2. En los comienzos


Cuando se emplea en un contexto científico el término eón representa 1.000 millones de años. Por lo que nos indican los estratos geológicos y la medida de su radiactividad, la Tierra comenzó a existir como cuerpo espacial independiente hace unos 4.500 millones de años o, lo que es lo mismo, hace cuatro eones y medio.

 

Los primeros rastros de vida hasta ahora identificados han aparecido en rocas sedimentarias cuya edad se cifra en más de tres eones. Sin embargo, como decía H.G. Wells, el registro geológico ofrece un tipo de información sobre la vida en épocas remotas comparable al conocimiento que de los miembros de una vecindad podría obtenerse examinando los libros de un banco. Probablemente se cuenten por millones las formas de vida primitivas de cuerpo blando que, si bien florecieron en un momento dado, se extinguieron después sin dejar huellas para el futuro ni, muchísimo menos, obviamente, esqueleto alguno para el gabinete geológico.

No es ninguna sorpresa, por tanto, que se sepa poco sobre el origen de la vida en nuestro planeta y menos todavía sobre las primeras etapas de su evolución.

 

Pero por lo que toca al entorno en el que se inició la vida — eventualmente Gaia— revisando lo que sabemos respecto a los comienzos de la Tierra en el contexto del Universo del que se formó, podemos por lo menos hacer suposiciones inteligentes. Por observaciones realizadas en nuestra propia galaxia sabemos que un conglomerado de estrellas se asemeja a una población humana en lo variado de las edades de sus componentes, que van de los más viejos a los más jóvenes.

 

Hay estrellas viejas que, como antiguos soldados, simplemente se desvanecen, mientras la muerte de otras, más espectacular, es un estallido inimaginablemente glorioso; cobran forma, entretanto, esferas incandescentes orbitadas por satélites que giran a su alrededor como polillas en torno a una vela. Cuando examinamos espectroscópicamente el polvo interestelar y las nubes gaseosas de cuya condensación surgen nuevos soles y nuevos planetas, hallamos gran abundancia de las moléculas simples y compuestas a partir de las cuales es posible construir el edificio de la vida.

 

Estas moléculas, en realidad, parecen estar dispersas por todo el Universo. Los astrónomos informan casi semanalmente del descubrimiento de alguna nueva substancia orgánica compleja hallada en las profundidades del espacio. Se tiene a veces la impresión de que nuestra galaxia es un almacén gigantesco donde se guardan los componentes de la vida.

Si imaginamos un planeta hecho exclusivamente con piezas de relojes, no parece disparatado suponer que, con tiempo por delante —pongamos, por ejemplo, unos 1.000 millones de años—, las fuerzas gravitatorias y la incansable acción del viento terminarán ensamblando un reloj en perfecto funcionamiento. Probablemente el comienzo de la vida en la Tierra fue algo similar.

 

El incontable número de encuentros fortuitos entre moléculas, esenciales para la vida, la casi infinita variedad de combinaciones posibles, bien pudo haber resultado en el ensamblaje casual de una substancia capaz de efectuar una tarea de tipo biológico, por ejemplo acumular luz solar para utilizar la energía en la realización de algún cometido posterior que no hubiera sido posible de otro modo o que las leyes físicas no hubieran permitido.

 

El antiguo mito griego de Prometeo, que intentó robar el fuego de los dioses, y la historia bíblica de Adán y Eva, arrastrados por el deseo de saborear la fruta prohibida, quizá se hundan mucho más profundamente en nuestra historia ancestral de lo que sospechamos.

 

Al aumentar posteriormente el número de estos compuestos, empezó a ser posible que algunos de ellos se combinaran entre sí para formar nuevas substancias de mayor complejidad dotadas de nuevas propiedades y poderes distintos, agentes a su vez de idéntico proceso que se repetiría hasta la eventual llegada a una entidad compleja cuyas propiedades eran, por fin, las de la vida: fue el primer microorganismo capaz de utilizar la luz de sol y las moléculas de su entorno para producir su propio duplicado.

Esta secuencia de acontecimientos conducente a la formación del primer ser vivo tenía casi todo en contra. Por otro lado, el número de encuentros fortuitos acaecidos entre las moléculas de la substancia primigenia de la Tierra debe haber sido verdaderamente incalculable. La vida era, pues, un acontecimiento casi completamente improbable que tenía casi infinitas oportunidades de suceder y sucedió.

 

Supongamos al menos que las cosas ocurrieron de esta forma en lugar de acudir a misteriosas siembras de semillas, esporas llegadas de no se sabe dónde o cualquier otro tipo de intervención externa.

 

Nuestro interés primordial, en cualquier caso, se centra en la relación surgida entre la biosfera que se forma y el entorno planetario de una Tierra todavía joven, no en el origen de la vida.

  • ¿Cuál era el estado de la Tierra justamente antes de la aparición de la vida, hace, digamos, unos tres eones y medio?

  • ¿Por qué surgió la vida en nuestro planeta y no lo hizo en Marte y Venus, sus parientes más cercanos?

  • ¿Con qué riesgos se enfrentó la joven biosfera, qué desastres estuvieron a punto de destruirla y cómo la presencia de Gaia ayudó a superarlos?

Antes de sugerir algunas respuestas a estas intrigantes preguntas hemos de volver a las circunstancias que rodearon la formación de la Tierra, hace aproximadamente cuatro eones y medio.

