by Hugh Ross
1988
from
Reasons Website
recovered through
WayBackMachine Website
Spanish version
Summary
Human existence is possible because the constants of physics and the
parameters for the universe and for planet Earth lie within certain
highly restricted ranges.
John Wheeler and others interpret
these amazing "coincidences" as proof that human existence somehow
determines the design of the universe. Drawing an illogical parallel
with delayed-choice experiments in quantum mechanics, they say that
observations by humans influence the design of the universe, not
only now, but back to the beginning.
Such versions of what is called the "anthropic
principle" reflect current philosophical and religious leanings
towards the deification of man.
They produce no evidence to support the
notion that man's present acts can influence past events.
Furthermore, their analogies with quantum mechanics break down on
this point.
The "coincidental" values of the constants
of physics and the parameters of the universe point, rather, to a
designer who transcends the dimensions and limits of the physical
universe.
Cosmic
Connection
Now that the limits and parameters of the universe can be
calculated, and some even directly measured, astronomers and
physicists have begun to recognize a connection between these limits
and parameters and the existence of life.
It is impossible to imagine a universe
containing life in which any one of the fundamental constants of
physics or any one of the fundamental parameters of the universe is
different, even slightly so, in one way or another.
From this recognition arises the anthropic principle - everything
about the universe tends toward man, toward making life possible and
sustaining it.
The first popularizer of the principle
American physicist John Wheeler, describes it in this way,
"A life-giving factor lies at the
centre of the whole machinery and design of the world."1
Of course, design in the natural world has
been acknowledged since the beginning of recorded history.
Divine design is the message of each of
the several hundred creation accounts that form the basis of the
world's religions.2, 3
The idea that the natural world was
designed especially for mankind is the very bedrock of the Greek, as
well as of the Judeo-Christian world view. Western philosophers of
the post-Roman era went so far as to formalize a discipline called
teleology - the study of the evidence for overall design and purpose
in nature.
Teleology attracted such 'luminaries' as
Augustine, Maimonides, Aquinas, Newton and Paley, all of whom gave
it much of their life's work.
Dirac and
Dicke's coincidences
One of the first to recognize that design may also apply to the
gross features of the universe was American physicist Robert
Dicke.
In 1961 he noted that life is possible in
the universe only because of the special relationships among certain
cosmological parameters4 (relationships researched by British
physicist Paul Dirac twenty-four years earlier5).
Dirac noted that the number of baryons (protons plus neutrons) in
the universe is the square of the gravitational constant as well as
the square of the age of the universe (both expressed as
dimensionless numbers).
Dicke discerned that a slight change in
either of these relationships life could exist. Stars of the right
type for sustaining life supportable planets only can occur during a
certain range of ages for the universe.
Similarly, stars of the right type only
can form for a narrow range of values of the gravitational constant.
The Universe
as a Fit Habitat
In recent years these and
other parameters for the universe have been more sharply defined and
analyzed.
Now, nearly two dozen coincidences evincing design have
been acknowledged:
-
The gravitational coupling constant
- i.e., the force of gravity,
determines what kinds of stars are possible in the universe.
If the
gravitational force were slightly stronger, star formation would
proceed more efficiently and all stars would be more massive than
our sun by at least 1.4 times. These large stars are important in
that they alone manufacture elements heavier than iron, and they
alone disperse elements heavier than beryllium to the interstellar
medium.
Such elements are essential for the formation of planets as
well as of living things in any form. However, these stars burn too
rapidly and too unevenly to maintain life-supporting conditions on
surrounding planets. Stars as small as our sun are necessary for
that.
On the other hand, if the gravitational force were slightly weaker,
all stars would have less than 0.8 times the mass of the sun.
Though
such stars burn long and evenly enough to maintain life-supporting
planets, no heavy elements essential for building such planets or
life would exist.
-
The strong nuclear force coupling constant holds together the
particles in the nucleus of an atom. If the strong nuclear force
were slightly weaker, multi-proton nuclei would not hold together.
Hydrogen would be the only element in the universe.
If this force were slightly stronger, not only would hydrogen be rare
in the universe, but also the supply of the various life-essential
elements heavier than iron (elements resulting from the fission of
very heavy elements) would be insufficient.
Either way, life would
be impossible. a
-
The weak nuclear force coupling constant affects the behavior of
leptons. Leptons form a whole class of elementary particles (e.g.,
neutrinos, electrons, and photons) that do not participate in strong
nuclear reactions.
The most familiar weak interaction effect is
radioactivity, in particular, the beta decay reaction:
neutron » proton + electron + neutrino.
The availability of neutrons as the universe cools through
temperatures appropriate for nuclear fusion determines the amount of
helium produced during the first few minutes of the big bang.
