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Published research fi ndings are 
sometimes refuted by subsequent 
evidence, with ensuing confusion 

and disappointment. Refutation and 
controversy is seen across the range of 
research designs, from clinical trials 
and traditional epidemiological studies 
[1–3] to the most modern molecular 
research [4,5]. There is increasing 
concern that in modern research, false 
fi ndings may be the majority or even 
the vast majority of published research 
claims [6–8]. However, this should 
not be surprising. It can be proven 
that most claimed research fi ndings 
are false. Here I will examine the key 

factors that infl uence this problem and 
some corollaries thereof. 

Modeling the Framework for False 
Positive Findings 

Several methodologists have 
pointed out [9–11] that the high 
rate of nonreplication (lack of 
confi rmation) of research discoveries 
is a consequence of the convenient, 
yet ill-founded strategy of claiming 
conclusive research fi ndings solely on 
the basis of a single study assessed by 
formal statistical signifi cance, typically 
for a p-value less than 0.05. Research 
is not most appropriately represented 
and summarized by p-values, but, 
unfortunately, there is a widespread 
notion that medical research articles 

should be interpreted based only on 
p-values. Research fi ndings are defi ned 
here as any relationship reaching 
formal statistical signifi cance, e.g., 
effective interventions, informative 
predictors, risk factors, or associations. 
“Negative” research is also very useful. 
“Negative” is actually a misnomer, and 
the misinterpretation is widespread. 
However, here we will target 
relationships that investigators claim 
exist, rather than null fi ndings. 

As has been shown previously, the 
probability that a research fi nding 
is indeed true depends on the prior 
probability of it being true (before 
doing the study), the statistical power 
of the study, and the level of statistical 
signifi cance [10,11]. Consider a 2 × 2 
table in which research fi ndings are 
compared against the gold standard 
of true relationships in a scientifi c 
fi eld. In a research fi eld both true and 
false hypotheses can be made about 
the presence of relationships. Let R 
be the ratio of the number of “true 
relationships” to “no relationships” 
among those tested in the fi eld. R 

is characteristic of the fi eld and can 
vary a lot depending on whether the 
fi eld targets highly likely relationships 
or searches for only one or a few 
true relationships among thousands 
and millions of hypotheses that may 
be postulated. Let us also consider, 
for computational simplicity, 
circumscribed fi elds where either there 
is only one true relationship (among 
many that can be hypothesized) or 
the power is similar to fi nd any of the 
several existing true relationships. The 
pre-study probability of a relationship 
being true is R⁄(R + 1). The probability 
of a study fi nding a true relationship 
refl ects the power 1 − β (one minus 
the Type II error rate). The probability 
of claiming a relationship when none 
truly exists refl ects the Type I error 
rate, α. Assuming that c relationships 
are being probed in the fi eld, the 
expected values of the 2 × 2 table are 
given in Table 1. After a research 
fi nding has been claimed based on 
achieving formal statistical signifi cance, 
the post-study probability that it is true 
is the positive predictive value, PPV. 
The PPV is also the complementary 
probability of what Wacholder et al. 
have called the false positive report 
probability [10]. According to the 2 
× 2 table, one gets PPV = (1 − β)R⁄(R 
− βR + α). A research fi nding is thus 
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Summary
There is increasing concern that most 

current published research fi ndings are 
false. The probability that a research claim 
is true may depend on study power and 
bias, the number of other studies on the 
same question, and, importantly, the ratio 
of true to no relationships among the 
relationships probed in each scientifi c 
fi eld. In this framework, a research fi nding 
is less likely to be true when the studies 
conducted in a fi eld are smaller; when 
effect sizes are smaller; when there is a 
greater number and lesser preselection 
of tested relationships; where there is 
greater fl exibility in designs, defi nitions, 
outcomes, and analytical modes; when 
there is greater fi nancial and other 
interest and prejudice; and when more 
teams are involved in a scientifi c fi eld 
in chase of statistical signifi cance. 
Simulations show that for most study 
designs and settings, it is more likely for 
a research claim to be false than true. 
Moreover, for many current scientifi c 
fi elds, claimed research fi ndings may 
often be simply accurate measures of the 
prevailing bias. In this essay, I discuss the 
implications of these problems for the 
conduct and interpretation of research.