Parece casi seguro que la formación de una supernova —la explosión de una estrella de gran tamaño— fue el antecedente próximo, tanto en el tiempo como en el espacio, a la formación de nuestro sistema solar. Según creen los astrónomos, la secuencia de acontecimientos que culminan en la supernova podría ser la siguiente: la combustión de una estrella significa fundamentalmente la fusión de su hidrógeno y luego de sus átomos de helio; pues bien, las cenizas de estos fuegos, en forma de elementos más pesados —sílice y hierro, por ejemplo— van acumulándose en la zona central del astro.

 

Cuando la masa de este núcleo de elementos muertos que ha dejado de generar calor y presión excede con mucho a la de nuestro sol, la inexorable fuerza de su peso la colapsa, con lo que pasa a ser, en materia de segundos, un cuerpo cuyo volumen se cifra tan sólo en millares de millas cúbicas. El nacimiento de este extraordinario objeto, la estrella de neutrones, es una catástrofe de dimensiones cósmicas.

 

Aunque los detalles de este proceso y de otros semejantes son todavía oscuros es obvio que se observan en él todos los ingredientes de una colosal explosión nuclear. Las formidables cantidades de luz, calor y radiaciones duras que produce una supernova en pleno apogeo igualan al total de los generados por todas las demás estrellas de la galaxia.

 

Las explosiones raramente son cien por cien eficaces: cuando una estrella se convierte en supernova, el material explosivo nuclear, que incluye uranio y plutonio junto a grandes cantidades de hierro y otros elementos residuales, es esparcido por el espacio como si se tratara de la nube de polvo provocada por la detonación de una bomba de hidrógeno. Lo más raro quizá sobre nuestro planeta es que consiste sobre todo en fragmentos procedentes de la explosión de una bomba de hidrógeno del tamaño de una estrella. Todavía hoy, eones después, la corteza terrestre conserva el suficiente material explosivo inestable para que sea posible la repetición, a muy pequeña escala, del acontecimiento original.

Las estrellas binarias —dobles— son muy corrientes en nuestra galaxia; pudiera ser que en un determinado momento, el Sol, esa estrella tranquila y de buenas maneras, haya tenido una compañera de gran tamaño que, al consumir su hidrógeno rápidamente, se convirtió en una supernova o, tal vez, el Sol y sus planetas proceden de la condensación de los restos de una supernova mezclados con el polvo y los gases interestelares.

 

Sí parece seguro que, ocurriera como ocurriera, nuestro sistema solar se formó a resultas de la explosión de una supernova. No hay otra explicación verosímil para la gran cantidad de átomos explosivos aún presentes en la Tierra. El más primitivo y anticuado de los contadores Geiger nos indica que habitamos entre los restos de una vasta detonación nuclear. No menos de tres millones de átomos inestables procedentes de aquel cataclismo se fragmentan cada minuto dentro de nuestros cuerpos, liberando una diminuta fracción de la energía proveniente de aquellos remotos fuegos.

Las reservas actuales de uranio contienen únicamente el 0,72% del peligroso isótopo U235. Créase o no, los reactores nucleares han existido mucho antes que el hombre: recientemente fue descubierto en Gabón (África), un reactor natural fósil que funcionaba desde hace aproximadamente dos eones. Podemos, por consiguiente, afirmar casi con toda seguridad que, hace cuatro eones, la concentración geoquímica del uranio produjo espectaculares reacciones nucleares naturales.

 

Al estar hoy tan de moda denigrar la tecnología, es fácil olvidar que la fusión nuclear es un proceso natural. Si algo tan intrincado como la vida puede surgir por accidente, no debe maravillarnos que con un reactor de fusión, mecanismo relativamente simple, ocurra algo parecido.

Así pues, la vida empezó probablemente bajo condiciones de radiactividad mucho más intensas que las que tanto preocupan a ciertos medioambientalistas de hoy. Más aún, el aire no contenía oxígeno libre ni ozono, lo que dejaba la superficie del planeta expuesta directamente a la intensa radiación ultravioleta del Sol. Preocupa mucho actualmente el que los imponderables de la radiación nuclear y de la ultravioleta puedan causar un día la destrucción de toda la vida sobre la Tierra y, sin embargo, estas mismas energías inundaron la matriz misma de la vida.

No se trata aquí de paradojas; los peligros actuales son ciertos pero se tiende a exagerarlos. La radiación ultravioleta y la nuclear son parte de nuestro entorno natural y siempre lo han sido. Cuando la vida comenzaba, el poder destructor de la radiación nuclear, su capacidad para romper enlaces, puede haber sido incluso benéfica, acelerando el proceso de prueba y error al eliminar los errores y regenerar los componentes químicos básicos, siendo causa sobre todo de una mayor producción de combinaciones fortuitas de entre las que surgiría la óptima.

Como Urey
* nos enseña, la atmósfera primigenia de la Tierra pudo haber desaparecido durante la fase de estabilización del Sol, dejando nuestro planeta tan desnudo como la Luna lo está ahora. Posteriormente, la presión de la masa terrestre y la confinada energía de componentes altamente radiactivos caldearon su interior, produciendo el escape de gases y de vapor de agua que daría lugar al aire y a los océanos.

 

* Urey, Harold Clayton: Científico que en 1934 obtuvo el premio Nobel de Química por su descubrimiento del deuterio. Sus puntos de vista sobre la formación del sistema solar están contenidos en The Planets: Their Origin and Development (1952). (N. del T.).

