6. El mar


Como Arthur C. Clark ha señalado:

"Qué inapropiado llamar Tierra a este planeta, cuando es evidente que debería llamarse Océano".

Casi tres cuartas partes de la superficie de nuestro mundo son mares; a ello se debe el que, cuando es fotografiado desde el espacio, presente ese maravilloso aspecto de esfera azul zafiro moteada por albos vellones de nubes y tocada del brillante blanco de los campos de hielo polares.

 

La belleza de nuestro hogar contrasta fuertemente con la apagada uniformidad de nuestros inertes vecinos, Marte y Venus, carentes del abundante manto acuático de la Tierra.

Los océanos, esas inmensas extensiones de profundas aguas azules, son mucho más que algo deslumbrantemente bello para quien los contempla desde el espacio. Son piezas maestras en la máquina de vapor planetaria que transforma la energía radiante del Sol en movimientos del aire y el agua, los cuales, a su vez, distribuyen esta energía por todos los rincones del mundo. Los océanos constituyen colectivamente un enorme depósito de gases disueltos de gran importancia a la hora de regular la composición del aire que respiramos; ofrecen, además, morada estable a la vida marina, aproximadamente la mitad de toda la materia viva.

No estamos seguros de cómo se formaron los océanos. Fue hace tan largo tiempo —mucho antes del inicio de la vida— que muy poca información geológica del proceso ha llegado hasta nosotros.

 

Se han formulado multitud de hipótesis sobre la forma de los océanos primigenios; se ha mantenido incluso que, en épocas remotas, los mares cubrían todo el planeta: no existían ni tierras ni aguas someras, aparecidas con posterioridad. Si esta hipótesis se confirmara, habríamos de revisar las concernientes al origen de la vida. Hay sin embargo, todavía, acuerdo general respecto a que el primer paso en la formación de los océanos se dio cuando el recientemente constituido planeta exhaló grandes masas de gases desde su interior; el segundo y definitivo tuvo lugar cuando el planeta se hubo calentado lo suficiente para destilar de ellos la atmósfera y los océanos primordiales.

La historia de la Tierra anterior a la vida no nos ayuda directamente en nuestra búsqueda de Gaia; más interés y relevancia tiene la estabilidad fisicoquímica de los océanos a partir de la aparición de la vida. Hay pruebas de que, durante los últimos tres eones y medio, mientras los continentes se desgarraban y se recomponían, los hielos polares se licuaban y volvían a helarse y el nivel del mar subía y bajaba, el volumen total de agua, a pesar de todas las metamorfosis, permanecía inmutable.

 

La profundidad media actual de los océanos es de 3.200 metros (2 millas aproximadamente), aunque en ciertas fosas se alcanzan los 10.000 metros (unas 6 millas). El volumen total de agua se cifra en torno a los 1,2 miles de millones de kilómetros cúbicos (300 millones de millas cúbicas), estando su peso próximo a los 1,3 millones de megatoneladas.

Estas descomunales cifras han de ser vistas en perspectiva. Aunque el peso de los océanos es 250 veces el de la atmósfera, representa solamente una parte por cuatro mil del peso de la Tierra. En un globo terráqueo de 30 centímetros de diámetro, la profundidad oceánica media sería poco más que el grosor del papel de este libro y la más profunda de las fosas marinas se convertiría en una incisión de un tercio de milímetro.

 

Suele afirmarse que la oceanografía, el estudio científico del mar, la inició, hace aproximadamente un siglo, el viaje del Challenger, navío dedicado a la investigación y desde el cual se llevó a cabo la primera investigación sistemática de todos los océanos del mundo. Su programa de trabajo incluía observaciones sobre física, química y biología marinas. A pesar de este prometedor comienzo multidisciplinar, la oceanografía se ha ido fragmentando progresivamente en subespecialidades separadas (biología marina, oceanografía química, geofísica oceánica y otros híbridos), cuyo número coincide exactamente con el de los especialistas dispuestos a defenderlas como cotos exclusivos. Y, sin embargo, a despecho de todo esto, la oceanografía ha sido una ciencia comparativamente menor.

 

Casi todas sus aportaciones de peso están fechadas después de la segunda guerra mundial; el aguijón, casi siempre, la competencia internacional por las fuentes de alimentos, energía y ventajas estratégicas. Sólo en fecha muy" próxima parece reavivarse el espíritu de la expedición del Challenger con su concepto del mar como entidad indivisible. La física, la química y la biología de los océanos vuelven a ser consideradas partes interdependientes de un vasto proceso global.

Un punto de partida práctico para nuestra búsqueda de Gaia en los océanos es preguntarnos porqué son saladas sus aguas. La respuesta hasta hace bien poco considerada de rigor (sin duda continúa apareciendo en muchos textos y enciclopedias), solía ser que debido a las pequeñas cantidades de sal que lluvias y ríos arrastraban hasta ellos. Sus capas superficiales, evaporadas, volverían a las tierras en forma de lluvia, pero la sal, una substancia no volátil, iría acumulándose poco a poco en sus aguas, cuya salinidad aumentaría más y más con el tiempo.

 

Esta respuesta es perfectamente coherente con la explicación tradicional de por qué el contenido de sal de los fluidos corporales de las criaturas vivas — incluyendo los de nuestra propia especie— es inferior al de los océanos; expresado éste en tanto por ciento (el número de partes en peso de sal por cien partes de agua), es aproximadamente del 3,4, mientras que el de nuestra sangre es tan sólo del 0,8 por ciento: cuando empezó la vida los fluidos internos de los organismos marinos estaban en equilibrio con el mar o, dicho de otra forma, la salinidad de su medio interno y la salinidad de su entorno eran idénticas.

 

Pasaron millones de años y la vida, en uno de sus saltos evolutivos, mandó emisarios desde el mar para colonizar la tierra. La salinidad interna de estos organismos, afirma la teoría, quedó por así decir, fosilizada, detenida en el punto que había alcanzado cuando salieron del mar, en tanto que la de éste continuaba aumentando. Aquí residiría, según dicha explicación, la diferencia entre la salinidad de los líquidos orgánicos y la del mar.