It can be proven that 
most claimed research 

fi ndings are false.

https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.0020124&type=printable
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more likely true than false if (1 − β)R 
> α. Since usually the vast majority of 
investigators depend on α = 0.05, this 
means that a research fi nding is more 
likely true than false if (1 − β)R > 0.05.

What is less well appreciated is 
that bias and the extent of repeated 
independent testing by different teams 
of investigators around the globe may 
further distort this picture and may 
lead to even smaller probabilities of the 
research fi ndings being indeed true. 
We will try to model these two factors in 
the context of similar 2 × 2 tables.

Bias

First, let us defi ne bias as the 
combination of various design, data, 
analysis, and presentation factors that 
tend to produce research fi ndings 
when they should not be produced. 
Let u be the proportion of probed 
analyses that would not have been 
“research fi ndings,” but nevertheless 
end up presented and reported as 
such, because of bias. Bias should not 
be confused with chance variability 
that causes some fi ndings to be false by 
chance even though the study design, 
data, analysis, and presentation are 
perfect. Bias can entail manipulation 
in the analysis or reporting of fi ndings. 
Selective or distorted reporting is a 
typical form of such bias. We may 
assume that u does not depend on 
whether a true relationship exists 
or not. This is not an unreasonable 
assumption, since typically it is 
impossible to know which relationships 
are indeed true. In the presence of bias 
(Table 2), one gets PPV = ([1 − β]R + 
uβR)⁄(R + α − βR + u − uα + uβR), and 
PPV decreases with increasing u, unless 
1 − β ≤ α, i.e., 1 − β ≤ 0.05 for most 
situations. Thus, with increasing bias, 
the chances that a research fi nding 
is true diminish considerably. This is 
shown for different levels of power and 
for different pre-study odds in Figure 1. 

Conversely, true research fi ndings 
may occasionally be annulled because 
of reverse bias. For example, with large 
measurement errors relationships 

are lost in noise [12], or investigators 
use data ineffi ciently or fail to notice 
statistically signifi cant relationships, or 
there may be confl icts of interest that 
tend to “bury” signifi cant fi ndings [13]. 
There is no good large-scale empirical 
evidence on how frequently such 
reverse bias may occur across diverse 
research fi elds. However, it is probably 
fair to say that reverse bias is not as 
common. Moreover measurement 
errors and ineffi cient use of data are 
probably becoming less frequent 
problems, since measurement error has 
decreased with technological advances 
in the molecular era and investigators 
are becoming increasingly sophisticated 
about their data. Regardless, reverse 
bias may be modeled in the same way as 
bias above. Also reverse bias should not 
be confused with chance variability that 
may lead to missing a true relationship 
because of chance.

Testing by Several Independent 
Teams

Several independent teams may be 
addressing the same sets of research 
questions. As research efforts are 
globalized, it is practically the rule 
that several research teams, often 
dozens of them, may probe the same 
or similar questions. Unfortunately, in 
some areas, the prevailing mentality 
until now has been to focus on 
isolated discoveries by single teams 
and interpret research experiments 
in isolation. An increasing number 
of questions have at least one study 
claiming a research fi nding, and 
this receives unilateral attention. 
The probability that at least one 
study, among several done on the 

same question, claims a statistically 
signifi cant research fi nding is easy to 
estimate. For n independent studies of 
equal power, the 2 × 2 table is shown in 
Table 3: PPV = R(1 − βn)⁄(R + 1 − [1 − 
α]n − Rβn) (not considering bias). With 
increasing number of independent 
studies, PPV tends to decrease, unless 
1 − β < α, i.e., typically 1 − β < 0.05. 
This is shown for different levels of 
power and for different pre-study odds 
in Figure 2. For n studies of different 
power, the term βn is replaced by the 
product of the terms βi for i = 1 to n, 
but inferences are similar.

Corollaries

A practical example is shown in Box 
1. Based on the above considerations, 
one may deduce several interesting 
corollaries about the probability that a 
research fi nding is indeed true. 