 

Desconocemos cuanto tardó en producirse esta atmósfera secundaria y la naturaleza de sus componentes originales, pero suponemos que en la época del inicio de la vida los gases procedentes del interior eran más ricos en hidrógeno que los que ahora expulsan los volcanes. Los compuestos orgánicos, las partes constituyentes de la vida, necesitan tener en su medio una cierta cantidad de hidrógeno tanto para su formación como para su supervivencia.

Cuando consideramos los elementos que entran en los compuestos orgánicos pensamos habitualmente y en primer lugar en carbono, nitrógeno, oxígeno y fósforo, luego en una miscelánea de los elementos presentes en pequeñas cantidades, como el hierro, el zinc y el calcio. El hidrógeno, ese ubicuo material del que está hecha la mayor parte del Universo suele darse por supuesto y, sin embargo, su importancia y su versatilidad son máximas.

 

Es parte esencial de todo compuesto formado por los demás elementos claves de la vida. Es el combustible del que se sirve el Sol y, consiguientemente, la fuente primitiva de ese generoso flujo de energía solar gratuita que pone en marcha los procesos vitales y les permite un desarrollo normal. Constituye las dos terceras partes del agua, esa otra substancia esencial para la vida y que tendemos a olvidar de tan frecuente.

 

La abundancia de hidrógeno libre de un planeta configura el potencial de oxidación-reducción (redox), que mide la tendencia de un determinado entorno a oxidar o a reducir. Los elementos de un entorno oxidante incorporan oxígeno, razón de la herrumbre del hierro. En un ambiente reductor —rico en hidrógeno— un compuesto que contenga oxígeno tiende a cederlo. La abundancia de átomos de hidrógeno, cargados positivamente, determina también la acidez o la alcalinidad —el pH, diría un químico— de un medio.

 

El potencial redox y el pH son dos factores ambientales claves para saber si un planeta puede contener vida o no.

El vehículo espacial Viking, norteamericano, que descendió en Marte, y el Venera soviético llegado a Venus han coincidido en informar negativamente respecto a la presencia de vida. Venus ha perdido casi todo su hidrógeno y es, en consecuencia, absolutamente estéril. En Marte hay aún algo de agua —e hidrógeno, por tanto— pero la oxidación de su superficie es tal que la formación de moléculas orgánicas es imposible. Los planetas están, además de muertos, incapacitados para la vida.

Aunque es poco lo que sabemos de la química terrestre cuando se inició la vida, nos consta que estaba más cercana a la actual de los gigantes exteriores, Júpiter y Saturno, que a la de Marte y Venus. Es probable que, hace eones, Marte, Venus y la Tierra fueran planetas ricos en moléculas de metano, hidrógeno, amoníaco y agua a partir de las que puede formarse la vida, pero del mismo modo que el hierro se cubre de herrumbre y la goma se deshace, un planeta se marchita y termina por quedar totalmente yermo (auxiliado del tiempo, ese gran oxidante) cuando el hidrógeno, elemento esencial para la vida, escapa al espacio.

La atmósfera de la Tierra que fue testigo del comienzo de la vida hubo de ser, por lo tanto, una atmósfera reductora, rica en hidrógeno. Esta atmósfera no necesitaba un gran contenido de hidrógeno libre por cuanto el que se desprendía del interior ofrecía un suministro constante; habría bastado, por otra parte, la presencia de hidrógeno en compuestos tales como el amoníaco y el metano.

 

En las lunas de los planetas exteriores pueden encontrarse todavía atmósferas similares a la descrita; si sus débiles campos gravitacionales las retienen es gracias a lo bajo de sus temperaturas. A diferencia de estas lunas y de sus planetas, la Tierra, Marte y Venus carecen de las temperaturas o de las fuerzas gravitatorias necesarias para retener indefinidamente su hidrógeno sin auxilio biológico.

 

El átomo de hidrógeno es el más pequeño y ligero de todos, por lo que, sea cual sea la temperatura, siempre es el de movimiento más veloz; pues bien, teniendo en cuenta que los rayos solares fragmentan las moléculas de hidrógeno gaseoso situadas en el límite externo de nuestra atmósfera convirtiéndolas en átomos libres, cuya movilidad les permite escapar de la atracción gravitatoria y perderse en el espacio, está claro que la vida en la Tierra habría tenido los días contados si el suministro de hidrógeno (incorporado a compuestos tales como amoníaco y metano) hubiera dependido sólo de los gases escapados del interior del planeta, incapaces de reponer las pérdidas indefinidamente.

 

Estos gases, además, cumplían otra misión fundamental, la de "arropar" nuestro planeta manteniendo su temperatura en una época en la que, probablemente, la radiación solar era inferior a la actual.

La historia del clima terrestre es uno de los argumentos de más peso en favor de la existencia de Gaia. Sabemos por las rocas sedimentarias que durante los tres últimos eones y medio el clima no ha sido nunca, ni siquiera durante períodos cortos, totalmente desfavorable para la vida. Esa continuidad del registro geológico de la vida nos indica también la imposibilidad de que los océanos llegaran a hervir o a congelarse en algún momento.

 

Hay, por el contrario, pruebas sutiles derivadas de las proporciones entre las diferentes formas atómicas de oxígeno encontradas en los estratos geológicos cuya interpretación indica que el clima ha sido siempre muy parecido a como es ahora, con las salvedades de las glaciaciones y del período próximo al comienzo de la vida, donde se hizo algo más cálido.

 

Los períodos glaciales —suele denominárseles Edades de Hielo, frecuentemente exagerando— afectaron tan sólo las zonas terrestres situadas por encima de los 45° Norte y por debajo de los 45° Sur: el 70 por ciento de la superficie terrestre queda, sin embargo, entre estas dos latitudes.