If the
weak nuclear force coupling constant were slightly larger, neutrons
would decay more readily, and therefore would be less available.
Hence, little or no helium would be produced from the big bang.
Without the necessary helium, heavy elements sufficient for the
constructing of life would not be made by the nuclear furnaces
inside stars. On the other hand, if this constant were slightly
smaller, the big bang would burn most or all of the hydrogen into
helium, with a subsequent over-abundance of heavy elements made by
stars, and again life would not be possible.
A second, possibly more delicate, balance occurs for supernovae. It
appears that an outward surge of neutrinos determines whether or not
a supernova is able to eject its heavy elements into outer space. If
the weak nuclear force coupling constant were slightly larger,
neutrinos would pass through a supernova's envelope without
disturbing it.
Hence, the heavy elements produced by the supernova
would remain in the core. If the constant were slightly smaller, the
neutrinos would not be capable of blowing away the envelope.
Again,
the heavy elements essential for life would remain trapped forever
within the cores of supernovae.
-
The electromagnetic coupling constant binds electrons to protons in
atoms.
The characteristics of the orbits of electrons about atoms
determines to what degree atoms will bond together to form
molecules. If the electromagnetic coupling constant were slightly
smaller, no electrons would be held in orbits about nuclei.
If it
were slightly larger, an atom could not "share" an electron orbit
with other atoms. Either way, molecules, and hence life, would be
impossible.
-
The ratio of electron to proton mass also determines the
characteristics of the orbits of electrons about nuclei.
A proton is
1,836 times more massive than an electron. If the electron to proton
mass ratio were slightly larger or slightly smaller, again,
molecules would not form, and life would be impossible.
-
The age of the universe governs what kinds of stars exist.
It takes
about three billion years for the first stars to form. It takes
another ten or twelve billion years for supernovae to spew out
enough heavy elements to make possible stars like our sun, stars
capable of spawning rocky planets.
Yet another few billion years is
necessary for solar-type stars to stabilize sufficiently to support
advanced life on any of its planets. Hence, if the universe were
just a couple of billion years younger, no environment suitable for
life would exist.
However, if the universe were about ten (or more)
billion years older than it is, there would be no solar-type stars
in a stable burning phase in the right part of a galaxy. In other
words, the window of time during which life is possible in the
universe is relatively narrow.
-
The expansion rate of the universe determines what kinds of stars,
if any, form in the universe.
If the rate of expansion were slightly
less, the whole universe would have re-collapsed before any
solar-type stars could have settled into a stable burning phase. If
the universe were expanding slightly more rapidly, no galaxies (and
hence no stars) would condense from the general expansion.
How
critical is this expansion rate? According to Alan Guth,6 it must be
fine-tuned to an accuracy of one part in 1055. Guth, however,
suggests that his inflationary model, given certain values for the
four fundamental forces of physics, may provide a natural
explanation for the critical expansion rate.
-
The entropy level of the universe affects the condensation of
massive systems.
The universe contains 100,000,000 photons for every
baryon. This makes the universe extremely entropic, i.e., a very
efficient radiator and a very poor engine. If the entropy level for
the universe were slightly larger, no galactic systems would form
(and therefore no stars).
If the entropy level were slightly
smaller, the galactic systems that formed would effectively trap
radiation and prevent any fragmentation of the systems into stars.
Either way the universe would be devoid of stars and, thus, of life.
(Some models for the universe relate this coincidence to a
dependence of entropy upon the gravitational coupling constant.7,8)
-
The mass of the universe (actually mass + energy, since E = mc2)
determines how much nuclear burning takes place as the universe
cools from the hot big bang. If the mass were slightly larger, too
much deuterium (hydrogen atoms with nuclei containing both a proton
and a neutron) would form during the cooling of the big bang.
Deuterium is a powerful catalyst for subsequent nuclear burning in
stars. This extra deuterium would cause stars to burn much too
rapidly to sustain life on any possible planet.
On the other hand, if the mass of the universe were slightly smaller,
no helium would be generated during the cooling of the big bang.
Without helium, stars cannot produce the heavy elements necessary
for life.
Thus, we see a reason the universe is as big as it is. If
it were any smaller (or larger), not even one planet like the earth
would be possible.
-
The uniformity of the universe determines its stellar components.
Our universe has a high degree of uniformity. Such uniformity is
considered to arise most probably from a brief period of
inflationary expansion near the time of the origin of the universe.
If the inflation (or some other mechanism) had not smoothed the
universe to the degree we see, the universe would have developed
into a plethora of black holes separated by virtually empty space.
On the other hand, if the universe were smoothed beyond this degree,
stars, star clusters, and galaxies may never have formed at all.
Either way, the resultant universe would be incapable of supporting
life.