Corollary 1: The smaller the studies 
conducted in a scientifi c fi eld, the less 
likely the research fi ndings are to be 
true. Small sample size means smaller 
power and, for all functions above, 
the PPV for a true research fi nding 
decreases as power decreases towards 
1 − β = 0.05. Thus, other factors being 
equal, research fi ndings are more likely 
true in scientifi c fi elds that undertake 
large studies, such as randomized 
controlled trials in cardiology (several 
thousand subjects randomized) [14] 
than in scientifi c fi elds with small 
studies, such as most research of 
molecular predictors (sample sizes 100-
fold smaller) [15]. 

Corollary 2: The smaller the effect 
sizes in a scientifi c fi eld, the less likely 
the research fi ndings are to be true. 
Power is also related to the effect 
size. Thus research fi ndings are more 
likely true in scientifi c fi elds with large 
effects, such as the impact of smoking 
on cancer or cardiovascular disease 
(relative risks 3–20), than in scientifi c 
fi elds where postulated effects are 
small, such as genetic risk factors for 
multigenetic diseases (relative risks 
1.1–1.5) [7]. Modern epidemiology is 
increasingly obliged to target smaller 

Table 1. Research Findings and True Relationships 

Research 
Finding

True Relationship
Yes No Total

Yes c(1 − β)R/(R + 1) cα/(R + 1) c(R + α − βR)/(R + 1)

No cβR/(R + 1) c(1 − α)/(R + 1) c(1 − α + βR)/(R + 1)

Total cR/(R + 1) c/(R + 1) c

DOI: 10.1371/journal.pmed.0020124.t001 

Table 2. Research Findings and True Relationships in the Presence of Bias

Research 
Finding

True Relationship
Yes No Total

Yes (c[1 − β]R + ucβR)/(R + 1) cα + uc(1 − α)/(R + 1) c(R + α − βR + u − uα + uβR)/(R + 1)

No (1 − u)cβR/(R + 1) (1 − u)c(1 − α)/(R + 1) c(1 − u)(1 − α + βR)/(R + 1)

Total cR/(R + 1) c/(R + 1) c

DOI: 10.1371/journal.pmed.0020124.t002
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effect sizes [16]. Consequently, the 
proportion of true research fi ndings 
is expected to decrease. In the same 
line of thinking, if the true effect sizes 
are very small in a scientifi c fi eld, 
this fi eld is likely to be plagued by 
almost ubiquitous false positive claims. 
For example, if the majority of true 
genetic or nutritional determinants of 
complex diseases confer relative risks 
less than 1.05, genetic or nutritional 
epidemiology would be largely utopian 
endeavors. 

Corollary 3: The greater the number 
and the lesser the selection of tested 
relationships in a scientifi c fi eld, the 
less likely the research fi ndings are to 
be true. As shown above, the post-study 
probability that a fi nding is true (PPV) 
depends a lot on the pre-study odds 
(R). Thus, research fi ndings are more 
likely true in confi rmatory designs, 
such as large phase III randomized 
controlled trials, or meta-analyses 
thereof, than in hypothesis-generating 
experiments. Fields considered highly 
informative and creative given the 
wealth of the assembled and tested 
information, such as microarrays and 
other high-throughput discovery-
oriented research [4,8,17], should have 
extremely low PPV.

Corollary 4: The greater the 
fl exibility in designs, defi nitions, 
outcomes, and analytical modes in 
a scientifi c fi eld, the less likely the 
research fi ndings are to be true. 
Flexibility increases the potential for 
transforming what would be “negative” 
results into “positive” results, i.e., bias, 
u. For several research designs, e.g., 
randomized controlled trials [18–20] 
or meta-analyses [21,22], there have 
been efforts to standardize their 
conduct and reporting. Adherence to 
common standards is likely to increase 
the proportion of true fi ndings. The 
same applies to outcomes. True 
fi ndings may be more common 
when outcomes are unequivocal and 
universally agreed (e.g., death) rather 
than when multifarious outcomes are 
devised (e.g., scales for schizophrenia 

