| 
			  
			
 
  
			por Andrés Eloy Martínez  
			
			04 Agosto 2010 
			
			del Sitio Web
			
			ElUniversal 
			  
			  
				
					
						| 
						Por primera vez, los investigadores pudieron analizar la longitud de 
			onda de radiación infrarroja del planeta |  
			  
			  
			  
			
			
			 El planeta Neptuno habría recibido el impacto de una cometa hace 200 
			años
 
			(Foto: Especial Max Planck Institute)
 
			  
			Científicos del 
			
			Instituto Max Planck descubrieron evidencias del 
			impacto de un cometa sobre el planeta Neptuno hace 200 años, de 
			acuerdo a una comunicado del propio instituto.
 Cuando el 
			cometa Shoemaker-Levy 9 golpeó, hace 16 años, a Júpiter, 
			científicos de todo el mundo se prepararon para el gran espectáculo: 
			instrumentos a bordo de las naves espaciales Voyager 2, Galileo y 
			Ulises capturaron datos de este raro evento.
 
 Hoy, estos mismos datos ayudan a los científicos a detectar impactos 
			de cometas ocurridos hace muchos años.
 
 Estas grandes "bolas de nieve y polvo", como las llaman los 
			astrónomos, dejan huellas en la atmósfera de los planetas gigantes 
			de gas:
 
				
					
					
					agua
					
					dióxido de carbono
					
					monóxido de carbono
					
					ácido 
			cianhídrico
					
					sulfuro de carbono 
			Estas moléculas pueden ser detectadas en la luz que el planeta 
			refleja hacia el espacio.
 En febrero de 2010, científicos de este mismo instituto descubrieron 
			fuerte evidencia del impacto de un cometa en Saturno alrededor hace 
			230 años.
			Ahora, nuevas mediciones realizadas por el 
			
			observatorio espacial Herschel indican que Neptuno experimentó un hecho similar.
 
 Por primera vez, los investigadores pudieron analizar la longitud de 
			onda de radiación infrarroja de Neptuno.
 
 La atmósfera del planeta más exterior de nuestro sistema solar se 
			compone principalmente de hidrógeno y helio, con trazas de agua, 
			dióxido de carbono y monóxido de carbono.
 
 Los científicos detectaron una inusual distribución del monóxido de 
			carbono en la capa superior de la atmósfera, denominada estratosfera, 
			se encontraron con una mayor concentración que en la capa inferior o 
			troposfera.
 
				
				"Esta alta concentración de monóxido de carbono en la estratosfera 
			sólo puede explicarse por un origen externo", señaló el científico 
			Paul Hartogh, investigador principal de la misión Herschel.
 "Normalmente, las concentraciones de monóxido de carbono en la 
			troposfera y la estratosfera deben ser iguales o disminuir con el 
			aumento de la altura", añadió.
 
			La única explicación para estos resultados es el 
			impacto de un 
			cometa.
 Tal colisión desmorona el cometa, mientras que el monóxido de 
			carbono atrapado en el cometa de hielo se libera y con los años se 
			distribuye por toda la estratosfera.
 
 El instrumento con el que se logro este descubrimiento, llamado red 
			de foto-detector, cámara y espectrómetro, fue desarrollado en el 
			Instituto Max Planck.
 
 Con éste se analiza la longitud de onda de radiación infrarroja, 
			también conocida como radiación calórica, que los cuerpos como 
			Neptuno emiten en el frió del espacio.
 
 El satélite Herschel lleva a bordo el telescopio más grande que 
			jamás haya sido operado en el espacio.
 
 
			  
			  
 
			  
			  
			  
			  
			  
			  
			
			Cometary Impact
 
			...on NeptuneJuly 16, 2010
 from 
			MPS Website
 
			  
			  
			  
			Measurements performed by the 
			
			space observatory Herschel point to a 
			collision about two centuries ago.
 A comet may have hit the planet Neptune about two centuries ago.
 
			  
			This is indicated by the distribution of carbon monoxide in the 
			atmosphere of the gas giant that researchers - among them scientists 
			from the French observatory LESIA in Paris, from the Max Planck 
			Institute for Solar System Research (MPS) in Katlenburg-Lindau (Germany) 
			and from the Max Planck Institute for Extraterrestrial Physics 
			(MPE) in Garching (Germany) - have now studied.  
			  