-
The stability of the proton affects the quantity of matter in the
universe and also the radiation level as it pertains to higher life
forms. Each proton contains three quarks.
Through the agency of
other particles (called bosons) quarks decay into antiquarks, pions,
and positive electrons. Currently in our universe this decay process
occurs on the average of only once per proton per 1032 years. b
If
that rate were greater, the biological consequences for large
animals and man would be catastrophic, for the proton decays would
deliver lethal doses of radiation.
On the other hand, if the proton were more stable (less easily formed
and less likely to decay), less matter would have emerged from
events occurring in the first split second of the universe's
existence. There would be insufficient matter in the universe for
life to be possible.
-
The fine structure constants relate directly to each of the four
fundamental forces of physics (gravitational, electromagnetic,
strong nuclear, and weak nuclear).
Compared to the coupling
constants, the fine structure constants typically yield stricter
design constraints for the universe. For example, the
electromagnetic fine structure constant affects the opacity of
stellar material. (Opacity is the degree to which a material permits
radiant energy to pass through).
In star formation, gravity pulls
material together while thermal motions tend to pull it apart. An
increase in the opacity of this material will limit the effect of
thermal motions. Hence, smaller clumps of material will be able to
overcome the resistance of the thermal motions.
lf the
electromagnetic fine structure constant were slightly larger, all
stars would be less than 0.7 times the mass of the sun.
If the
electromagnetic fine structure constant were slightly smaller, all
stars would be more than 1.8 times the mass of the sun.
-
The velocity of light can be expressed in a variety of ways as a
function of any one of the fundamental forces of physics or as a
function of one of the fine structure constants. Hence, in the case
of this constant, too, the slightest change, up or down, would
negate any possibility for life in the universe.
-
The 8Be,
12C, and 16O nuclear energy levels affect the manufacture
and abundances of elements essential to life. Atomic nuclei exist in
various discrete energy levels.
A transition from one level to
another occurs through the emission or capture of a photon that
possesses precisely the energy difference between the two levels.
The first coincidence here is that 5Be decays in just 10-15
seconds.
Because 8Be is so highly unstable, it slows down the fusion
process.
If it were more stable, fusion of heavier elements would
proceed so readily that catastrophic stellar explosions would
result. Such explosions would prevent the formation of many heavy
elements essential for life. On the other hand, if 8Be were even
more unstable, element production beyond 8Be would not occur.
The second coincidence is that 12C happens to have a nuclear energy
level very slightly above the sum of the energy levels for 8Be and
4He. Anything other than this precise nuclear energy level for
12C
would guarantee insufficient carbon production for life.
The third coincidence is that
16O has exactly the right nuclear energy
level either to prevent all the carbon from turning into oxygen or
to facilitate sufficient production of 16O for life.
Fred Hoyle, who
discovered these coincidences in 1953, concluded that "a superintellect has monkeyed with physics, as well as with chemistry
and biology."10
-
The distance between stars affects the orbits and even the
existence of planets.
The average distance between stars in our part
of the galaxy is about 30 trillion miles. If this distance were
slightly smaller, the gravitational interaction between stars would
be so strong as to destabilize planetary orbits.
This
destabilization would create extreme temperature variations on the
planet. If this distance were slightly larger, the heavy element
debris thrown out by supernovae would be so thinly distributed that
rocky planets like earth would never form.
The average distance
between stars is just right to make possible a planetary system such
as our own.
-
The rate of luminosity increase for stars affects the temperature
conditions on surrounding planets.
Small stars, like the sun, settle
into a stable burning phase once the hydrogen fusion process ignites
within their core. However, during this stable burning phase such
stars undergo a very gradual increase in their luminosity.
This
gradual increase is perfectly suitable for the gradual introduction
of life forms, in a sequence from primitive to advanced, upon a
planet. If the rate of increase were slightly greater, a runaway
green house effect c would be felt sometime between the introduction
of the primitive and the introduction of the advanced life forms.
If
the rate of increase were slightly smaller, a runaway freezing d of
the oceans and lakes would occur. Either way, the planet's
temperature would become too extreme for advanced life or even for
the long-term survival of primitive life.
This list of sensitive constants is by no means complete.
Yet it
demonstrates why a growing number of physicists and astronomers have
become convinced that the universe was not only divinely brought
into existence but also divinely designed.
American astronomer
George Greenstein expresses his thoughts:
As we survey all the evidence, the thought insistently arises that
some supernatural agency - or, rather, Agency - must be involved.
Is
it possible that suddenly, without intending to, we have stumbled
upon scientific proof of the existence of a Supreme Being? Was it
God who stepped in and so providentially crafted the cosmos for our
benefit? 11
The Earth as a Fit Habitat
It is not just the universe that bears evidence for design.