outcomes) [23]. Similarly, fi elds that 
use commonly agreed, stereotyped 
analytical methods (e.g., Kaplan-
Meier plots and the log-rank test) 
[24] may yield a larger proportion 
of true fi ndings than fi elds where 
analytical methods are still under 
experimentation (e.g., artifi cial 
intelligence methods) and only “best” 
results are reported. Regardless, even 
in the most stringent research designs, 
bias seems to be a major problem. 
For example, there is strong evidence 
that selective outcome reporting, 
with manipulation of the outcomes 
and analyses reported, is a common 
problem even for randomized trails 
[25]. Simply abolishing selective 
publication would not make this 
problem go away. 

Corollary 5: The greater the fi nancial 
and other interests and prejudices 
in a scientifi c fi eld, the less likely 
the research fi ndings are to be true. 
Confl icts of interest and prejudice may 
increase bias, u. Confl icts of interest 
are very common in biomedical 
research [26], and typically they are 
inadequately and sparsely reported 
[26,27]. Prejudice may not necessarily 
have fi nancial roots. Scientists in a 
given fi eld may be prejudiced purely 
because of their belief in a scientifi c 
theory or commitment to their own 
fi ndings. Many otherwise seemingly 
independent, university-based studies 
may be conducted for no other reason 
than to give physicians and researchers 
qualifi cations for promotion or tenure. 
Such nonfi nancial confl icts may also 
lead to distorted reported results and 
interpretations. Prestigious investigators 
may suppress via the peer review process 
the appearance and dissemination of 
fi ndings that refute their fi ndings, thus 
condemning their fi eld to perpetuate 
false dogma. Empirical evidence 
on expert opinion shows that it is 
extremely unreliable [28]. 

Corollary 6: The hotter a 
scientifi c fi eld (with more scientifi c 
teams involved), the less likely the 
research fi ndings are to be true. 

This seemingly paradoxical corollary 
follows because, as stated above, the 
PPV of isolated fi ndings decreases 
when many teams of investigators 
are involved in the same fi eld. This 
may explain why we occasionally see 
major excitement followed rapidly 
by severe disappointments in fi elds 
that draw wide attention. With many 
teams working on the same fi eld and 
with massive experimental data being 
produced, timing is of the essence 
in beating competition. Thus, each 
team may prioritize on pursuing and 
disseminating its most impressive 
“positive” results. “Negative” results may 
become attractive for dissemination 
only if some other team has found 
a “positive” association on the same 
question. In that case, it may be 
attractive to refute a claim made in 
some prestigious journal. The term 
Proteus phenomenon has been coined 
to describe this phenomenon of rapidly 

Table 3. Research Findings and True Relationships in the Presence of Multiple Studies

Research 
Finding

True Relationship
Yes No Total

Yes cR(1 − βn)/(R + 1) c(1 − [1 − α]n)/(R + 1) c(R + 1 − [1 − α]n − Rβn)/(R + 1)

No cRβn/(R + 1) c(1 − α)n/(R + 1) c([1 − α]n + Rβn)/(R + 1)

Total cR/(R + 1) c/(R + 1) c

DOI: 10.1371/journal.pmed.0020124.t003

DOI: 10.1371/journal.pmed.0020124.g001

Figure 1. PPV (Probability That a Research 
Finding Is True) as a Function of the Pre-Study 
Odds for Various Levels of Bias, u

Panels correspond to power of 0.20, 0.50, 
and 0.80.
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alternating extreme research claims 
and extremely opposite refutations 
[29]. Empirical evidence suggests that 
this sequence of extreme opposites is 
very common in molecular genetics 
[29]. 

These corollaries consider each 
factor separately, but these factors often 
infl uence each other. For example, 
investigators working in fi elds where 
true effect sizes are perceived to be 
small may be more likely to perform 
large studies than investigators working 
in fi elds where true effect sizes are 
perceived to be large. Or prejudice 
may prevail in a hot scientifi c fi eld, 
further undermining the predictive 
value of its research fi ndings. Highly 
prejudiced stakeholders may even 
create a barrier that aborts efforts at 
obtaining and disseminating opposing 
results. Conversely, the fact that a fi eld 

is hot or has strong invested interests 
may sometimes promote larger studies 
and improved standards of research, 
enhancing the predictive value of its 
research fi ndings. Or massive discovery-
oriented testing may result in such a 
large yield of signifi cant relationships 
that investigators have enough to 
report and search further and thus 
refrain from data dredging and 
manipulation. 