 

Las así llamadas Edades de Hielo afectaron únicamente a la flora y la fauna que habían colonizado el 30 por ciento restante, que hasta en los períodos interglaciales suele estar parcialmente helado. Como lo está hoy.

Parecería que en principio no hay nada particularmente extraño en este cuadro de un clima estable a lo largo de los tres y medio últimos eones. Si la Tierra gira según una órbita estable alrededor del Sol, ese radiador gigantesco y permanente, desde época tan remota,¿por qué habría de ser de otro modo? Es, sin embargo, extraño, y precisamente por esta razón.

 

Nuestro Sol, estrella típica, se ha desarrollado según un patrón estándar bien establecido, por el cual sabemos que su energía radiante ha aumentado al menos en un 30 por ciento durante los tres eones y medio mencionados. Un 30 por ciento menos de calor solar implica una temperatura media para la Tierra muy por debajo del punto de congelación del agua.

 

Si el clima de la Tierra estuviera exclusivamente en función de la radiación solar nuestro planeta habría permanecido congelado durante el primer eón y medio del período caracterizado por la existencia de vida, y sabemos por los registros paleontológicos y por la persistencia misma de la vida que jamás las condiciones ambientales fueron tan adversas.

Si la Tierra fuera simplemente un objeto sólido inanimado, su temperatura de superficie seguiría las variaciones de la radiación solar, y no hay ropaje aislado que proteja indefinidamente a una estatua de piedra del calor veraniego y del frío invernal; durante tres eones y medio la temperatura de superficie ha sido permanentemente favorable para la vida, de modo semejante a como la temperatura de nuestros cuerpos se mantiene constante en invierno y en verano, ya sea tropical o polar el entorno en el que nos encontremos.

 

Aunque podría pensarse que la intensa radiactividad de los primeros días habría bastado para mantener unos ciertos niveles de temperatura, un sencillo cálculo basado en la muy predecible naturaleza de la desintegración radiactiva indica que, aunque estas energías mantenían incandescente el interior del planeta, tuvieron escaso efecto sobre las temperaturas superficiales. Los científicos dedicados a cuestiones planetarias han sugerido varias explicaciones para lo constante de nuestro clima. Carl Sagan y su colaborador el doctor Mullen, por ejemplo, han señalado recientemente que, en épocas remotas, cuando el Sol brillaba con menos intensidad, la presencia en la atmósfera de gases como el amoníaco ayudaba a conservar el calor recibido.

 

Algunos gases, como el dióxido de carbono y el amoníaco absorben la radiación térmica infrarroja que desprende la superficie de la Tierra y retrasan su escape al espacio: son los equivalentes gaseosos de la ropa de abrigo, aunque tienen sobre ésta la ventaja adicional de ser transparentes a las radiaciones solares que hacen llegar a nuestro planeta casi todo el calor que recibe. Por esta razón, aunque quizá no del todo correctamente, son a menudo denominados gases "invernadero".

Otros científicos, especialmente el profesor Meadows y Henderson Sellers, de la Universidad de Leicester, han sugerido que, en épocas anteriores, la superficie terrestre era de color más obscuro, capaz por consiguiente de absorber en mayor proporción que ahora el calor del Sol. La parte de luz solar reflejada al espacio se conoce como el albedo o blancura de un planeta. Si su superficie es totalmente blanca reflejará toda la luz solar que a ella llegue resultando, por lo tanto, un mundo muy frío.

 

Si, por el contrario, es completamente negra, absorbe dicha luz en su totalidad, con el consiguiente aumento de la temperatura. Es evidente que un cambio del albedo podría compensar el menor rendimiento térmico de un Sol más apagado. La superficie terrestre ostenta en nuestra época una adecuada coloración intermedia y está cubierta por masas de nubes en aproximadamente el 50 por ciento.

 

Refleja más o menos el 45 por ciento de la luz procedente del Sol.

Fig. 1.

El curso de la temperatura de la Tierra desde los comienzos de la vida, hace 3,5 eones, se mantiene siempre dentro del estrecho margen que dejan las líneas horizontales de los 10° y los 20°C. Si nuestra temperatura planetaria hubiera dependido únicamente de la relación abiológica establecida entre la radiación solar y el balance térmico atmósfera-superficie, podrían haberse alcanzado las condiciones externas marcadas por las líneas A y C.

De haber sucedido esto toda vida habría desaparecido del planeta, lo que también habría sucedido si las temperaturas hubieran seguido el curso intermedio marcado por la línea B, que muestra cómo habrían aumentado de haber seguido pasivamente el incremento de radiación solar.

 

Cuando la vida empezaba, pues, el clima era suave a pesar de la menor radiación solar. Las únicas explicaciones que se han dado a este fenómeno son a un "efecto invernadero" protector del dióxido de carbono y del amoníaco o un menor albedo originado por una distribución de las masas de tierra diferente a la actual. Ambas son posibles, pero únicamente hasta cierto punto: allí donde no llegan es donde vislumbramos por primera vez a Gaia o, al menos, la necesidad de postular su existencia.

 

Parece probable que las primeras manifestaciones de la vida se instalaran en los océanos, en las aguas someras, en los estuarios, en las riberas de los ríos y en las zonas pantanosas, extendiéndose desde aquí a todas las demás áreas del globo. Al cobrar forma la primera biosfera, el entorno químico de la Tierra comenzó inevitablemente a cambiar.

