by Stephen Smith

August 21, 2020

from Thunderbolts Website

 

 

 

 


Edge-on galaxy NGC 891.

Such galactic discs are supposed to

require dark matter in order to exist.

Credit: R. Jay GaBany, Cosmotography.

 



Astronomers think that an undetectable influence must exist in space, because stars on the edges of spiral galaxies revolve with the same angular velocity as stars close to their centers.

 

Newtonian theory would suggest that stars farther away ought to move more slowly, so "extra gravity" is thought to be necessary.

Since whatever is supplying that force is invisible, "dark matter" was invented to correct their errors...

Many different experiments are attempting to find those elusive particles, without success.

 

Since exotic crystals and cryogenic detectors are failing to find any evidence for dark matter, scientists are using quantum physics; attempting to build instruments that are more sensitive to their theories.

Weakly Interacting Massive Particles (WIMP) are the chief subatomic candidate for dark matter.

 

The Cryogenic Dark Matter Search (CDMS) built a detector that was supposed to "see" WIMPs. It saw nothing, so it was upgraded to the SuperCDMS. SuperCDMS is plagued by false readings from cosmic rays and other ionizing sources.

 

After 15 years, nothing else is colliding with the detector...

Axions are another of the imaginary particles that might exist. The Axion Dark Matter Experiment (ADMX) uses a superconducting magnet. ADMX is an axion haloscope, which uses a magnetic field to convert axions into detectable photons.

 

The ADMX G2 experiment is the only experiment looking for axions.

 

ADMX is plagued by the same problems afflicting SuperCDMS:

electronic devices generate signals, which is noise that ADMX must filter out.

Temperature changes are also noisy, since heat radiates infrared light.

 

Despite the 4.2 Kelvin cold environment, tuning the detector continues to be impossible.

The Large Underground Xenon experiment (LUX) uses liquid xenon as a "scintillator". Photomultiplier tubes that are so sensitive they can detect a single photon surround the tank of xenon in the LUX experiment. No results...

Since solid matter is mostly empty space, dark matter interactions would take place only once in uncounted trillions of trillion atomic nuclei.

Thus the need for larger instruments containing more detection materials...

Electric Universe theory proposes a different view of the cosmos.

 

Astrophysicist Hannes Alfvén came up with an "electric galaxy" theory as early as 1981.

 

Alfvén said that galaxies are like homopolar motors.

A homopolar motor is driven by magnetic fields induced in a circular aluminum plate or some other conductive metal.

 

The metal plate is placed between the poles of an electromagnet, causing it to spin at a rate proportional to the input current.

Galactic discs behave like the plates in those motors.

 

Birkeland currents flow within them, powering their stars. Galaxies are, in turn, powered by intergalactic Birkeland currents that are detectable by their radio signals.

 

Since Birkeland currents are drawn toward each other in a 1√r relationship, dark matter can be dismissed when electric currents flowing through plasma are recognized as an attractive force...