Most Research Findings Are False 
for Most Research Designs and for 
Most Fields

In the described framework, a PPV 
exceeding 50% is quite diffi cult to 
get. Table 4 provides the results 
of simulations using the formulas 
developed for the infl uence of power, 
ratio of true to non-true relationships, 
and bias, for various types of situations 
that may be characteristic of specifi c 
study designs and settings. A fi nding 
from a well-conducted, adequately 
powered randomized controlled trial 
starting with a 50% pre-study chance 
that the intervention is effective is 

eventually true about 85% of the time. 
A fairly similar performance is expected 
of a confi rmatory meta-analysis of 
good-quality randomized trials: 
potential bias probably increases, but 
power and pre-test chances are higher 
compared to a single randomized trial. 
Conversely, a meta-analytic fi nding 
from inconclusive studies where 
pooling is used to “correct” the low 
power of single studies, is probably 
false if R ≤ 1:3. Research fi ndings from 
underpowered, early-phase clinical 
trials would be true about one in four 
times, or even less frequently if bias 
is present. Epidemiological studies of 
an exploratory nature perform even 
worse, especially when underpowered, 
but even well-powered epidemiological 
studies may have only a one in 
fi ve chance being true, if R = 1:10. 
Finally, in discovery-oriented research 
with massive testing, where tested 
relationships exceed true ones 1,000-
fold (e.g., 30,000 genes tested, of which 
30 may be the true culprits) [30,31], 
PPV for each claimed relationship is 
extremely low, even with considerable 

Box 1. An Example: Science 
at Low Pre-Study Odds 

Let us assume that a team of 
investigators performs a whole genome 
association study to test whether 
any of 100,000 gene polymorphisms 
are associated with susceptibility to 
schizophrenia. Based on what we 
know about the extent of heritability 
of the disease, it is reasonable to 
expect that probably around ten 
gene polymorphisms among those 
tested would be truly associated with 
schizophrenia, with relatively similar 
odds ratios around 1.3 for the ten or so 
polymorphisms and with a fairly similar 
power to identify any of them. Then 
R = 10/100,000 = 10−4, and the pre-study 
probability for any polymorphism to be 
associated with schizophrenia is also 
R/(R + 1) = 10−4. Let us also suppose that 
the study has 60% power to fi nd an 
association with an odds ratio of 1.3 at 
α = 0.05. Then it can be estimated that 
if a statistically signifi cant association is 
found with the p-value barely crossing the 
0.05 threshold, the post-study probability 
that this is true increases about 12-fold 
compared with the pre-study probability, 
but it is still only 12 × 10−4.

Now let us suppose that the 
investigators manipulate their design, 

analyses, and reporting so as to make 
more relationships cross the p = 0.05 
threshold even though this would not 
have been crossed with a perfectly 
adhered to design and analysis and with 
perfect comprehensive reporting of the 
results, strictly according to the original 
study plan. Such manipulation could be 
done, for example, with serendipitous 
inclusion or exclusion of certain patients 
or controls, post hoc subgroup analyses, 
investigation of genetic contrasts that 
were not originally specifi ed, changes 
in the disease or control defi nitions, 
and various combinations of selective 
or distorted reporting of the results. 
Commercially available “data mining” 
packages actually are proud of their 
ability to yield statistically signifi cant 
results through data dredging. In the 
presence of bias with u = 0.10, the post-
study probability that a research fi nding 
is true is only 4.4 × 10−4. Furthermore, 
even in the absence of any bias, when 
ten independent research teams perform 
similar experiments around the world, if 
one of them fi nds a formally statistically 
signifi cant association, the probability 
that the research fi nding is true is only 
1.5 × 10−4, hardly any higher than the 
probability we had before any of this 
extensive research was undertaken!