De ser acertada, la teoría de la acumulación de la sal nos permitiría calcular la edad de los océanos. No hay dificultad en establecer la cuantía total de la sal que contienen actualmente: suponiendo que la masa de esta substancia arrastrada por lluvias y ríos cada año ha permanecido más o menos constante, una sencilla división nos daría la respuesta.

 

Al mar llegan unas 540 mega-toneladas de sal anualmente; el volumen total de las aguas marinas es de 1,2 miles de millones de Km. cúbicos; la salinidad media es del 3,4 por ciento. Todo ello nos llevaría a cifrar la edad de los océanos en unos 80 millones de años, cifra en absoluta disconformidad con toda la paleontología. No queda otro remedio, pues, que empezar de nuevo.

Ferren Maclntyre ha señalado recientemente que la sal de los mares no procede exclusivamente de la arrastrada por las aguas continentales; cita un antiguo mito nórdico según el cual el mar es salado porque en el fondo hay un molino de sal girando eternamente. Este mito no andaba demasiado lejos de la verdad: ahora sabemos que, de cuando en cuando, el pastoso magma del interior de la Tierra se abre camino a través del fondo oceánico.

 

Este proceso, parte del mecanismo responsable del desplazamiento de los continentes, significa un aporte adicional de sal. Sumándola a la que las aguas arrastran y repitiendo nuestro cálculo la edad de los océanos pasa a ser de 60 millones de años. El arzobispo Usher, figura destacada de la iglesia protestante irlandesa del siglo XVII, dedujo la edad de la Tierra basándose en la cronología del Antiguo Testamento: según sus cálculos, la Creación había tenido lugar el año 4004 antes de Cristo.

 

Estaba equivocado, pero tomando como referencia la verdadera escala temporal, sus conclusiones no son menos descabelladas que cifrar la edad de los océanos en 60 millones de años.

Parece haber una razonable certeza de que la vida comenzó en el mar; por otra parte, los geólogos han aportado pruebas sobre la existencia de organismos sencillos, bacterias probablemente, hace casi tres eones y medio: ésta sería, al menos, la edad de los océanos. Tal supuesto es congruente con las estimaciones de la edad de la Tierra obtenidas a partir de las medidas de los niveles de radiactividad, según los cuales son unos cuatro eones y medio —4.500 millones de años— el tiempo transcurrido desde su formación.

 

Los datos geológicos indican así mismo que la salinidad de los mares no ha variado gran cosa desde su aparición y la eclosión de la vida en ellos; no lo bastante, en cualquier caso, para explicar la diferencia entre su nivel actual y el de nuestra sangre.

Son éstas las discrepancias que nos obligan a repensar completamente la cuestión de por qué los mares son salados. Estamos aceptablemente seguros de las cantidades de sal aportadas por el "lavado" continental (lluvias y ríos) y por las erupciones a través del suelo oceánico (el "molino de sal"): la salinidad de los mares, sin embargo, no ha aumentado todo lo que cabría esperar de la teoría acumulativa.

 

Parece necesario concluir, por tanto, la existencia de un "filtro" para la sal que la hace desaparecer de los océanos en la misma medida que llega a ellos. Antes de formular nuestras especulaciones sobre la naturaleza de este filtro y sobre el destino de la sal que capta, hemos de considerar ciertos aspectos de la física, la química y la biología marinas.

El agua del mar es una sopa ligera, aunque de muchos ingredientes, compuesta por organismos vivos o muertos y por substancias inorgánicas disueltas o en suspensión. De entre las disueltas, las más abundantes son sales inorgánicas (en el lenguaje de la química, el término "sal" describe una clase de substancias de la que el cloruro sódico, la sal común, es sólo un ejemplo).

 

La composición del agua del mar es diferente según los lugares y, además, varía de una profundidad a otra; aunque en términos de salinidad total las diferencias son pequeñas, tienen suma importancia en la interpretación detallada de los procesos oceánicos. Habida cuenta, sin embargo, de que nuestro propósito actual es discutir los mecanismos generales del control de la sal, podemos considerarlas no significativas.

Una muestra promedio de agua marina contiene el 3,4 por ciento de sales inorgánicas por kilogramo de peso. De esta cantidad, el 90 por ciento aproximadamente es cloruro sódico, si bien tal afirmación no es rigurosamente exacta en términos científicos: cuando las sales inorgánicas están disueltas en agua se hallan escindidas en partículas de tamaño atómico y cargas eléctricas opuestas denominadas iones.

 

El cloruro sódico, por su parte, se fragmenta en un ion sodio, positivo y un ion cloruro, negativo, que se mueven más o menos independientemente entre las moléculas de agua circundantes. Aunque tal comportamiento pueda parecer sorprendente —las cargas eléctricas de signo opuesto se atraen entre sí, permaneciendo por lo general enlazadas en forma de pares iónicos— se debe a que el agua tiene la propiedad de debilitar grandemente las fuerzas eléctricas de atracción entre iones de carga opuesta.

 

Si mezclamos las soluciones acuosas de dos sales distintas (cloruro sódico y sulfato de magnesio por ejemplo) , todo lo que podremos decir respecto de la composición de la solución resultante es que se trata de una mezcla de cuatro iones: sodio, magnesio, cloruro y sulfato. En condiciones adecuadas es más sencillo extraer de la mezcla sulfato de sodio y cloruro de magnesio que recuperar las sales iniciales.

Estrictamente hablando, es por lo tanto incorrecto decir que el agua del mar "contiene" cloruro de sodio: contiene los iones constitutivos del cloruro de sodio. Hay también en ella iones magnesio y sulfato, además de pequeñas cantidades de iones calcio, bicarbonato y fosfato encargados de funciones indispensables en los procesos biológicos marinos.

Uno de los requerimientos menos conocidos de la célula viva es que, salvo raras excepciones, ni su salinidad interna ni la de su entorno pueden exceder por más de algunos segundos un valor del 6 por ciento. Pocas son las criaturas que toleran una tasa de sal superior a ésta (son características de estanques y lagos salobres); tan escasas y excepcionales son como los microorganismos capaces de sobrevivir al agua hirviente.