 

Del mismo modo que los nutrientes de un huevo de gallina alimentan al embrión, los abundantes compuestos orgánicos de los cuales surgió la vida suministraron a la joven criatura el alimento que su crecimiento requería. A diferencia del pollito, sin embargo, la vida más allá del "huevo" contaba únicamente con un suministro alimenticio limitado.

 

Tan pronto como los compuestos clave empezaron a escasear, la joven criatura se encontró frente a la disyuntiva de perecer de hambre o de aprender a sintetizar sus propios elementos estructurales utilizando las materias primas a su alcance y la luz solar como energía motriz.

La necesidad de enfrentarse a alternativas de esta índole debió ser frecuente en la época que describimos y sirvió para incrementar la diversificación, la independencia y la robustez de una biosfera en expansión. Quizá fuera este el momento de la aparición de las primeras relaciones depredador-presa, del establecimiento de primitivas cadenas alimentarais.

 

La muerte y la natural descomposición de los organismos individuales liberaban componentes claves para el conjunto de la comunidad pero, para ciertas especies, pudo resultar más conveniente obtener estos compuestos fundamentales alimentándose de otros seres vivos. La ciencia de la ecología se ha desarrollado al punto de que actualmente puede demostrar, con la ayuda de modelos numéricos y computadores, que un ecosistema compuesto por una compleja red trófica, por muy diferentes relaciones depredador-presa, es mucho más sólido y estable que una sola especie autocontenida o que un pequeño grupo de interrelación escasa.

 

Si tales aseveraciones son ciertas, parece probable que la biosfera se diversificara con rapidez según iba desarrollándose.

Consecuencia importante de esta incesante actividad de la vida fue la circulación cíclica del amoníaco, el dióxido de carbono y el metano, gases atmosféricos todos ellos, a través de la biosfera. Cuando el suministro de otras fuentes escaseaba, estos gases aportaban carbono, nitrógeno e hidrógeno, elementos imprescindibles para la vida; de ello resultaba un descenso en su tasa atmosférica.

 

El carbono y el nitrógeno fijados descendían a los lechos marinos en forma de detritos orgánicos o bien eran incorporados a los organismos de los primitivos seres vivos como carbonato de calcio o de magnesio. Parte del hidrógeno que la descomposición del amoníaco liberaba se unía a otros elementos —principalmente al oxígeno para formar agua— y parte escapaba al espacio en forma de hidrógeno gaseoso. El nitrógeno procedente del amoníaco quedaba en la atmósfera como nitrógeno molecular, forma prácticamente inerte que no ha cambiado desde entonces.

Aunque estos procesos pueden resultar lentos para nuestra escala temporal, mucho antes de que un eón transcurriera completamente, la gradual utilización del carbónico y del amoníaco de la atmósfera había introducido considerables cambios en la composición de ésta. El que estos gases fueran desapareciendo de la atmósfera produjo además un descenso de la temperatura debido al debilitamiento del "efecto invernadero".

 

Sagan y Mullen han propuesto que quizá fuera la biosfera la encargada de mantener el status quo climatológico aprendiendo a sintetizar y a reemplazar el amoníaco que utilizaba como nutriente. Si están en lo cierto, tal síntesis hubiera sido la primera tarea de Gaia. Los climas son intrínsecamente inestables; tenemos ahora la casi total certeza gracias al meteorólogo yugoslavo Mihalanovich de que los períodos de glaciación recientes fueron consecuencia de cambios muy leves experimentados por la órbita de la Tierra.

 

Para que se establezca una Edad de Hielo basta un decremento de tan sólo el 2% en el aporte calórico que recibe un hemisferio. Es ahora cuando empezamos a entrever las incalculables consecuencias que, para la joven biosfera, tuvo su propia utilización de los gases atmosféricos que arropaban al planeta, en una época donde el rendimiento calorífico del Sol era inferior al actual no en un dos, sino en un 30 por ciento.

 

Pensemos en lo que podría haber ocurrido de producirse alguna perturbación añadida, leve incluso, tal como ese 2 por ciento de enfriamiento extra capaz de precipitar una glaciación: el descenso de temperatura haría a su vez disminuir el grosor de la capa amoniacal debido a que, con el enfriamiento, la superficie de los océanos absorberían mayores cantidades de este gas, decreciendo consiguientemente la cantidad disponible para la biosfera; la menor tasa de amoníaco del aire facilitaría el escape del calor del espacio, estableciéndose un círculo vicioso, un sistema de realimentación positiva que provocaría inexorablemente ulteriores descensos de la temperatura.

 

Con la caída de ésta cada vez habría menos amoníaco en el aire y entonces, para colmo, llegando ya a temperaturas de congelación, la capa de nieve y hielo, cada vez más extensa, incrementaría vertiginosamente el albedo del planeta y por lo tanto la reflexión de la luz solar. Siendo ésta un 30 por ciento más débil se produciría de forma inevitable un descenso mundial de las temperaturas muy por debajo del punto de congelación. La Tierra habríase convertido en una helada esfera blanca, estable y muerta.

Si, por el contrario, la biosfera se hubiera excedido en su compensación del amoníaco tomado de la atmósfera sintetizando demasiado, habría tenido lugar una escalada de temperaturas, instaurándose, a la inversa, el mismo círculo vicioso: a mayor calor, más amoníaco en el aire y menos escape calorífico hacia el espacio. Con la subida de temperatura, más vapor de agua y más gases aislantes llegarían a la atmósfera, alcanzándose eventualmente unas condiciones planetarias parecidas a las de Venus, aunque con menos calor. La temperatura de la Tierra sería finalmente de unos 100° C, muy por encima de lo que la vida puede tolerar: de nuevo tendríamos un planeta estable pero muerto.