DOI: 10.1371/journal.pmed.0020124.g002

Figure 2. PPV (Probability That a Research 
Finding Is True) as a Function of the Pre-Study 
Odds for Various Numbers of Conducted 
Studies, n

Panels correspond to power of 0.20, 0.50, 
and 0.80.
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standardization of laboratory and 
statistical methods, outcomes, and 
reporting thereof to minimize bias.

Claimed Research Findings 
May Often Be Simply Accurate 
Measures of the Prevailing Bias 

As shown, the majority of modern 
biomedical research is operating in 
areas with very low pre- and post-
study probability for true fi ndings. 
Let us suppose that in a research fi eld 
there are no true fi ndings at all to be 
discovered. History of science teaches 
us that scientifi c endeavor has often 
in the past wasted effort in fi elds with 
absolutely no yield of true scientifi c 
information, at least based on our 
current understanding. In such a “null 
fi eld,” one would ideally expect all 
observed effect sizes to vary by chance 
around the null in the absence of bias. 
The extent that observed fi ndings 
deviate from what is expected by 
chance alone would be simply a pure 
measure of the prevailing bias. 

For example, let us suppose that 
no nutrients or dietary patterns are 
actually important determinants for 
the risk of developing a specifi c tumor. 
Let us also suppose that the scientifi c 
literature has examined 60 nutrients 
and claims all of them to be related to 
the risk of developing this tumor with 
relative risks in the range of 1.2 to 1.4 
for the comparison of the upper to 

lower intake tertiles. Then the claimed 
effect sizes are simply measuring 
nothing else but the net bias that has 
been involved in the generation of 
this scientifi c literature. Claimed effect 
sizes are in fact the most accurate 
estimates of the net bias. It even follows 
that between “null fi elds,” the fi elds 
that claim stronger effects (often with 
accompanying claims of medical or 
public health importance) are simply 
those that have sustained the worst 
biases. 

For fi elds with very low PPV, the few 
true relationships would not distort 
this overall picture much. Even if a 
few relationships are true, the shape 
of the distribution of the observed 
effects would still yield a clear measure 
of the biases involved in the fi eld. This 
concept totally reverses the way we 
view scientifi c results. Traditionally, 
investigators have viewed large 
and highly signifi cant effects with 
excitement, as signs of important 
discoveries. Too large and too highly 
signifi cant effects may actually be more 
likely to be signs of large bias in most 
fi elds of modern research. They should 
lead investigators to careful critical 
thinking about what might have gone 
wrong with their data, analyses, and 
results. 

Of course, investigators working in 
any fi eld are likely to resist accepting 
that the whole fi eld in which they have 

spent their careers is a “null fi eld.” 
However, other lines of evidence, 
or advances in technology and 
experimentation, may lead eventually 
to the dismantling of a scientifi c fi eld. 
Obtaining measures of the net bias 
in one fi eld may also be useful for 
obtaining insight into what might be 
the range of bias operating in other 
fi elds where similar analytical methods, 
technologies, and confl icts may be 
operating. 

How Can We Improve 
the Situation?

Is it unavoidable that most research 
fi ndings are false, or can we improve 
the situation? A major problem is that 
it is impossible to know with 100% 
certainty what the truth is in any 
research question. In this regard, the 
pure “gold” standard is unattainable. 
However, there are several approaches 
to improve the post-study probability. 

Better powered evidence, e.g., large 
studies or low-bias meta-analyses, 
may help, as it comes closer to the 
unknown “gold” standard. However, 
large studies may still have biases 
and these should be acknowledged 
and avoided. Moreover, large-scale 
evidence is impossible to obtain for all 
of the millions and trillions of research 
questions posed in current research. 
Large-scale evidence should be 
targeted for research questions where 
the pre-study probability is already 
considerably high, so that a signifi cant 
research fi nding will lead to a post-test 
probability that would be considered 
quite defi nitive. Large-scale evidence is 
also particularly indicated when it can 
test major concepts rather than narrow, 
specifi c questions. A negative fi nding 
can then refute not only a specifi c 
proposed claim, but a whole fi eld or 
considerable portion thereof. Selecting 
the performance of large-scale studies 
based on narrow-minded criteria, 
such as the marketing promotion of a 
specifi c drug, is largely wasted research. 
Moreover, one should be cautious 
that extremely large studies may be 
more likely to fi nd a formally statistical 
signifi cant difference for a trivial effect 
that is not really meaningfully different 
from the null [32–34].  