 

Sus especialísimas adaptaciones se han realizado con permiso del resto del mundo viviente, que les suministra oxígeno y alimento en la forma adecuada y asegura la transferencia de estos artículos de primera necesidad al estanque salobre o al arroyo caliente. Sin tales ayudas, tan extrañas criaturas no podrían sobrevivir a pesar de haberse adaptado espectacularmente a sus casi letales hábitats.

Las quisquillas de los estanques salobres, por ejemplo, poseen un caparazón extraordinariamente recio, tan impermeable al agua como el casco de un submarino; gracias a él pueden mantener una salinidad interna similar a la nuestra —alrededor del 1 por ciento— viviendo en aguas muy saladas. De no ser por su resistente recubrimiento, estas criaturas desaparecerían en cosa de pocos segundos, porque el agua de sus fluidos orgánicos, poco salados, escaparía hacia el agua mucho más salada del estanque para diluirla; esta tendencia del agua a desplazarse de la solución salina más débil a la más fuerte es un ejemplo de lo que los químicos físicos llaman osmosis.

 

Este proceso tiene lugar siempre que una solución salina —o de cualquier otro tipo— de baja concentración esté separada de otra solución más concentrada por una membrana permeable al agua pero no a la sal. El agua fluye a su través desde la solución débil a la fuerte para que la concentración de ésta disminuya. Si no hay nada que lo impida, el proceso continúa hasta que las dos soluciones quedan equilibradas.

Este flujo puede inhibirse aplicando una fuerza mecánica opuesta a él. La fuerza oponente recibe el nombre de presión osmótica; depende de la naturaleza de la substancia disuelta y de la diferencia entre las concentraciones de las dos soluciones. La presión osmótica puede llegar a ser considerable. Si el caparazón de la quisquilla mencionada permitiera el paso del agua, la presión que el animal tendría que ejercer para evitar la deshidratación sería, aproximadamente, de 150 kilogramos por centímetro cuadrado (2.300 libras por pulgada cuadrada), presión equivalente a la ejercida por una columna de agua de una milla de alto.

 

Dicho de otra forma: si la quisquilla hubiera de extraer el agua que su organismo necesita del salobre entorno, forzando un flujo de líquido en contra del gradiente de concentración, habría de disponer de un órgano de bombeo con capacidad para subir agua desde un pozo de una milla de profundidad. La presión osmótica es, por consiguiente, consecuencia de una salinidad interna diferente a la externa.

 

Suponiendo que ambas concentraciones están por debajo del nivel crítico del 6 por ciento, la mayoría de los organismos vivos resuelven fácilmente el problema de ingeniería planteado. El nivel absoluto es lo que importa, porque, frente a una salinidad — externa o interna— superior al 6 por ciento, las células se hacen literalmente pedazos.

Los procesos de la vida consisten fundamentalmente en interacciones entre macromoléculas. Habitualmente, la secuencia de acontecimientos está programada hasta el menor detalle: dos macromoléculas empezarían quizá por aproximarse, adoptarían las posiciones adecuadas, permanecerían juntas durante un rato (fase en la que podrían realizarse intercambios de material) y se separarían.

 

Para lograr una colocación adecuada son de gran ayuda las cargas eléctricas situadas en diversos puntos de cada macromolécula. Las zonas cargadas positivamente de una se amalgaman con las áreas cargadas negativamente de la otra. Cuando se trata de sistemas vivientes, estas interacciones tienen invariablemente lugar en un medio acuoso, donde la presencia de iones disueltos modifica la atracción eléctrica natural entre las macromoléculas, haciendo posible que puedan aproximarse y colocarse con la debida facilidad y un alto grado de precisión.

En efecto: las áreas negativas de la macromolécula quedan rodeadas de iones positivos y las áreas positivas de iones negativos. Estos conglomerados iónicos actúan como una suerte de pantalla que neutraliza parcialmente la carga a cuyo alrededor se sitúan, reduciendo subsiguientemente la atracción entre las dos macromoléculas.

 

A mayor concentración de sal, más intenso será el efecto pantalla de los iones y más débiles resultarán las fuerzas de atracción. Una salinidad demasiado alta perjudicará a las interacciones, y ello a su vez repercutirá sobre las correspondientes funciones celulares. Si, por el contrario, la concentración de sal es excesivamente baja, las fuerzas de atracción entre macromoléculas contiguas podrían llegar a ser irresistibles, la separación no se produciría y las consecuencias serían tan negativas como las del supuesto anterior.

Las fuerzas eléctricas encargadas de mantener la integridad de la capa externa de la membrana celular viva son semejantes a las que acabamos de describir. La membrana tiene, entre otras funciones, la de garantizar que la salinidad del medio intracelular no sobrepase los límites permisibles.

 

Muy poco menos sutil que una pompa de jabón, ofrece una protección comparable a la del casco de un buque frente al agua o a la del fuselaje de un avión respecto a la atmósfera, aunque la estanqueidad celular se logra por medios bien distintos a la proporcionada por el casco de un barco: éste trabaja mecánica y estáticamente, mientras la membrana celular hace uso activo, dinámico, de los procesos bioquímicos.

La delgada película que encapsula toda célula viviente incorpora bombas de iones, capaces de impulsar hacia el exterior los que no convengan y de introducir en la célula los precisos a sus necesidades. Los potenciales eléctricos aseguran a la membrana la flexibilidad y la fortaleza necesarias para llevar a buen fin este cometido.

 

Si la concentración de sal a uno u otro lado de la membrana sobrepasa ese nivel crítico del 6 por ciento, el efecto pantalla de los iones que rodean las cargas eléctricas responsables de la integridad de la membrana se intensifica, el potencial desciende, la debilitada membrana se desintegra y la célula se hace trizas. Salvo para las membranas altamente especializadas de las bacterias halofílicas (amantes de la sal) cuyo habitat está en estanques o lagos salobres, las células de todas las demás criaturas vivientes se hallan sometidas a este límite de salinidad.

Entendemos ahora porqué los organismos vivos, tan profundamente dependientes del correcto funcionamiento de los fenómenos bioeléctricos, pueden sobrevivir tan sólo si la salinidad del medio se mantiene dentro de límites seguros, especialmente en lo tocante al límite superior, al crítico 6 por ciento. A la luz de todo esto, la pregunta ¿por qué es salado el mar? empieza a parecemos menos interesante.

