomaker
package (Jin & Qian, 2019). The tree was generated from all
50 of the Madidi permanent plots and had 1123 species as
tips. The tree was then rooted and transformed into a dis-
tance matrix using the cophenetic function in R (R Core
Team, 2024), to be directly comparable to the chemical dis-
tance matrices. The tree was pruned to include only the
species recorded in the 16 plots for all analyses, which
included 892 species-by-plot combinations.

For each plot, we calculated Adams’ (2014) Kmult met-
ric of phylogenetic signal for multivariate trait data. This
technique compares a Brownian motion model of evolu-
tion in multivariate trait space to the observed trait data,
accounting for the topology and branch lengths of the
phylogeny. When Kmult < 1, taxa are less chemically simi-
lar to one another than expected by Brownian motion
evolution on the observed phylogeny, whereas Kmult > 1
indicates that species are more chemically similar to
each other than expected. The Kmult test is an improve-
ment over the Mantel test, which does not consider an
explicit model of trait evolution underlying the
expected relationship between phylogenetic and trait
distance (Swenson, 2014).

Hypothesis testing

We tested our predictions using piecewise structural
equation models (SEMs). First, we calculated tree species
diversity in each forest plot as the inverse Simpson’s
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index using the vegan package in R (Oksanen et al.,
2024). This index provides a scale-independent measure
of diversity that is insensitive to differences in numbers
of individuals (Chase et al., 2018). Second, we used piece-
wise SEMs to quantify the indirect effect of climate on
tree species diversity through its effect on rarefied chemi-
cal dissimilarity (Prediction 1) and the direct effect of rar-
efied chemical dissimilarity on tree species diversity
(Prediction 2) (Figure 1e). Third, we used separate piece-
wise SEMs to quantify the indirect effect of climate on
tree species diversity through its effect on chemical
phylogenetic signal (Prediction 3) and the direct effect
of chemical phylogenetic signal on tree species diversity
(Prediction 4). We fitted separate piecewise SEMs
for each group of metabolites (all metabolites, secon-
dary metabolites, primary metabolites) using the R
piecewiseSEM package version 2.3.0 (Lefcheck, 2016),
where each forest plot is a replicate (n = 16). Therefore,
we fitted six SEMs: one for each combination of chemis-
try variable (rarefied chemical dissimilarity & chemical
phylogenetic signal) and group of metabolites. We
inspected whether bivariate relationships in each SEM
were approximately linear by plotting regressions for
each path (e.g., Appendix S1: Figures S5 and S6) and
assessed normality of residuals using Shapiro–Wilk
tests. Fourth, we evaluated the goodness-of-fit of each
SEM by comparing our initial models (two paths) to a
saturated model (three paths, including the direct
effect of climate on tree species diversity) using
Fisher’s C (Lefcheck, 2016). Four of the six initial
models were inconsistent with the data (i.e., poor
model fit, Fisher’s C = 11.9–14.8, p ≤ 0.002, ΔAIC =

9.6–13.0; Appendix S1: Table S3). For these models, we
included the third path testing the direct effect of cli-
mate on tree species diversity. Last, we extracted the
standardized path coefficients from each SEM that rep-
resent the relative importance of the direct effects of
rarefied chemical dissimilarity and chemical phyloge-
netic signal on species diversity, the direct effects of cli-
mate on species diversity, and the indirect effects of
climate through its effect on chemistry.

RESULTS

Across the 906 unique species-by-plot samples, we identi-
fied a total of 20,571 unique metabolites. Of the metabo-
lites classified to a biosynthetic pathway, 94% were
classified as secondary metabolites, and 6% were classi-
fied as primary metabolites (Appendix S1: Table S2). Of
the secondary metabolites, 36% were terpenoids, 32%
were shikimates and phenylpropanoids, 23% were alka-
loids, 3% were polyketides, 2% were amino acids and

peptides, and <1% were derived from more than one
secondary metabolite pathway. The overall composition
of the metabolome varied among species, within the
same species in different forest plots, and among species
within species-rich genera at high (Ilex and Weinmannia)
and low (Inga and Nectandra) elevations (Appendix S1:
Figures S1 and S2).

Predictions 1 and 2: Chemical dissimilarity
among co-occurring tree species

For all metabolites and secondary metabolites, rarefied
chemical dissimilarity had positive direct effects on tree
species diversity (Figure 2a,b). Climate PC1 also had
positive indirect effects on tree species diversity through
its effects on rarefied chemical dissimilarity. The strength
of these relationships was similar for all metabolites
(Figure 2a; standardized [std.] coefficients = 0.68 and
0.70, df = 14, p = 0.003 and 0.002 for direct effect of
chemical dissimilarity and indirect effect of climate,
respectively) and secondary metabolites (Figure 2b; std.
coefficients = 0.71 and 0.63, df = 14, p = 0.001 and
0.008, respectively) (Appendix S1: Table S4).