Puede que el proceso natural realimentado negativamente de formación de nubes o algún otro fenómeno hasta hoy ignorado se encargaran quizá de mantener un régimen al menos tolerable para la vida, pero de no ser así, la biosfera tuvo que aprender mediante prueba y error el arte de controlar su entorno, fijando inicialmente límites amplios y luego, con el refinamiento fruto de la práctica, manteniendo sus condiciones lo más cerca posible de las óptimas para la vida.

 

Tal proceso no consistía solamente en fabricar la cantidad necesaria de amoníaco para restituir el consumido; era también preciso poner a punto medios apropiados para apreciar la temperatura y el contenido de amoníaco del aire a fin de mantener en todo momento una producción adecuada. El desarrollo de este sistema de control activo —con todas sus limitaciones—, por parte de la biosfera pudo ser quizá la primera indicación de que Gaia había por fin surgido del conjunto de sus partes.

Si consideramos, pues, la biosfera una entidad capaz, como la mayor parte de los seres vivientes, de adaptar el entorno a sus necesidades, estos problemas climatológicos tempranos podrían haberse resuelto de muy diversas maneras. Gran número de criaturas gozan de la capacidad de modificar su coloración según convenga a diferentes propósitos de camuflaje, advertencia o exhibición: pues bien, al disminuir el amoníaco o aumentar el albedo (como consecuencia de redistribuciones de las masas de tierra) uno de los medios que pudo emplear la biosfera para mantener su temperatura fue el oscurecimiento.

 

Awramik y Golubic de la Universidad de Boston han observado que, en los pantanos salobres donde el albedo es habitualmente alto, los cambios estacionales provocan el ennegrecimiento de "alfombras" compuestas por incontables microorganismos. ¿Podrían estos parches oscuros, producidos por una forma de vida de antigua estirpe, ser recordatorios vivientes de un arcaico método para conservar el calor?

 

Y a la inversa: si el problema fuera el sobrecalentamiento, la biosfera marina generaría una capa monomolecular aislante que cubriría la superficie de las aguas para controlar la evaporación. El neutralizar la evaporación en las zonas más calientes del océano tiene por propósito impedir una excesiva acumulación de vapor de agua en la atmósfera que propicie una escalada de la temperatura originada por la absorción de la radiación infrarroja.

Estos son ejemplos de hipotéticos mecanismos que la biosfera podría utilizar para mantener unas condiciones ambientales adecuadas. El estudio de sistemas más sencillos —colmena, seres humanos— indica que el mantenimiento de la temperatura es, probablemente, la resultante del funcionamiento de diferentes sistemas, más que el producto de la acción de uno solo.

La auténtica historia de tan remotos períodos no se sabrá jamás; todo lo que podemos hacer es especular basándonos en probabilidades y en la casi certidumbre de que el clima no fue nunca obstáculo para la vida. La primera manifestación de los cambios activos que la biosfera introducía en su entorno pudo haber estado relacionada con el clima y con la menor temperatura del Sol, pero en ese entorno había otras necesidades que atender, otros parámetros cuyo equilibrio era fundamental para la continuidad de la vida.

 

Ciertos elementos básicos resultaban necesarios en grandes dosis mientras que, de otros, sólo se requerían cantidades vestigiales; en ocasiones era preciso un rápido reabastecimiento de todos ellos. Había que ocuparse de las substancias de desecho, venenosas o no, aprovechándolas a ser posible; controlar la acidez, procurando el mantenimiento de una media en conjunto neutro o alcalino; la salinidad de los mares no debía aumentar en exceso, y así sucesivamente. Aunque estos son los criterios básicos, hay otros muchos involucrados.

Como hemos visto, cuando se estableció el primer sistema viviente tenía a su alcance un abundante suministro de elementos clave, que posteriormente y al ir creciendo, aprendería a sintetizar utilizando materias primas tomadas del aire, el agua y el suelo. Otra tarea que la extensión y la diversificación de la vida exigía era asegurar el suministro ininterrumpido de los elementos vestigiales requeridos por diferentes mecanismos y funciones.

 

Todas las criaturas vivientes celulares utilizan un extenso abanico de procesadores químicos —agentes catalíticos— denominados enzimas, muchas de las cuales requieren pequeñísimas cantidades de determinados elementos para desempeñar normalmente sus funciones. La anhidrasa carbónica, por ejemplo, enzima especializada en el transporte de dióxido de carbono desde y hacia el medio celular, tiene una composición donde entra zinc; otras enzimas precisan hierro, magnesio o vanadio.

 

En nuestra biosfera actual se dan actividades que exigen la presencia de muchos otros elementos vestigiales: cobalto, selenio, cobre, yodo y potasio. Indudablemente, tales necesidades surgieron y fueron satisfechas en el pasado. Al principio estos elementos se obtenían de la forma habitual, extrayéndolos simplemente del entorno. Con la proliferación de la vida la competencia por ellos fue aumentando, se redujo su disponibilidad y en algunos casos su falta fue el factor que limitó ulteriores expansiones.

 

Si, como parece probable, las aguas someras bullían de formas de vida primitivas, algunos elementos claves fueron apartados de la circulación porque, al morir, los organismos que los incorporaban se hundían, descendiendo hasta el depósito de lodo del lecho marino y, atrapados por otros sedimentos, no volvían a estar disponibles para la biosfera hasta que alguna conmoción de la corteza terrestre removía estos "cementerios" con la suficiente fuerza. En los grandes lechos de rocas sedimentarias hay sobradas pruebas de lo completo que podía llegar a ser este proceso de secuestro.