 

El lavado continental y las irrupciones de magma a través del suelo oceánico explican fácilmente el actual nivel de salinidad de los mares. La pregunta ahora obligada es: ¿por qué no es el mar más salado? Entreviendo a Gaia, yo contestaría: porque desde el comienzo de la vida, la salinidad de los océanos ha estado bajo control biológico. La siguiente pregunta, obviamente, es: ¿cómo? Es éste precisamente el quid de la cuestión, porque necesitamos investigar y reflexionar no sobre cómo llega la sal a los océanos, sino sobre cómo sale de ellos.

 

Estamos nuevamente en nuestro filtro, buscando un proceso de eliminación de sal que, si nuestra creencia en la intervención de Gaia tiene fundamento, habrá de conectar de algún modo con la biología de los mares.

Volvamos a plantear el problema.

 

De que la salinidad del agua marina ha cambiado muy poco en cientos de millones —si no son miles de millones— de años hay pruebas comparativamente fiables, tanto directas como indirectas. De lo conocido sobre el nivel de salinidad tolerado por los organismos vivientes que han poblado los mares durante tan dilatados períodos, podemos inferir que, en ningún caso, la salinidad ha podido estar por encima del 6 por ciento (el nivel actual es del 3,4 por ciento) y que, alcanzando simplemente el 4 por ciento, la vida marina se hubiera desarrollado a través de criaturas bien distintas a las reveladas por el registro geológico.

 

Y, sin embargo, la cantidad de sal que lluvias y ríos arrastran hacia el mar durante cada 80 millones de años es idéntica a toda la sal actualmente contenida en los océanos. Si este proceso hubiera continuado sin trabas no habría hoy océano que no fuera un Mar Muerto, una masa de agua saturada de sal absolutamente hostil a cualquier forma de vida.

Ha de existir, por consiguiente, un medio para ir eliminando la sal a medida que llega. Los oceanógrafos están seguros de ello desde hace mucho y han intentando descubrirlo en varias ocasiones.

 

Casi todas las teorías se basan esencialmente en mecanismos inorgánicos inertes, aunque ninguna ha obtenido aceptación general. Broecker ha señalado que la remoción de las sales de sodio y magnesio es uno de los grandes misterios no resueltos de la oceanografía química. Son dos, en realidad los problemas a resolver, porque, en un medio acuoso, los iones positivos— sodio y magnesio— están separados de los negativos —cloro y sulfato— y ha de tratarse cada grupo independientemente.

 

Para complicar aún más las cosas, la cantidad de iones sodio y magnesio que el lavado continental aporta a los mares es superior a la de iones cloro y sulfato; el exceso de carga positiva debido a la mayor cantidad de iones sodio y magnesio queda compensado mediante iones aluminio y silicio, cargados negativamente.

Broecker ha sugerido provisionalmente que el sodio y el magnesio son arrastrados a los fondos oceánicos con la lluvia de detritos que incesantemente se precipita sobre ellos, pasando a formar parte del sedimento o combinándose con los minerales del lecho oceánico. Hasta la fecha, por desgracia, se carece de pruebas confirmatorias de cualquiera de las dos posibilidades.

Por lo que respecta a la remoción y destino de los iones cloro y sulfato, negativos, se aduce un mecanismo completamente diferente. Según Broecker, en los brazos de mar aislados —el Golfo Pérsico, por ejemplo—, se evapora mayor cantidad de agua que la ingresada por la lluvia o por los ríos. Si la evaporación se prolonga lo necesario, las sales cristalizan en grandes depósitos, que los procesos geológicos se encargarán eventualmente de cubrir y enterrar. Estos grandes mantos de sal aparecen bajo las plataformas continentales y en algunos casos también en la superficie.

 

La escala temporal de estos procesos —cientos de millones de años— es por tanto congruente con la evolución de la salinidad, salvo en un aspecto vital. Si suponemos que la formación de brazos de mar aislados y los desgarramientos de la corteza terrestre responsables del enterramiento de masas de sal se deben enteramente a procesos inorgánicos, también hemos de aceptar su completa aleatoriedad, tanto espacial como temporal. Podrían explicar el que la salinidad oceánica media hubiera permanecido dentro de límites tolerados, pero no impedir las fluctuaciones letales, consecuencia de la propia naturaleza aleatoria de los procesos de control.

Parece haber llegado el momento de preguntarnos si la presencia de la materia viviente, tan abundante en los mares, pudo haber modificado el curso de los acontecimientos y colabora todavía en la resolución de tan espinoso problema. Empecemos revisando los posibles componentes vivos del mecanismo capaz de realizar tales gestas ingenieriles a escala planetaria.

 

La mitad, aproximadamente, de la biomasa mundial se encuentra en el mar. La vida terrestre es, en su mayor parte, bidimensional, está anclada a la superficie sólida por la acción de la gravedad. Los organismos marinos y el mar tienen aproximadamente la misma densidad, la vida está libre de las limitaciones de la gravedad y los pastos son tridimensionales.

 

Las primitivas formas de vida que, mediante el proceso conocido como fotosíntesis, producen nutrientes y oxígeno a partir de la luz solar —energizando por consiguiente el océano entero— son organismos de flotación libre, en contraste con los fotosintetizadores terrestres, vegetales anclados al suelo. En los mares no hay árboles ni hacen falta, y no existen los herbívoros triscadores, sino únicamente grandes carnívoros ramoneantes, las ballenas, que se alimentan deglutiendo miríadas de los diminutos crustáceos semejantes a los camarones conocidos colectivamente como krill.

La secuencia de la vida marina se abre con los productores primarios, esos incontables millones de plantas unicelulares de flotación libre, esa microflora denominada fitoplancton por los biólogos que constituye el forraje de los animales microscópicos cuyo conjunto configura el zooplancton. Este, por su parte, es sustento de animales mayores y así sucesivamente, hasta llegar a las criaturas de máximo tamaño y rareza.

 

El mar, a diferencia de la tierra, está por lo tanto dominando numéricamente por los diminutos protistos unicelulares, incluyendo algas y protozoos. Medran tan sólo en la capa superficial —hasta una profundidad de 100 metros— iluminada por el sol. Son dignos de mención los cocolitóforos, provistos de conchas de carbonato calcico que a menudo contienen una gota de aceite (flotador y despensa a la vez) y las diatomeas, algas de esqueleto silíceo.

