di Anne Trafton 20 Febbraio 2020 dal Sito Web NewsMIT traduzione di Nicoletta Marino
Ricercatori del MIT hanno usato un algoritmo di applicazione automatica per identificare un farmaco chiamato halicin che uccide molti ceppi di batteri. L'alicina (riga superiore) ha impedito lo sviluppo di resistenza agli antibiotici in E. coli, mentre la ciprofloxacina (riga inferiore) no. Immagine: per gentile concessione del Collins Lab al MIT
Un modello dall'approfondita applicazione identifica un nuovo potente farmaco che può uccidere molte specie di batteri resistenti agli antibiotici...
Utilizzando un algoritmo con applicazione automatica, i ricercatori del MIT hanno identificato un nuovo potente composto antibiotico.
In test di laboratorio, il farmaco ha ucciso molti dei batteri più problematici che causano malattie, tra cui alcuni ceppi resistenti a tutti gli antibiotici noti. Ha anche eliminato le infezioni in due diversi cavie di topo.
Il modello computerizzato, che può selezionare più di cento milioni di composti chimici in pochi giorni, è progettato per individuare potenziali antibiotici che uccidono i batteri utilizzando meccanismi diversi rispetto a quelli dei farmaci esistenti.
Nel loro nuovo studio, i ricercatori hanno anche identificato molti altri promettenti candidati di antibiotici, che hanno intenzione di testare ulteriormente.
Ritengono che il modello potrebbe anche essere utilizzato per progettare nuovi farmaci, sulla base di ciò che ha appreso sulle strutture chimiche che consentono ai farmaci di uccidere i batteri.
Barzilay e Collins, che sono a capo della facoltà della Clinica Abdul Latif Jameel del MIT per l'apprendimento automatico della salute (J-Clinic), sono gli autori senior dello studio (Un Approccio di Approfondito Apprendimento per la Scoperta degli Antibiotici - A Deep Learning Approach to Antibiotic Discovery), che appare oggi su Cell.
Il primo autore dell'articolo è Jonathan Stokes, specializzando presso il MIT e il Broad Institute of MIT e Harvard.
Una nuova pipeline
Negli ultimi decenni, sono stati sviluppati pochissimi nuovi antibiotici e la maggior parte di questi antibiotici recentemente approvati sono varianti leggermente diverse dei farmaci esistenti.
I metodi attuali per lo screening di nuovi antibiotici sono spesso proibitivi in termini di costi, richiedono un investimento significativo in termini di tempo e sono generalmente limitati a uno spettro ristretto di diversità chimica.
Per cercare di trovare composti completamente nuovi, ha collaborato con
...che hanno precedentemente sviluppato modelli di computer per apprendimento automatico che possono essere addestrati per analizzare le strutture molecolari dei composti e correlarli con tratti particolari, come la capacità di uccidere i batteri.
L'idea di utilizzare modelli computerizzati predittivi (più veloci e accessibili) per lo screening "in silico" non è nuova, ma fino ad ora questi modelli non erano sufficientemente accurati per trasformare la scoperta di medicamenti.
In precedenza, le molecole erano rappresentate come vettori che riflettevano la presenza o l'assenza di determinati gruppi chimici.
Tuttavia, le nuove reti neurali possono apprendere automaticamente queste rappresentazioni, mappando le molecole in vettori continui che vengono successivamente utilizzati per prevederne le proprietà.
In questo caso, i ricercatori hanno progettato il loro modello per cercare caratteristiche chimiche che rendano le molecole efficaci nell'uccidere l'E. coli.
Per fare ciò, hanno fatto girare il modello su circa 2.500 molecole, tra cui circa 1.700 farmaci approvati dalla FDA e un set di 800 prodotti naturali con diverse strutture e una vasta gamma di bioattività.
Una volta che il modello è stato avviato i ricercatori lo hanno testato sull'Hub Repurposing Hub del Broad Institute, una biblioteca di circa 6.000 composti. Il modello ha individuato una molecola che aveva una forte attività antibatterica e una struttura chimica diversa da qualsiasi antibiotico esistente.
Utilizzando un diverso modello di apprendimento automatico, i ricercatori hanno anche dimostrato che questa molecola avrebbe probabilmente una bassa tossicità per le cellule umane.
Questa molecola, che i ricercatori hanno deciso di chiamare halicin, dopo il sistema di intelligenza artificiale immaginaria di "2001: Odissea nello spazio", è stata precedentemente studiata come possibile farmaco per il diabete.
I ricercatori hanno testato dozzine di ceppi batterici isolati dai pazienti e cresciuti in laboratorio e hanno scoperto che era in grado di uccidere molti resistenti al trattamento, tra cui, Il farmaco ha funzionato contro ogni specie testata, ad eccezione di Pseudomonas aeruginosa, un patogeno polmonare difficile da trattare.
Per testare l'efficacia dell'alicina negli animali vivi, i ricercatori l'hanno usato per trattare i topi infetti da A. baumannii, un batterio che ha infettato molti soldati statunitensi di stanza in Iraq e Afghanistan.
Il ceppo di A. baumannii che hanno usato è resistente a tutti gli antibiotici conosciuti, ma l'applicazione di un unguento contenente alicina ha completamente eliminato le infezioni entro 24 ore.
Studi preliminari suggeriscono che l'alicina uccide i batteri interrompendo la loro capacità di mantenere un gradiente elettrochimico attraverso le loro membrane cellulari.
Questo gradiente è necessario, tra le altre funzioni, per produrre ATP (molecole che le cellule usano per immagazzinare energia), quindi se il gradiente si rompe, le cellule muoiono.
Con questo tipo di meccanismo di uccidere potrebbe essere difficile per i batteri sviluppare resistenza, affermano i ricercatori.
In questo studio, i ricercatori hanno scoperto che E. coli non ha sviluppato alcuna resistenza all'alicina durante un periodo di trattamento di 30 giorni.
Al contrario, i batteri hanno iniziato a sviluppare resistenza all'antibiotico ciprofloxacina entro uno o tre giorni e dopo 30 giorni i batteri erano circa 200 volte più resistenti alla ciprofloxacina rispetto a quando erano all'inizio dell'esperimento.
I ricercatori hanno in programma di proseguire ulteriori studi sull'alicina, lavorando con un'azienda farmaceutica o un'organizzazione senza scopo di lucro, nella speranza di svilupparlo per usarlo nell'uomo.
Archivio di storia universale Gruppo di immagini universali tramite Getty Images
Molecole ottimizzate
Dopo aver identificato l'alicina, i ricercatori hanno anche utilizzato il loro modello per selezionare oltre 100 milioni di molecole selezionate dal database ZINC15, una raccolta online di circa 1,5 miliardi di composti chimici.
Questo screening, che ha richiesto solo tre giorni, ha identificato 23 candidati strutturalmente diversi dagli antibiotici esistenti e previsti non tossici per le cellule umane.
Nei test di laboratorio su cinque specie di batteri, i ricercatori hanno scoperto che otto delle molecole hanno mostrato attività antibatterica e due erano particolarmente potenti. I ricercatori hanno ora in programma di testare ulteriormente queste molecole e anche di esaminarne di più dal database ZINC15.
I ricercatori hanno anche in programma di utilizzare il loro modello per progettare nuovi antibiotici e ottimizzare le molecole esistenti.
Ad esempio, potrebbero preparare il modello per aggiungere funzionalità che farebbero sì che un determinato antibiotico colpisca solo determinati batteri, impedendogli di uccidere batteri benefici nel tratto digestivo di un paziente.
La ricerca è stata finanziata da
|