In contrast to all metabolites and secondary metabo-
lites, rarefied chemical dissimilarity with respect to pri-
mary metabolites was unrelated to tree species
diversity and Climate PC1 (Figure 2c). In the SEM for
primary metabolites, Climate PC1 had a positive direct
effect on tree species diversity (std. coefficient = 0.71,
df = 13, p = 0.002) but no significant indirect effect on
species diversity through its effect on rarefied chemical
dissimilarity (std. coefficient = 0.01, df = 14, p = 0.969)
(Appendix S1: Table S4).

Predictions 3 and 4: Chemical phylogenetic
signal

Chemical phylogenetic signal was low for all secondary
and primary metabolites, as none of the plots approached
the Brownian motion expectation for any of the three
metabolite classes (Appendix S1: Table S5). Chemical
phylogenetic signal appeared greatest for low-elevation,
low-diversity seasonally dry forests and the highest eleva-
tion, low-diversity moist montane forests along the gradi-
ent (Appendix S1: Table S5).

Chemical phylogenetic signal of all three metabolite
classes had direct effects on tree species diversity
(Figure 3; Appendix S1: Table S6), indicating faster evolu-
tion of metabolites in more diverse communities. In the
SEM for all three metabolite classes, Climate PC1 had
positive direct effects on tree species diversity but did not
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indirectly affect tree species diversity through chemical
phylogenetic signal. In addition, the direct effect of cli-
mate was stronger than the direct effect of chemical phy-
logenetic signal, and the strength of both of these
relationships was similar for all metabolites (Figure 3a;
std. coefficients = −0.45 and 0.63, df = 13, p = 0.010 and
0.001 for direct effects of phylogenetic signal and climate,
respectively), secondary metabolites (Figure 3b; std.
coefficients = −0.51 and 0.62, df = 13, p = 0.002 and
0.0006, respectively), and primary metabolites (Figure 3c;
std. coefficients = −0.47 and 0.63, df = 13, p = 0.006 and
0.0008, respectively) (Appendix S1: Table S6).

DISCUSSION

Elevational diversity gradients are a striking feature of
our planet and have inspired the development of ideas in

ecology for centuries (Lomolino, 2001; Rahbek, 2005; von
Humboldt & Bonpland, 2010). Classical hypotheses posit
that large-scale diversity gradients are shaped by geo-
graphic variation in the relative strength and nature of
selection imposed by the abiotic and biotic environment
(Dobzhansky, 1950; Lim et al., 2015; Schemske et al.,
2008; Wallace, 1878). In turn, these processes are predi-
cted to create systematic differences in the interspecific
dissimilarity and phylogenetic signal of secondary metab-
olite profiles among co-occurring plant species along
ecological gradients. In this study, we tested these predic-
tions using 16 tropical forest plots that span a wide range
of variation in elevation, species diversity, and climate
within a regional biodiversity hotspot in the central
Andes Mountains. Our results broadly support three of
four specific predictions concerning relationships
between chemical dissimilarity, chemical phylogenetic
signal, and gradients in species diversity and climate.

Species Diversity 

(inverse Simpson)  

R2 = 0.47

Species Diversity 

(inverse Simpson) 

R2 = 0.51

Species Diversity 

(inverse Simpson) 

R2 = 0.52

(a) All Metabolites (b) Secondary Metabolites (c) Primary Metabolites 

Rarefied median  

chemical dissimilarity

Rarefied median  

chemical dissimilarity

0.71

0.63

0.68

0.70

Rarefied median  

chemical dissimilarity

ns

ns

Climate PC1: 

Precipitation  

and Temperature

Climate PC1: 

Precipitation  

and Temperature

Climate PC1: 

Precipitation  

and Temperature

0.71

F I GURE 2 Piecewise structural equation models (SEMs) showing the effects of rarefied chemical dissimilarity (1 − chemical

structural-compositional similarity [CSCS] index) and climate (PC1: precipitation and temperature) on tree species diversity (inverse

Simpson’s index) in 16 forest plots along an elevational gradient in the Bolivian Andes. A separate SEM was fit for each of three groups of

metabolites: (a) all metabolites (whole metabolome including primary and secondary metabolites); (b) secondary metabolites; and

(c) primary metabolites. Secondary metabolites are defined as those derived from the alkaloids, amino acid and peptides, polyketides,

shikimates and phenylpropanoids, and terpenoids biosynthetic pathways. Primary metabolites are defined as those derived from the

carbohydrates and fatty acids pathways. Each SEM tested the direct effect of chemical dissimilarity on tree species diversity (top arrow) and

the indirect effect of climate on tree species diversity through chemical dissimilarity (bottom arrow). Black arrows represent positive effects,

and gray arrows represent nonsignificant (NS) effects (p > 0.5). Effects are relative (standardized) path coefficients. R 2 is the total amount of

variation in tree species diversity explained by chemical dissimilarity and climate. Goodness-of-fit tests, unstandardized effects, SEs, and

significance for each path are provided in Appendix S1: Tables S3 and S4. PC, principal component.
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Communities in more benign climates are
composed of more chemically dissimilar
species