 

De estos organismos y otros muchos se compone la flora compleja y variada de la denominada zona eufótica.

Merece la pena examinar con cierto detalle el papel de las diatomeas en los océanos. Son, de igual modo que los radiolarios, parientes cercanos suyos, de notable belleza. Sus esqueletos de ópalo configuran una gran variedad de intrincados y siempre exquisitos diseños. El ópalo es una forma especial, semipreciosa, del dióxido de silicio —conocido habitualmente como sílice—, el componente principal de la arena y del cuarzo. El silicio es uno de los elementos más abundantes de la corteza terrestre: la mayoría de las rocas, de la creta al basalto, lo contienen en forma combinada. Generalmente el silicio no es considerado como substancia de importancia biológica —poco contiene nuestro organismo o lo que comemos— pero es un elemento clave en la vida marina.

Broecker descubrió que menos del 1 por ciento de los minerales con silicio arrastrados al mar por las aguas continentales queda en la superficie de éste. En lagos salobres, por otra parte, la proporción silicio/sal es mucho más alta que en el mar, tal como cabría esperar de un entorno inerte cuyas condiciones se acercan a las del equilibrio químico.

 

Las diatomeas que asimilan la sílice florecen en los mares pero no, obviamente, en los lagos saturados de sal; sus cortas vidas transcurren en las aguas superficiales. Al morir, se hunden hasta el lecho oceánico, donde se apilan sus esqueletos opalinos, añadiendo a las rocas sedimentarias unos 300 millones de toneladas de sílice al año.

 

El ciclo vital de estos organismos microscópicos da por tanto cuenta de la deficiencia de silicio evidenciada en las capas superficiales del mar, y contribuye a su pronunciada separación del equilibrio químico.

Fig. 7.

Radiolarios de las profundidades marinas recogidos por la expedición del Challenger. De Haeckel, History of Creatlon, vol. 2.

Estos procesos biológicos de utilización y remoción del silicio pueden considerarse un eficaz mecanismo para controlar su nivel en el mar. Si, por ejemplo, los ríos aportaran mayores cantidades de este mineral, la población de diatomeas se incrementaría (suponiendo que abundaran también sulfates y nitratos), reduciéndose subsiguientemente el nivel de silicio disuelto.

 

Cuando este parámetro descendiera por debajo de lo normal, las diatomeas limitarían su expansión hasta la recuperación del nivel de silicio, fenómeno repetidamente comprobado.

Es ahora el momento de preguntarse si este mecanismo de control del silicio sigue el modelo general de Gaia en lo que respecta al control de los componentes. ¿Es así como interviene la vida para resolver los problemas y dificultades inherentes a las teorías de Broecker sobre un mecanismo de control de la sal puramente inorgánico?

Desde el punto de vista de la ingeniería planetaria, lo importante del ciclo vital de cocolitos y diatomeas es que, cuando mueren, sus partes blandas se disuelven y sus intrincados esqueletos o conchas se hunden hasta el fondo del mar. Los lechos marinos reciben desde hace eones una constante lluvia de estas estructuras, casi tan bellas en la muerte como en la vida, lluvia que ha producido grandes sedimentos de creta y caliza (de los cocolitos) y de silicatos (de las diatómeas).

 

Este diluvio de organismos muertos no es tanto cortejo fúnebre cuanto cinta transportadora construida por Gaia para trasladar substancias de la zona de producción, situada en niveles superficiales, a las áreas de almacenamiento, emplazadas bajo los mares y los continentes. Parte de la materia orgánica blanda desciende hasta el fondo con los esqueletos inorgánicos, convirtiéndose eventualmente en combustibles fósiles enterrados, minerales sulfurosos e incluso azufre libre.

 

El proceso tiene la ventaja de contar con sistemas de control flexibles basados en la capacidad de respuesta de los organismos vivos a la modificación de su entorno y en su facultad de restaurar (o de adaptarse) las condiciones favorables para su supervivencia. Examinemos, pues, algunos posibles instrumentos utilizados por Gaia para controlar la salinidad.

 

Aunque conjeturas aún, estas ideas me parecen lo bastante sólidas para convertirlas en base de estudios teóricos y experimentales detallados.

Empecemos con una posible forma de acelerar el sistema de cinta transportadora oceánica. Es probable que, si las sales sedimentan, ello sea porque son arrastradas por la lluvia de detritos animales y vegetales (tal como sugería Broecker) del mismo modo que las partículas de polvo flotantes, en la atmósfera son arrastradas al suelo por la lluvia ordinaria.

 

Pudiera haber especies de protistos (u otros organismos marinos de concha dura) particularmente sensibles al nivel de salinidad que murieran tan pronto éste sobrepasara tan siquiera ligeramente la normalidad. Al hundirse sus caparazones, arrastrarían con ellos cierta cantidad de sales, devolviendo la normalidad a las aguas superficiales. Aunque las cantidades de sal eliminadas por este mecanismo son demasiado pequeñas para dar cuenta directamente del filtro o sumidero que buscamos, esta conexión entre la tasa de sedimentación de los caparazones y los niveles de sal podría ser parte de un método para regular la salinidad del mar.

Otra posibilidad muy diferente surge de la explicación dada por Broecker a la remoción de cloruro y sulfato: sugiere éste que el exceso de sal se acumula en forma de evaporados en bahías de aguas someras, lagos interiores y brazos de mar aislados, donde la tasa de evaporación es rápida y el aporte de agua salada unidireccional.

 

Formulemos la audaz hipótesis de que los lagos salobres son consecuencia de la vida marina: la regulación homeostática podría resolver la incógnita principal de la propuesta de Broecker, cómo resulta tan estable un sistema de remoción de sal aparentemente basado en la formación de evaporados a consecuencia de fuerzas inorgánicas por completo aleatorias.

La construcción de barreras del tamaño necesario para cerrar miles de millas cuadradas de mar en las regiones tropicales puede parecer una obra de ingeniería muy por encima de las posibilidades humanas y sin embargo, los arrecifes coralinos son, con gran diferencia, de dimensiones superiores a las de cualquier estructura humana (todavía mayor era la escala, en épocas remotas, de los arrecifes de estromatolitos). Construidos a escala de Gaia, son murallas cuya altura se cifra en millas, y cuya longitud alcanza los miles de millas, obra de una cooperativa de organismos vivientes.