 

La vida, sin duda, fue resolviendo este problema mediante el proceso evolutivo de prueba y error, hasta que apareció una especie de carroñeros especializada en extraer estos elementos esenciales de los cadáveres de otros organismos, impidiendo su sedimentación. Otros sistemas posiblemente utilizados quizá se sirvieran de complejas redes fisicoquímicas usadas para llevar a cabo procesos de salvamento —siempre de dichas substancias claves— que, si bien al principio eran individuales, poco a poco fueron coordinándose en estructuras globales a fin de obtener un mayor rendimiento.

 

La más compleja ostentaba poderes y propiedades superiores a la suma de sus partes, lo que la caracterizaba como uno de los rostros de Gaia.

Nuestra sociedad se ha enfrentado, desde la Revolución Industrial, con arduos problemas químicos derivados de la escasez de determinadas materias primas o relacionados con la contaminación local: la biosfera incipiente debió encarar problemas similares. El primer sistema celular que se las ingenió para extraer zinc de su entorno, inicialmente en su exclusivo beneficio y después en bien de la comunidad, quizá acumulara al mismo tiempo mercurio, elemento que a pesar de su semejanza con el zinc es venenoso. Los errores de esta naturaleza fueron probablemente origen de los primeros incidentes provocados por la contaminación en la historia del mundo.

 

Como de costumbre, fue la selección natural la encargada de solventar esta cuestión: existen actualmente sistemas de microorganismos capaces de transformar el mercurio y otros elementos venenosos en derivados volátiles mediante metilación; estas asociaciones de microorganismos quizá representen la forma más antigua de tratar residuos tóxicos.

La contaminación no es, como tan a menudo se afirma, producto de la bajeza moral, sino que constituye una consecuencia inevitable del desenvolvimiento de la vida. La segunda ley de la termodinámica establece claramente que el bajo nivel de entropía y la intricada organización dinámica de un sistema viviente exigen necesariamente la excreción al entorno de productos y energía degradados.

 

La crítica está justificada únicamente si somos incapaces de encontrar respuestas limpias y satisfactorias a los problemas que, a más de solventarlos, los pongan de nuestra parte. Para la hierba, los escarabajos y hasta los granjeros, el estiércol de vaca no es contaminación, sino don valioso. En un mundo sensato, los desechos industriales no serían proscritos, sino aprovechados. Responder negativa, destructivamente, prohibiéndolos por ley, parece tan idiota como legislar contra la emisión de boñigas por parte de las vacas.

Una de las amenazas más serias con que se enfrentaba la joven biosfera la constituía el conjunto de crecientes alteraciones que afectaban a las propiedades del entorno planetario. El consumo de amoníaco —gas primordial— realizado por la biosfera repercutía no sólo en las propiedades radiantes de la atmósfera, sino también en el equilibrio de la neutralidad química: a menos amoníaco, mayor acidez.

 

Como la conversión de metano a dióxido de carbono y de sulfures a sulfatos significaba un incremento adicional de la acidez, ésta podría haberse hecho tan intensa como para impedir la vida. Desconocemos la solución concreta del problema, pero remontándonos todo lo atrás que nuestros sistemas de medida permiten, hay pruebas de que la Tierra ha estado siempre próxima a ese estado de neutralidad química. Marte y Venus, por el contrario, muestran un alto grado de acidez en su composición, a todas luces excesivo para permitir vida tal como se ha desarrollado en nuestro planeta.

 

En la actualidad, la biosfera produce hasta 1.000 megatoneladas de amoníaco cada año, cantidad cercana a la necesaria para neutralizar los fuertes ácidos sulfúrico y nítrico derivados de la oxidación natural de compuestos sulfurosos y nitrogenados. Quizá se trate de una coincidencia, pero posiblemente sea otro eslabón en la cadena de pruebas circunstanciales en favor de la existencia de Gaia.

La regulación estricta de la salinidad de mares y océanos es tan esencial para la vida como la necesidad de neutralidad química, si bien es asunto mucho más extraño y complicado que ésta, como veremos en el capítulo 6. La recién estrenada biosfera, sin embargo, se hizo experta en esta muy crítica operación de control, como en tantas otras. La conclusión parece inmediata: si Gaia existe, la necesidad de regulación era tan urgente en el amanecer de la vida como en cualquier otra época posterior.

Un gastado lugar común afirma que las primeras manifestaciones de vida estaban aherrojadas por el bajo nivel de la energía disponible y que la evolución no se puso verdaderamente en marcha hasta la aparición del oxígeno en la atmósfera, origen, en última instancia, del abigarrado muestrario de seres vivos hoy existente.

 

Pues bien, hay pruebas directas de una biota compleja y variada que ya contenía todos los ciclos ecológicos principales establecida antes de la aparición de los animales esqueléticos durante el primer período —el Cámbrico— de la Era Paleozoica.

 

Cierto es que la combustión celular de materia orgánica resulta una excelente fuente de energía para las criaturas móviles de gran tamaño como nosotros mismos y otros animales, pero no hay ya razón bioquímica por la cual la energía tenga que escasear en un entorno reductor, rico en hidrógeno y en moléculas porta doras de hidrógeno: veamos, por consiguiente, cómo el asunto de la energía pudo haber funcionado al revés.

Fig. 2.