The earth
itself reveals such evidence.
-
Frank Drake
-
Carl Sagan
-
Iosef
Shklovsky,
...were among the first astronomers to concede this point
when they attempted to estimate the number of planets in the
universe with environments favorable for the support of life.
In the
early 1960's they recognized that only a certain kind of star with a
planet just the right distance from that star would provide the
necessary conditions for life.12
On this basis they made some rather
optimistic estimates for the probability of finding life elsewhere
in the universe. Shklovsky and Sagan, for example, claimed that
0.001 percent of all stars could have a planet upon which advanced
life resides.13
While their analysis was a step in the right direction, it
overestimated the range of permissible star types and the range of
permissible planetary distances. It also ignored many other
significant factors.
A sample of parameters sensitive for the
support of life on a planet are listed in Table 1.
Table 1
Evidence for the design of the sun-earth-moon
system 14-31
The following parameters cannot exceed certain limits without
disturbing the earth's capacity to support life.
Some of these
parameters are more narrowly confining than others. For example, the
first parameter would eliminate only half the stars from candidacy
for life-supporting systems, whereas parameters five, seven, and
eight would each eliminate more than ninety-nine in a hundred
star-planet systems.
Not only must the parameters for life support
fall within a certain restrictive range, but they must remain
relatively constant over time. And we know that several, such as
parameters fourteen through nineteen, are subject to potentially
catastrophic fluctuation.
In addition to the parameters listed here,
there are others, such as the eccentricity of a planet's orbit, that
have an upper (or a lower) limit only.
1. number of star companions
if more than one: tidal interactions would disrupt planetary orbits
if less than one: not enough heat produced for life
2. parent star birth date
if more recent: star would not yet have reached stable burning phase
if less recent: stellar system would not yet contain enough heavy
elements
3. parent star age
if older: luminosity of star would not be sufficiently stable
if younger: luminosity of star would not be sufficiently stable
4. parent star distance from center of galaxy
if greater: not enough heavy elements to make rocky planets
if less: stellar density and radiation would be too great
5. parent star mass
if greater: luminosity output from the star would not be sufficiently
stable if less: range of distances appropriate for life would be too narrow;
tidal forces would disrupt the rotational period for a planet of the
right distance
6. parent star color
if redder: insufficient photosynthetic response
if bluer: insufficient photosynthetic response
7. surface gravity
if stronger: planet's atmosphere would retain huge amounts of ammonia
and methane if weaker: planet's atmosphere would lose too much water
8. distance from parent star
if farther away: too cool for a stable water cycle
if closer: too warm for a stable water cycle
9. thickness of crust
if thicker: too much oxygen would be transferred from the atmosphere
to the crust if thinner: volcanic and tectonic activity would be too great
10. rotation period
if longer: diurnal temperature differences would be too great
if shorter: atmospheric wind velocities would be too great
11. gravitational interaction with a moon
if greater: tidal effects on the oceans, atmosphere, and rotational
period would be too severe if less: earth's orbital obliquity would change too much causing
climatic instabilities
12. magnetic field
if stronger: electromagnetic storms would be too severe
if weaker: no protection from solar wind particles
13. axial tilt
if greater: surface temperature differences would be too great
if less: surface temperature differences would be too great
14. albedo (ratio of reflected light to total amount falling on
surface) if greater: runaway ice age would develop if less: runaway greenhouse effect would develop
15. oxygen to nitrogen ratio in atmosphere
if larger: life functions would proceed too quickly
if smaller: life functions would proceed too slowly
16. carbon dioxide and water vapor levels in atmosphere
if greater: runaway greenhouse effect would develop if less: insufficient greenhouse effect
17. ozone level in atmosphere
if greater: surface temperatures would become too low
if less: surface temperatures would be too high; too much UV radiation
at surface
18. atmospheric electric discharge rate
if greater: too much fire destruction
if less: too little nitrogen fixing in the soil
19. seismic activity
if greater: destruction of too many life-forms if less: nutrients on ocean floors would not be uplifted
About a dozen other parameters, such as atmospheric chemical
composition, currently are being researched for their sensitivity in
the support of life.
However, the nineteen listed in Table 1
(above) in
themselves lead safely to the conclusion that much fewer than a
trillionth of a trillionth of a percent of all stars will have a
planet capable of sustaining life.
Considering that the universe
contains only about a trillion galaxies, each averaging a hundred
billion stars we can see that not even one planet would be
expected, by natural processes alone, to possess the necessary
conditions to sustain life.
No wonder Robert Rood and James Trefil
14 and others have surmised that intelligent physical life
exists only on the earth. It seems abundantly clear that the earth,
too, in addition to the universe, has experienced divine design.