 

¿Es posible que la Gran Barrera, frente a la costa nororiental australiana, forme parte de un proyecto inacabado de laguna de evaporación?

Este ejemplo de los resultados de la cooperación durante eones de unas criaturas sumamente sencillas —incluso si carece de significado para la hipótesis Gaia— nos estimula a especular sobre otras posibilidades. Hemos visto ya como los seres vivos han modificado la atmósfera a nivel planetario. ¿Qué pensar de la actividad volcánica, del desplazamiento de los continentes?

 

Ambos son consecuencia de convulsiones interiores, pero ¿está Gaia tras ellos? De ser así, ¿no ofrecerían mecanismos adicionales para la construcción de lagunas, dejando aparte su efecto primario sobre las fracturas de los lechos oceánicos y las transferencias de sedimentos?

Las especulaciones de esta clase no son, en absoluto, tan descabelladas como pudiera parecer a primera vista. Los oceanógrafos sospechan ya que los volcanes submarinos pueden, en ocasiones, ser el resultado final de actividades biológicas, y de una forma bastante directa. Buena parte del sedimento que se precipita sobre el lecho oceánico es sílice casi puro; con el paso del tiempo, su acumulación se hace lo suficientemente importante como para alabear la delgada roca plástica del suelo oceánico, depositándose una cantidad adicional de sedimento en la concavidad resultante.

 

Entretanto, la conducción de calor desde el interior de la Tierra queda impedida por este manto —progresivamente más grueso— de sílice, cuya estructura abierta hace de él un buen aislante térmico, a la manera de una prenda de lana. La temperatura, pues, de la zona situada debajo del depósito silíceo aumenta, la roca subyacente se ablanda más aún, la deformación se acentúa, se deposita más sedimento y la temperatura asciende más y más. Se han establecido, pues, las condiciones de una realimentación positiva.

 

El calor se hace por fin lo suficientemente intenso para fundir la roca del lecho oceánico, lo que produce un vertido de magma al exterior. Así pudieron formarse las islas volcánicas, y quizás, ocasionalmente, también las lagunas. En las aguas de menor profundidad cercanas a las costas sedimentan grandes depósitos de carbonato de calcio, que a veces emergen nuevamente en forma de creta o de caliza.

En otras ocasiones entran en contacto con las rocas calientes de las regiones inferiores, donde actúan como fundente para las rocas, favoreciendo por tanto la aparición de volcanes.

En un mar inerte, el sedimento preciso para desencadenar esta secuencia de acontecimientos nunca se hubiera depositado en el lugar adecuado. Los planetas muertos también poseen volcanes pero, a juzgar por el gran ejemplo marciano —bautizado como Nix Olympus—, no tienen demasiado que ver con sus contrapartidas terrestres.

 

Si Gaia ha modificado el suelo oceánico lo ha hecho explotando una tendencia natural, aprovechándose de ella.

 

No sugiero, evidentemente, que todos los volcanes, ni siquiera la mayoría, sean consecuencia de la actividad biológica, sino la conveniencia de considerar la posibilidad de que la tendencia a las erupciones sea explotada por la biota en favor de sus necesidades colectivas.

Fig. 8.

Plataformas continentales de los océanos. Estas regiones, que ocupan un área de dimensiones similares a las del continente africano, podrían ser claves en la homeostasis de nuestro planeta. Aquí se entierra carbono, lo que mantiene el nivel de oxígeno atmosférico; son, además, fuente de muchos otros componentes gaseosos y volátiles esenciales para la vida.

Si la idea de la manipulación de fenómenos geológicos de grandes proporciones en interés de la biosfera sigue pareciendo ofensiva para el sentido común, merece la pena recordar que ciertos terremotos han sido consecuencia de una alteración en la distribución del peso en una zona determinada provocada por la construcción de una presa. El potencial de perturbación ligado a la masa sedimentaria de un arrecife coralino es infinitamente mayor.

Nuestra discusión de la salinidad y su control es incompleta y muy general. No he dicho prácticamente nada sobre las variaciones en el contenido de sal de un lugar del océano a otro, ni sobre componentes salinos tales como los iones fosfato y nitrato, nutrientes primarios cuyas relaciones son aún un misterio para los oceanógrafos: nada tampoco sobre los nódulos de manganeso hallados en amplias zonas del lecho marino, cuyo origen es indudablemente biológico, ni sobre las complejidades de las corrientes oceánicas y los sistemas de circulación.

 

Todos son procesos, o partes de procesos, que influyen directa o indirectamente en (o son influidos por) la presencia de la materia viva. He dicho muy poco sobre la cuestión de las relaciones ecológicas entre los organismos pertenecientes a los miles de especies que pueblan los mares, o sobre si la injerencia del modo de vida humano, deliberada o accidental, repercute en la química o la física oceánicas y, subsiguientemente, en nuestro propio bienestar; si, por ejemplo, la carnicería de las ballenas cuyo resultado final pudiera ser la total extinción de estos maravillosos mamíferos podría tener otros efectos de largo alcance además del de privarnos para siempre de su compañía única.

 

Todas estas omisiones se deben en parte a falta de espacio, pero sobre todo a carencia de información sólida sobre la que construir.

Afortunadamente, se están dando al fin los pasos necesarios para llenar las muchas lagunas que ostenta nuestro departamento de información, y no siempre a costa de dispendios a escala de "Gran Ciencia": hace poco tiempo, algunos de nosotros participamos en un modesto proyecto cuyo propósito era el estudio de ciertas actividades de Gaia, importantes también a pesar de ser de una categoría en cierta forma inferior a la de las grandes obras ingenieriles sobre las que hemos especulado en relación con el control de salinidad.

En 1971 realicé un viaje en el Shackleton —velero que desplazaba solamente unos cientos de toneladas dedicado a tareas de investigación— desde Gales del Sur a la Antártida. Iba acompañado por dos colegas, Robert Maggs y Roger Wade; la razón principal de nuestra presencia a bordo era llevar a cabo ciertos estudios geológicos. Los tres estábamos en el barco como supernumerarios, libres de utilizarlo como plataforma de observación móvil mientras navegaba hacia el sur y el cumplimiento de su misión. Queríamos estudiar en especial la posibilidad de equilibrar el balance mundial del azufre incluyendo un componente ignorado hasta entonces aunque potencialmente importante, el dimetil sulfuro.