Second, most research questions 
are addressed by many teams, and 
it is misleading to emphasize the 
statistically signifi cant fi ndings of 
any single team. What matters is the 

Table 4. PPV of Research Findings for Various Combinations of Power (1 − β), Ratio 
of True to Not-True Relationships (R), and Bias (u)

1 − β R u Practical Example PPV

0.80 1:1 0.10 Adequately powered RCT with little 

bias and 1:1 pre-study odds

0.85

0.95 2:1 0.30 Confi rmatory meta-analysis of good-

quality RCTs

0.85

0.80 1:3 0.40 Meta-analysis of small inconclusive 

studies

0.41

0.20 1:5 0.20 Underpowered, but well-performed  

phase I/II  RCT

0.23

0.20 1:5 0.80 Underpowered, poorly performed 

phase I/II RCT

0.17

0.80 1:10 0.30 Adequately powered exploratory 

epidemiological study

0.20

0.20 1:10 0.30 Underpowered exploratory 

epidemiological study

0.12

0.20 1:1,000 0.80 Discovery-oriented exploratory 

research with massive testing

0.0010

0.20 1:1,000 0.20 As in previous example, but 

with more limited bias (more 

standardized) 

0.0015

The estimated PPVs (positive predictive values) are derived assuming α = 0.05 for a single study.

RCT, randomized controlled trial.

DOI: 10.1371/journal.pmed.0020124.t004
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totality of the evidence. Diminishing 
bias through enhanced research 
standards and curtailing of prejudices 
may also help. However, this may 
require a change in scientifi c mentality 
that might be diffi cult to achieve. 
In some research designs, efforts 
may also be more successful with 
upfront registration of studies, e.g., 
randomized trials [35]. Registration 
would pose a challenge for hypothesis-
generating research. Some kind of 
registration or networking of data 
collections or investigators within fi elds 
may be more feasible than registration 
of each and every hypothesis-
generating experiment. Regardless, 
even if we do not see a great deal of 
progress with registration of studies 
in other fi elds, the principles of 
developing and adhering to a protocol 
could be more widely borrowed from 
randomized controlled trials.

Finally, instead of chasing statistical 
signifi cance, we should improve our 
understanding of the range of R 
values—the pre-study odds—where 
research efforts operate [10]. Before 
running an experiment, investigators 
should consider what they believe the 
chances are that they are testing a true 
rather than a non-true relationship. 
Speculated high R values may 
sometimes then be ascertained. As 
described above, whenever ethically 
acceptable, large studies with minimal 
bias should be performed on research 
fi ndings that are considered relatively 
established, to see how often they are 
indeed confi rmed. I suspect several 
established “classics” will fail the test 
[36]. 

Nevertheless, most new discoveries 
will continue to stem from hypothesis-
generating research with low or very 
low pre-study odds. We should then 
acknowledge that statistical signifi cance 
testing in the report of a single study 
gives only a partial picture, without 
knowing how much testing has been 
done outside the report and in the 
relevant fi eld at large. Despite a large 
statistical literature for multiple testing 
corrections [37], usually it is impossible 
to decipher how much data dredging 
by the reporting authors or other 
research teams has preceded a reported 
research fi nding. Even if determining 
this were feasible, this would not 
inform us about the pre-study odds. 
Thus, it is unavoidable that one should 
make approximate assumptions on how 

many relationships are expected to be 
true among those probed across the 
relevant research fi elds and research 
designs. The wider fi eld may yield some 
guidance for estimating this probability 
for the isolated research project. 
Experiences from biases detected in 
other neighboring fi elds would also be 
useful to draw upon. Even though these 
assumptions would be considerably 
subjective, they would still be very 
useful in interpreting research claims 
and putting them in context. �
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