Colonia de estromatolitos en una playa de Australia del Sur. Su estructura es muy semejante a la que muestran los restos fósiles de colonias similares, cuya edad se cifra en 3.000 millones de años. Foto de P. F. Hoffman, proporcionada por M. R. Walter.

Ciertas formas de vida muy primitivas han dejado unas impresiones fósiles denominadas estromatolitos; se trata de estructuras biosedimentarias, a menudo laminadas, con forma de cono o de coliflor y habitualmente compuestas de carbonato de calcio o sílice. Son considerados en la actualidad productos de actividad microorgánica.

 

Algunos se han encontrado en rocas pétreas cuya edad supera los tres eones; su forma sugiere que las producían fotosintetizadores como las algas azul-verdes de hoy, que convierten la luz solar en energía química potencial. Es prácticamente seguro que algunas de la primeras formas de vida realizaban fotosíntesis, ya que no existe una fuente de energía cuya intensidad, constancia y abundancia sean equiparables a las de la energía solar.

 

La fuerte radiactividad entonces reinante tenía el potencial necesario, pero su volumen era una simple bagatela comparándolo con el flujo de energía solar.

Es probable que, como hemos visto, el entorno de los primeros fotosintetizadores fuera reductor, rico en hidrógeno y en moléculas portadoras de hidrógeno. Para atender a sus diferentes necesidades, las criaturas que en él vivían quizá generaran un gradiente químico tan importante como el de las plantas actuales. La diferencia estribaría en que hoy el oxígeno es extracelular y las substancias nutritivas, más los compuestos ricos en hidrógeno, se hallan dentro de la célula, mientras en la época que nos ocupa pudo ser a la inversa.

 

Para ciertas especies primigenias, las substancias nutritivas podrían haber sido oxidantes, no necesariamente oxígeno libre, del mismo modo que las células de hoy no se alimentan de hidrógeno, sino de substancias tales como los ácidos grasos poliacetilénicos, que liberan gran cantidad de energía cuando reaccionan con el hidrógeno. Ciertos microorganismos del suelo producen aún extraños compuestos de esta índole, que son los análogos de las grasas donde almacenan energía las células de hoy.

 

Esta hipotética bioquímica a la inversa quizá nunca tuviera existencia real. Lo importante es que los organismos con capacidad para convertir la energía solar en energía química almacenada contaban después con potencia sobrada para, incluso en una atmósfera reductora, realizar la mayor parte de los procesos bioquímicos.

El registro geológico muestra que, durante las etapas iniciales de la vida, fueron oxidadas grandes cantidades de rocas superficiales en cuya composición entraba el hierro. Esto podría ser prueba de que la biosfera original producía hidrógeno, manteniendo una tasa atmosférica de este gas y sus compuestos —amoníaco por ejemplo— suficiente para determinar el escape de hidrógeno al espacio.

 

Ycas, en una carta a Nature, ha comentado oportunamente la necesidad de recurrir a la intervención biológica para explicar las grandes cantidades de hidrógeno escapadas de la Tierra.

Eventualmente, hace quizá dos eones, los compuestos reductores de la corteza empezaron a oxidarse con mayor rapidez de lo que eran expuestos geológicamente, mientras la continua actividad de los fotosintetizadores aerobios iba acumulando oxígeno en el aire.

 

Este fue probablemente el período más crítico de toda la historia de la vida sobre la Tierra: el abundante oxígeno gaseoso en el aire de un mundo anaerobio debe haber sido el peor episodio de contaminación atmosférica que este planeta ha conocido jamás. Imaginemos el efecto que sobre nuestra biosfera contemporánea produciría la colonización de los mares por un alga especializada en producir cloro gaseoso a partir del abundante ion de las aguas marinas y la energía de la luz solar.

 

El devastador efecto que sobre toda la vida contemporánea tendría una atmósfera saturada de cloro no sería peor que el impacto causado por el oxígeno sobre la vida anaerobia de hace unos dos eones.

Esta era trascendental marcó también el final de la capa de amoníaco que, como anteriormente señalábamos, constituía un excelente medio para mantener la temperatura del planeta.

 

El oxígeno libre y el amoníaco reaccionan en la atmósfera, limitando la máxima cantidad posible del segundo, cuya cantidad fue descendiendo hasta llegar a la concentración actual, una parte por cada cien millones, porcentaje demasiado pequeño para ejercer ninguna influencia útil sobre la absorción infrarroja, aunque, como hemos visto, incluso en tales cantidades neutraliza eficazmente la acidez, inevitable subproducto de la oxidación; cumple, pues, la función de impedir que la acidez del entorno aumente hasta niveles incompatibles con la vida.

Cuando hace dos eones el aire empezó a albergar cantidades apreciables de oxígeno, la biosfera se asemejaba a la tripulación de un submarino averiado, donde todas las manos son necesarias para reparar los daños, mientras la concentración de gases venenosos crece segundo a segundo. Triunfó el ingenio y se conjuró el peligro, aunque no al modo humano, restaurando el viejo orden, sino al flexible modo de Gaia, adaptándose al cambio y convirtiendo al letal intruso en amigo inseparable.

La primera aparición de oxígeno en el aire significó una catástrofe casi fatal para la vida primitiva. E

 

l haber evitado por mera casualidad una muerte que pudo llegar como consecuencia de la ebullición, la congelación, el hambre, la acidez, las alteraciones metabólicas graves y finalmente el envenenamiento parece demasiado; pero si la joven biosfera era ya algo más que un simple catálogo de especies y controlaba ya el entorno planetario, nuestra supervivencia a despecho de las adversidades es menos difícil de comprender.
 

Regresar al Índice