El misterio del desequilibrio del azufre empezó unos años antes, cuando los científicos dedicados al estudio del ciclo del azufre descubrieron que el aporte azufrado de los ríos al mar era superior a lo que la totalidad de las fuentes terrestres conocidas podían producir. Sumando las cantidades derivadas del arrastre climatológico de minerales azufrados, el azufre extraído del suelo por las plantas, y el introducido en la atmósfera como consecuencia del quemado de combustibles fósiles se encontraron con una discrepancia cuya magnitud era de cientos de megatoneladas anuales.

 

E. J. Conway sostenía que el azufre restante era transportado del mar a la tierra vía la atmósfera en forma de sulfuro de hidrógeno, ese maloliente gas responsable del remoquete de "apestosa", con que uno se refería invariablemente a la antigua química escolar. Nosotros, sin embargo, dudábamos de explicación tan simple.

 

Por un lado, nadie había detectado jamás en la atmósfera sulfuro de hidrógeno en cantidad suficiente como para dar cuenta del mencionado desacuerdo y, por otro, esta substancia reacciona tan rápidamente con el agua marina, rica en oxígeno —formando productos no volátiles—, que en ningún caso dispondría del tiempo preciso para alcanzar la superficie del agua y menos para escapar a la atmósfera.

 

Mis dos colegas y yo pensábamos que el agente a cuyo cargo estaba el transporte aéreo del azufre restante era el dimetil sulfuro, compuesto químicamente emparentado con el sulfuro de hidrógeno. Si nos inclinábamos por esta hipótesis era, entre otras cosas, porque el oxígeno destruye al dimetil sulfuro mucho más lentamente que al sulfuro de hidrógeno, el candidato rival.

Nos asistían razones sólidas para tomar partido por el dimetil sulfuro. Tras muchos años de experimentación, el profesor Frederick Challenger de la Universidad de Leeds había demostrado que la adición de grupos metilo (proceso conocido como metilación) a determinadas substancias para transformarlas en gases o vapores era un expediente al que multitud de organismos recurrían con frecuencia a fin de librarse de productos indeseables. Los compuestos metilados de azufre, mercurio, antimonio y arsénico, por ejemplo, son mucho más volátiles que los elementos mismos.

 

Challenger había conseguido demostrar que muchas especies de algas marinas, incluso las más corrientes, producen de este modo grandes cantidades de dimetil sulfuro.

Fuimos tomando muestras de agua marina a todo lo largo del viaje, encontrando en ellas cantidades de dimetil sulfuro en apariencia lo bastante elevadas como para substanciar la hipótesis de su función vehiculante de azufre. Peter Liss nos convencería posteriormente, mediante el cálculo, de que las tasas establecidas en nuestras muestras indicaban que la cantidad de dimetil sulfuro de los mares no bastaba para dar cuenta de la totalidad del azufre echado en falta. Más tarde aún advertimos que el curso seguido por el Schackleton no había discurrido por aguas particularmente abundantes en dimetil sulfuro.

 

La principal fuente de esta substancia no es el mar abierto, que hablando relativamente es un desierto, sino las aguas costeras, ricas en materia viva. Es en ellas donde proliferan algas que, con eficacia asombrosa, extraen el azufre de los iones sulfato presentes en el agua del mar y lo convierten en dimetil sulfuro. Una de estas algas es la Polysiphonia fastigiata, un pequeño organismo rojizo habitualmente adherido a los sargazos vejigosos tan corrientes en las zonas medio-litorales.

 

Produce tanto dimetil sulfuro que, si se dejan algunos frondes en una jarra tapada con algo de agua de mar durante una media hora, el aire de su interior se hace casi inflamable. Felizmente, el olor del dimetil sulfuro no tiene nada que ver con el del sulfuro de hidrógeno. En forma diluida es un aroma agradable de reminiscencias marinas.

 

Aunque nuestras conclusiones requieren ulteriores estudios, parece razonable proponer al dimetil sulfuro producido en las zonas marinas adyacentes a las plataformas continentales como el vehículo de azufre buscado. Muchas especies de algas tienen variedad de agua dulce y de agua salada: pues bien, el científico japonés Ishida ha demostrado recientemente que ambas formas de Polysiphonia fastigiata son capaces de producir dimetil sulfuro, pero que el eficaz sistema enzimático se activa únicamente en el agua del mar, lo que sugeriría un instrumento biológico destinado a asegurar la producción de dimetil sulfuro en el lugar adecuado desde la perspectiva del ciclo del azufre.

La metilación biológica tiene una parte menos atractiva. Las bacterias cuyo habitat es el fango de los lechos marinos han desarrollado enormemente esta técnica: los elementos tóxicos como el mercurio, el plomo y el arsénico son convertidos a sus formas metiladas volátiles, gases que ascienden a través del agua del mar impregnándolo todo, incluyendo los peces.

 

En circunstancias normales, las cantidades son demasiado pequeñas para ser venenosas, pero hace algunos años, las industrias japonesas situadas en las orillas del Mar del Japón —interior— contaminaron sus aguas con dimetilo de mercurio incrementando su concentración hasta el punto de hacer el pescado venenoso para el hombre. Quienes lo consumieron se vieron afectados, quedando muchos de ellos con invalideces dolorosas.

 

Hubo incluso cierto número de personas que contrajeron Mimamata, denominación local del horroroso cuadro que caracteriza al envenenamiento mercurial. Es una suerte que el proceso natural de la metilación del mercurio no alcance tan dramáticos extremos, aunque no es así con el arsénico. En el siglo pasado, ciertos papeles de pared incluían un pigmento verdoso fabricado con arsénico.

 

En casas húmedas y mohosas, pobremente ventiladas, el moho convertía el arsénico del papel de pared en trimetil arseniato, un gas letal, y los durmientes de los dormitorios con él decorados morían.