Man the "Creator"?
The growing evidence of design would seem to provide further
convincing support for the belief that the "Creator"-God of the
Bible formed the universe and the earth.
Even Paul Davies concedes that,
"the impression of design is
overwhelrung."32
There must exist a designer.
Yet, for whatever reasons, a few
astrophysicists still battle the conclusion. Perhaps the designer is
not God. But, if the designer is not God, who is? The alternative,
some suggest, is man himself.
The evidence proffered for man as the creator comes from an analogy
to delayed choice experiments in quantum mechanics. In such
experiments it appears that the observer can influence the outcome
of quantum mechanical events. With every quantum particle there is
an associated wave. This wave represents the probability of finding
the particle at a particular point in space.
Before the particle is detected there is
no specific knowledge of its location - only a probability of where
it might be. But, once the particle has been detected, its exact
location is known. in this sense, the act of observation is said by
some to give reality to the particle.
What is true for a quantum
particle, they continue, may be true for the universe at large.
American physicist John Wheeler sees the universe as a
gigantic feed-back loop.
The Universe [capitalized in the
original] starts small at the big bang, grows in size, gives rise to
life and observers and observing equipment. The observing equipment,
in turn, through the elementary quantum processes that terminate on
it, takes part in giving tangible "reality" to events that occurred
long before there was any life anywhere.33
In other words, the universe creates man,
but man through his observations of the universe brings the universe
into real existence.
George Greenstein is more direct in
positing that,
"the universe brought forth life in
order to exist... that the very cosmos does not exist unless
observed."34
Here we find a reflection of the question
debated in freshmen philosophy classes across the land:
If a tree falls in the forest, and no one is there to see it or hear
it, does it really fall?
Quantum mechanics merely shows us that in the micro world of
particle physics man is limited in his ability to measure quantum
effects. Since quantum entities at any moment have the potential or
possibility of behaving either as particles or waves, it is
impossible, for example, to accurately measure both the position and
the momentum of a quantum entity (the
Heisenberg uncertainty principle).
By choosing to determine the position of
the entity the human observer has thereby lost information about its
momentum.
It is not that the observer gives "reality" to the entity, but
rather the observer chooses what aspect of the reality of the entity
he wishes to discern. It is not that the Heisenberg uncertainty
principle disproves the principle of causality, but simply that the
causality is hidden from human investigation. The cause of the
quantum effect is not lacking, nor is it mysteriously linked to the
human observation of the effect after the fact. g
This misapplication of Heisenberg's uncertainty principle is but one
defect in but one version of the new "observer-as-creator"
propositions derived from quantum physics.
Some other flaws are summarized here:
Quantum mechanical limitations apply
only to micro, not macro, systems. The relative uncertainty
approaches zero as the number of quantum particles in the system
increases. Therefore, what is true for a quantum particle would not
be true for the universe at large.
The time separation between a quantum event and its observed result
is always a relatively short one (at least for the analogies under
discussion). A multi-billion year time separation far from fits the
picture.
The arrow of time has never been observed to reverse, nor do we see
any traces of a reversal beyond the scope of our observations. Time
and causality move inexorably forward. Therefore, to suggest that
human activity now somehow can affect events billions of years in
the past is nothing short of absurd.
Intelligence, or personality, is not a factor in the observation of
quantum mechanical events. Photographic plates, for example, are
perfectly capable of performing observations.
Both relativity and the gauge theory of quantum mechanics, now
established beyond reasonable question by experimental evidence,37
state that the correct description of nature is that in which the
human observer is irrelevant.
Science has yet to produce a shred of
evidence to support the notion that man created his universe.
Universe
becoming God?
In The Anthropic Cosmological Principle, British astronomer
John Barrow and American mathematical physicist Frank
Tipler,38 begin by reviewing evidences for
design of the universe, then go on to address several radical
versions of the anthropic principle, including Wheeler's feed-back
loop connection between mankind and the universe.
Referring to such theories as PAP
(participatory anthropic principle), they propose, instead, FAP
(final anthropic principle).
In their FAP, the life that is now in the universe (and, according
to PAP, created the universe) will continue to evolve until it
reaches a state of totality that they call the Omega Point.
At the Omega Point,
Life will have gained control of all
matter and forces not only in a single universe, but in all
universes whose existence is logically possible; life will have
spread into all spatial regions in all universes which could
logically exist, and will have stored an infinite amount of
information including all bits of knowledge which it is logically
possible to know.39
In a footnote they declare that,
"the totality of life at the Omega Point
is omnipotent, omnipresent, and omniscient!"40
Let me translate:
the universe created man, man
created the universe, and together the universe and man in the
end will become the Almighty transcendent "Creator".