			The scientists analyzed data 
			taken by the research satellite Herschel, that has been orbiting 
			the Sun in a distance of approximately 1.5 million kilometers since 
			May 2009. (Astronomy & Astrophysics, published online on July 16th, 
			2010)
 When the 
			comet Shoemaker-Levy 9 hit Jupiter sixteen years ago, 
			scientists all over the world were prepared: instruments on board 
			the space probes Voyager 2, Galileo and Ulysses documented every 
			detail of this rare incident.
 
			  
			Today, this data helps scientists 
			detect cometary impacts that happened many, many years ago.  
			  
			The "dusty 
			snowballs" leave traces in the atmosphere of the gas giants: water, 
			carbon dioxide, carbon monoxide, hydrocyanic acid, and carbon 
			sulfide. These molecules can be detected in the radiation the planet 
			radiates into space.
 In February 2010 scientists from MPS discovered strong evidence for 
			a cometary impact on Saturn about 230 years ago (see Astronomy and 
			Astrophysics, Volume 510, February 2010). Now new measurements 
			performed by the instrument 
			
			PACS (Photodetector Array Camera and 
			Spectrometer) on board the Herschel space observatory indicate that 
			Neptune experienced a similar event.
 
			  
			For the first time, PACS allows 
			researchers to analyze the long-wave infrared radiation of Neptune. 
			  
			  
			
			
			 
			
			Figure 1 
			
			Two centuries ago a comet may have hit Neptune, the outer-most 
			planet in our solar system.(Credits: NASA)
 
 
			  
			The atmosphere of the outer-most planet of our solar system mainly 
			consists of hydrogen and helium with traces of water, carbon dioxide 
			and carbon monoxide.  
			  
			Now, the scientists detected an unusual 
			distribution of carbon monoxide: In the upper layer of the 
			atmosphere, the so-called stratosphere, they found a higher 
			concentration than in the layer beneath, the troposphere.  
				
				"The 
			higher concentration of carbon monoxide in the stratosphere can only 
			be explained by an external origin", says MPS-scientist Paul Hartogh, 
			principle investigator of the Herschel science program 'Water and 
			related chemistry in the solar system'.    
				"Normally, the 
			concentrations of carbon monoxide in troposphere and stratosphere 
			should be the same or decrease with increasing height", he adds. 
			The only explanation for these results is a cometary impact.  
			  
			Such a 
			collision forces the comet to fall apart while the carbon monoxide 
			trapped in the comet’s ice is released and over the years 
			distributed throughout the stratosphere.  
				
				"From the distribution of 
			carbon monoxide we can therefore derive the approximate time, when 
			the impact took place", explains Thibault Cavalié from MPS. 
				 
			The 
			earlier assumption that a comet hit Neptune two hundred years ago 
			could thus be confirmed. A different theory according to which a 
			constant flux of tiny dust particles from space introduces carbon 
			monoxide into Neptune’s atmosphere, however, does not agree with the 
			measurements.
 In Neptune’s stratosphere the scientists also found a higher 
			concentration of methane than expected. On Neptune, methane plays 
			the same role as water vapor on Earth: the temperature of the so-called 
			
			tropopause - a barrier of colder air separating troposphere and 
			stratosphere - determines, how much water vapor can rise into the 
			stratosphere. If this barrier is a little bit warmer, more gas can 
			pass through.
 
			  
			But while on Earth the temperature of the tropopause 
			never falls beneath minus 80 degrees Celsius, on Neptune the 
			tropopause's mean temperature is minus 219 degrees.
 Therefore, a gap in the barrier of the tropopause seems to be 
			responsible for the elevated concentration of methane on Neptune. 
			With minus 213 degrees Celsius, at Neptune’s southern Pole this air 
			layer is six degrees warmer than everywhere else allowing gas to 
			pass more easily from troposphere to stratosphere.
 
			  
			The methane, 
			which scientists believe originates from the planet itself, can 
			therefore spread throughout the stratosphere.
 The instrument PACS was developed at the Max Planck Institute for 
			Extraterrestrial Physics. It analyzes the long-wave infrared 
			radiation, also known as heat radiation, that the cold bodies in 
			space such as Neptune emit.
 
			  
			In addition, the research satellite 
			Herschel carries the largest telescope ever to have been operated in 
			space. 
 
			  
			  |