We predicted that warmer, wetter, and less variable cli-
mates would exhibit greater chemical dissimilarity of
co-occurring species (Prediction 1), based on the hyp-
othesis that chemically mediated plant-enemy coevolu-
tion that selects for chemical divergence among plants
plays a greater role in these abiotically benign climates
(Dobzhansky, 1950; Wallace, 1878). This prediction was
supported for the whole metabolome (Figure 2a) and
secondary metabolites (Figure 2b). Recent studies of
metabolomic variation along elevational gradients have
considered single genera of woody plants, such as Ficus
in Papua New Guinea (Volf et al., 2020) and Salix in
Europe (Volf et al., 2023), and herbaceous plant commu-
nities in Europe (Defossez et al., 2018, 2021). However,
none of these studies have examined the chemical dis-
similarity of co-occurring species at the level of entire

tropical tree communities. Volf et al. (2023) found that
low-elevation Salix were more dissimilar with respect to
salicinoids, an important class of phenolic chemical
defenses, a result consistent with our finding for second-
ary metabolites (Figure 2b). In contrast, we found that
the chemical dissimilarity of primary metabolites was
unrelated to climate (Figure 2c), suggesting that tree
communities are more constrained by temperature and
precipitation with respect to primary metabolites.

High-diversity communities are composed
of more chemically dissimilar species

We predicted a positive direct effect of chemical dissimi-
larity on tree species diversity (Prediction 2), based on
the hypothesis that species diversity is increased by
antagonistic biotic interactions that select for chemical
divergence among species (Dobzhansky, 1950; Ehrlich &
Raven, 1964), reduce natural-enemy overlap among
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(inverse Simpson)  

R2 = 0.71

Species Diversity 

(inverse Simpson) 

R2 = 0.76
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(inverse Simpson) 
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ns
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F I GURE 3 Piecewise structural equation models (SEMs) showing the effects of tree chemical phylogenetic signal (Kmult) and climate

(PC1: precipitation and temperature) on tree species diversity (inverse Simpson’s index) for (a) all metabolites (whole metabolome including

primary and secondary metabolites), (b) secondary metabolites, and (c) primary metabolites. Secondary and primary metabolites are defined

in Figure 2. Each SEM tested the direct effect of chemical phylogenetic signal on tree species diversity (top arrow), the indirect effect of

climate on tree species diversity through chemical phylogenetic signal (bottom arrow), and the direct effect of climate on tree species

diversity (right arrow). Black solid arrows represent positive effects, black dashed arrows represent negative effects, and gray arrows

represent nonsignificant (NS) effects. Effects are relative (standardized) path coefficients. R 2 is the total amount of variation in tree species

diversity explained by chemical phylogenetic signal and climate. Goodness-of-fit tests, unstandardized effects, SEs, and significance for each

path are provided in Appendix S1: Tables S3 and S6. PC, principal component.
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species (Becerra, 1997; Endara et al., 2017), and promote
competitive coexistence (Sedio & Ostling, 2013). This
prediction was supported for the whole metabolome
(Figure 2a) and secondary metabolites (Figure 2b).
Furthermore, the best fit SEM models indicated that
warmer, wetter, and less variable climates enhance tree
species diversity indirectly by increasing dissimilarity of
plant secondary metabolites, rather than through a direct
effect on species diversity (Figure 2a,b). These results are
consistent with hypotheses that attribute variation in spe-
cies diversity to variation in the strength of mechanisms
that promote chemical divergence among species, such as
pressure from relatively host-specific but oligophagous
herbivores and pathogens (Lim et al., 2015; Schemske
et al., 2009). Furthermore, species diversity was unrelated
to dissimilarity of primary metabolites (Figure 2c). This
contrast suggests that species differences in secondary
metabolites—including alkaloids, phenolics, polyketides,
terpenoids, and nonprotein amino acids that can function
as antiherbivore and/or antimicrobial defenses—
contribute to the diversity gradient.