Martin Gardner gives this evaluation of
their idea:
What should one make of this quartet of
WAP, SAP, PAP, and FAP? In my not so humble opinion I think the last
principle is best called CRAP, the Completely Ridiculous Anthropic
Principle.41
In their persistent rejection of an
eternal transcendent ""Creator"", cosmologists seem to be resorting
to more and more absurd alternatives.
An exhortation from the Bible is
appropriate,
"See to it that no one takes you
captive through hollow and deceptive philosophy."42
Insufficient
universe
It is clear that man is too limited to have created the universe.
But, it is also evident that the universe
is too limited to have created man. The universe contains no more
than 1080 baryonsh and has been in existence for
no more than 1018 seconds.
Compared to the inorganic systems comprising the universe,
biological systems are enormously complex. The genome (complete set
of chromosomes necessary for reproduction) of an E. coli bacterium
has the equivalent of about two million nucleotides.
A single human cell contains the
equivalent of about six billion nucleotides. Moreover, unlike
inorganic systems, the sequence in which the individual components
are assembled is critical for the survival of biological systems.
Also, only amino acids with left handed
configurations can be used in protein synthesis, the amino acids can
be joined only by peptide bonds, each amino acid first must be
activated by a specific enzyme, and multiple special enzymes
(enzymes themselves are enormously complex sequence-critical
molecules) are required to bind messenger RNA to ribosomes before
protein synthesis can begin or end.
The bottom line is that the universe is at least ten billion orders
of magnitude (a factor of 1010,000,000,000 times)
too small or too young for life to have assembled itself by natural
processes. i
These kinds of calculations have been done
by researchers, both non-theists and theists, in a variety of
disciplines.43-58
Invoking other universes cannot solve the problem. All such models
require that the additional universes remain totally out of contact
with one another, that is, their space-time manifolds cannot
overlap. The only explanation left to us to tell how living
organisms received their highly complex and ordered configurations
is that an intelligent, transcendent "Creator" personally infused
this information.
An intelligent, transcendent "Creator" must have brought the
universe into existence. An intelligent, transcendent "Creator" must
have designed the universe. An intelligent, transcendent "Creator"
must have designed planet Earth.
An intelligent, transcendent "Creator"
must have designed life.
FOOTNOTES
a. The strong nuclear force is actually much more delicately balanced.
An increase as small as two percent means that protons would never
form from quarks (particles that form the building blocks of baryons
and mesons). A similar decrease means that certain heavy elements
essential for life would be unstable.
b. Direct observations of proton decay have yet to be confirmed.
Experiments simply reveal that the average proton lifetime must
exceed 1032 years.9
However, if the average proton lifetime exceeds
about 1034 years, than there would be no physical means for
generating the matter that is observed in the universe.
c. An example of the greenhouse effect is a locked car parked in the
sun. Visible light from the sun passes easily through the windows of
the car, is absorbed by the interior, and reradiated as infrared
light. But, the windows will not permit the passage of infrared
radiation. Hence, heat accumulates in the car's interior.
Carbon
dioxide in the atmosphere works like the windows of a car. The early
earth had much more carbon dioxide in its atmosphere. However, the
first plants extracted this carbon dioxide and released oxygen.
Hence, the increase in the sun's luminosity was balanced off by the
decrease in the greenhouse effect caused by the lessened amount of
carbon dioxide In the atmosphere.
d. A runaway freezing would occur because snow and ice reflect better
than other materials on the surface of the earth. Less solar energy
is absorbed thereby lowering the surface temperature which in turn
creates more snow and ice.
e. The average number of planets per star is still largely unknown.
The latest research suggests that only bachelor stars with
characteristics similar to those of the sun may possess planets.
Regardless, all researchers agree that the figure is certainly much
less than one planet per star.
f. The assumption is that all life is based on carbon. Silicon and
boron at one time were considered candidates for alternate life
chemistries. However, silicon can sustain amino acid chains no more
than a hundred such molecules long. Boron allows a little more
complexity but has the disadvantage of not being very abundant in
the universe.
g. One can easily get the impression from the physics literature that
the Copenhagen interpretation of quantum mechanics is the only
accepted philosophical explanation of what is going on in the micro
world.
According to this school of thought,
"1) There is no reality
in the absence of observation; 2) Observation creates reality."
In
addition to the Copenhagen interpretation physicist Nick Herbert
outlines and critiques six different philosophical models for
interpreting quantum events.35 Physicist and theologian Stanley Jaki
outlines yet an eighth model.36
While a clear philosophical
understanding of quantum reality is not yet agreed upon. physicists
do agree on the results one expects from quantum events.
h. Baryons are protons and other fundamental particles, such as
neutrons, that decay into protons.
i. A common rebuttal is that not all amino acids in organic molecules
must be strictly sequenced. One can destroy or randomly replace
about 1 amino acid out of 100 without doing damage to the function
of the molecule. This is vital since life necessarily exists in a
sequence - disrupting radiation environment.