El objeto biológico de la metilación de elementos venenosos no se conoce con seguridad, pero quizá sea un medio de eliminar substancias tóxicas del entorno local acudiendo para ello a su transformación en gases. Al estar diluidos son normalmente inocuos para otras criaturas, pero cuando el hombre altera el equilibrio natural, este beneficioso proceso se maligniza, siendo causa finalmente de invalidez o muerte.

La metilación biológica del azufre sería el modo que tiene Gaia de asegurar un equilibrio adecuado entre el azufre marino y el terrestre. De no ser por este proceso, gran parte del azufre soluble de la superficie terrestre habría sido arrastrado por las aguas continentales mucho tiempo ha sin ser reemplazado, alterándose subsiguientemente las delicadas relaciones entre las substancias del medio imprescindibles para el bienestar de los organismos vivos.

Los así llamados "halocarbonos" fueron otro grupo de substancias con grupos metilo en su estructura que nos llamó la atención durante el viaje del Shackleton. Derivan estas substancias de hidrocarbonos tales como el metano, en los que uno o más de los átomos de hidrógeno han sido reemplazados por átomos de flúor, cloro, bromo o yodo, elementos denominados genéricamente halógenos por los químicos.

 

Esta línea de trabajo iba a resultar la más científicamente fructífera de nuestro viaje, ofreciendo además un típico ejemplo de lo inadecuada que resulta una planificación excesivamente minuciosa en la tarea de investigación exploratoria básica: lo importante es tener los ojos bien abiertos para no perderse lo que Gaia pueda ofrecernos. Afortunadamente, llevábamos con nosotros un instrumento para medir cantidades vestigiales de halocarbonos gaseosos.

 

Nuestra intención inicial era comprobar si los gases empleados como propelentes de aerosol (de desodorantes, insecticidas, etc.) dejaban un rastro detectable en el aire que permitiera, por ejemplo, observar sus desplazamientos entre el hemisferio norte y el hemisferio sur.

Este estudio tuvo, en ciertos aspectos, hasta demasiado éxito: nos halláramos donde nos halláramos, la detección y medida de los fluorocarbonos no ofrecía ninguna dificultad, descubrimiento que fue causa directa de la preocupación actual, posiblemente exagerada, sobre la capacidad de estas substancias para deteriorar la capa de ozono. Nuestros aparatos revelaron dos halocarbonos gaseosos más: el tetracloruro de carbono, cuya presencia en el aire es hasta hoy un enigma, y el yoduro de metilo, producido por las algas marinas.

¿Recordáis esas algas con forma de correa que servían para pronosticar el tiempo? Son miembros, utilizando la terminología botánica, de la familia de las laminariáceas. Medran en las aguas someras y tienen la facultad de extraer yodo del mar. Mientras crecen, producen grandes cantidades de yoduro de metilo. Solían ser recolectadas y quemadas, extrayéndose yodo de las cenizas.

 

Es probable que tal como el dimetil sulfuro sirve para vehicular azufre, ese elemento esencial para la vida, el yodo, haga el viaje de vuelta del mar a la tierra por aire en forma de yoduro de metilo. Sin yodo, la glándula tiroides no puede producir las hormonas reguladoras del metabolismo, y sin ellas la mayoría de los animales terminarán por enfermar y morir. Cuando detectamos yoduro de metilo en el aire del mar desconocíamos aún que la mayor parte de este gas reacciona con los iones cloruro del mar para dar cloruro de metilo.

 

A Oliver Zafiriou debemos las primeras indicaciones sobre esta extraña reacción, lo que condujo al descubrimiento del cloruro de metilo como principal vehículo gaseoso de cloro atmosférico. De ordinario habría sido poco más que una curiosidad química pero, como se indicó en el capítulo anterior, el cloruro de metilo es considerado actualmente como el equivalente natural de los propelentes de aerosol en cuanto a capacidad para deteriorar la capa de ozono de la estratosfera.

 

Podría tener una función reguladora de su densidad: ya hemos dicho que demasiado ozono es algo tan peligroso como la falta de él. Otro elemento más por tanto, el cloro metilado marino, que podría desempeñar una función gaiana.

No sería raro, pues, que otros elementos de importancia para la vida, como el selenio, pasaran del mar a la atmósfera en forma de derivados metilados, pero hasta ahora no hemos sido capaces de descubrir la fuente marina de compuesto volátil que vehicule el fósforo, ese elemento clave. Es posible que las necesidades de fósforo sean lo bastante pequeñas como para que el desgaste climatológico de las rocas baste para satisfacerlas, pero si esto no fuera así, valdría la pena interrogarse sobre la posibilidad de que los desplazamientos migratorios de aves y peces cumplan además una función propia de Gaia: el reciclado del fósforo.

 

Contemplados a través de este prisma, los esfuerzos de salmones y anguilas, agotadores y aparentemente perversos, por alcanzar lugares del interior de las masas de tierra muy alejados del mar, cobrarían un sentido nuevo.

La recogida de información sobre el mar, de datos relativos a su química, su física, su biología y a las relaciones entre ellas, debería ocupar, por derecho propio, el primer puesto en la lista de tareas prioritarias para la humanidad. Cuanto más sepamos sobre ello, mejor entenderemos hasta dónde es seguro llegar en el aprovechamiento de los recursos del mar y más completa será nuestra visión de las consecuencias que tendría abusar de los poderes derivados del carácter dominante de nuestra especie, entrando despiadadamente a saco en sus regiones más fértiles.

 

Menos de una tercera parte de nuestro planeta es tierra firme: ello quizá sea la explicación de que la biosfera haya podido enfrentarse a los radicales cambios introducidos por la agricultura y la ganadería y probablemente sea capaz de seguir haciéndolo a pesar del crecimiento demográfico y la intensificación de los cultivos, pero no creamos que nos está permitido explotar el mar, en especial las regiones cultivables de las plataformas continentales, con impunidad semejante.

 

Nadie sabe realmente los riesgos concomitantes a la perturbación de esta área clave de la biosfera.

 

Es esto lo que me hace pensar que nuestro viaje mejor, más fructífero, habrá de realizarse poniendo la vista en Gaia, recordando durante toda la travesía y en todas nuestras exploraciones que el mar es una de sus partes vitales.
 

Regresar al Índice