Previous studies have shown that co-occurring species
are less chemically similar than expected by chance. This
result has been reported for numerous species-rich tree
and shrub genera in the lowland Neotropics (Becerra,
2007; Kursar et al., 2009; Salazar et al., 2016). Similar
patterns have been found in Ficus in Papua New Guinea
(Volf et al., 2018) and Euphorbiaceae (principally
Macaranga) in China (Wang et al., 2022). In addition to
studies focused on single lineages, community-wide stud-
ies have found that plants that co-occur within meters
are more chemically dissimilar than expected from a
community-wide sample (Wang et al., 2023) and that the
chemical dissimilarity of co-occurring species tends to
increase from temperate to tropical latitudes (Sedio
et al., 2018) and with temperature and precipitation
within the temperate zone (Sedio et al., 2021). Our study
contrasts with these previous studies focused on single
lineages and comparative studies focused on variation
among whole plant communities at continental scales
(Sedio et al., 2018; Sedio et al., 2021) in that we focused
on variation along a local elevational gradient within the
same biogeographic region. Nevertheless, our results are
consistent with the widely observed chemical dissimilar-
ity of tree species in low-elevation tropical forests.
However, it is worth noting that Sedio et al. (2018, 2021)
found differences in both the diversity of metabolites and
in the chemical dissimilarity of species among geographi-
cally distant plant communities with very different bio-
geographic histories and little possibility for dispersal
over ecological timescales. Our findings suggest that vari-
ation in temperature, precipitation, and seasonality over
distances of kilometers may generate variation in

community chemical dissimilarity comparable to that of
climatic gradients on a continental scale, and hence that
the underlying mechanisms that link climate to chemical
evolution and competitive coexistence are likely general
and operate over a wide range of spatial scales.

Chemical divergence among closely related
species is greater in high-diversity
communities

Chemical phylogenetic signal was much lower than
expected based on a model of Brownian motion without
selection, even in high-elevation plots with comparatively
higher phylogenetic signal than wetter, low-elevation
plots (Appendix S1: Table S5). Plants do exhibit phyloge-
netic signal with respect to broad chemical classes that
tend to occur in certain plant families or genera
(e.g., quinolizidine alkaloids in some lineages of legumes;
Wink, 2003). However, our result is consistent with other
recent studies that have concluded that plant metabolite
composition can be highly evolutionarily labile, espe-
cially in tropical climates when phylogenetic signal is
measured among confamilial species (Becerra, 1997;
Kursar et al., 2009; Salazar et al., 2018; Volf et al., 2018;
Wang et al., 2022), which can degrade phylogenetic sig-
nal when measured in the context of a species-rich forest
community characterized by many co-occurring conge-
neric and confamilial species (Sedio et al., 2018, 2021;
Wang et al., 2023).

We predicted a negative effect of warmer, wetter, and
less variable climates on chemical phylogenetic signal
(Prediction 3) and a negative effect of chemical phyloge-
netic signal on tree species diversity (Prediction 4) based
on the hypothesis that selection by natural enemies for
chemical divergence among closely related species is rela-
tively stronger in such environments (Sedio et al., 2018).
Our results supported Prediction 4 for all three metabo-
lite classes but did not support Prediction 3 for any
metabolite class (Figure 3). Instead, Climate PC1 had
positive direct effects on tree species diversity. These pat-
terns could be explained by several processes. First, the
low chemical phylogenetic signal observed in most plots
(Appendix S1: Table S5) could indicate a strong but simi-
lar role for biotic interactions as an agent of natural selec-
tion and chemical divergence in most climates along this
tropical elevational gradient. Second, the agents or stre-
ngth of selection could differ between wet and seasonally
dry forests in a way that is difficult to distinguish with
the small number of seasonally dry forests represented in
our metabolomics dataset. Third, the climatic data used
in our PCA may not completely represent the climates
that individual trees experience in these forests,
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especially the seasonally dry forests. Climate can vary sig-
nificantly over finer spatial scales in the topographically
heterogeneous Andes and their foothills compared with
the variation captured by remote sensing, and other cli-
matic variables may better capture major sources of abi-
otic stress in dry forests, such as short periods of intense
drought or strong interannual variation in drought. More
broadly, our results highlight the importance of consider-
ing both direct effects of climate and indirect effects of
climate on chemically mediated biotic interactions in
shaping patterns of species diversity.

In conclusion, our results support the hypothesis that
chemically mediated biotic interactions shape elevational
diversity gradients by imposing stronger selection for
interspecific divergence in plant chemical defenses in
more diverse communities and maintaining higher chem-
ical dissimilarity among plant species in warmer, wet-
ter, and less variable climates. Abiotic stress associated
with high elevations may select for convergent second-
ary metabolite evolution distinct from that imposed by
biotic stressors (Defossez et al., 2021; Volf et al., 2020,
2022, 2023), but antagonistic interactions among plants
and their shared herbivores and pathogens are
expected to select for chemical divergence. Our results
suggest that the strength of this mechanism varies in a
manner that affects character evolution and plant spe-
cies diversity. Our study also illustrates the promise of
ecological metabolomics in the study of biogeography,
community ecology, and complex species interactions
in high-diversity ecosystems.
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