However, this is
equivalent to writing a computer program that will tolerate the
destruction of 1 statement of code out of 1001. In other words, this
error-handling ability of organic molecules constitutes a far more
unlikely occurrence than strictly sequenced molecules.
REFERENCES
1. Wheeler, John A. "Foreword," in The Anthropic Cosmological
Principle by John D. Barrow and Frank J. Tipler. (Oxford, U. K.:
Clarendon Press, 1986), p. vii.
2. Franz, Marie-Louise. Patterns of Creativity Mirrored in Creation
Myths. (Zurich: Spring, 1972).
3. Kilzhaber, Albert R. Myths, Fables, and Folktales. (New York: Holt,
1974), pp. 113-114.
4. Dirac, P. A. M. "The Cosmological Constants," in Nature 139.
(1937), p. 323.
5. Dicke, Robert H. "Dirac's Cosmology and Mach's Principle," in
Nature, 192. (1961), pp. 440-441.
6. Guth, Man H. "Inflationary Universe: A Possible Solution to the
Horiwn and Flatness Problems," in Physical Review D, 23. (1981), p.
348.
7. Carr, B. J. and Rees, M. J. "The Anthropic Principle and the
Structure of the Physical World," in Nature, 278. (1979), p. 610.
8. Barrow, John D. and Tipler, Frank J. The Anthropic Cosmological
Principle. (New York: Oxford University Press, 1986), pp. 401-402.
9. Trefil, James S. The Moment of Creation: Big Bang Physics from
before the First Millisecond to the Present Universe. (New York:
Scribner's Sons, 1983), pp. 141-142.
10. Hoyle, Fred. "The Universe: Past and Present Reflections," in
Annual Review of Astronomy and Astrophysics. 20. (1982), p. 16.
11. Greenstein, George. The Symbiotic Universe: Life and Mind in the
Cosmos. (New York: William Morrow, 1988), pp. 26-27.
12. Shklovskii, I. S. and Sagan, Carl. Intelligent Life in the
Universe. (San Francisco: Holden-Day, 1966), pp. 343-350
13. Ibid., pp. 413.
14. Rood, Robert T. and Trefil, James S. Are We Alone? The Possibility
of Extraterrestrial Civilizations. (NewYork: Charles Scribner's
Sons, 1983).
15. Barrow, John D. and Tipler, Frank J. The Anthropic Cosmological
Principle. (New York: Oxford University Press, 1986), pp. 510-575.
16. Anderson, Don L. "The Earth as a Planet: Paradigms and Paradoxes,"
in Science, 223. (1984), pp. 347-355.
17. Campbell, I. H. and Taylor, S. R. "No Water, No Granite - No
Oceans, No Continents," in Geophysical Research Letters, 10. (1983),
pp. 1061-1064.
18. Carter, Brandon. "The Anthropic Principle and Its Implications for
Biological Evolution," in Philosophical Transactions of the Royal
Society of London, Series A, 310. (1983), pp. 352-363.
19. Hammond, Allen H. "The Uniqueness of the Earth's Climate," in
Science, 187. (1975), p. 245.
20. Toon, Owen B. and Olson, Steve. "The Warm Earth," in Science 85,
October. (1985), pp. 50-57.
21. Gale, George. "The Anthropic Principle," in Scientific American,
245, No. 6. (1981), pp. 154-171.
22. Ross, Hugh. Genesis One: A Scientific Perspective. (Pasadena,
California: Reasons To Believe, 1983), pp. 6-7
23. Cotnell, Ron. The Remarkable Spaceship Earth. (Denver, Colorado:
Accent Books, 1982).
24. Ter Harr, D. "On the Origin of the Solar System," in Annual Review
of Astronomy and Astrophysics, 5. (1967), pp. 267-278.
25. Greenstein, George. The Symbiotic Universe: Life and Mind in the
Cosmos. (New York: William Morrow, 1988), pp. 68-97.
26. Templeton, John M. "God Reveals Himself in the Astronomical and in
the infinitesimal," in Journal of the American Scientific
Affiliation, December. (1984), pp. 196-198.
27. Hart, Michael H. "The Evolution of the Atmosphere of the Earth,"
in Icarus, 33. (1978), pp. 23-39.
28. Hart, Michael H. "Habitable Zones about Main Sequence Stars," in
Icarus, 37. (1979), pp. 351-357.
29. Owen, Tobias, Cess, Robert D., and Ramanathan, V. "Enhanced CO2
Greenhonse to Compensate for Reduced Solar Luminosity on Early
Earth," in Nature, 277. (1979), pp. 640-641.
30. Ward, William R. "Comments on the Long-Term Stability of the
Earth's Obliquity," in Icarus, 50. (1982), pp. 444-448.
31. Gribbin, John. "The Origin of Life: Earth's Lucky Break," in
Science Digest, May. (1983), pp. 36-102
32. Davies, Paul. The Cosmic Blueprint: New Discoveries in Nature's
Creative Ability to Order the Universe. (New York: Simon and
Schuster, 1988), p. 203.
33. Wheeler, John Archibald. "Bohr, Einstein, and the Strange lesson
of the Quantum," in Mind in Nature, edited by Richard Q. Elvee. (New
York: Harper and Row, 1981), p.18.
34. Greenstein, George. The Symbiotic Universe: Life and Mind in the
Cosmos. (New York: William Morrow, 1988), p. 223.
35. Herbert, Nick. Quantum Reality: Beyond the New Physics: An
Excursion into Metaphysics and the Meaning of Reality. (New York:
Anchor Books, Doubleday, 1987), in particular pp. 16-29.
36. Jaki, Stanley L. Cosmos and
"Creator". (Edinburgh, U. K.: Scottish
Academic Press, 1980), pp. 96-98.
37. Trefil, James S. The Moment of Creation. (New York: Charles
Scribner's Sons, 1983), pp. 91-101.
38. Barrow, John D. and Tipler, Frank J. The Anthropic Cosmological
Principle. (New York: Oxford University Press, 1986).
39. Ibid., p. 677.
40. Ibid., pp. 677, 682.
41. Gardner, Martin. "WAP, SAP, PAP, and FAP." in The New York Review
of Books, 23, May 8, No. 8. (1986), pp. 22-25.
42. The Holy Bible, New International Version. Colossians 2:8.
43. Yockey, Hubert P. "On the Information Content of Cytochrome c," in
Journal of Theoretical Biology, 67. (1977), pp. 345-376.
44. Yockey, Hubert P. "An Application of Information Theory to the
Central Dogma and Sequence Hypothesis," in Journal of Theoretical
Biology, 46. (1974), pp. 369-406.
45. Yockey, Hubert P. "Self Organization Origin of Life Scenarios and
Information Theory," in Journal of Theoretical Biology, 91(1981),
pp. 13-31.
46. Lake, James A. "Evolving Ribosome Structure: Domains in
Archaebacteria, Eubacteria, Eocytes, and Eukaryotes," in Annual
Review of Biochemistry, 54. (1985), pp. 507-530.
47. Dufton, M. J. "Genetic Code Redundancy and the Evolutionary
Stability of Protein Secondary Structure," in Journal of Theoretical
Biology, 116. (1985), pp. 343-348.
48. Yockey, Hubert P. "Do Overlapping Genes Violate Molecular Biology
and the Theory of Evolution," in Journal of Theoretical Biology, 80.
(1979), pp. 21-26.
49. Abelson, John "RNA Processing and the Intervening Sequence
Problem," in Annual Review of Biochemistry, 48. (1979), pp.
1035-1069.
50. Hinegardner, Ralph T. and Engleberg, Joseph. "Rationale for a
Universal Genetic Code," in Science, 142. (1963), pp. 1083-1085.
51. Neurath, Hans. "Protein Structure and Enzyme Action," in Reviews
of Modern Physics, 31. (1959), pp.185-190.
52. Hoyle, Fred and Wickramasinghe. Evolution From Space: A Theory of
Cosmic Creationism. (New York: Simon and Schuster, 1981), 14-97.
53. Thaxton, Charles B., Bradley, Walter L., and Olsen, Roger. The
Mystery of Life's Origin: Reassessing Current Theories. (New York:
Philosophical Library, 1984).
54. Shapiro, Robert. Origins: A Skeptic's Guide to the Creation of
Life on Earth. (New York: Summit Books, 1986), 117-131.
55. Ross, Hugh. Genesis One: A Scientific Perspective, second edition.
(Pasadena, Calif.: Reasons To Believe, 1983), pp. 9-10.
56. Yockey, Hubert P. "A Calculation of the Probability of Spontaneous
Biogenesis by Information Theory," in Journal of Theoretical
Biology, 67. (1977), pp. 377-398.
57. Duley, W. W. "Evidence Against Biological Grains in the
Interstellar Medium," in Quarterly Journal of the Royal Astronomical
Society, 25. (1984), pp. 109-113.
58. Kok, Randall A., Taylor, John A., and Bradley, Walter L. "A
Statistical Examination of Self-Ordering of Amino Acids in
Proteins," in Origins of Life and Evolution of the Biosphere, 18.
(1988), pp. 135-142.
|